ISOTOPE TRACERS IN CATCHMENT HYDROLOGY

Edited by

CAROL KENDALL

U.S. Geological Survey, 345 Middlefield Road, MS 434, Menlo Park, CA 94025, U.S.A.

JEFFREY J. McDONNELL

SUNY-College of Environmental Science and Forestry 1 Forestry Drive, Syracuse, NY 13210, U.S.A.

1998

ELSEVIER

Amsterdam - Lausanne - New York - Oxford - Shannon - Singapore - Tokyo

TABLE OF CONTENTS

PART I. BASIC PRINCIPLES

Снар	TER 1:	FUNDAMENTALS OF SMALL CATCHMENT HYDROLOGY	1
1.1		action to Small Catchments	
1.2	The Ca	atchment Water Balance	
	1.2.1		
	1.2.2	Precipitation, interception, net precipitation	2
	1.2.3	Snowmelt	10
	1.2.4	Infiltration and soil water storage	11
	1.2.5	Evaporation and evapotranspiration	19
	1.2.6	Storage in lakes, wetlands and stream channels	24
	1.2.7	Runoff outputs via streamflow	26
	1.2.8	Mechanisms of stormflow generation	27
	1.2.9		
1.3	Questi	ons of Spatial and Temporal Scale in Catchment Hydrology	33
1.4	Use of	Isotopes in Catchment Research	35
	1.4.1	Evaporation, evapotranspiration, interception	36
	1.4.2	Pore-water mixing (the mobile-immobile water issue)	37
	1.4.3	Soil and groundwater recharge rates	38
	1.4.4		
	1.4.5	Storm runoff components	40
	1.4.6	Water sources versus water flowpaths	41
	1.4.7	Sources of solutes	42
1.5	New R	Research Directions	42
1.6	Summ	ary	43
Снар	TER 2:	FUNDAMENTALS OF ISOTOPE GEOCHEMISTRY	51
2.1		uction	
2.2	Funda	mentals of Isotope Geochemistry	53
	2.2.1	Definitions	53
	2.2.2	Ç	
	2.2.3	Standards	56
2.3	Stable	Isotope Fractionation	57
	2.3.1	Properties of isotopic molecules	57
	2.3.2	Fractionation accompanying chemical reactions and phase changes	57

	2.3.3 The Rayleigh equations	61
	2.3.4 Isotopic fractionation in open and closed systems	61
	2.3.5 Biological fractionations	70
2.4	Sample Collection, Analysis, and Quality Assurance	72
	2.4.1 Sampling guidelines	
	2.4.2 Analytical methods and instrumentation	
	2.4.3 Quality assurance of contract laboratories	
2.5	Applications of Isotope Tracers in Catchment Hydrology	78
	2.5.1 Water isotope hydrology	79
	2.5.2 Solute isotope biogeochemistry	
	2.5.3 Mixing	
	2.5.4 Isotopically labeled materials	
	2.5.5 Stable isotopes in geochemical modeling	
	2.5.6 Use of a multi-isotope approach for the determination of flowpaths .	
2.6	Summary	
PART	II. PROCESSES AFFECTING ISOTOPIC COMPOSITIONS	
Снарт	TER 3: ISOTOPIC VARIATIONS IN PRECIPITATION	87
3.1	Introduction	87
	3.1.1 Global hydrologic cycle	88
3.2	Natural Fractionation of Isotopes in Precipitation	91
	3.2.1 Co-variance of hydrogen and oxygen isotopes in precipitation	91
3.3	Systematics of Isotope Variations in Precipitation	94
	3.3.1 System fractionation	94
	3.3.2 Unique types of precipitation	96
	3.3.3 Observed effects	100
	3.3.4 Temporal variation in precipitation	103
	3.3.5 Geographic variation in precipitation in convective systems	104
	3.3.6 Continental effect in precipitation	104
	3.3.7 Dependence of rain on ambient temperature	106
	3.3.8 Exchange with atmospheric vapor	106
	3.3.9 Evaporation on the canopy	108
3.4	Mesoscale Circulation and Storm Trajectories	108
3.5	Tritium	110
	3.5.1 Origin	110
	3.5.2 Recent elevated levels and decline	111
	3.5.3 Observed terrestrial and marine distributions	112
	3.5.4 Uses of tritium in catchment basin research	112
3.6	Implications for Catchment Basin Research	113
	3.6.1 Scale issues	113
	3.6.2 Sample collection	113
3.7	Summary	115

Снар	ге r 4 :	ISOTOPIC FRACTIONATION IN SNOW COVER	119
4.1 4.2		Changes during snowmelt	119 120 120 123 128 129
4.3		Directions for Research	131
Снар	rer 5:	ISOTOPIC EXCHANGE IN SOIL WATER	137
5.1	5.1.1 5.1.2 5.1.3	General discussion of isotopes Analytical considerations Soil-water extraction techniques	137 138
5.2		ses Leading to Soil Water Concentration Variations:	139
5.3 5.4 5.5	Proces 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 New F	sess Leading to Soil Water Concentration Variations: Evaporation Introduction Saturated soils Unsaturated soils Unsteady evaporation Temperature effects Oxygen-18/deuterium relationship	141 141 142 147 150 155 158 161
Снар	TER 6:	PLANTS, ISOTOPES AND WATER USE: A CATCHMENT-SCALE PERSPECTIVE	165
6.1		uction	
6.2	Water 6.2.1 6.2.2	Uptake and Water Transport in Plants	167 167 169
6.3		tal Regulation of Water Movement in the Soil-Plant-Atmosphere nuum	173 173

6.4	Water Sources and Water Use by Plants: Case Studies Using Stable Isotopes.	177
	6.4.1 Riparian forest communities	178
	6.4.2 Arid and semi-arid plant communities	179
	6.4.3 Temperate forest communities	180
	6.4.4 Coastal plant communities	186
6.5	Current Issues Involving Plants and Catchment-Scale Hydrologic Processes	188
	6.5.1 Invasive plants and site water balance	188
	6.5.2 Stream diversions and riparian manipulations	189
	6.5.3 Deforestation, reforestation and desertification	190
6.6	Long-term Record of Water Use by Plants	192
6.7	Merging the Study of Stable Isotopes in Water with Studies of Water Uptake	
	and Water Use in Plants and the Hydrology of Catchments	194
Снар	TER 7: ISOTOPES IN GROUNDWATER HYDROLOGY	203
	R. Gonfiantini, K. Fröhlich, L. Araguás-Araguás and K. Rozanski	
7.1	Introduction	203
7.2	Isotopic Variations in Waters Recharging the Aquifers	204
	7.2.1 The isotopic composition of precipitation	204
	7.2.2 The isotopic composition of surface waters	206
7.3	Isotopic Effects in the Unsaturated Zone	207
	7.3.1 Mechanisms of infiltration	207
	7.3.2 Water movement in the unsaturated zone	207
	7.3.3 Dissolution processes	209
7.4	Shallow Aquifers	211
	7.4.1 Recharge by precipitation	211
	7.4.2 Recharge from surface waters	214
	7.4.3 Hydrodynamical models of shallow groundwater systems	
	based on isotopic data	217
7.5	Deep Groundwater	225
	7.5.1 Groundwater movement in confined aquifers	225
	7.5.2 Groundwater age	225
	7.5.3 Interconnections between aquifers	233
	7.5.4 Geothermal groundwaters	234
7.6	Groundwater Studies in Catchments	234
7.0	7.6.1 Present situation and case study examples	
	7.6.2 Research trends and needs	238
Снар	TER 8: LITHOGENIC AND COSMOGENIC TRACERS IN CATCHMENT	
	Hydrology	247
		2 1 5
8.1 8.2	Introduction	247
0.4	in Hydrologic Systems	248

	8.2.1	Lithogenic and cosmogenic solutes used in hydrologic analysis	248
	8.2.2	Origin of lithogenic nuclides in natural waters:	
		mineral reactions	248
	8.2.3	Origin of lithogenic nuclides in natural waters:	
		trace element exchange	
	8.2.4	Origin of isotopic variations: radiogenic nuclides	251
	8.2.5	Origin of isotopic variations: the mineral weathering sequence	253
	8.2.6	Origin of isotopic variations: uranium isotopes and alpha recoil	255
	8.2.7	Origin of isotopic variations: cosmogenic nuclides	257
	8.2.8	Origin of isotopic variations: fission products	258
	8.2.9	Hydrologic application of cosmogenic nuclides	259
8.3	The App	lication of Lithogenic and Cosmogenic Nuclides to Catchment	
	Hydrolog	gy	262
	8.3.1	Input: precipitation, dry deposition, and throughfall	263
	8.3.2	The shallow system: hydrograph separation, weathering, and	
		arid-region infiltration	266
	8.3.3	Evaporation / transpiration	272
	8.3.4	The deep system: groundwater flow	272
	8.3.5	System (basin) closure: mixing of water masses	274
	8.3.6	Streamflow: mass balance within the catchment	276
	8.3.7	Lithogenic and cosmogenic nuclides: summary	276
8.4	New Dir	ections in Lithogenic and Cosmogenic Nuclides	27
	8.4.1	The other geologic giant: neodymium	277
	8.4.2	Lithogenic elements with fractionating isotopes	278
	8.4.3	New directions in catchment hydrology for cosmogenic nuclides	280
8.5	Lithogen	ic and Cosmogenic Tracers in Catchment Hydrology:	
	Conclud	ing Remarks	281
		•	
		\	
Chap		DISSOLVED GASES IN SUBSURFACE HYDROLOGY	29 1
	L	P.K. Solomon, P.G. Cook and W.E. Sanford	
9.1	Introduct	tion	20.
9.1		nce and Transport of Dissolved Gases	
9.2		Groundwater Dating	
9.3	9.3.1	³ H/ ³ He	
	9.3.1		
		Chlorofluorocarbons	
	9.3.3	⁸⁵ Kr	
	9.3.4		
0.4	9.3.5	Field examples of groundwater dating	
9.4		vater Surface-Water Interactions	
	9.4.1	⁴ He	308
0.7	9.4.2	²²² Rn	309
9.5	-	Dissolved Gas Tracers	309
0.1	9.5.1	Field example: noble gas tracer experiment	
9.6	Future D	Pirections	313

PART III. CASE STUDIES IN ISOTOPE HYDROLOGY

CHAPTER 10: OXYGEN AND HYDROGEN ISOTOPES IN RAINFALL-RUNOFF STUDIES	319
D.P. Genereux and R.P. Hooper	317
	210
10.1 Introduction	
10.2 Hydrograph Separation	
10.2.1 Terminology	
10.2.2 Requirements and assumptions in hydrograph separation	
10.2.3 Findings and examples	
10.2.4 Scale dependence of f_{pe} values	
10.2.5 Intra-component variability in tracer concentrations	
10.2.6 Recommendations for field studies	
10.3 New Directions	
10.3.1 Subsurface mixing and residence time	
10.3.2 Use of isotopes in model calibration	
10.4 Conclusions	343
CHAPTER 11: HIGH RAINFALL, RESPONSE-DOMINATED CATCHMENTS: A	
COMPARATIVE STUDY OF EXPERIMENTS IN TROPICAL NORTHEAST	
QUEENSLAND WITH TEMPERATE NEW ZEALAND	347
M. Bonell, C.J. Barnes, C.R. Grant, A. Howard and J. Burns	
11.1 Introduction	347
11.2 Previous Studies in High Rainfall, Response - Dominated Catchments	
11.2.1 The Maimai catchments	
11.2.2 Linkages between the Maimai and Babinda studies	
11.3 Physical Background	
11.4 Experimental Methods	
11.4.1 Precipitation	
11.4.2 Streamflow	
11.4.3 Hillslope instrumentation	
11.5 Results: Event of February 16, 1991	
11.5.1 Antecedent catchment storage and rainfall-runoff of sample storm.	
11.5.2 Matric and hydraulic potential changes on sample slope transects	
11.5.3 Hydrograph analysis	
11.6 Stream Hydrograph Analysis and Isotopic Response	
11.6.1 Event analysis - general considerations	
11.6.2 Soil and groundwater isotopic changes	
11.7 How High Rainfall Catchments Work	
11.7.1 The Babinda model	
11.7.2 The secondary store issue	
11.7.3 New water dominance at Babinda vs old water dominance	502
at Maimai	383
*** ~ * 30 0.2.2.2.502	
11.8 Future Research Directions	

Снарт	ER 12: SNOWMELT-DOMINATED SYSTEMS 3	391
	A. Rodhe	
12.1	Introduction 3	391
12.1	12.1.1 Basic hydrological processes	392
	7 · 6 · 1	397
		397
12.2		399
12.2		399
		401
12.3	•	418
12.5		419
	· · · · · · · · · · · · · · · · · · ·	120
	•	122
	•	126
	<u>-</u>	129
12.4	•	129
12.1	Conclusions and I didn't resolution Directions	
Снарт		435
	N.L. Ingraham, E.A. Caldwell and B.Th. Verhagen	
12.1	Tarandarahan	125
		435
13.2		437
		437 440
	10.210	441
		443
		446
		446 447
		451
12.2	g	452 453
13.3	F6	
	•	454
		454 455
12.4		
13.4	1	455
		456
•		457
		458
		459
		460
13.5	Future Directions	460

CHAPTER 14: GROUNDWATER AND SURFACE-WATER INTERACTIONS IN RIPARIAN AND LAKE-DOMINATED SYSTEMS	467
14.1 Introduction	467
14.1.1 Importance of lake-dominated systems	
14.1.2 Dominant hydrological processes	
14.2 Previous Studies in Lake Systems	
14.3 Estimating Groundwater Exchange with Lakes	
14.3.1 Stable-isotope mass-balance method	
14.3.2 Index-lake method	
14.4 Wisconsin WEBB Case Study	
14.4.1 Study area	
14.4.2 Study design	
14.4.3 Isotopic flow-system progression	
14.4.4 Isotopic complexity	
14.5 Concluding Remarks	486
PART IV. CASE STUDIES IN ISOTOPE GEOCHEMISTRY	
CHAPTER 15: USE OF STABLE ISOTOPES IN EVALUATING SULFUR	
BIOGEOCHEMISTRY OF FOREST ECOSYSTEMS	480
M.J. Mitchell, H.R. Krouse, B. Mayer, A.C. Stam and Y. Zhang	707
•	
15.1 Introduction: Forest Ecosystem Sulfur Dynamics	
15.2 Controls on Sulfur Isotope Composition	
15.2.1 Isotope fractionation	
15.2.2 Atmospheric sources of sulfur	
15.2.3 Geological sources of sulfur	
15.2.4 Sulfur isotopes in the hydrosphere	
15.2.5 Sulfur isotopes in soil and terrestrial vegetation	
15.3 Natural Abundance Studies	
15.3.1 Hubbard Brook Experimental Forest, New Hampshire	
15.3.2 Bear Brook Watershed, Maine	
15.3.3 Experimental Lakes Area, Ontario, Canada	
15.3.4 Rocky Mountains, Colorado and Wyoming	
15.3.5 Black Forest, Germany	507
15.4 Applied Tracer Studies	
15.4.1 Hubbard Brook Experimental Forest, New Hampshire	
15.4.2 Bear Brook Watershed, Maine	
15.4.3 West Whitecourt, Alberta, Canada	
15.4.4 Bavaria, Germany	
15.4.5 Höglwald, Germany	
15.4.6 Black Forest, Germany	
15.4.7 Skjervatjern Catchment, Norway	
15.4.8 Lake Gårdsjön Catchment, Sweden	
1010 11011 11000	514
15.6 Summary	515

Снарт		RACING NITROGEN SOURCES AND CYCLES IN CATCHMENTS	519
16.1	Introduct	ion	519
	16.1.1	Fundamentals of nitrogen isotopes	520
	16.1.2	Methods	520
16.2	The Nitro	ogen Cycle	523
	16.2.1	Isotopic fractionations	523
	16.2.2	Processes affecting N isotopic compositions	526
16.3	δ ¹⁵ N Valı	ues of Nitrogen Sources and Reservoirs	531
	16.3.1	Atmospheric sources	
	16.3.2	Fertilizers	
	16.3.3	Animal waste	
	16.3.4	Plants	
	16.3.5	Soils	535
	16.3.6	Groundwaters	537
16.4		ues of Nitrate Sources and Reservoirs	538
	16.4.1	Atmospheric nitrate	539
	16.4.2	Synthetic fertilizers and reagents	
	16.4.3	Microbial nitrate	542
	16.4.4	Other processes affecting nitrate $\delta^{18}O$ values	
16.5		Sources and Cycling of Nitrate	545
	16.5.1	Mixing	547
	16.5.2	Denitrification	548
16.6		on Studies	
	16.6.1	Agricultural and urban sources of nitrate	552
	16.6.2	Sources of N in acid-rain affected forested catchments	
	16.6.3	Nitrogen-limited systems	
		Labeled-tracer studies	
165	16.6.5	Food web studies	562
16.7		ntiers	563
	16.7.1	Applications of the dual isotope method	
	16.7.2	Tracing sources and sinks for DOM	564
	16.7.3	Applications of compound-specific isotope ratio	
	1674	mass spectrometry	263
	16.7.4	Use of isotopic techniques to assess impacts of changes in	
	1655	land-management practices and landuse on water quality	
	16.7.5	Use of a multi-isotope or multi-tracer approach	
	16.7.6	Development of linked hydrologic/geochemical models	
16.8	Summary	/	569

CHAP	Y R	ARBON CYCLING IN TERRESTRIAL ENVIRONMENTS	577
17.1	Introduct	ion	577
17.2	Carbon I	sotopes and Terminology	578
		Oynamics in Soils	
		¹⁴ C age of soil organic matter	581
	17.3.2	T	585
	17.3.3	The use of ¹³ C to study C turnover in soils	590
	17.3.4	Use of carbon isotopes in understanding carbon dynamics in peatlands	593
17.4	Isotopo S	tudies of Dissolved Organic Matter in Groundwater	
17.4	17.4.1	Stable carbon isotopes	
		Nitrogen, sulfur and hydrogen isotopes	
	17.4.2	Radiocarbon in DOC	599
17.5		Study of DOC in Lacustrine Environments	
		Studies and the Carbon Budget	
Снарт		RACING OF WEATHERING REACTIONS AND WATER FLOWPATHS:	/11
		MULTI-ISOTOPE APPROACH	611
18.1	Introduct	ion	611
	18.1.1	Rationale for using water and solute isotopes as tracers in	
		catchments	611
	18.1.2	Theoretical bases of the strontium, lead and carbon isotope systems	613
	18.1.3	Geological/environmental factors leading to successful tracing	
	- 1	with solute isotopes	618
18.2	Influence	es on Isotopic Composition of Sr, Pb and C in Catchment Waters	619
	18.2.1	Lithologic controls on the isotopic composition of strontium	
		and lead	619
	18.2.2	Atmospheric/anthropogenic inputs of Sr, Pb, and C	624
	18.2.3	Effects of organic and inorganic cycling on isotopic composition	
		of carbon	625
18.3		otope Studies at Selected Watersheds	627
	18.3.1	The combined use of O, H and Sr isotopes to understand	
		differences in chemical evolution along different flowpaths	
		in a sandy aquifer in northern Wisconsin	627
	18.3.2	Sr, Pb and C isotopes as surrogate tracers of water movement at a	
		catchment nested in calc-silicate rocks, Sleepers River, Vermont	630
	18.3.3	C and Sr isotopes as tracers of sources of carbonate alkalinity at	
		Catoctin Mountain, Maryland	635
	18.3.4	Synthesis: an isotopic view of a catchment	638
		al Solute Isotope Tracers: Li, B, Fe	640
18.5	Summar	y	643

Снарт	P	ROSION, WEATHERING, AND SEDIMENTATION	647
10.1			(47
	Introduct		647
19.2		roduced Cosmogenic Nuclides	648
	19.2.1	Cosmogenic nuclides in exposed outcrops	648
	19.2.2	Cosmogenic nuclides in sediments	650
10.2	19.2.3	Case studies	652
19.3	-	eric Nuclides: ²¹⁰ Pb	655
	19.3.1	Methods	656
	19.3.2 19.3.3	Interpretation	658 659
10.4		Applications	659
19.4	19.4.1	Lake sediments	660
	19.4.1		
	19.4.2	Soils	
	19.4.3	Water samples	
10.5		of Sediment Sources and Identification of Erosion Processes	002
19.3		atural and Anthropogenic Radionuclides	666
	19.5.1	Nuclides of importance	
	19.5.1	Case studies	
10.6		Veathering	
17.0	19.6.1	Weathering and ⁸⁷ Sr/ ⁸⁶ Sr	670
	19.6.2	Typical ⁸⁷ Sr/ ⁸⁶ Sr ratios	
	19.6.2	Sr isotopes as tracers of solute sources	
	17.0.5	or isotopes as tracers or solute sources	072
Снарт		PPLICATIONS OF URANIUM- AND THORIUM-SERIES RADIONUCLIDES CATCHMENT HYDROLOGY STUDIES	
		F. Kraemer and D.P. Genereux	
20.1	Introduct	ion	679
20.2	Review of	of Fundamental Concepts	680
	20.2.1	Decay chains and radioactive equilibrium	680
	20.2.2	Physical and chemical processes that redistribute U and Th series	
		radionuclides	681
20.3	Radon To	echniques in Catchment Hydrology	688
	20.3.1		688
	20.3.2	Mixing model without correction for volatilization	689
	20.3.3	Mixing model with degassing correction through stagnant	
		film model	691
	20.3.4	Mixing model with degassing correction through an injected tracer.	695
	20.3.5	Mixing model, with partitioning of water inflow into	
		different sources	699
20.4	Radium 1	Isotopic Techniques in Catchment Hydrology	705
	20.4.1	General considerations	705
	20.4.2	Radium as a tracer for groundwater input to an estuary system	705

20.4.3 Use of Ra and Ra in quantifying groundwater input to a stream:	
conservative mixing	709
20.4.4 Use of ²²⁸ Ra and ²²⁶ Ra in quantifying groundwater input to a stream:	
non-conservative mixing	
20.4.5 Use of ²²⁸ Ra and ²²⁶ Ra in quantifying three end-member conservative	;
mixing	714
20.4.6 Using ²²⁴ Ra and ²²⁸ Ra to determine residence time of water in	
short-residence time reservoirs	716
20.4.7 Using radium isotopes to identify the source of water issuing from	
springs	718
20.5 New Research Directions	
*	, 17
PART V. SYNTHESIS	
CHAPTER 21: MODELING OF ISOTOPES AND HYDROGEOCHEMICAL RESPONSES IN	
CATCHMENT HYDROLOGY	723
J.V. Turner and C.J. Barnes	
21.1 Introduction	
21.1.1 Some definitions and terms	
21.2 Limitations of the Mass Balance Hydrograph Separation Approach	
21.2.1 Mass balance hydrograph separation models	
21.3 Estimation of Transit Times - System Response Functions of Catchments	
21.3.1 System response functions	
21.3.2 System response functions based on the IUH	733
21.3.3 Application of system response functions based on the	
Instantaneous Unit Hydrograph	738
21.3.4 Identifying "old" and "new" water in terms of system	
response functions	741
21.3.5 Time series approaches to system response functions	
21.3.6 Kalman filtering and residence times	
21.4 Comparisons of Models of Isotopic and Chemical Hydrograph Separation	
21.5 New Research Directions	
21.3 New Research Directions	131
CHAPTER 22: ISOTOPES AS INDICATORS OF ENVIRONMENTAL CHANGE	761
J.B. Shanley, E. Pendall, C. Kendall, L.R. Stevens, R.L. Michel, P.J.	
Phillips, R.M. Forester, D.L. Naftz, B. Liu, L. Stern, B.B. Wolfe, C.P.	
Chamberlain, S.W. Leavitt, T.H.E. Heaton, B. Mayer, L.D. Cecil,	
W.B. Lyons, B.G. Katz, J.L. Betancourt, D.M. McKnight, J.D. Blum,	
T.W.D. Edwards, H.R. House, E. Ito, R.O. Aravena and J.F. Whelan	
1.11.D. Lawaras, 11.R. 110ase, E. 110, R.O. Aravena ana J.P. Whetan	
22.1 Introduction	761
22.1.1 Direct and proxy records of environmental change	762
22.2 Recent Environmental Change Indicators	763

	22.2.2	Direct use of water isotopes to infer recent global change	765
	22.2.3	Changes in land use deduced from tracer studies	766
	22.2.4	Isotope tracers for tracking migratory patterns of birds	768
	22.2.5	Changes in atmospheric deposition	771
22.3	Paleo-Cli	matic Indicators	776
	22.3.1	Groundwater as an archive of paleo-climatic information	776
	22.3.2	Continental glaciers	778
	22.3.3	Clay minerals, oxides, and hydroxides	780
	22.3.4	Pedogenic carbonates	782
	22.3.5	Paleoenvironmental reconstruction from stable isotopes in	
		tree rings and plant fossils	785
	22.3.6	Lacustrine environments: organics	792
	22.3.7	Lacustrine environments: authigenic carbonates	795
	22.3.8	Lacustrine environments: ostracodes	799
22.4 New Research Directions 80			802
22.5 Summary			

A web page for this book is located at URL http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/. This page includes copies of the table of contents and the index, colored versions of selected non-copyrighted figures that can be downloaded for teaching purposes, a list of errata, selected portions of the non-copyrighted chapters and other useful isotope-related information. These listings will be searchable on-line.