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Abstract. Quantifying the magnitude of post-depositional

processes affecting the isotopic composition of surface snow

is essential for a more accurate interpretation of ice core data.

To achieve this, high temporal resolution measurements of

both lower atmospheric water vapor and surface snow iso-

topic composition are required. This study presents contin-

uous measurements of water vapor isotopes performed in

East Antarctica (Kohnen station) from December 2013 to

January 2014 using a laser spectrometer. Observations have

been compared with the outputs of two atmospheric gen-

eral circulation models (AGCMs) equipped with water va-

por isotopes: ECHAM5-wiso and LMDZ5Aiso. During our

monitoring period, the signals in the 2 m air temperature T ,

humidity mixing ratio q and both water vapor isotopes δD

and δ18O are dominated by the presence of diurnal cycles.

Both AGCMs simulate similar diurnal cycles with a mean

amplitude 30 to 70 % lower than observed, possibly due to

an incorrect simulation of the surface energy balance and the

boundary layer dynamics. In parallel, snow surface samples

were collected each hour over 35 h, with a sampling depth

of 2–5 mm. A diurnal cycle in the isotopic composition of

the snow surface is observed in phase with the water vapor,

reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h

(compared to 36 ‰ for δD in the water vapor). A simple box

model treated as a closed system has been developed to study

the exchange of water molecules between an air and a snow

reservoir. In the vapor, the box model simulations show too

much isotopic depletion compared to the observations. Mix-

ing with other sources (advection, free troposphere) has to be

included in order to fit the observations. At the snow surface,

the simulated isotopic values are close to the observations

with a snow reservoir of ∼ 5 mm depth (range of the snow

sample depth). Our analysis suggests that fractionation oc-

curs during sublimation and that vapor–snow exchanges can

no longer be considered insignificant for the isotopic compo-

sition of near-surface snow in polar regions.

1 Introduction

Thanks to the design of mass spectrometers and their appli-

cation to stable water isotopes since the 1950s, precipitation

has long been sampled for laboratory stable isotope analyses

in order to trace atmospheric processes related to the hydro-

logical cycle (e.g., Dansgaard, 1964). Past changes in pre-

cipitation isotopic composition have also been investigated

using a variety of natural archives. Among these, ice cores

form one of the most direct records of the isotopic compo-
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sition of past precipitation. In Antarctica, stable water iso-

tope measurements are central for past climate reconstruc-

tions from these ice cores, through atmospheric distillation

processes connecting temperature, condensation and isotopic

composition (e.g., Masson-Delmotte et al., 2008). However,

the relationship between precipitation isotopic composition

and climate is complex, as it is affected by fractionation tak-

ing place at most phase transitions, at evaporation, during

atmospheric transport, and at condensation.

While spatial relationships have been documented using

surface snow data (Masson-Delmotte et al., 2008), only a few

studies have examined the drivers of Antarctic precipitation

isotopic composition variability at timescales associated with

synoptic or diurnal events (Fujita and Abe, 2006; Schlosser

et al., 2004). In this study we focus on these timescales. The

climatic controls on precipitation isotopic composition have

been investigated under different climatic contexts thanks to

the implementation of stable water isotopes into atmospheric

general circulation models (AGCMs) (e.g., Joussaume et al.,

1984). Classically, the mean isotopic composition of precipi-

tation simulated by atmospheric models is directly compared

to ice core data, thereby ignoring potential post-depositional

processes which may transform the initial precipitation sig-

nal in the upper part of the firn. In this study we aim to in-

vestigate one such post-depositional process: the isotopic ex-

change between atmospheric water vapor and snow.

The possibility to monitor isotopic exchanges between

surface snow and low-level atmospheric water vapor has

emerged thanks to recent technological development. New

laser spectrometers have been released in the 2000s, creat-

ing a substantial advance within the field of water isotope re-

search. These analyzers are able to perform continuous and

in situ measurements of the humidity mixing ratio (defined

as the mass of water vapor divided by the mass of dry air)

and the stable water vapor isotope concentrations. Prior to

this advance, water vapor could only be collected using te-

dious cold trapping methods (e.g., Jacob and Sonntag, 1991;

Steen-Larsen et al., 2011; Angert et al., 2008), deployed until

sufficient amounts were collected to allow subsequent trans-

fer to vials and later mass spectrometer analyses. Such a task

was almost impossible to perform routinely (e.g., Schwarz

et al., 1998).

The first implementation of continuous in situ isotopic

monitoring of surface water vapor isotopic composition

above an ice sheet was achieved at NEEM, NW Greenland,

during summer field seasons 2010–2012 (Steen-Larsen et al.,

2013, 2014). In parallel, repeated sampling of surface snow

was also implemented for laboratory isotopic analyses. The

combined snow and vapor datasets revealed changes in the

isotopic composition of surface snow in response to synop-

tic changes in the atmospheric water vapor isotope values

and exhibited a strong diurnal variability in near-surface wa-

ter vapor isotopic composition. Over several days and weeks,

parallel variations between the surface snow isotopic compo-

sition and the near-surface vapor isotopic composition were

identified in between snowfall events. This was surprising, as

the snow isotopic composition was expected to be controlled

by the isotopic composition of precipitation. The variations

were interpreted to reflect interactions between the snow sur-

face and the lower atmosphere occurring during surface snow

metamorphism. This new finding has potential implications

for the interpretation of ice core records and for the compar-

ison of ice core data with atmospheric model results. It is

unclear, however, whether surface air–snow exchanges could

lead to significant changes in the snow isotopic composition

at colder sites, such as those of the Antarctic Plateau.

Here, we report surface vapor isotope measurements per-

formed above the Antarctic ice sheet. These measurements

were performed at the German Kohnen station, a deep ice

coring site with intermediate temperature and a humidity

mixing ratio high enough in the summer to make accurate

measurements of the water vapor isotopic composition. In

parallel, snow surface samples were collected for compar-

ison with the vapor on a diurnal scale. The surface of the

ice sheet around Kohnen is characterized by the presence of

large sastrugi, created by wind redistribution and sublima-

tion of snow, hence producing considerable variability in the

snow surface age, origin and density. In particular, very hard

dunes sticking up above the mean surface level may be half a

year old (Birnbaum et al., 2010). A previous study performed

at Vostok station (Antarctica) reported a large variability in

the isotopic composition of the snow surface (10 cm depth)

over an 1 km transect, with a maximum variation of 30 ‰ in

δD over 100 m horizontally (Ekaykin et al., 2002). The iso-

topic composition of the snow surface at Kohnen station is

expected to show a similar spatial variability, depending on

the age and the origin of the snow patch. The importance of

the sublimation and condensation processes in the isotopic

composition of different snow patches will be investigated.

The term “condensation” (rather than “deposition”) is pre-

ferred in this paper to describe the water phase change from

vapor to solid in order to avoid a possible confusion with

“post-depositional processes”.

After a brief overview of the Kohnen station environment

(Sect. 2), this article details the successful implementation of

continuous measurements of water vapor isotopic composi-

tion during the months of December 2013 and January 2014.

Section 3 (material and methods) describes our protocol for

water vapor data processing and reports the accuracy of

the data. We also report the parallel surface snow sampling

over 35 h and introduce simulations performed with two

AGCMs equipped with stable water isotopes, LMDZ5Aiso

and ECHAM5-wiso. In Sect. 4, we present observed and sim-

ulated values, first for the day-to-day variability and then for

the diurnal cycles. We compare the diurnal variability of the

isotopic composition of the water vapor and of the very first

layer of surface snow through a box model. The last section

summarizes our key conclusions and perspectives.
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2 Kohnen station environment

The German Kohnen station (75◦00′ S, 0◦04′ E) is located

on the Antarctic Plateau in Dronning Maud Land, 550 km

from the South Atlantic coast line and 2892 m a.s.l. (above

sea level). Near the station, the surface elevation has a gen-

tle slope of ∼ 1.3 ± 0.3 m km−1 with a direction of ∼ 61◦.

This place is characterized by katabatic winds (∼ 8 m s−1)

on a diurnal timescale, which form around 03:00 UTC and

vanish around 15:00 UTC (Van As et al., 2005). The kata-

batic regime can be interrupted by the influence of synoptic

systems, responsible for 20 % of snowfall events at Kohnen

station (Schlosser et al., 2010). From December 2013 to Jan-

uary 2014, five snowfall events were observed and no signif-

icant snow accumulation was detected from daily measure-

ments of snow surface height within a precision of ∼ 1 mm

(protocol described in Sect. 3.5).

The mean temperature for the month of January 2014 was

−25 ◦C, similar to the climatological average (−25 ± 2 ◦C,

1998 to 2013). Both temperature values are based on hourly

data from the permanent automatic weather station (AWS)

at Kohnen (hereafter AWS9, described in Sect. 3.1). Dur-

ing clear-sky conditions, the net radiation at the surface is

predominantly positive during the day (i.e., a dominant en-

ergy gain by shortwave radiation from the sun despite a high

albedo of the snow surface) and negative during the night

(i.e., a net loss by longwave emissions from the surface),

imprinting a strong diurnal cycle to the surface temperature,

with a peak-to-peak amplitude of 14 ◦C (Van As et al., 2005).

3 Material and methods

3.1 Weather observations

Weather observations are reported every hour and precipita-

tion events are labeled “snowfall”, “light snowfall” or “dia-

mond dust”. A snowfall event leaves a visible accumulation

on flat surfaces (for example transport boxes), whereas dur-

ing a light snowfall event or a diamond dust event no visible

accumulation is observed. During the time of observations,

snowfall and light snowfall events were almost always asso-

ciated with 6/8 to 8/8 cover of low-level clouds whereas the

cloud cover of low-level clouds was almost always 0/8 to 2/8

in case of diamond dust.

Two AWSs were also installed at Kohnen (Fig. 1). AWS9

is permanent and has performed measurements since ∼ 1998.

AWS 13/14 was only temporarily installed at Kohnen for

the summer season, from December 2013 to January 2014.

Hourly averages of the following parameters measured at

2 m height are available: air pressure, temperature, relative

humidity (RH), wind speed and wind direction.
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Figure 1. Location of Kohnen station in Antarctica (bottom right

panel). Location of the two automatic weather stations (AWS, left

panel) and location of the measurement tent connected to the three

inlets (central panel). The right schematic presents the setup with

the three inlets: the multiport (MIU), the Water Vapor Isotope Stan-

dard Source (WVISS) and the analyzer measuring the humidity

mixing ratio q and isotopes δD and δ18O in the vapor.

3.2 Water vapor sampling system

Measurements of water vapor isotopes in the near-surface

atmosphere were performed from 17 December 2013 to

21 January 2014 using a Los Gatos Research Inc. ana-

lyzer (hereafter simply analyzer), type DTL-100. It contin-

uously measured the humidity mixing ratio and the ratio

of two stable water isotopes: R18O = [1H18
2 O]/[1H16

2 O] and

RD = [1H2H16O]/[1H16
2 O] (Baer et al., 2002). We will use

throughout this paper the standard δ notation in ‰:

δ∗ =

(

R∗

RVSMOW
− 1

)

× 1000, (1)

where δ∗ stands for δD or δ18O, and RVSMOW is the ratio

of the Vienna Standard Mean Ocean Water. The instrumental

temporal resolution is 2 Hz, but we report measurements av-

eraged over 11 min to increase the signal-to-noise ratio. The

precision decreases with humidity, leading us to exclude all

measurements performed below 500 ppmv.

The analyzer was calibrated using a stream of water va-

por with known constant isotopic composition generated

by the Water Vapor Isotope Standard Source (WVISS, Los

Gatos Research Inc.). The WVISS allowed control over the

amount of dilution of the vapor stream, resulting in a vapor

stream of adjustable humidity level. A working standard was

created at the beginning of the campaign by melting sur-

face snow and subsequently stored in a sealed glass con-

tainer. Samples were taken from the working standard ev-

ery 2 weeks for later laboratory isotopic analysis to check

for stability. No significant drift was observed. The work-

ing standard was calibrated against VSMOW, SLAP (Stan-

dard Light Antarctic Precipitation) and GISP (Greenland Ice

Sheet Precipitation) standards at the Alfred Wegener Insti-

tute, Bremerhaven (hereafter AWI). Its isotopic composition

was δ18O = −44.44 ± 0.03 ‰ and δD = −345.5 ± 0.1 ‰.

Figure 1 shows the location of the instrument compared to

the main wind direction (∼ 61◦ true north) and its distance
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Table 1. Conversion slopes calculated from four VSMOW–SLAP calibrations with different standards. Data have been corrected with respect

to humidity before calculating the slopes. Uncertainties represent 1 SE (standard error) on the slopes.

Day of calibration δD (standards) vs. δ18O (standards) vs. Standards used

δD (measured) δ18O (measured)

6 Dec 2013 1.45 ± 0.02 1.03 ± 0.07 NZE, JASE, TD1

15 Dec 2013 1.40 ± 0.03 0.93 ± 0.05 DML, TD1, NZE, JASE

8 Jan 2014 1.38 ± 0.01 1.01 ± 0.03 NZE, OC3, TALOS, NEEM

22 Jan 2014 1.47 ± 0.01 1.01 ± 0.01 JASE, TD1, NZE, DML

to the base. The large clean area prevents any perturbations

from local human activity. Measurements were performed at

three different heights above the snow surface: 0.2, 0.9 and

3 m. Insulated and heated copper tubes were used to suck in

air to the analyzer following the setup of Steen-Larsen et al.

(2013). An air filter and a snowfall protection were placed on

each inlet to prevent sucking in snow crystals. The three cop-

per tubes and the WVISS were connected to a device called

the Multiport Input Unit (Los Gatos Research Inc.). This de-

vice was controlled by the analyzer to switch the valves and

alternate between the inlet measurements and WVISS cali-

brations. Dry air was flushed through the system to check for

leaks. The order of measurements during the campaign was

the following: 12 min calibration followed by three cycles of

33 min, measuring 11 min at each inlet.

3.3 Calibrations

The calibration protocol follows Steen-Larsen et al. (2013).

In short, one calibration is applied to the humidity mixing ra-

tio and then three types of calibrations of the measured water

vapor isotopes are performed: instrumental humidity–isotope

response calibration, VSMOW–SLAP calibration and drift

correction. More details about the calibration procedures are

given in the Supplement.

The humidity mixing ratio is calibrated against the RH

measured by the AWS9. This RH has been previously cal-

ibrated following the protocol of Anderson (1994), set-

ting its maximum values equal to 100 % of humidity.

Then the RH is converted into the humidity mixing ra-

tio q using the surface pressure (Goff–Gratch equation

with respect to ice) and the air temperature at 2 m height.

We finally calculate a fit from AWS9 to analyzer q,

with a second-order polynomial to get the function cor-

recting the humidity mixing ratio measured during the

campaign. This function is f (q) = a + b × q + c × q2 with

a = 80 ± 80, b = 0.59 ± 0.14 and c = (0.23 ± 0.06) × 10−3.

We have checked the linear relationship between δD and q

(shown in Table 5) with / without this calibration and con-

clude that the slope is not sensitive.

The instrumental humidity–isotope response calibration

was obtained by varying the humidity level of the vapor

stream produced by the WVISS while measuring the same

standard. As the water vapor isotopic composition gener-

ated by the WVISS is assumed to be constant, the observed

variation of the water vapor isotopes can be attributed to

the instrumental humidity response. Five humidity calibra-

tions were performed during the campaign (6, 14, 28 De-

cember 2013 and 13, 28 January 2014). For each of them,

we continuously generated a stream of water vapor from the

“working standard water”, using the WVISS during ∼ 20 h.

We forced the humidity to vary from ∼ 4000 to 300 ppmv

by changing the amount of dilution. The humidity isotope

response between calibration periods is assumed to vary lin-

early.

The VSMOW–SLAP calibration is carried out by mea-

suring vapor from the WVISS generated when evaporating

standards of known isotopic composition referenced against

the VSMOW–SLAP scale. Four different water standards

(NZE, NEEM, TALOS, OC3) with a known isotopic com-

position were brought to Kohnen station in 40 glass bottles

of 10 cL. During a VSMOW–SLAP calibration, each stan-

dard was vaporized and measured during 15 + 15 min at two

different humidity levels, which were used to check the accu-

racy of the humidity correction. This calibration lasted ∼ 6 h

and has been reproduced four times on 6 and 15 Decem-

ber 2013 and 8 and 22 January 2014. Very small variations

in the VSMOW–SLAP calibration slope were observed (see

Table 1) and we have therefore simply calculated the mean

value to obtain our conversion slopes : αδD = 1.43 ± 0.02 and

αδ18O = 1.00 ± 0.03 (uncertainties are the standard error of

the mean value).

Finally the measured isotopic value is corrected for the

drift by measuring vapor generated by the WVISS when

evaporating the prepared working standard. This measure-

ment is performed every 111 min during 12 min and linear

interpolation is assumed between each drift-correction mea-

surement.

3.4 Precision and accuracy of measurements

We use the following notation to describe the error propaga-

tion, with δ∗ standing either for δD or δ18O.

1. The raw isotopic composition (direct output from the

analyzer without any corrections) averaged over 11 min

is δ∗
raw ± dδ∗

raw, where dδ∗
raw is the standard error associ-

ated with the mean value.

The Cryosphere, 10, 1647–1663, 2016 www.the-cryosphere.net/10/1647/2016/
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2. The humidity isotope response associated with δ∗
raw is

Ŵ∗ ± dŴ∗, where dŴ∗ is the uncertainty associated with

the humidity correction. dŴ∗ is, for a given q and a given

time, the absolute difference between two humidity iso-

tope responses from two consecutive humidity calibra-

tions. dŴ∗ is therefore taken as the maximum possible

error on the humidity correction.

3. The slope conversion to the VSMOW–SLAP interna-

tional scale is α∗ ± dα∗, where dα∗ is the uncertainty

associated with the slope. dα∗ is the standard error of

the mean value of the slopes from the four different VS-

MOW calibrations.

4. The drift correction is µ∗ ± dµ∗, where dµ∗ is the un-

certainty associated with the drift correction. dµ∗ has

been estimated at the end of the campaign by perform-

ing an extra 24 h calibration with a stable humidity.

5. The corrected isotopic composition is δ∗
corr ± dδ∗

corr,

where dδ∗
corr is the final uncertainty containing both the

precision and the accuracy on the corrected measure-

ments.

We apply the three corrections (humidity isotope response,

conversion to the VSMOW–SLAP scale, drift removal) to

calculate the corrected isotopic composition at a given time:

δ∗
corr = α∗ ×

(

δ∗
raw − Ŵ∗

)

− µ∗.

We obtain a final uncertainty on the corrected isotopic

composition by applying an error propagation calculation,

assuming no correlation between the three corrections:

(

δ∗
corr

)2
= P 2

∗ + A2
∗,

with

P 2
∗ = α2

∗ ×

(

(

dδ∗
raw

)2
+ (dŴ∗)

2
)

+ (dµ∗)
2

A2
∗ = (dα∗)

2 ×
(

δ∗
raw − Ŵ∗

)2
.

The parameter A∗ stands for the accuracy of the measure-

ments and P ∗ stands for the precision of the measurements.

We have attributed the part A∗ to the accuracy because the

uncertainty on the VSMOW correction will affect the mean

value of the data over the campaign. Each correction depends

on the time of the measurement (the drift varies through time,

as does the humidity isotope response) and Table 2 summa-

rizes the different orders of magnitude of the parameters with

the estimated precision / accuracy.

We estimate a precision of the measurements of 3.0 ‰ for

δD and of 0.9 ‰ for δ18O. We estimate an accuracy of

the measurements of 11 ‰ for δD and of 2.5 ‰ for δ18O.

When focusing on the mean diurnal cycle, we will get a

higher precision by calculating hourly averages over 18 days

(Sect. 4.2).

Table 2. Order of magnitude of the parameters involved in the error

propagation calculation for δD and δ18O. “avg”, “min” and “max”

are the mean, the minimum and the maximum value of the param-

eter over the campaign. A stands for accuracy and P for precision.

Every parameter is in ‰ except α∗ and dα∗, which are dimension-

less.

Related to δD Related to δ18O

Avg Min Max Avg Min Max

δ∗
raw −552 −586 −519 −84.3 −94.6 −77.7

dδ∗
raw 0.3 0.1 0.9 0.1 0.05 0.4

|Ŵ∗| 4 0 9 1.7 0 4

dŴ∗ 2 0.1 5 0.4 0 2

α∗ 1.43 1.38 1.47 1.00 0.93 1.03

dα∗ 0.02 – – 0.03 – –

dµ∗ 1.4 – – 0.7 – –

A∗ 11 10 12 2.5 2.2 2.9

P∗ 3.0 1.4 7.3 0.9 0.7 2.0

3.5 Surface snow sampling and analysis

In order to detect any snow accumulation or erosion (due to

snowfall events or wind drift), 100 thin wood sticks were dis-

tributed every meter along a 100 m transect in a clean area

and daily measured with a folding ruler. No accumulation or

erosion was detected within a precision of 1 mm.

The Snow Surface Diurnal Cycle (SSDC) experiment was

devoted to the detection of a diurnal cycle in the isotopic

composition of surface snow. Keeping in mind the possi-

ble variability in the isotopic composition of the snow sur-

face, three different areas with consistent surface snow tex-

ture were selected, based on visual observation (the border

of the snow patch was visible) and subjective assessment of

the hardness. The snow sampling protocol is based on the as-

sumption that the isotopic composition of a snow patch at a

given time is homogeneous. Patch 1 was made of hard ice,

patch 2 of compact snow and patch 3 was composed of soft

snow. Five adjacent samples for each patch were sampled

every hour (15 samples per hour) during a 35 h period, from

8 to 10 January 2014 (as it is shown in Fig. 2 indicated by the

SSDC label). The sample depth is estimated to be between

2 and 5 mm; the tool used was a cake shovel. Samples were

scraped into a plastic bag, which was sealed and shipped for

subsequent isotope measurements at the AWI, using two wa-

ter isotope analyzers Picarro: type L1102-i and L2120-i. The

protocol followed Geldern and Barth (2012).

3.6 Atmospheric simulations

ECHAM5-wiso (Werner et al., 2011) is the isotopic ver-

sion of the atmospheric general circulation model ECHAM5

(Roeckner et al., 2003). Simulations from ECHAM5-wiso

are implicitly nudged to the European Center for Medium-

www.the-cryosphere.net/10/1647/2016/ The Cryosphere, 10, 1647–1663, 2016
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Figure 2. Hourly observed (black and green) and simulated (red and blue) humidity mixing ratio (q), deuterium (δD), air temperature at

2 m (T 2 m, measured with the AWS from the 2013/2014 season) and d-excess (d-exc) at Kohnen station 2013/2014. Hourly observed

precipitation events are labeled light snowfall and snowfall (light and dark cyan). The Snow Surface Diurnal Cycle (SSDC) experiment

period is indicated in purple, and the 18 selected days for the diurnal cycles study are in orange.

Range Weather Forecasts (ECMWF) ERA-interim reanaly-

ses data (Berrisford et al., 2011) using 6-hourly pressure,

temperature, divergence and vorticity fields (Rast et al.,

2013). Sea surface temperatures and sea ice coverage are

derived from the ERA-interim dataset too. For our purpose

this model has been run with a high vertical and horizon-

tal T106L31 resolution (31 levels, 1.1◦ in longitude × 1.1◦ in

latitude). The lowest model level (about 60 m above the sur-

face) has been selected followed by a bilinear interpolation

of nearby model grid points to the location of Kohnen base

(75◦00′ S, 0◦04′ E). The simulation was started in 1979 and

any potential model spinup bias, for example, caused by the

initialization of the atmosphere in terms of humidity and its

isotopic composition, can be safely neglected for our study

period.

LMDZ5Aiso (hereafter LMDZiso) is the isotopic version

of LMDZ5A, part of the atmospheric general circulation

model IPSL-CM5A used in the Coupled Model Intercompar-

ison Project (CMIP5) (Risi et al., 2010). For our purpose this

model has been run with a vertical resolution of 39 levels and

with a stretched grid designed to refine the horizontal reso-

lution in Antarctica: the resolution is of 0.30◦ latitude × 2.5◦

longitude in Antarctica, yielding a resolution of about 33 km

in latitude × 72 km in longitude around Kohnen. Simulations

are constrained by sea surface temperature (SST) data from

the National Centers for Environmental Prediction (NCEP)

and nudged to the 6-hourly ECMWF analyses using only the

wind fields. There could theoretically be some inconsisten-

cies between the winds and the SSTs from different reanaly-

ses datasets, but the impact should be very small due to the

overall consistency between the two reanalyses datasets and

due to the strong nudging of the winds, preventing any drift.

Because such high-resolution simulation is costly, the sim-

ulation has been started in January 2013 but inspection of

simulated time series show that the spinup in sufficient.

Three selected outputs from both models are calculated

at a specific height, 10 m for the wind speed and wind di-

rection, and at 2 m for temperature. However, the reader

should notice that simulated parameters such as humidity

or water vapor isotopes are extracted from the first verti-

cal model level (which represents a height of 60 m above

ground) whereas the in situ observations are measured close

to the surface. Furthermore, at Kohnen Station, the 2 m tem-

perature in ECHAM5-wiso is calculated from the surface en-

ergy balance equation, assuming a constant surface albedo

of 0.8. This might also lead to further differences between

simulation results and observations.
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4 Results and discussion

Section 4.1 will be devoted to the study of the day-to-day

variability over the study period of both air observations at

3 m and simulations from ECHAM5-wiso and LMDZiso.

Section 4.2 will focus on the diurnal scale, showing sub-

tle differences between the 0.2 and 3 m inlets in the mean

value of 18 selected days (labeled as horizontal orange bars

in Fig. 2) and comparing it with AGCM outputs. Finally, Sec-

tion 4.3 will study the diurnal cycle in the snow surface, by

comparing the results from the snow surface samples col-

lected during the SSDC experiment (labeled as the horizontal

purple bar in Fig. 2) with isotopic simulations from a snow

surface–air model running as a closed system.

4.1 Observed and simulated day-to-day variability

In order to estimate the magnitude of the day-to-day variabil-

ity, days with data gaps larger than 8 h have been removed

from the dataset (on 16, 28 and 29 December and 13, 14, 17,

18 and 21 January) and then 29 daily mean values of q, T , d-

excess and δD have been calculated for the observations and

the model outputs. Average and standard deviation of these

parameters over the 29 mean values are detailed in Table 3.

The signal from the temperature, humidity mixing ratio

and water vapor isotopes measurements is stable, with a

much lower variability on the day-to-day scale compared to

the diurnal scale (Fig. 2). The mean humidity mixing ratio

measured at 3 m over the study period is 1100 ppmv (Ta-

ble 3), with a maximum of 2200 ppmv on 22 December at

15:00 UTC. It coincides with the highest temperature, reach-

ing −15.5 ◦C at 17:00 UTC on the same day. By contrast, the

driest and coldest conditions are encountered on 19 January,

at 02:00 UTC, and is estimated at 150 ppmv for the humid-

ity mixing ratio (therefore below the limit of confidence of

our instrument, 500 ppmv) and measured at −35.8 ◦C for the

air temperature. Deuterium mean value at 3 m is −410 ‰,

with a range of variation from −360 ‰ (on 18 December at

17:00 UTC) to −470 ‰ (on 21 January at 03:00 UTC).

We now compare the model performances for these daily

mean values. ECHAM5-wiso correctly simulates these mean

conditions for the temperature, humidity mixing ratio and

deuterium while LMDZiso produces a mean humidity mix-

ing ratio 40 % lower than observed and shows a positive

offset of 56 ‰ in deuterium (Table 3). We notice that the

mean radiative input (in longwave and shortwave) measured

at the surface by the AWS 9 is 583 W m−2, compared to

only 552 W m−2 for LMDZiso. An incorrect simulation of

the cloud cover (and subsequently the precipitation) is likely

related to this offset in LMDZiso. The surface energy bal-

ance determines the mean surface temperature (−27 ◦C for

LMDZiso compared to −24 ◦C for ECHAM5-wiso), which

itself impacts the sublimation rate and the 2 m air temper-

ature via sensible and latent heat exchanges with the lower

atmosphere. The radiative offset present in LMDZiso could

Table 3. Mean values over 29 daily averages from the measure-

ment period (days with more than 8 h of data gap have been re-

moved). Uncertainties represent ±1 SD (standard deviation) of the

mean value. ECHAM stands for ECHAM5-wiso.

q (ppmv) δD (‰) d-exc (‰) T 2 m (◦C)

AWS 13/14 – – – −23 ± 4

0.2 m inlet 1000 ± 200 −413 ± 9 33 ± 11 –

3.0 m inlet 1100 ± 200 −409 ± 9 30 ± 9 –

ECHAM 1120 ± 110 −411 ± 15 26 ± 5 −23.1 ± 1.7

LMDZiso 700 ± 100 −355 ± 10 15 ± 1 −24.0 ± 1.4

explain the low simulated values of temperature and humid-

ity mixing ratio.

Observations depict a day-to-day variability of 200 ppmv

for the humidity mixing ratio, 9 ‰ for deuterium and 4 ◦C for

temperature (Table 3). Both models underestimate the vari-

ability of temperature and humidity mixing ratio. One ex-

planation concerning temperature could be that both mod-

els fail to capture the very cold events observed on 30 De-

cember and 19 January. They also underestimate the vari-

ations of temperature and humidity mixing ratio observed

over several days of relatively clear sky from 20 to 24 De-

cember, with an amplitude in T (q) of 0.9 ◦C (25 ppmv) for

ECHAM5-wiso against 4.2 ◦C (490 ppmv) for the observa-

tions. The deuterium has a higher day-to-day variability in

ECHAM5-wiso because of the simulation of high-depletion

events which strongly deviate from the observations (Fig. 2).

For example, on 5 January at 06:00 UTC the simulated value

is as low as −520 ‰ against −430 ‰ for the top inlet. These

depletion events do not correspond to any parallel signal in

the simulated meteorological data (cloud cover, wind speed,

temperature or humidity mixing ratio) and further analyses

will be necessary to understand these artifacts.

We finally focus on deuterium excess. The observed mean

value at 3 m is ∼ 30 ‰, with a strong relative variability of

9 ‰ (Table 3). ECHAM5-wiso simulates deuterium excess

values close to the observations within these uncertainties,

while LMDZiso shows a low signal of 15 ‰ with almost no

variability. Some of the air masses simulated by ECHAM5-

wiso have even a correct deuterium excess variability despite

the fact that the model is not able to simulate correctly the

magnitude of the δD depletion during these days, as reported

above (e.g., on 5 and 13 January). This might be explained

by a stronger dependency of deuterium excess variability to

climate conditions during evaporation processes in the vapor

source regions, while the δD signal is understood to be more

directly controlled by climate conditions near or at Kohnen

station.

Table 5 presents a synthesis of the linear relationships be-

tween the deuterium and different parameters (temperature,

humidity mixing ratio, δ18O and d-excess) for the observed

and simulated values on two different timescales (day-to-day

and diurnal). The left column corresponds to the 29 daily

www.the-cryosphere.net/10/1647/2016/ The Cryosphere, 10, 1647–1663, 2016



1654 F. Ritter et al.: Isotopic exchange at Kohnen station

Table 4. Peak-to-peak amplitude of the 18 selected diurnal cycles.

Uncertainties represent ±1 SD (average of the 24 SD of the hourly

mean values). ECHAM stands for ECHAM5-wiso.

1q (ppmv) 1δD (‰) 1d-exc (‰) 1T 2 m (◦C)

AWS 13/14 – – – 10.1 ± 1.0

0.2 m inlet 1010 ± 130 40 ± 7 21 ± 7 –

3.0 m inlet 930 ± 120 36 ± 6 15 ± 6 –

ECHAM 280 ± 60 32 ± 15 7 ± 4 4.9 ± 0.4

LMDZiso 160 ± 100 7 ± 4 0.6 ± 0.4 3.0 ± 1.3

mean values we have calculated before. Only δD vs δ18O

presents a strong linear relationship on this timescale, be-

cause the day-to-day variability of other parameters (mixing

ratio, temperature) is much weaker than their diurnal varia-

tions (Sect. 4.2). The strong linear relationship on the diurnal

scale highlights the importance of the local processes, which

will be investigated through a box model in Sect. 4.3.

4.2 Observed and simulated diurnal cycles

We have chosen 18 days showing a strong diurnal variation

in the humidity mixing ratio and the isotopes for the purpose

of stacking them: for each of these days and for each param-

eter, the daily mean value has been subtracted to obtain the

anomalies. Then from these anomalies we have calculated

for each hour (from 01:00 to 24:00 UTC) the average of the

18 values and its associated standard deviation. For visualiza-

tion purposes, we have calculated the average of the 24 SD

(standard deviations), called hereafter MSD for mean SD

(each error bar in Fig. 3 represents ±1 MSD). The MSD asso-

ciated with the wind direction has been obtained differently,

because this parameter is calculated from the U and V wind

components. Knowing the standard deviation σU and σV as-

sociated with the U and V stacks, a Monte Carlo simulation

has been performed to calculate for each run a different wind

direction from random values of U ± 2σU and V ± 2σV . The

MSD associated with the wind direction is the average of the

maximum range of values obtained from the Monte Carlo

simulation (n = 10 000). Also, the saturated mixing ratio has

been shifted to preserve the difference (qsat − q) and allow

a meaningful comparison with the humidity mixing ratio

anomalies. The average temperature (average humidity mix-

ing ratio at 3 m) over the 18 selected days is −23.6 ± 1.9 ◦C

(1130 ± 170 ppmv), which is close to the mean values over

the campaign (−23 ◦C, 1100 ppmv) and indicates that these

days constitute a representative sample of the campaign. We

will also frequently refer to the measurements performed by

Van As et al. (2005) at Kohnen from 8 January to 9 Febru-

ary 2002 in temperature and specific humidity at two differ-

ent heights: surface and 1 m.

The mean wind speed is 4.4 ± 0.1 m s−1 over the 18 se-

lected days, with a diurnal variation from 5.8 m s−1

(12:00 UTC) to 2.4 m s−1 (20:00 UTC). The mean wind di-

rection over the 18 selected days is 46 ± 50◦. These mea-
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Figure 3. Stack of 18 diurnal cycles of the wind direction and wind

speed (simulated at 10 m for the models, measured at 2 m for the

observations), air temperature at 2 m (measured with the AWS from

the 2013/2014 season), humidity mixing ratio q, saturated mix-

ing ratio range calculated with the surface pressure and tempera-

ture at 2 m ±1 ◦C, deuterium δD and d-excess. Error bars represent

±1 MSD (mean standard deviation): average of the 24 SD associ-

ated with the hourly mean values.
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Table 5. Slopes and determination coefficients calculated from two

datasets: (1) the 29 daily mean values from the campaign and (2) the

24 hourly mean values from the stack composed of 18 selected di-

urnal cycles. Uncertainties represent 1 SE on the slopes.

Daily mean Hourly mean

values (n = 29) values (n = 24)

δD (‰) vs. q (ppmv)

3.0 m inlet
α = 0.04 ± 0.01 α = 0.037 ± 0.001

r2 = 0.31 r2 = 0.98

ECHAM5-wiso
α = 0.03 ± 0.02 α = 0.071 ± 0.008

r2 = 0.05 r2 = 0.76

LMDZiso
α = 0.06 ± 0.01 α = 0.034 ± 0.005

r2 = 0.37 r2 = 0.69

δD (‰) vs. T 2 m (◦C)

3.0 m inlet
α = 3.1 ± 1.1 α = 3.37 ± 0.11

r2 = 0.24 r2 = 0.98

ECHAM5−wiso
α = 6 ± 4 α = 4.7 ± 0.9

r2 = 0.10 r2 = 0.54

LMDZiso
α = 3.9 ± 1.1 α = 1.5 ± 0.3

r2 = 0.33 r2 = 0.49

δD (‰) vs. δ18O (◦)

3.0 m inlet
α = 6.2 ± 0.3 α = 5.99 ± 0.12

r2 = 0.94 r2 = 0.99

ECHAM5-wiso
α = 6.64 ± 0.19 α = 6.57 ± 0.04

r2 = 0.98 r2 = 0.99

LMDZiso
α = 7.5 ± 0.1 α = 7.41 ± 0.02

r2 = 0.99 r2 = 0.99

d-excess (‰) vs. δD (‰)

3.0 m inlet
α = −0.21 ± 0.06 α = −0.32 ± 0.03

r2 = 0.32 r2 = 0.86

ECHAM5−wiso
α = −0.18 ± 0.03 α = −0.22 ± 0.01

r2 = 0.50 r2 = 0.98

LMDZiso
α = −0.06 ± 0.02 α = −0.08 ± 0.01

r2 = 0.34 r2 = 0.97

surements are therefore consistent with the presence of kata-

batic winds toward the slope direction of the terrain (61◦).

Both models fail to simulate the pattern of katabatic winds.

The mean wind direction is 32 ± 27◦ for ECHAM5-wiso

and 21 ± 24◦ for LMDZiso, and their mean wind velocity at

10 m is only 3.1 m s−1 for ECHAM5-wiso and 1.9 m s−1 for

LMDZiso. They also show a low diurnal variability, whereas

Van As et al. (2005) observed at the same height variations

higher than 2 m s−1 over 24 h. The underestimation might be

due to the horizontal resolution, which is too coarse to repre-

sent properly the katabatic winds, especially in LMDZiso.

We focus on the peak-to-peak amplitude of the diurnal cy-

cles, summarized in Table 4. The diurnal amplitude of ob-

served surface air temperature at 2 m is 10.0 ◦C (within a

MSD of 1.0 ◦C). Van As et al. (2005) found an amplitude

of ∼ 11 ◦C at 1 m, which is consistent with our observations.

The diurnal amplitude observed at 3 m is 930 ppmv for q

and 36 ‰ for δD. The diurnal variation in the water vapor

isotopes and temperature is similar at NEEM in Greenland

(∼ 35 ‰ for δD and ∼ 10 ◦C for T ), despite much larger di-

urnal variations in the humidity mixing ratio with a peak-to-

peak amplitude of ∼ 2300 ppmv (Steen-Larsen et al., 2013).

Both models underestimate the amplitude of the diurnal

cycles in the air temperature at 2 m by more than 50 %. The

surface temperature simulated by both AGCMs has a peak-

to-peak amplitude of 7 ◦C, compared to ∼ 14 ◦C for the mea-

surements of Van As et al. (2005). Variations of the sur-

face temperature at Kohnen are supposed to be driven on the

first order by the radiative budget. We have therefore com-

pared the radiative budget of the AWS 9, ECHAM5-wiso and

LMDZiso. Both models show good agreement with the ob-

servations for the net shortwave budget at the surface. How-

ever, the longwave radiative components are more difficult to

simulate. Downward longwave emissions are related to the

cloud cover (greenhouse effect) and snowfalls, whereas up-

ward longwave emissions are related to the surface temper-

ature and emissivity of the surface. Both models show diffi-

culties simulating a proper cloud cover and snowfall events,

and the variation in their surface temperature is 50 % lower

than observed. That explains the disagreement between the

observations and the AGCMs with respect to the longwave

radiative budget, leading to a wrong simulation of the surface

temperature. Both AGCMs simulate a lower amplitude for

the humidity mixing ratio likely due to the low variation in

their surface temperature, but interestingly ECHAM5-wiso

manages to simulate the right magnitude of the diurnal deu-

terium variability (32 ‰), associated with a large MSD of

15 ‰ (Table 4). The model–data comparison is hampered by

the fact that the simulated humidity mixing ratio is only avail-

able from the first grid level of the AGCMs and is therefore

an average value over the first ∼ 60 m. The height and sta-

bility of the boundary layer are particularly difficult to sim-

ulate over ice and have a certain impact on the presence or

absence of diurnal cycles (Holtslag et al., 2013). A proper

understanding of the simulation of the boundary layer by

the AGCMs would require relevant output parameters such

as the boundary layer depth or stability classes, which have

not been implemented yet. Further analyses will therefore be

necessary to understand the different behavior of LMDZiso

and ECHAM5-wiso.

We now compare the amplitudes at 0.2 and 3 m for the hu-

midity mixing ratio and the δD. The absolute difference be-

tween the amplitudes measured from the bottom and the top

inlets is 80 ppmv for q (20 % of 1q) and 4 ‰ for δD. Within

a MSD of ∼ 125 ppmv for q and ∼ 6 ‰ for δD, we cannot
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conclude that the amplitude is decreasing significantly with

height.

In the observations, diurnal air temperature variations oc-

cur in phase with δD and humidity mixing ratio measured at

0.2 m, with minima at 02:00 UTC and maxima at 16:00 UTC.

While δD observations from 0.2 and 3 m seem synchronous

within uncertainties, the top inlet presents a clear lag of 1 h

behind the bottom inlet with respect to the measured humid-

ity mixing ratio. The same delay was observed by Van As

et al. (2005) from the surface to 1 m in both temperature and

humidity mixing ratio. Their observations showed minima

and maxima for T and q at ∼ 03:00 and ∼ 16:00 UTC at

1 m against ∼02:00 and ∼15:00 UTC at the surface. The di-

urnal observations from NEEM (Steen-Larsen et al., 2013)

were also in phase with T , q and δD at ∼ 1 m; however,

humidity mixing ratio and δD measured on a much higher

tower (∼ 13 m) showed a delay of only ∼1 h with the ob-

servations at 1 m. In the simulations from ECHAM5-wiso

and LMDZiso, temperature diurnal variations occur approx-

imately synchronous with the observations at Kohnen. How-

ever, simulated humidity mixing ratio and deuterium varia-

tions are delayed by ∼ 3 h compared to the observations from

the 0.2 and 3 m inlets. This could be explained by the fact that

the temperature at 2 m is driven by the surface radiative bud-

get while the timing of changes in humidity / isotopes may

reflect boundary layer dynamics which are less accurately

simulated.

The d-excess values also depict a diurnal cycle anti-

correlated to δD, with an amplitude for the 0.2 m inlet (3 m

inlet) of 21 ‰ (15 ‰) but associated with a large MSD of

7 ‰ (6 ‰). This anti-correlation is expected from the d-

excess linear definition: at very low temperature, d-excess

is influenced by distillation and increases as δD decreases.

ECHAM5-wiso underestimates the diurnal amplitude vari-

ability and LMDZiso fails to simulate any diurnal variability

in the d-excess.

As previously reported for daily mean values (Table 5,

Sect. 4.1), close linear relationships are observed between

q, δD and d-excess for hourly mean values, highlighting

the importance of local fluxes. These relationships are bet-

ter simulated for the diurnal cycle, but ECHAM5-wiso tends

to overestimate the associated slopes compared to the obser-

vations. LMDZiso strongly overestimates the slope of δD-

δ18O. ECHAM5-wiso is able to capture the diurnal anti-

correlation of d-excess and δD. The slope calculated on the

hourly scale for δD vs. δ18O has a value of 5.99 ± 0.12,

whereas Steen-Larsen et al. (2013) calculated at NEEM

a slope of 6.47 ± 0.07, in a warmer and more humid air

(∼ 3000 ppmv against ∼ 1200 ppmv at Kohnen).

4.3 Air–snow exchanges

In order to document the isotopic exchange between the sur-

face snow and the overlying water vapor, snow surface sam-

ples were collected from three snow patches, with five jux-

Table 6. Isotopic mean values over the SSDC period. The standard

error on the mean value is below 1 ‰ for δD and below 0.1 ‰ for

δ18O.

δD (‰) δ18O (‰)

Air observations −407 −54.4

Soft patch −296 −37.4

Medium patch −301 −37.0

Hard patch −316 −38.8

taposed replicas per patch and per hour (protocol described

in Sect. 3.5). In the isotopic composition of the snow sur-

face presented in Fig. 4, each hourly data point is the aver-

age of the five snow samples, with a standard deviation of

0.03 ‰ for δ18O and 0.2 ‰ for δD. We identify a clear diur-

nal cycle in the snow with a significant peak-to-peak ampli-

tude of ∼ 3 ‰ for δD and ∼ 0.4 ‰ for δ18O, in phase with

the diurnal cycle in the air (Fig. 4). The mean deuterium

value of the snow patches varies from −296 to −316 ‰,

showing that the texture of the snow patch and its isotopic

composition could be related (Table 6). This observation con-

firms the spatial variability previously observed at Vostok in

the isotopic composition of the snow surface (10 cm depth),

with variations up to 30 ‰ in δD over 100 m horizontally

(Ekaykin et al., 2002). Both AGCMs manage to simulate a

similar isotopic composition for the snow surface, with on

average a deuterium value of −330 ‰ for ECHAM5-wiso

and −299 ‰ for LMDZiso. As expected, the isotopic com-

position of the snow surface simulated by the AGCMs de-

pends on the snowfall events only, with a variation in δD of

6 ‰ for ECHAM5-wiso over the study period (no variation

is simulated by LMDZiso). Unfortunately, the cooling phase

during the night of 9 January 2014 is restricted compared to

the usual strong decrease in temperature or humidity shown

in Fig. 3 because the presence of a cloud cover. This meteo-

rological event is likely to have impacted T , q and δD during

the cooling phase.

We notice that the vapor is close to or at saturation by look-

ing at the saturated mixing ratio calculated in Fig. 4. We can

therefore expect condensation to occur during the night (and

sublimation during the day as the diurnal cycle is observed

to be approximately symmetrical) and an isotopic exchange

between the lower atmospheric water vapor and the surface

snow. This raises the question of whether, and by what mag-

nitude, condensation and sublimation processes might affect

the surface snow and lower the water vapor isotopic compo-

sition.

In order to address this question, we set up a simple box

model as a closed system containing two interacting and ho-

mogeneous reservoirs. Figure 5 depicts the schematics of this

model and introduces our notations. As this system is closed,

the variation of moisture in the air (and its isotopic compo-

sition) is only due to condensation / sublimation during the
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Figure 4. Observations performed during the Snow Surface Diurnal

Cycle (SSDC) experiment from the 9 to 10 January 2014. The three

different snow patches are labeled “hard”, “medium” and “soft” ac-

cording to their texture. Each hourly data point is the average of the

measurements made on 5 snow surface samples per patch.

cooling/warming phase and we have mass conservation of

the water molecules: ∀t , mv
t + ms

t = mv
0 + ms

0 with t = 0 the

start of the cooling phase and “v” and “s” indices represent-

ing vapor and snow, respectively. Our simulation is based on

the values from the mean stack of the 18 diurnal cycles in-

stead of the specific day corresponding to the snow sampling

because of the unusually high temperature and humidity dur-

ing the night of 9 January 2014. We split our analysis into two

parts: the cooling phase (from ∼ 17:00 to ∼ 02:00 UTC) and

Box model

- closed system -
urfaceS S

t Hourly time step

Surface height anomaly 

due to sublimation and 

condensation

Height of the humid 

air column

Height of the snow 

surface reservoir

Humidity mixing-ratio 

measured at 3.0 m

Snow accumulation during condensation:

Order of magnitude of the parameters:

Ht
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:

:

:

:

:
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cooling phase

:

300   380 kg m-3
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50 100 m

2   5 x 10 -3  m
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1.1  1.4 x 10-4 m

5  9 x 10-4 kg kg

, ry air density and snow density:

, ater vapor mass and snow mass:

D

 

W

 

–

– –
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–

Figure 5. Schematic of the box model and description of the input

parameters (isotopes excluded). ζmax is the maximum value of the

surface height anomaly at the end of the cooling phase, calculated

with two extreme values of (H0, ρs). The height of the SSDC snow

samples gives an estimation of h0. ρd and ρd have been calculated

from 100 snow samples per day, surface pressure, temperature and

relative humidity observed at Kohnen from December 2013 to Jan-

uary 2014.

the warming phase (from ∼ 03:00 to ∼ 15:00 UTC). More

details concerning the equations present in the box model are

given in the Supplement.

4.3.1 Cooling phase

The deposition of the condensate on the snow surface during

the cooling phase is expected to reach a maximum height of

ζmax ∼ 0.1 mm (calculation detailed in Fig. 5). As the depth

of our surface snow samples is ∼ 2–5 mm, we mix the con-

densate with the snow reservoir. From t to t + 1, an amount
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(mv
t − mv

t+1) condensates and the isotopic ratio of the con-

densate in equilibrium with the vapor is αt R
v
t , where R is

the isotopic ratio of the heavy isotope and αt the associated

fractionation coefficient with respect to ice calculated from

the air temperature measured at 2 m at time t . Assuming an

immediate removal of the condensate from the air reservoir

and an immediate mixing with the snow reservoir, we obtain

the following for the isotopic composition of the vapor δv
t

and the isotopic composition of the snow δs
t :

δv
t+1 + 1000 = Av

t

(

δv
t + 1000

)

, (2)

δs
t+1 + 1000 = Bs

t

(

δs
t + 1000

)

+ Bv
t

(

δv
t + 1000

)

, (3)

with

Av
t =

qt

qt+1
− αt

(

qt

qt+1
− 1

)

Bs
t =

ρsh0 + ρdH0 (q0 − qt )

ρsh0 + ρdH0 (q0 − qt+1)

Bv
t = αt

ρdH0 (qt − qt+1)

ρsh0 + ρdH0 (q0 − qt+1)
.

We will consider the equilibrium case (RH set to 1) as well

as the supersaturated case (RH = 1.1) by replacing αt with

the equivalent fractionation coefficient (Jouzel and Merlivat,

1984), which takes into account the kinetic effects in a su-

persaturated environment. The required input parameters for

simulating δv
t are qt , δv

0 , αt and RH (set to 1 or 1.1). The

required input parameters for simulating δs
t are qt , δv

t (mea-

sured, not simulated), αt , h0, H0, RH, ρs, ρd and δs
0.

Figure 6 presents the simulation of δDv
t during the cool-

ing phase, based on Eq. (2) and the isotopic variation of the

condensate (Eq. (3) with h0 = 0 mm), which does not depend

on H0, ρs or ρd. We have used fractionation coefficients with

respect to ice given by Merlivat and Nief (1967) and Ellehoj

et al. (2013).

The amplitude of the simulated isotopic composition of

the vapor is for each case 3 times larger than observed. The

box model is closed, so any change in the vapor is forced

to condensate in order to keep the mass conservation equa-

tion. In reality, there is advection of air masses with differ-

ent moisture or temperature into and out of the box. Ex-

changes with the free troposphere are also possible. This

could partly contribute to the decrease of humidity during the

cooling phase in an open system instead of a pure condensa-

tion process in a closed system. Nevertheless, our simplistic

approach leads to the conclusion that about 40 % of the di-

urnal vapor mixing ratio variation is sufficient to simulate

the right order of magnitude of isotopic variations, based on

equilibrium fractionation. This is consistent with the results

of ECHAM5-wiso: while this atmospheric model underesti-

mates the diurnal variability of humidity (by 40 %), it does

correctly capture the diurnal variability of deuterium.

The isotopic variation of the condensate is ∼ 6 ‰ and de-

creases in phase with the vapor. We define (δDs
0)eq as the deu-

terium value of the condensate at equilibrium with the initial
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Figure 6. Measured and simulated (box model) deuterium anoma-

lies of the vapor and simulated deuterium anomaly of the con-

densate (h0 = 0 mm) during the cooling phase, from 17:00 to

02:00 UTC. Observations come from the stack of the 18 diurnal cy-

cles. Equivalent fractionation coefficients have been calculated from

Jouzel and Merlivat (1984) for RH = 1.1.

vapor. The value of (δDs
0)eq is −295 ‰ using the fractiona-

tion coefficient from Merlivat and Nief (1967). This result is

consistent with the mean value of the isotopic composition

of the three snow patches (Table 6).

Figure 7 presents the simulation of δDs
t during the cool-

ing phase, based on Eq. (3). We have used ρd = 0.95 kg m−3,

calculated from the surface pressure, temperature and RH

measured at Kohnen, and ρs = 340 kg m−3, calculated from

100 daily snow samples collected at Kohnen during the pe-

riod of air measurement. The initial depth of the snow reser-

voir h0 corresponds to the depth of the SSDC snow samples,

i.e., between 2 and 5 mm. The air reservoir is considered as

the part of the lower atmosphere affected by convection and

turbulence within a timescale of about 1 h. The parameter Ht

is therefore the mixing-layer height. Sodar measurements

performed at Dome C (Antarctica) showed magnitudes be-
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Figure 7. Simulated (box model) deuterium anomalies of the snow surface during the cooling phase, with h0, H0, RH, αt and δDs
0 as varying

inputs parameters. Fractionation coefficients at equilibrium come from Merlivat and Nief (1967) and Ellehoj et al. (2013), calculated with T

at 2 m. Equivalent fractionation coefficients have been calculated from Jouzel and Merlivat (1984) for RH = 1.1.

tween 10 and 300 m (Pietroni et al., 2012; Casasanta et al.,

2014). In this study, we set the mixing-layer height as a con-

stant and consider two cases: H0 = 50 m or H0 = 100 m.

This simple parametrization allows us to test the sensitiv-

ity of the box model to the variations of Ht . We also have

chosen two initial isotopic compositions of the snow surface

as two distinct cases: (i) δDs
0 = −310 ‰, below (δDs

0)eq, and

(ii) δDs
0 = −290 ‰, above (δDs

0)eq. In the first case, the mix-

ing between the condensate and the snow surface will tend

toward the equilibrium through a positive trend; in the second

case, a negative trend is predicted. This is due to the differ-

ence between the isotopic composition of the condensate and

the snow surface, positive or negative at a given time t . The

response of the model shown in Fig. 7 depends strongly on

parameters that are not well constrained. These parameters

are the box sizes (a snow reservoir with a depth above 1 cm

will keep a constant isotopic composition), the fractionation

coefficients (disagreement between Merlivat and Nief, 1967,

and Ellehoj et al., 2013) or the value of δDv
0, which could

be measured with an accuracy of 11 ‰ only (see Table 2).

However, we are able to conclude that the condensation of

water vapor has an effect on the isotopic composition of the

top 2 mm of the snow surface.

4.3.2 Warming phase

It is generally assumed that no fractionation occurs dur-

ing sublimation. Using Greenland data, Steen-Larsen et al.

(2011) and Landais et al. (2012) showed that on average the

snow surface isotopes and the water vapor isotopes are in

equilibrium, and they estimated that the value of the equi-

librium factor lies between the fractionation coefficient αice

with respect to ice (Merlivat and Nief, 1967; Ellehoj et al.,

2013) and the fractionation coefficient αwater with respect

to water (Majoube, 1971). In this study, we test different

hypotheses to obtain a range of prediction of the isotopic

variation in the vapor and the snow surface. From t to

t + 1, an amount (mv
t+1 − mv

t ) sublimates and the isotopic

ratio Rsub
t of the sublimate will be tested under three differ-

ent assumptions: (i) no fractionation occurs and Rsub
t = Rs

t ;

(ii) the sublimate is formed in equilibrium with the snow and

Rsub
t = Rs

t /αt ; (iii) the kinetic effect due to subsaturation is

taken into account and a thin layer of liquid water above the

snow with the same isotopic composition is considered. Fol-

lowing Merlivat and Jouzel (1979) we have in case (iii)

Rsub
t =

1 − k

1 − RH

(

Rs
t

αt

− RH × Rv
t

)

,
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Figure 8. Measured and simulated (box model) deuterium and d-

excess anomalies of the vapor during the warming phase. Kinetic

effects occurring at subsaturation (RH = 0.9) have been calculated

following Merlivat and Jouzel (1979) in a smooth regime.

with the RH set equal to 0.9, and the kinetic fractionation fac-

tor k given by kδ18O = 6.2 ‰ and kδD = 5.5 ‰. We present the

equations for the vapor and the snow surface for the case (iii)

only, noticing that cases (i) and (ii) are mathematically ob-

tained from case (iii).

Assuming an immediate removal of the sublimate from the

snow reservoir and an immediate mixing with the molecules

contained in the air reservoir, we have for the isotopic com-

position of the vapor:

δv
t+1 + 1000 = Ev

t

(

δv
t + 1000

)

+ Es
t

(

δs
t + 1000

)

, (4)

with

Ev
t =

qt

qt+1
− RH ×

1 − k

1 − RH

(

1 −
qt

qt+1

)

Es
t =

1

αt

1 − k

1 − RH

(

1 −
qt

qt+1

)

.

The equations for the isotopic composition of the snow are

δs
t+1 + 1000 = F s

t

(

δs
t + 1000

)

+ F v
t

(

δv
t + 1000

)

, (5)

with

F s
t =

ρsh0 + ρdH0

(

q0 − qt − 1
αt

1−k
1−RH (qt+1 − qt )

)

ρsh0 + ρdH0 (q0 − qt+1)

F v
t = RH ×

1 − k

1 − RH
×

ρdH0 (qt+1 − qt )

ρsh0 + ρdH0 (q0 − qt+1)
.

Figure 8 displays the measurements and simulations per-

formed for the isotopic composition of the deuterium and d-

excess of the vapor during the warming phase. When no frac-

tionation occurs during sublimation, the simulated variation

of the deuterium is 2 times higher than observed. If we were

sublimating a block of solid ice, it would be conceivable that

only the very surface atoms would be able to sublimate, and

the system would not fractionate. However, in the presence

of very porous snow, there are a very large numbers of wa-

ter molecules participating in the snow–air interface, and it

is possible that snow would behave more like a liquid than

like a solid in this respect and would fractionate. We tested

for the presence of fractionation by running the box model

with a variety of available fractionation factors for air over

ice and water (Merlivat and Nief, 1967; Ellehoj et al., 2013;

Majoube, 1971) and find that using αice the model underesti-

mates the variations in δD (Fig. 8). The true fractionation fac-

tor at sublimation is probably lower than αice, but the crude

nature of our model prevents us from quantifying it precisely.

Figure 9 presents the simulated δD of the surface snow

during the warming phase. We notice that δs
t+1 = δs

t when no

fractionation occurs as it is assumed in ECHAM5-wiso and

LMDZiso. A difference between equilibrium and subsatura-

tion has to be noted in Eq. (5) due to the coefficient F v
t . If

F v
t = 0 (equilibrium), there is no influence of the vapor on

the isotopic composition of the surface snow and δs
0 will not

have a significant impact on δs
t : any patch of snow will share

the same isotopic variation whatever its initial isotopic com-

position is. If F v
t 6= 0 (subsaturation), the isotopic composi-

tion of the snow is affected by the isotopic composition of the

vapor, and in that case the variation of the isotopic composi-

tion of a snow patch during the warming phase will depend

on its initial isotopic composition δs
0 (Fig. 7).

We focus here only on δDs
0 = −320 ‰, which is the av-

erage of the 100 daily snow samples collected at Kohnen

over the measurement period. Our data from the three snow

patches consistently depict a positive trend during the warm-

ing phase, with an amplitude between 3 and 7 ‰ for 1δD
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0 = −320 ‰.

(Fig. 9). Simulations with different values of H0, h0 and αt

share the same positive trend with a peak-to-peak amplitude

between 1 and 8 ‰, which is of the same order of magni-

tude as the observations. We notice that the uncertainties re-

lated to the heights of the reservoirs have greater impacts on

the simulated snow surface isotopic values than the different

fractionation coefficients. As a result, we are not able to con-

strain the fractionation factor at sublimation, but we observe

that since the surface snow isotopic composition is changing,

the sublimation process must be associated with an isotopic

fractionation.

5 Conclusions

Continuous measurements of temperature, humidity mixing

ratio and water vapor isotopes were performed during sum-

mer 2013/2014 at Kohnen station in East Antarctica. These

data highlight a strong diurnal cycle, in contrast to rather sta-

ble day-to-day mean levels over 1 month of observations.

During our monitoring period, the surface vapor isotopic

composition was therefore more driven by local processes

than by synoptic changes. Outputs from the two AGCMs

(ECHAM5-wiso and LMDZiso) show in general good agree-

ments with the observations. However, the surface tempera-

ture variations simulated by the models have an amplitude

50 % lower than observed by Van As et al. (2005), likely due

to the difficulty to simulate the longwave radiative budget

(related to the cloud cover and snowfall events). Moreover,

the strong katabatic winds observed at Kohnen are not prop-

erly simulated by the AGCMs. The simulation of processes

in the polar boundary layer and associated inversion is also

known to be a challenge for AGCMs (Holtslag et al., 2013).

This could explain why the amplitude of the diurnal cycles is

lower in the models compared to the observations.

We have investigated the diurnal isotopic response of

the upper thin layer of snow surface to the atmospheric

variations. A continuous hourly sampling over 35 h of the

first ∼ 2–5 mm of the snow surface of three different snow

patches reveals a significant variability in both δD and δ18O

during a period without snowfall events. As these variations

in the surface snow isotopic composition follow the diur-

nal trend in the air, this result confirms the observations of

Steen-Larsen et al. (2014) at NEEM who also observed paral-

lel variations between the snow surface isotopic composition

and lower atmosphere isotopic composition. These observa-

tions were, however, with a higher variation on a day-to-day

scale. In their case, they reported larger variations in the par-

allel variations in the isotopic composition of both surface

snow (5 mm) and vapor, reaching 10 ‰ over 5 days.

Two important consequences can be inferred from the

snow sample diurnal observations: (1) post-depositional pro-

cesses have a significant impact on the isotopic composition

of the snow surface and (2) the sublimation process is frac-

tionating. These two points are not included in classical iso-

topic theory and therefore not implemented in atmospheric

models.

In order to determine the contributions of condensation

and sublimation to the isotopic variations of the vapor and

surface snow, we developed a simple model describing the

isotopic exchange between two reservoirs contained in a
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closed system: a water vapor column and a thin snow sur-

face layer. We find that the observed isotopic variations in

the water vapor phase (δDv) are about half of what simple

condensation / evaporation equilibrium would dictate. This is

likely due to advection, exchanges with the free troposphere

and variations in the boundary layer height. Additionally,

for our observed isotopic composition of surface (2–5 mm)

snow changes during both the warming and the cooling phase

(peak-to-peak variation of ∼ 3 ‰ for δD), our crude model is

able to reproduce these observations, although the model re-

sults depend strongly on the size of the reservoir chosen. Ac-

cording our box model, no diurnal cycle in the isotopic com-

position of the snow surface is expected from a depth of 1 cm

or above. We do observe an increase in δDs during the subli-

mation process, which indicates that water isotopes undergo

fractionation during sublimation. The only doubt we could

emit on this result is related to the wind drift. Effectively, the

isotopic variability observed on the diurnal scale in a snow

patch could also be attributed to the renewal of the snow sur-

face by the wind, which mixes the surface of the snow with

ice crystals coming from other snow patches. Assuming that

fractionation occurs during sublimation, the uncertainties in

the model geometry and in air advection prevent us from be-

ing able to determine the fractionation coefficient. Our water

vapor isotope data suggest, however, that it is smaller than

αice. Further analyses are required to quantify the impact of

post-depositional processes on the isotopic signal from ice

core data.

The day-to-day variations in water vapor isotopic compo-

sition have a much smaller amplitude than the diurnal cy-

cle, because no large synoptic event was recorded during

our monitoring period. Expanding the temporal framework

of such monitoring is a pre-requisite in order to better under-

stand the importance of horizontal advection and to evaluate

the processes at play during the winter season. Our observa-

tions show the possible importance of surface snow–surface

vapor exchanges for the isotopic composition recorded in ice

cores. This not only stresses the potential of isotopic mon-

itoring of snow–air interactions for the study of fractiona-

tion processes during water phase change but also underscore

the importance of improvements in analytical accuracy un-

der low humidity conditions. This constitutes an experimen-

tal challenge for future works.

The Supplement related to this article is available online

at doi:10.5194/tc-10-1647-2016-supplement.
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