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Abstract: The paper deals with the use of isotope effects on chemical shifts in characterizing 

intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB 

systems are treated. The importance of RAHB will be discussed. Another very important 

issue is the borderline between “static” and tautomeric systems. Isotope effects on chemical 

shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded 

systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical 

acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary 

isotope effects on chemical shifts. These two types of isotope effects monitor the same 

hydrogen bond, but from different angles. 

Keywords: RAHB; isotope effects on chemical shifts; tautomeric systems 

 

1. Introduction 

The term intramolecular means within a molecule but even within molecules the type of hydrogen 

bonds can be different. A very important distinction is between hydrogen bonds that have been termed 

RAHB and those not (see Figure 1). If not RAHB the intramolecular hydrogen bonds may be very 

similar to intermolecular hydrogen bonds (examples are hydrogen bonds typically found in proteins). 

Examples are given in Figure 2. 

OPEN ACCESS
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Figure 1. Resonance and tautomerism.  

 

Figure 2. Hydrogen bond motifs. 

The use of isotope effects on chemical shifts (IECS) has been described in many reviews [1–4]. 

Both primary and secondary isotope effects on chemical shifts will be discussed. IECS are very useful 

in the study of hydrogen bonding as the effect is caused by variations in the zero point energy and therefore 

strongly related to the shape of the hydrogen bond potential as seen in Figure 3. This should ideally be 

a multi surface potential [5]. IECS are in the present paper defined as: nΔX(D) = δX(H) − δX(D) 

exemplified for deuterium isotope effects; n is the number of bonds between the deuterium and  

the nucleus in question. The definition for primary isotope effects is: PΔ(D) = δ(H) − δ(D) [6]. 

Unfortunately the opposite is also recommended [7]. The definition in Equation (1) is used in the present 

text and all numbers given are according to this definition. With respect to naming the isotope effects 
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text and all numbers given are according to this definition. With respect to naming the isotope effects 

different nomenclatures are used. One way is to refer to the isotope effects as intrinsic. This goes back 

to Jameson [8]. For symmetrical equilibrium systems in which isotope substitution does not lift the 

redundancy may still be referred as intrinsic as deuteriation is not perturbing the equilibrium. For  

non-symmetrical systems an equilibrium part will also occur (see equilibrium isotope effects). As the 

intrinsic isotope effect is caused by a change in the average bond length upon deuteriation (Figure 3) 

the effect is also referred to as geometric [9]. The intrinsic isotope effects (see Definition) and the 

equilibrium contribution may be separated leading to a simple approach: 

 

Figure 3. Calculated hydrogen bond potential of the formamide dimer (MP2/6-311G(d,p). 

nΔX(D)int = (1 − χD) nΔX(D)OH + χD nX(D)NH (1) 

nΔX(D)eq = (δXNH − δXOH) Δχ (2) 

nΔX(D)OBS = nΔX(D)int + nΔX(D)eq
 (3) 

In Equations (1)–(3) χD is the mole fraction, Δχ, the change in the molefraction upon deuteriation, 
nΔX(D) is the isotope effect for nucleus X due to deuteriation n bonds away. Int, eq and OBS refer to 

intrinsic, equilibrium and observed.  

The above description is based on the Born-Oppenheimer approximation as described by Jameson [8]. 

The observation of a change in the solid in the heavy atom distance upon deuteriation, the so-called 

Ubbelohde effect [10] indicates that deuteriation may influence the geometry. However, no Ubbelohde 

effects have been reported in intramolecular hydrogen bonded systems [1]. For intermolecular hydrogen 

bonded systems this is certainly the case [9], so for the intramolecular cases resembling intermolecular 

hydrogen bonding this should be taken into account. 
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hydrogen bonded cases involving 2,6-dihydroxy acyl aromatics also entropy has to be taken into 

account [13]. Another highly connected issue is tautomerism. However, this has been treated in some 

detail lately [3,4]. This review will concentrate on recent developments. 

2. Results and Discussion 

2.1. Isotope Effects of RAHB Cases 

The term RAHB was first coined by Gilli et al. RAHB and they analyzed in great detail a very large 

number of examples mainly based on X-ray results [14,15]. The essence of the RAHB system is  

a donor, an acceptor and a bond with double bond character joining the two and of course the charge 

generation in the resonance form (see Figure 1d). The importance of the concept has since been 

disputed by Alkorta et al. [16–18]. 

2.1.1. Secundary Isotope Effects 

As shown early on in enaminones, deuterium isotope effects on chemical shifts, 13C or 15N can 

monitor intramolecular hydrogen bonding very well as shown in Figure 4. It is obvious that the IECS 

over one bond at 15N (1.18 or 1.44 vs. 0.61 ppm) or over two bonds at 13C (0.244 or 0.259 vs. 0.069 ppm) 

are much larger in the hydrogen bonded cases. 

 

Figure 4. Enaminones (isotope effects in ppm). 

Principal component analysis of a number of o-hydroxy acyl nitro aromatics (Figure 1, Z=NO2) 

showed a relationship between two-bond isotope effects on 13C chemical shifts and the bond lengths 

around the hydrogen bond system in agreement with resonance assisted behavior [19]. The characteristics 

of a RAHB pattern is that the O…O, the O…H, the C-OH and the C-C=O distances become shorter 

with stronger hydrogen bonds, whereas the O-H, and C=O bond lengths become longer. Furthermore, 

the negative charge at the OH oxygen is supposed to go down whereas that at the C=O oxygen is 

supposed to increase. For o-hydroxyesters, covering a very wide range of compounds, we find exactly 

the same type of coefficient pattern analyzing the two-bond isotope effects vs. bond lengths [20]. 
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A classic case is that of methyl 2,6-dihydroxybenzoate (Figure 5), which at low temperature shows 

two different OH chemical shifts (11.8 and 8.6 ppm) and two different two-bond deuterium isotope 

effects at C-2 and C-6 (0.18 and 0.12 ppm) indicating that the two hydrogen bonds are clearly different 

despite the fact that the O…O distances only differ by 0.02 Å. The one to C-2 is in a RAHB systems, 

whereas the one to C-6 is not. See also below for a discussion of the importance of the O…O distance. 

 

Figure 5. Isotope effects (in ppm) in methyl 2,6-dihydroxybenzoate. Data from Ref. [21]. 

Sanz et al. claim that RAHB is not important but only the oxygen-oxygen distance in the 

intramolecular hydrogen bond is of importance. They support their idea by calculating a number of 

intramolecular hydrogen bonds created artificially created by changing a double bond into a single 

bond and keeping the atoms in the plane [16]. An example is as seen in Figure 6. This of course is an 

energetically very costly manner, but by looking at electron densities at bond critical points etc. they 

claim to have strong hydrogen bonds. One point of criticism is that the methods they use are taken 

from intermolecular hydrogen bonds. Furthermore, nature is not creating such strong hydrogen bonds 

with single bonds joining the donor and the acceptor atoms. 

 

Figure 6. Example of a molecule transformed from salicylaldehyde but with a single bond 

between the acceptor and the donor. 

In Table 1 are given a couple of data illustrating that the heavy atom distance is not the  

determining factor. 

Another example of RAHB is the aldehydes shown in Figure 7. The two-bond isotope effects 

(shown in many cases to be good monitors of hydrogen bond strength [1–5]) are clearly different in the 

2,3-dihydroxyterephthalaldehyde (2,3-dt) and in 2,4-dihydroxyisophthalaldehyde (2,4-di). In the 

former positive charge is repulsive in the charge separated form and the isotope effect is clearly 

smaller than in the latter. The distances around the hydrogen bond systems are given in Table 2. 
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Table 1. Calculated heavy atom distances and two-bond deuterium isotope effects on 13C 

chemical shifts.  

Compound RN…X in Å a 2ΔC(ND) in ppm Refs. 

2,4-dinitro-N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) 

See Figure 13 
2.5968 0.32 [22] 

1,4-diaminoanthraquinone 2.5564 0.36 [23] 

1,4-diphenylaminoanthraquinone 2.5791 0.28 [23] 

(Z)-N-methyl-3-phenyl-1-amino-3-propa-1-enone 2.6552 0.24 [24] 

(Z)-N-phethyl-3-phenyl-1-amino-3-propa-1-enone 2.6556 0.302 [24] 
a Calculated using the Gaussian program [25] in the B3LYP functional and the 6-31G(d,p) basis set. 

 

 

Figure 7. Aldehydes. Data for D taken from Ref. [26].  
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Table 2. Distances around the hydrogen bond in Å for dihydroxyterephthalaldehydes. 

Compound C=O C-C C=C C-O O-H O…O 2ΔC(OD) a 

2,4-di (B) b 1.2381 1.4455 1.4205 1.3333 0.9999 2.5980 0.302 

2,4-di (B) 1.2379 1.4528 1.4255 1.3290 1.0000 2.5878 0.332 

2,3-dt (A) 1.2319 1.4593 1.4184 1.3360 0.9909 2.6351 0.226 

5,6-dimethyl-2,3-dt (C) 1.2364 1.4621 1.4066 1.3330 0.9944 2.5727 0.303 
a In ppm. b Letters refer to Table 2. 

The reason for strong intramolecular hydrogen bonds lies in two factors, resonance assistance and  

in steric effects. The importance of resonance assistance is demonstrated above, steric effects are 

discussed below. Steric effects are important for IMHB as was seen in a number of o-hydroxyl acyl 

aromatics [27,28]. The effect of steric encumbrance can take two forms (i) the donor and the acceptor 

atoms stay in the plane of the double bond; (ii) one or both are twisted out of the double bond plane. 

An example of the former is shown in Figure 7C and of the latter in Figure 7D. The two-bond 

deuterium isotope effect in 7C has increased from 0.226 ppm as seen in Figure 7A to 0.303 ppm in the 

dimethyl derivative (7C) due to steric compression, so the O…O distance of course matters. This was 

also seen in a series of hydroxyl acyl benzenes [27]. The two types of steric effects can be distinguished 

as seen from Figure 8. Data for the twisted compounds fall high above the main correlation line [28]. 

 

Figure 8. Plot of two-bond isotope effects vs. OH chemical shifts. Data taken from  

Refs. [26–28]. 

An example of nitrogen being the acceptor is found in 10-hydroxybenzo[h]quinolines as seen in 

Figure 9. A series of compounds are investigated and a very good correlation is found between 2ΔC(OD) 

and δOH. However, the correlation is rather different from that of benzene derivatives due to the  

much stronger ring current effects of the 10-hydroxybenzo[h]quinolines compared to benzenes [29]. 

This influences the OH chemical shift, but not the isotope effects on chemical shifts, a good reason for 

using IECS rather that OH chemical shifts in estimating the strength of intramolecular hydrogen bonds. 

As already mentioned do enaminocarbonyl compounds form intramolecular hydrogen bonds that 

can be monitored with IECS. Recently, enaminocarbonyl derivatives of Meldrum´s acid and tetronic 

acid have been investigated [30]. These compounds offer the possibility of comparing the NH…O=C-R 

system with that of the NH…O=C-OR system. Phenylenediamine derivatives of dehydroacetic acid [31] 

as well as salicyaldehyde-4-phenylthiosemicarbazone [32] and 5-acyl-3-methylrhodanines [33] are 

also investigated. 
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Figure 9. Deuterium isotope effects on 13C chemical shifts in 10-hydroxybenzo[h]quinolone. 

Systems with C=S groups of acceptors and OH groups as donors are found in  

o-hydroxythioacetophenones [34] and in hydroxyflavothiones [35]. Characteristics for these systems 

are larger two-bond deuterium isotope effects on 13C chemical shifts than in the corresponding ketones, 

large negative four-bond isotope effects on the C=S carbon and a presumably stronger hydrogen bond 

than in the corresponding ketone. In o-hydroxythioacetophenones isotope effects were also obtained in 

the solid state [34]. 

2.1.2. Primary Isotope Effects 

As both primary deuterium isotope effects on 1H chemical shifts and OH chemical shifts represent 

the hydrogen bonded system it is interesting to plot those parameters against each other. From the plot 

of all primary deuterium isotope effects in “static” systems (Figure 10) it is seen that quite a spread 

exists. This is probably to some extent due to the variation of the OH chemical shift due to ring current 

effect etc. Some of the data points far from the correlation line are 2-nitrosonaphthol and others are  

8-quinolinol N-oxides andcompounds in which the acceptor group is twisted out of the ring plane  

(see previously). 

If we look at carboxylic acids an interesting case is picolinic acid N-oxide (PANO) [5] and 

quinaldinic acid N-oxide [36]. (Figure 11) Both show rather large primary deuterium isotope effects 

for the acid proton. In case of PANO the effect vary very much in going from chloroform to 

acetonitrile as solvent. Guo et al. [37] investigated the intramolecular hydrogen bonds in monoanions 

of succinic acid and derivatives there of and established a double-well proton potential. Deuterium 

primary isotope effects of acid protons plotted vs. OH chemical shifts are given in Figure 12. The point 

for citrinin is clearly falling outside as this is tautomeric. However, the data for the succinic acid 

derivatives show no variation in the primary isotope effects despite the fact that the hydrogen bond 

potentials are different. The data points for the monoanion of the cage compounds (δOH, 18.0 ppm and 
PΔH(D), 1.4 ppm) [38] as well as the compound itself (δOH, 12.6 ppm and PΔH(D), 0.74 ppm) shown 

in Figure 11 are really very unusual. May the explanation is found in the author’s own statement 

“However, a bifurcated hydrogen bond with the acid placed between the oxygens cannot be excluded” 

or the effects should be compared to intermolecular hydrogen bonds as the flexibility is high [39]. 
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Figure 10. Plot of primary isotope effects, PΔ(OD) vs. OH chemical shifts. Acceptors 

atoms are O, N or S. Data taken from Refs. [40,41].  
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Figure 11. (A) cis,cis[4,6-dimethylbenzene-1,3-bis(1,5,7-tris(benzyloxymethyl)-2,4-dioxo-

3-azabicyclo[3.3.1]non-3-yl-7-carboxylic acid)]; (B) picolinic acid N-oxide; (C) quinaldinic 

acid N-oxide. 

 

Figure 12. Plot of primary deuterium isotope effects for carboxylic acids vs. the OH 

chemical shift. Series 1 is; Data from Refs. [5,37,42,43] series 2 citrinin [44]; series 3 is 

data for mono anions of succinic acid [37].  
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2.2. Secondary Isotope Effects of Intramolecular Hydrogen Bonds without RAHB 

Isotope effects due to deuteriation of the NH proton of thioamides have been studied in detail and 

are reviewed in Ref. [2]. Likewise, hydrogen bonding in charged systems has been investigated. The 

pattern NH… N− (see Figure 13) is found in the anion of 1,8-bis(4-toluenesulphonamido)naphthalenes 

and derivatives [44] (see Figure 13). These compounds may be “static” or tautomeric. The  

dinitro-derivative shown in Figure 13 is primarily on the form shown. The counter ion is DMANH+ and 

similar isotope effects for this moiety were observed as found previously [45].  

 

Figure 13. Deuterium isotope effects on 13C chemical shifts in 2,4,7-trinitro-1,8-bis(4-

toluenesulphonamido)naphthalenes Taking the term intramolecular very far is to include  

a complex of carboxylic acids buried inside a cavity of a cavitand [46] and glycoluracil. 

However, some very interesting results are obtained. The acids are substituted benzoic aids 

and cinnamic acids. A nice correlation is obtained in a plot of deuterium isotope effects on 

the acid proton and the chemical shifts of that. Use of isotope effects avoids complications 

due to effects caused by interaction with the wall of the cavitand [47].  

2.3. Tautomerism 

2.3.1. Isotopic Perturbation of Equilibrium 

One of the very elegant ways of disclosing tautomerism in symmetrical systems like  

β-diketones etc. is isotopic perturbation of equilibrium. This was demonstrated very neatly in  

2-phenylmalonaldehyde [48–50]. For a symmetrical system the deuterium has to be introduced in such 

a manner that the degeneracy is lifted as demonstrated in Figure 14. Introduction of a deuterium at  

the chelate proton position will clearly not give rise to a shift in the equilibrium whereas as seen in  

Figure 14, whereas introduction at the aldehyde carbon will. 

The perturbation is clearly caused by the vibrational difference between a deuterium at the aldehyde 

position and a deuterium at a double bond. The difference in the zero point energy for the two tautomers 

is 37 cm–1. This is resulting in a K = 1.2 in favor of the B-form as the stretching frequency of the  

C=C-H(D) bond is higher. The difference in chemical shift between the two relevant D’s in the  

two forms is ~2 ppm, so that the equilibrium primary isotope effects can be estimated to be ~0.1 ppm [50]. 
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Figure 14. Isotopic perturbation of equilibrium. 

In non-symmetrical systems measurement of deuterium isotope effects on e.g., 13C or 15N chemical 

shifts will result in an s-shaped dependence on mole fraction [51,52] as well as in isotope tope effects 

far from the center of deuteriation. One of the hotly debated issues is the symmetry of the systems 

shown in Figure 12 and related to that, low barrier hydrogen bonds. This subject has been reviewed 

thoroughly by Perrin [48,49,53]. One of the main tools in these studies has been isotopic perturbation 

of equilibrium caused by substitution with 18O (see Figure 15). The idea is that as the isotope effects 

observed are larger than the intrinsic effects normally found, an equilibrium has to be at play and 

therefore a double well potential. 

Recently, Bogle and Singleton [54] suggested that large intrinsic isotope effects can occur in  

such systems. They based their argument on desymmetrization. In order to clarify the situation  

Perrin and Burke [41] have measured the 18O isotope effects on 13C chemical shifts in 18O labelled 

cyclohexene-1,2-dicarboxylate (Figure 15) at different temperatures. They found that the isotope  

effect at the ipso carbon increased when they lowered the temperature. This they took as support of  

a tautomeric equilibrium. Using 18O isotope effects on chemical shifts combined with solvent effects, 

they reached the same conclusion for the mono-anion of racemic-α,α'-di-tert-butyl succinate [55,56] 

and of difluoromaleate monoanion [57]. 

 

Figure 15. 18O-labelled monoacids. 

Enolised double bonds are not very common. An example is nitromalonamide (Figure 16) [42]. 

Nitromalonamide is a model system for tetracyclines. 
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Figure 16. Deuterium isotope effects of nitromalonamide. 

2.3.2. Primary Isotope Effects 

Symmetrical Systems 

Primary isotope effects should in this context first be discussed for deuteriation in which the 

symmetry is not broken. The primary deuterium isotope effects of the chelated protons can with 

advantage be correlated with the OH chemical shift. A bell shaped curve is found as seen in Figure 17. 

This was earlier suggested by Cassidy, Liu and Fry [40,58] as well as by Sobczyk et al. [59], but based 

on fewer data. The bell shaped curve is a consequence of the change from weak, to strong, to short and 

strong hydrogen bonds (SSHB) and the concomitant change in the hydrogen bond potential from  

a double potential well to an single well potential. In the latter case a negative primary isotope effect is 

observed. A certain spread is to be expected as effects such as ring currents will influence the OH 

chemical shift, but ring current effects will cancel out for the isotope effects. A risk dealing with 

hydrogen bonded protons is always that exchange may lead to erroneous results.  

 

Figure 17. Plot of primary isotope effects vs. OH chemical shifts for symmetrical systems 

based on data from Refs. [39,59]. 

One of the difficult matters to resolve is the existence of single hydrogen bond potentials and to 

define unambiguously the existence and what criteria to use. Perrin and Nielson [60] have investigated 

primary deuterium in a series of mono anions of phthalic acid, 1,2-cyclopentene dicarboxylic acid,  

3,4-furandicarboxylic acid and 3,4,5,6-tetrahydrophthalic acid in organic solvents and at different 

temperatures. The measurement of pΔH(D) were supplemented by also studying 18O isotope effects  

on 13C chemical shifts (see above). For the mono anions of 1,2-cyclopentene dicarboxylic acid,  

3,4-furandicarboxylic acid and 3,4,5,6-tetrahydrophthalic acid the primary isotope effects are positive 

or zero in line with the 18O results and with prior finds for 3,4-furandicarboxylic acid [40] showing  
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a strong, asymmetric hydrogen bond. For the phthalate the primary isotope effects can be either 

positive or negative depending on the solution, showing that recording of these small primary isotope 

effects call for caution. 

The first part of the curve of Figure 17 is very similar to that seen for the “static” cases of Figure 10 

underlining that for symmetrical systems in which the degeneracy is not lifted, the effects are intrinsic. 

Non-Symmetrical Systems 

Deuterium isotope effects on 13C chemical shifts have been used to demonstrate that  

l,3,5-trihydroxy-2,4,6-triacetylbenzene is not taking part in tautomerism (see Figure 18) [61] although 

this had been claimed based on theoretical calculations [62]. 

 

Figure 18. l,3,5-trihydroxy-2,4,6-triacetylbenzene. 

Tautomeric equilibria have been established in many o-hydroxy Schiff bases using IECS. 

Deuterium isotope effects on chemical shifts have been shown to be especially powerful due to the 

very large chemical shift differences between the 15N chemical shifts in the OH and the NH forms 

(also referred to as molecular and proton transferred form) (See Figure 2) (100–140 ppm) [52]. A very 

nicely S-shaped dependence is seen between 1Δ15N(D) and the mole fraction [63]. Also deuterium 

isotope effects on 13C chemical shifts have been used in many cases and sign patterns can distinguish 

between the two forms [64] (Figure 19). Furthermore, the observation of long range effects clearly 

differentiates between “static” and tautomeric cases. That equilibrium is at play may also be demonstrated 

by plotting isotope effects for two different carbons at different temperatures against each other and 

observing a straight line [65]. The intrinsic and the equilibrium part of the isotope effects can be 

separated. This is demonstrated in two different ways by Filarowski et al. [63] and by Limbach et al. [11]. 

Filarowski et al. used the equations described earlier combined with calculation of nuclear shieldings 

and isotope effects Limbach et al. used the geometric approach described in Ref. [66] combined with 

an equilibrium approach. One-bond deuterium isotope effect on 15N chemical shifts are plotted vs. the 
15N chemical shifts for Schiff bases. The fit to the predicted solid lines is rather poor [11].  

o-Hydroxynaphtalene Schiff bases of methyl amine are investigated with respect to solvent effects. 

The 1-OH derivatives are more sensitive to solvent polarity [67]. 

Schiff bases of pyridoxal-5'-phosphate is a cofactor in many enzyme reactions. Isotope effects on 
15N chemical shifts have been measure in 15N-labelled material. Protonation of the pyridine nitrogen 

play a role for the position of the Schiff base tautomeric equilibrium, which is shifted towards the  

NH-form [68]. That charge may play a role was also previously demonstrated in Schiff bases of 
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salicylaldehydes [69] or 2-hydroxynaphtaldehyde [70] with amino acids. In amino acid ionic liquids 

supported Schiff bases the presence of the COO− group stabilizes the proton transferred form [71]. 

 

Figure 19. Deuterium isotope effect on 13C chemical shift sign patterns of o-hydroxy 

Schiff bases. 

Tautomeric Schiff bases with relay have also been studied and anti-cooperativity has been 

established [72]. A coupled system is also found in 2,7-diacetyl-1,8-dihydroxy-3,6-dimethylnapthalene 

both in the liquid and solid state [73]. 

Deuterium isotope effects on chemical shifts have been studied to a great detail in both β-diketones 

and β-thioxoketones in solution [1,51]. Recently, also deuterium IECS of thiodibenzoylmethane  

has been reported in the solid state. In this case the effects were assumed to be intrinsic [34]. However, 

deuterium IECS in the solid state spectra of pyridoyl benzoyl β-diketones reveal a tautomeric 

equilibrium in the solid state [74]. 

A plot including tautomeric compounds like phleichrome [75], isophleichrome [75],  

2-pivaloylindane-1,3-dione [76], 5-acetyl-1,3-dimethyl-2,4,6-trioxo-1,3-diazane, 5-acetyl-2,2-

dimethyl-4,6-dioxo-1,3-dioxane [76] and oxo-(2-oxo-cyclohexyl)-acetic acid ethyl ester [77] but also  

β-thioxoketones [78] show that the primary isotope effects may be large and negative (Figure 20). This 

is typical for a tautomeric system with the two different heavy atoms like O and S as found  

in β-thioxoketones. 

 

Figure 20. Plot of primary isotope effects vs. XH, X being O, N or S, chemical shifts for 

tautomeric systems. Data primarily from Ref. [39,76] and those references mentioned above. 

Equilibrium isotope effects are also found in the cage compound (endo,endo)-

pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-diol [79] Figure 21. They are slightly different in  
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Ref. [12] as compared to Ref. [79] because of different amount of water present. The equilibrium 

isotope effects are discussed in Ref. [79] in relationship to carbohydrates. 

 

Figure 21. Deuterium isotope effects on 1H chemical shifts in cage compound. 

3. Summary 

Isotope effects on chemical shifts both primary and secondary are very good tools in the study of 

intramolecular hydrogen bonds as they are intimately linked to zero bond energies and hence to 

hydrogen bond potentials. Resonance assisted hydrogen bonding together with steric compression  

is demonstrated to play a major role in the strength of intramolecular hydrogen bonds. IECS are 

preferable to XH chemical shifts in such studies as external effects like solvents, cage walls etc. do not 

play a role. IECS are likewise very useful in the study of tautomeric systems both symmetric and 

asymmetric. In the former case isotope perturbation of equilibrium is the preferred tool and combined 

with temperature experiments they have been the key tool to prove a double bond potential in such 

systems like phthalic acid mono anion. 
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