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Abstract: The Blue Dyke and Jardine Peak are subvertical hypabyssal intrusions cutting a
stratiform volcanic sequence in the Admiralty Bay area on King George Island (South
Shetlands, Antarctica). The rocks are porphyritic, crystal−rich basaltic andesites. Tiny zir−
con crystals were used for single grain SHRIMP U−Pb dating. The mean ages calculated for
the zircon populations from both intrusions indicates Late Oligocene (Chattian) formations.
Zircon grains from the Blue Dyke gave the mean age of 27.9±0.3 Ma, whereas those from
the Jardine Peak are slightly younger displaying the mean age of 25.4 ± 0.4 Ma: a Late
Oligocene (Chattian) crystallization age the inferred of both these intrusions. These are
much younger than previous Eocene K−Ar and Ar−Ar ages for such rocks and suggest that
formation of the King George Island intrusions can be related to tectonic processes that ac−
companied the opening of the Drake Passage.

Key words: Antarctica, King George Island, Late Oligocene, U−Pb SHRIMP dating.

Introduction

The South Shetland Islands magmatic arc was formed after Gondwana
break−up, during the subduction of the Phoenix Plate beneath the Antarctic Plate.
This process commenced during the latest Jurassic in the northeastern part of the ar−
chipelago and during the earliest Cretaceous in the southwestern part and lasted until
middle Miocene times (Pankhurst and Smellie 1983; Willan and Kelley 1999). The
opening of the Drake Passage between South America and the Antarctic Peninsula
took place during the Oligocene (Barker and Burrell 1977; Lawver et al. 1992). The
archipelago was separated from the Antarctic Peninsula during the formation of the
Bransfield Strait and the development of a back−arc basin presumably in the Plio−
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cene (Barker 1982; Barker and Dalziel 1983). King George Island located in the
middle of the volcanic arc, is the largest of the South Shetland Islands. The
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volcanogenic sequence (mostly basaltic and andesitic rocks with terrestrial sedimen−
tary intercalations) is cut by numerous hypabyssal dykes and plugs (Birkenmajer
2001, 2003). The age of magmatic rocks from King George Island is still poorly con−
strained. Many of volcanic rocks, as well as the hypabyssal intrusions from King
George Island have been dated using whole−rock K−Ar and Ar−Ar methods (e.g.

Watts 1982; Birkenmajer et al. 1983, 1986, 2005; Smellie et al. 1984, 1998; Willan
and Armstrong 2002; Kraus 2005; Kraus et al. 2007; Kraus and del Valle 2008).

The whole−rock K−Ar age of the Jardine Peak (54.2±1.1 Ma; Birkenmajer et al.

1986) pointed to a Paleocene/Eocene time of formation of intrusion. More re−
cently, detailed investigations of magmatic dykes from the Livingston, Nelson,
King George and Penguin Islands were conducted by Kraus (2005), Kraus and del
Valle (2008) and Kraus et al. (2007, 2008). Following petrographic and (isotope−)
geochemical analyses, these authors determined Ar−Ar ages on plagioclase min−
eral separates of eighteen dykes in the South Shetland Islands, among them three
dykes from the Admiralty Bay area: Agat Point, Sphinx Hill and Komandor Peak.
The results suggest a Lutetian age for the Sphinx Hill− and Komandor Peak dykes
(47.09 ± 0.56 Ma and 45.41 ± 0.61 Ma, respectively). The Agat Point dyke is the
oldest investigated intrusion and yielded a Ypressian age (54.00 ± 1.5 Ma). Based
on these and other Ar−Ar ages obtained from dykes elsewhere in the island, the au−
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Fig. 2. Photographs of the subvertical intrusions. A. Blue Dyke B. Jardine Peak.



thors (Kraus 2005; Kraus et al. 2007) concluded that the majority of dykes on King
George Island intruded during the Eocene, and emphasized that there are no dyke
intrusions younger than 45 Ma in this area.

The Blue Dyke forms one of the most impressive subvertical intrusion expo−
sures on the south−eastern coast of King George Island (Figs 1, 2a), and continues
as a set of small islands inside Bransfield Strait, whereas the Jardine Peak intrusion
is exposed on the south coast of Ezcurra Inlet as a steeply dipping, colum−
nar−jointed intrusive rock. Both of these hypabyssal intrusions are attributed to the
Admiralty Bay Group sensu Birkenmajer (1980, 2003), which is subdivided into
five informal units of formation rank. The Blue Dyke belongs to the “Sphinx Hill
Dykes” unit cutting the Late Cretaceous stratiform volcano−sedimentary complex
(Paradise Cove Group; Birkenmajer 1980; Birkenmajer et al. 1981), whereas the
second intrusion is included in the “Jardine Peak Plugs” unit intruded into a volca−
nic rocks of the Arctowski Cove Formation. There are only whole−rock K−Ar ages
of 54.2 ± 1.1 Ma for the Jardine Peak rocks (Birkenmajer et al. 1986), suggesting a
Paleocene/Eocene boundary age of the intrusion.

Knowledge of the age of magmatic events is crucially important for recon−
struction of tectonic evolution and understanding of the magmatic processes.
Thus, the main aim of this study is to precisely define the ages of the spectacular
Blue Dyke and the Jardine Peak intrusions which cut the volcanogenic sequence
within the Warszawa Block sensu Birkenmajer (1980). For this purpose U−Pb dat−
ing of single zircon grains was performed on a SHRIMP ion microprobe. This is
the first application of the SHRIMP technology to the age determination of mag−
matic rocks on the King George Island.

Petrography

The Blue Dyke and Jardine Peak basaltic rocks are crystal−rich, porphyritic,
dark grey rocks, containing ca 56% of SiO2. In the total alkalis versus silica (TAS)
classification diagram (Le Maitre et al. 1989), both fall within the basaltic andesite
field (Fig. 3). They are characterized by porphyritic, rarely glomeroporphyritic,
intersertal or intergranular texture.

The basaltic andesite from Jardine Peak (Fig. 4a–d) comprises plagioclase,
clinopyroxene and quartz megacrysts that may exceed 12–15 mm in length. The
groundmass contains plagioclase, clinopyroxene, titanomagnetite, apatite and zircon
crystals and rare anhedral quartz and chlorite crystals (presumably previously glass;
Fig. 4d). The plagioclase crystals occur as euhedral and subhedral phenocrysts show−
ing zoning and resorption (Fig. 4a–b) which sporadically form glomerocrysts, and as
small (less than 0.5 mm in length), irregularly− and randomly−orientated laths in the
groundmass. These all show chemical zoning. The core and the rims of plagioclase
crystals are of bytownite and labradorite composition, respectively. The quartz
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megacrysts commonly show the effects of resorption (Fig. 4c). Unbroken crystals are
embayed, partly rounded and surrounded by a reaction rim of minute rod−shaped
clinopyroxenes. The presence of partially resorbed quartz xenocrysts in a basaltic an−
desite groundmass most probably indicates contamination by crustal materials.

In contrast, the Blue Dyke basaltic andesite (Fig. 4e–h) is much more altered,
which could be explained by hydrothermal activity related to the intrusion. The
Blue Dyke rocks comprise a slightly different paragenesis of minerals. The pheno−
crysts are mostly plagioclase (Fig. 4e) and rarely clinopyroxene (Fig. 4f). The al−
tered groundmass contains plagioclase laths, very small crystals of apatite, zircon,
magnetite, ilmenite, titanomagnetite and anhedral quartz (Fig. 4h). Neither quartz
xenocrysts nor small clinopyroxene crystals are observed within the groundmass.
Both plagioclase generations (phenocrysts and groundmass laths) are altered (al−
bite, calcite, chlorite), with relicts of primary chemical composition which were
identified as bytownite (core) and labradorite (rims). Zircons and apatite occur as
tiny crystals within the groundmass and also as inclusions within magnetite grains
(Fig. 4g).

Methods and samples

The samples of the Blue Dyke and Jardine Peak rocks taken for single−grain
U−Pb dating were collected from massive and less altered parts of the intrusions.
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The eight−kilogram samples were crushed and sieved after thorough examination
of thin sections on a LEO electron microprobe in the Polish Geological Institute
(Warsaw). The heavy mineral fractions were separated using conventional heavy
liquid and magnetic separation techniques. Zircon grains were hand picked from
the concentrates using a petrographic microscope. All selected crystals were
mounted in epoxy with zircon standards, polished and documented by transmitted−
and reflected light microscopy as well as imaged in cathodoluminescence (CL) us−
ing the Hitachi S−2250N SEM. Cathodoluminescence images were used to charac−
terize each grain in terms of size, morphology and internal structure. Following CL
examination, ten zircon grains from each population were chosen for single−grain
U−Pb dating. Isotope analyses were performed using the SHRIMP II ion micro−
probe at the Research School of Earth Sciences, Australian National University,
Canberra. Sri Lankan zircon standard SL13, and procedures based on those de−
scribed by Williams and Cleasson (1987), were used. The samples were analyzed
under the following conditions: the primary ion beam (10 kV O2

−) was focused to a
ca 25 μm diameter spot; the mass resolution was ca 5000 R; the isotopic species
were determined by ion counting using single electron multiplier and cyclic peak
stepping. The obtained date were recalculated using the SQUID Excel Macro of
Ludwig (2000), whereas a Tera−Wasserburg concordia diagram was ploted using
the ISOPLOT/EX program (Ludwig 2003). Ages were calculated using the con−
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stants recommended by the IUGS Subcommission on Geochronology (Steiger and
Jäger 1977).

The zircon population from Jardine Peak rocks is very homogenous (Fig.
5a–c). Almost all zircons are generally transparent, pale−coloured and sharply−
−euhedral prismatic crystals. They range from 80 to 300 μm in length and 40 to 100
μm in width with an average aspect ratio of about 3. Evidences of minor dissolu−
tion of the zircon crystals is rare. The zircons recovered from the Blue Dyke rocks
(Fig. 5d–f) are a relatively uniform population containing fragments of pale−col−
oured, prismatic crystals. Only a few zircons have sharp euhedral terminations. Al−
most all crystals have rounded terminations and/or scalloped faces indicating par−
tial dissolution. They range from 60 to 250 in length and 40 to 80 μm in width with
an average aspect ratio of about 3.

Results

The results of our studies are listed in Table 1. The cathodoluminescence im−
ages of zircon grains with all spot−analysis locations are shown in Fig. 5. The zir−
con grains from the Blue Dyke basaltic andesite have moderate U and Th contents
(562–1333 ppm and 148–612 ppm, respectively) similar to those of the Jardine
Peak rocks (U: 547–1277 ppm; Th: 190–600 ppm). The Th/U ratio is typical of ig−
neous zircons and is slightly lower in zircon grains from the Blue Dyke rocks than
from the Jardine Peak, ranging from 0.22 up to 0.46 and from 0.31 to 0.68, respec−
tively. The SHRIMP results are concordant for each population and form two clus−
ters (Fig. 6). The mean age calculated for the zircon grains from the Blue Dyke is
27.9 ± 0.3 Ma, whereas that for the Jardine Peak rocks is slightly younger at 25.4 ±
0.4 Ma. These results are taken to date both magma intrusions as Late Oligocene in
age (Gradstein et al. 2004).

Discussion

The new zircon isotopic ages presented here constrain the age of crystalliza−
tion and emplacement of magma to the Late Oligocene (Chattian) in the Admiralty
Bay area. Quartz xenocrysts in the Jardine Peak basaltic andesite suggests that the
parental melt was contaminated by crustal rocks. However, there is no evidence for
inherited zircons. All zircons are euhedral, prismatic crystals without strong evi−
dence of dissolution. On the other hand, zircons separated from Blue Dyke rocks
have rounded terminations indicating partial dissolution. Nevertheless, the com−
mon occurrence of plagioclase phenocrysts with reaction rims against melt might
indicate magma mixing processes. Reaction rims between the dissolving plagio−
clase crystals and enclosing melt might also reflect their disequilibrium during

Isotope age constraint for the Blue Dyke and Jardine Peak intrusions 387
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magma ascent. It should be stressed that the isotope ages determined for the rims
and cores of the zircon grains are similar. Previous K−Ar ages for Jardine Peak sug−
gested older age of emplacement (54.2 ± 1.1 Ma; Birkenmajer et al. 1986). Such
substantial discrepancy between U−Pb single zircon grain and whole−rocks K−Ar
ages might be the effect of inherited Ar.

The tectonic rearrangement that accompanied the opening of Drake Passage
took place between 50 and 20 Ma (Barker and Burrell 1977; Lawver et al. 1992;
Livermore et al. 2005). The first, Eocene stage of this process was constrained to
the opening of small oceanic basins, with the probable formation of a shallow gate−
way only, because the oldest sea floor within Drake Passage is evidently younger
than 34–30 Ma (Livermore et al. 2005). The sea floor formation due to spreading
at the West Scotia Ridge led to further opening of the Drake Passage and formation
of a deep gateway by the Middle Oligocene. By the Late Oligocene the tectonic re−
gime was changed and W−E spreading on South American – Antarctic Ridge
started to be prevailing (Livermore et al. 2005). It is possible that the generation of
the basaltic magmas that were emplace as the hypabyssal intrusions on King
George Island were related just to this phase of tectonic processes forming the
Drake Passage.

Conclusions

• The Blue Dyke and Jardine Peak subvertical intrusions on King George Island
contain zircon crystals that are precisely dated using single−grain U−Pb SHRIMP
dating.

• This first reconnaissance to apply the SHRIMP dating method to the magmatic
rocks on the King George Island appears to have been successful. The Blue
Dyke and Jardine Peak intrusions were emplaced during the Late Oligocene
(Chattian).

• The intrusions on King George Island are coeval with the tectonic processes that
occurred during the younger stages of opening of the Drake Passage between
South America (Tierra del Fuego) and the Antarctic Peninsula when W−E
spreading on South American – Antarctic Ridge began to dominate.

• Our new results indicate that precise dating of volcanic and hypabyssal rocks
from the still tectonically active area of the South Shetland Islands is possible.
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