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Abstract

We introduce a duat lifting of unified gauge theories, the first character-
ized by the isotopies, which are axiom-preserving maps into broader structures
with positive-definite generalized units used for the representation of matter
under the isotopies of the Poincaré symmetry, and the second characterized by
the isodualities, which are anti-isomorphic maps with negative-definite general-
ized units used for the representation of antimatter under the isodualities of the
Poincaré symmetry. We then submit, apparently for the first time, a novel grand
unification with the inclusion of gravity for matter embedded in the generalized
positive-definite units of unified gauge theories while gravity for antimatter is
embedded in the isodual isounit. We then show that the proposed grand uni-
fication provides reaalistic possibilities for a resolution of the axiomatic incom-
patibilities between gravitation and electroweak interactions due to curvature,
antimatter and the fundamental space-time symmetries.
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1 Introduction

In this note we study the structural incompatibilities for an axiomatically consistent
inclusion of gravitation(1) in the unifield gauge theories of electroweak interactions(2)

due to:
(1)Curvature. In fact, electroweak theories are essentially structured on Minkowskian

axioms, while gravitational theories are formulated via Riemannian axioms, a dispar-
ity which is magnified at the operator level because of known technical difficulties of
quantum gravity(3), e.g., to provide a PCT theorem comparable to that of electroweak
interactions.
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(2) Antimatter. In fact, electroweak theories are bona fide relativistic theo-
ries, thus characterizing antimatter via negative-energy solutions, while gravitation
characterizes antimatter via positive-definite energy-momentum tensors.

(3) Fundamental space-time symmetries. In fact, the electroweak interac-
tions are based on the axioms of the special relativity, thus verifying the fundamental
Poincaré symmetry P (3.1), while such a basic symmetry is absent in contemporary
gravitation.

Without any claim of uniqueness (see, e.g., the recent studies on unified theories
of monograph(2m) and references quoted therein), we present apparently for the first
time a conceivable resolution of the above structural incompatibilities via the use of
the following new methods:

(A) Isotopies. A baffling aspect in the inclusion of gravity in unified gauge
theories is their apparent geometric incompatibility despite their individual beauty
and experimental verifications.

The view we would like to convey is that the above structural incompatibility
is not necessarily due to insufficiencies in Einstein’s field equations,but rather to
insufficiencies in their mathematical treatment. Stated in plain language, we believe
that the achievement of axiomatic compatibility between gravitation and electroweak
interactions requires a basically new mathematics, that is, basically new numbers,
new space, etc.

In the hope of resolving in due time this first structural incompatibility, Santilli(4a)

proposed back in 1978 when at the Department of Mathematics of Harvard University
under DOE support, a new mathematics based on the so-called isotopies, and today
known as isomathematics, which was then studied in numerous works(4−11) (see in
particular the latest memoir(4e)).

The isotopies are nowadays referred to maps (also called liftings) of any given
linear, local and canonical or unitary theory into its most general possible nonlinear,
nonlocal and noncanonical or nonunitary extensions, which are nevertheless capable
of reconstructing linearity, locality and canonicity or unitarity on certain generalized
spaces and fields, called isospaces and isofields. From their Greek meaning, isotopies
are therefore ”axiom-preserving ”.

The fundamental isotopy of this note is that of the 4-dimensional unit I =
Diag. (1, 1, 1, 1) of the Minkowskian and Riemannian space-time into a 4×4−dimensional,
everywhere invertible, Hermitian and positive-definite matrix Î whose elements have
an arbitrary functional dependence on the local space-time coordinates x, as any other
needed variable,

I = Diag.(1, 1, 1, 1) → Î(x, . . .) = (Îµ
ν (x, . . .)) = Î† = [T̂ (x, . . .)]−1 > 0, (1)

with corresponding lifting of the conventional associative product

A × B → A×̂B = A × T̂ × B, (2)

under which Î(x, . . .) = [T̂ (x, . . .)]−1 is the correct left and right unit of the new
theory called isounit, in which case T̂ (x, . . .) is called the isotopic element.
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When applicable, liftings (1) and (2) require for consistency the reconstruction of
all mathematical methods of contemporary physics, with no exception known to this
author. In fact, they require new numbers and fields called isonumbers and isofields
with an arbitrary (positive-definite) unit, new spaces over isofields called isospaces, the
new isodifferential calculus, the new isoeuclidean, isominkowskian and isosymplectic
geometries, etc. which we cannot possibly review in this note and must assume as
known (see their latest formulation in memoir(4e)).

In a communication at the VII Marcel Grossmann Meeting on General Relativity
(mg7) held in 1994 at Stanford University, Santilli(5a) showed that the isomathematics
permits a novel classical and operator treatment of gravitation which, on one side,
preserves Riemannian metrics, Einstein’s field equations and related experimental
verifications while, on the other side, verifies the abstract Minkowskian axioms.

The above reformulation is evidently fundamental for this note, inasmuch as it
offers realistic possibilities of resolving the structural incompatibility between elec-
troweak and gravitational interactions due to curvature, by reducing the latter to the
axiomatic structure of the former for the case of matter only (see below for antimat-
ter).

The main mechanism is that first presented at mg7 (Ref.(5a), p. 501) which is based
on the factorization of any given Riemannian metric (e.g., Schwarzschild metric(1c))
g(x) into the Minkowski metric η(+1, +1, +1,−1)

g(x) = T (x) × η (3)

where the gravitational isotopic element T (x) is evidently a 4-dimensional matrix
which is always positive-definite from the locally Minkowskian character of Riemann.
The entire theory must then be reconstructed with respect to the gravitational isounit

Î = [T̂ (x, . . .)]−1 = η × [g(x)]−1 > 0. (4)

Note that the component truly representing curvature in the Riemannian geome-
try is not the Riemannian metric g(x) but rather its isotopic component T (x), triv-
ially, because the remaining component η is flat. It is then easy to see that the
isotopic treatment of gravity formally eliminates curvature, thus rendering gravitation
axiomatically compatible with the electroweak interactions. In fact, curvature exists
when the gravitational isotopic element T (x) is referred to the conventional space-
time unit I, while curvature formally disappears when T (x) is referred to a generalized
unit which is its inverse [T (x)]−1.

Reformulations (3) and (4) also imply the birth of a novel geometry, the isominkowskian
geometry, first submitted by Santilli(6a) in 1983 which, in more recent studies(5e) has
resulted to in a symbiotic unification of the Minkowskian and Riemannian geome-
tries, because it verifies all the abstract axioms of the former, while preserving the
machinery of the latter (covariant derivatives, connections, etc.). The formulation of
gravity based on Eq.s (3) and (4) is then called isominkowskian gravity.

Allow us to stress for clarity that we are here referring to a mere mathematical re-
formulation of Einstein’s historical field equations on the mathematical isominkowskian
spaces (i.e., refer them to a new unit Î ) because the projection of the treatment into
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the convectional space-time (i.e., when referred to the conventional space-time unit I)
recovers the said historical equations in their totality. The above occurrences there-
fore offer realistic hopes of resolving the baffling occurrence indicated earlier, i.e., the
apparent incompatibility between Einstein’s majestic conception of gravitation with
the geometric structure of electroweak interactions.

The reader should be aware that the proposed resolution works best where it is
needed most, at the operator level. In fact, Santilli(5a) showed at mg7 that the oper-
ator formulation of the isominkowskian representation of gravity verifies all abstract
axioms and physical laws of conventional ”relativistic” quantum mechanics (RQM).
The emerging new theory is called operator isogravity (OIG) and merely consists in
embedding gravity in the unit of RQM.

The reader should be aware that the above classical and operator isotopies are
supported by two, hitherto unknown symmetries, first presented in memoir(4f) un-
der the tentative name of isoselfscalar symmetries, which are characterized by the
transforms

η → η̂ = n−2 × η, I → Î = n2 × I, (5)

where n is a parameter, and yields the symmetry of the conventional Minkowskian
interval

x2 = (xµ × ηµν × xν) × I = (xµ × η̂µν × xν) × Î = x2̂, (6)

with a corresponding invariance for the Hilbert space

〈Φ |×|Ψ〉 × I =
〈
Φ

∣∣×n−2 ×
∣∣ Ψ

〉
× (n2 × I) =

〈
Φ

∣∣×̂∣∣ Ψ
〉
× Î . (7)

The isominkowskian representation of gravity then emerges from the above clas-
sical and quantum symmetries via the axiom-preserving addition of an x-dependence
in the n-parameter, much along the transition from Abelian to non-Abelian gauge
theories.

(B) Isodualities. Structural incompatibility (2) is only the symptom of deeper
problems in the contemporary treatment of antimatter. To begin, matter is treated
nowadays at all levels, from Newtonian to electroweak interactions, while antimater
is treated only at the level of second quantization. Since there are serious indications
that half of the universe could well be made up of antimatter,it is evident that a more
effective theory of antimatter must also apply at all levels.

At any rate, recall that charge conjugation in quantum mechanics is an anti-
automorphic map. As a result, no classical theory of antimatter can be axiomatically
consistent via the mere change of the sign of the charge, because it must be an
anti-automorphic (or, more generally, anti-isomorphic) image of that of matter (the
alternative classical formulation of antimatter of Ref. [12c] has been recently brought
to the author’s attention).

The current dramatic disparity in the treatment of matter and antimatter also
has its predictable problematic aspects. Since we currently use only one type of
quantization (whether naive of symplectic), it is easy to see that the operator image
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of the contemporary treatment of antimatter is not the correct charge conjugate state,
but merely a conventional state of particles with a reversed sing of the charge.

The view here submitted is that, as it is the case for curvature, the resolution
of the above general shortcomings, including the achievement of compatibility in the
treatment of antimatter between electroweak and gravitational interactions, requires
a basically novel mathematics.

Santilli therefore entered into a second search for another novel mathematics under
the uncompromisable condition of being an anti-isomorphic image of the preceding
isomathematics. After inspecting a number of alternatives, this author(6c) submitted
in 1985 the following map of an arbitrary quantity Q (i.e., a number, or a vector field
or an operator) under the tentative name of isoduality

Q → Qd = −Q† (8)

When applied to the totality of quantities and their operations of a given the-
ory of matter, map (8) yields an anti-isomorphic image, as axiomatically needed for
antimatter. Moreover, while charge conjugation is solely applicable within operator
settings, isoduality (8) is applicable at all levels of study, beginning at the Newtonian
level.

It is evident that map (8) implies a new mathematics, that with negative units
called isodual mathematics(7), which includes new numbers, new spaces, new calculus,
etc. In reality we have two different isodual mathematics, the fist anti-isomorphic
image of the conventional mathematics used for matter, and the second is the anti-
isomorphic image of the preceding isomathematics.

The above characteristics have permitted the construction of the novel isodual
theory of antimatter (7) which is equivalent, although anti-isomorphic, to that of mat-
ter, and which therefore begins at the primitive Newtonian level and then continuous
at the analytic and quantum levels, in which case it results in equivalence to charge
conjugation for massive particles (see later on for photons).

Most importantly, the isodual theory of antimatter has resulted in agreement with
all available classical and quantum experimental data on antimatter.

It is evident that isodualities offer a realistic possibility of resolving the second
structural problem between electroweak and gravitational interactions because anti-
matter can be treated in both cases with negative-energy. This is due to the fact that
isodualities imply the transition from the conventional space-time units of matter
I = Diag.(1, 1, 1, 1) > 0 to their negative image Id = −I < 0. As a result, all char-
acteristics of matter change sing in the transmission to antimatter under isoduality,
thus yielding the correct conjugation of charge, as well as negative energy, negative
energy-momentum tensor, and, inevitably, negative time. The historical objections
against these negative values are inapplicable, because they are tacitly referred to
the conventional positive units. In fact, negative energy and time referred to nega-
tive units are fully equivalent, although antiautomorphic, to the conventional positive
energy and time referred to positive units.

The reader should also be aware that the isodual theory of antimatter was born
from properties of the conventional Dirac equation:
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[γµ × (pµ − e × Aµ/c) + i × m] × ψ (x) = 0, (9a)

γk =
(

0 σk

−σk 0

)
, (9b)

γ4 = i ×
(

Is 0
0 −Is

)
. (9c)

In fact, as one can see, the negative unit Id
s = Diag.(−1,−1) appears in the very

structure of γ4. The isodual theory was then constructed precisely around Dirac’s
unit Id

s .
In essence, Dirac assumed that the negative-energy solutions of his historical equa-

tion behaved in an unphysical way because tacitly referred to the conventional math-
ematics of his time, that with positive units Is > 0. Santilli(7) showed that, when
the same negative-energy solutions are referred to the negative units Id

s < 0, they
behaved in a fully physical way. This eliminates the need of second quantization for
the treatment of antiparticles (as expected in a theory of antimatter beginning at the
Newtonian level), and permits the reformulation of the equation in the form

[γ̃µ × (pµ − e × A/c) + i × m] × ψ̃ (x) = 0, (10a)

γ̃ k =
(

0 σd
k

σk 0

)
, γ̃4 = i

(
Is 0
0 Id

s

)
(10b)

{
γ̃ µ γ̃ ν

}
= 2ηµν , ψ̃ = − γ̃4 × ψ = i ×

(
Φ
Φd

)
, (10c)

where Φ(x) is now two-dimensional, which is fully symmetrized between particles and
antiparticles.

As was the case for the preceding isotopies, the isodual theory of antimatter also
sees its solid roots in two additional novel symmetries, also unknown until recently,
and first presented in memoir(4f), the first holding for the conventional Minkowski
interval

x2 =
(
xµ × ηµν × xν

)
× I =

[
xµ ×

(
−n−2 × ηµν

)
× xν

]
×

(
−n2 × I

)
=

=
(
xµ × η̂d

µν × xν
)
× Îd = xd2d, (11)

and the second holding for the Hilbert space

〈φ |×|ψ〉 × I =
〈
φ

∣∣× (
−n−2

)
×

∣∣ ψ
〉
×

(
−n2 × I

)
=

〈
φ

∣∣∣×T̂ d×
∣∣∣ ψ

〉
× Îd, (12)
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which ensure that all physical laws for matter also hold for antiparticles under our
isodual representation, with corresponding symmetries for the isodual expressions.

The axiom-preserving lifting of the n-parameter to an explicit x-dependence then
yields the isodual isominkowskian treatment of gravity for antimmatter with basic
structures,

g(x) = T̂ (x) × η → gd(x) = −g(x) = T̂ d(x) ×d ηd, η → ηd = −η, (13a)

Î(x) =
[
T̂ (x)

]−1

→ Îd(x) =
[
T̂ d(x)

]−1

. (13b)

As we shall see in the next section rules (3)-(4) and (13) can indeed be implemented
within unified gauge theories.

(C) Isotopies of the Poincaré symmetry and their isoduals. Judging from
the studies herein reported, the most severe problems of compatibility between gravi-
tation and electoweak interactions for both matter and antimatter appeared precisely
were expected, in the fundamental space-time symmetries, because of the disparity
indicated earlier of the validity of Poincaré symmetry for electroweak interactions and
its absence for gravitation.

The latter problems called for a third series of studies presented in Ref.s(6) on the
isotopies and isotopies and isodualities of the Poincaré symmetry P̂ (3.1), today called
the Poincaré-Santilli isosymmetry and its isodual (8b−8e), which include the isotopies
and isodualities of: the rotational symmetry(6c); the Lorentz symmetry in classical(6a)

and operator version(6b); the SU(2)-spin symmetry(6d); the Poincaré symmetry(6e); ,
and the spinorial covering of the Poincaré symmetry(6f) (see monographs(6g) for com-
prehensive studies).

We are here referring to the reconstruction of the conventional symmetries whit
respect to an arbitrary positive-definite unit (I), for the isotopies, and with respect
to an arbitrary negative-definite unit, for the isodualities. This reconstruction yields
the most general known nonlinear, nonlocal and noncanonical liftings of conventional
symmetries, while being locally isomorphic (for isotopies) or anti-isomorphic (for iso-
dualities) to the original symmetries.

One should be aware that the above structures required the prior step-by step
isotopies and isodualities of Lie’s theory (enveloping associative algebras, Lie algebras,
Lie groups, transformation and representation theory, etc.),originally proposed by
Santilli(4a) in 1978, studied in numerous subsequent works (see monographs(4c,6g) )
and today called the Lie-Santilli isotheory and its isodual (8−10).

It is evident that isopoincaré symmetry and its isodual have fundamental charac-
ter for this note. In fact, one of their primary applications has been the achievement
of the universal symmetry (rather than covariance) of all possible Riemannian line
elements in their isominkowskian representation(6). Once the unit of gauge theories is
lifted to represent gravitation, electroweak interactions will also every the isopoincaré
symmetry for matter and its isodual for antimatter, thus offering hopes for the reso-
lution of the most difficult problem of compatibility, that for space-time symmetries.
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Perhaps unexpectedly, the fundamental space-time symmetry of the grand unified
theory inclusive of gravitation submitted in this note is the total symmetry of the
conventional Dirac equation, here written with their underlying space and units

STot = {SL(2.C) × T (3.1)} ×
{
SLd(2.Cd) ×d T d(3.1)

}
, (14a)

MTot = {M(x, η, R) × Sspin} ×
{
Md(xd, ηd, Rd) ×d Sd

spin

}
, (14b)

ITot = {Iorb × Ispin} ×
{
Id
orb × Id

spin

}
, (14c)

which has recently emerged as being twenty-two dimensional.
To see the above occurrence, the reader should be aware that isodualities imply

yet another new symmetry called isoselfduality7), which is the invariance under the
isodual map (8). Dirac’s gamma matrices verify indeed this new symmetry (from
which the symmetry itself was derived in the first place), i.e., γµ → γd

µ = −γ†
µ =

γµ. As a result, contrary to a popular belief throughout this century, the Poincaré
symmetry cannot be the total symmetry of Dirac’s equations, evidently because it
is not isoselfdual. For evident reasons of consistency, the total symmetry of Eq.s (9)
must also be isoselfdual as the gamma-matrices are. This resulted in the identification
of the total symmetry (14a) which is indeed isoselfdual.

To understand the dimensionality of symmetry one must first recall that isodual
space are independent from conventional spaces. The doubling of the conventional
dimensionality then yields twenty dimensions. The additional two dimensions are
given by the novel isoselfscalarity, i.e., invariance (6)-(7) and their isoduals (11)-(12).

In short, the grand unification proposed in this note is based on the axiomatic
structure of the conventional Dirac’s equations, as emerged from the novel insights of
memoir(4f), and merely subjected to axiom-preserving liftings, in which the inclusion
of gravitation for matter is permitted by the novel isoselfscalar symmetries (6)-(7),
and that for antimatter by the antiisomorphic images (11)-(12).

The reader should not be surprised that the four new invariances (6)-(7) and
(11)-(12) remained undetected throughout this century. In fact, their identification
required the prior discovery of new numbers, first the numbers with arbitrary positive
units for invariance (6)-(7), and then the additional new numbers with arbitrary
negative units for invariance (11)-(12).

2 Isotopic Gauge Theory

The isotopic of gauge theories were first studied in 1980’s by Gasperini(11a), followed
by Nishioka(10b), Karajannis and Jannussis(11c) and others, and ignored thereafter.
These studies were defined on conventional spaces over conventional fields and via
the conventional differential calculus. As such, they are not invariant, as we learned
only recently in memoirs(4f).

In this section we shall introduce, apparently for the first time, the isotopies of
gauge theories, or isogauge theories for short, formulated in an invariant way, that



98 R. M. Santilli

is, on isospaces over isospaces over isofields and characterized by the isodifferential
calculus of memoir(4c). The isodual isogauge theories are apparently introduced in
this note for the first time.

The essential mathematical methods needed for an axiomatically consistent and
invariant formulation of the isogauge theories are the following:

(1) Isofields(4d) of isoreal numbers R̂(n̂, +̂, ×̂) and isocomplex numbers Ĉ(ĉ, +̂, ×̂)
with: additive isounit 0̂ = 0; generalized multiplicative isounit Î given by Eq. (1);
elements, isosum, isoproduct and related generalized operations,

â = a × Î , a = n, c, â+̂b̂ = (a + b) × Î , â×̂b̂ = â × T̂ × b̂ = (a × b) × Î (15a)

ân = â×̂â×̂ . . . ×̂â, â1/̂2 = a1/2 × Î1/2, â/̂b̂ =
(
â/b̂

)
× Î , etc. (15b)

(2) Isominkowski spaces(6a) M̂ = M̂
(
x̂, η̂, R̂

)
with isocoordinates x̂ = x× Î =

{xµ} × Î , isometric N̂ = η̂ × Î = [T̂ (x, . . .) × η] × Î, and isointerval over the isoreals
R̂

(x̂ − ŷ)2̂ = (x̂ − ŷ)µ ×̂N̂µν×̂ (x̂ − ŷ)ν =
[
(x − y)µ × η̂µν × (x − y)ν]

× Î , (16)

equipped with Kadeisvili isocontinuity(10a) and Tsagas-Sourlas isotopology(10b) (see
also Aslander and Keles(10d)). A more technical formulation of the isogauge theory can
be done via the isobundle formalism on isogeometries recently reached by Vacaru(10c),
which will be studied in a future work.

(3) Isodifferential calculus(4c) characterized by the following isodifferentials
and isoderivatives

d̂x̂µ = Îµ
ν × dx̂ν , d̂x̂µ = T̂µ

ν × x̂ν , ∂̂µf̂ = ∂̂f̂ /̂ ∂̂x̂µ =
(
T̂µ

ν × ∂νf
)
× Î , (17a)

∂̂µf̂ =
(
Îµ
ν × ∂νf

)
× Î , ∂̂x̂µ/̂∂̂x̂ν = δ̂

µ

ν = δµ
ν × Î , etc. (17b)

(4) Isofunctional isoanalysis(6q), including the reconstruction of all conven-
tional and special functions and transforms into a form admitting of Î as the left
and the right unit. Since the isominkowskian geometry preserves the Minkowskian
axioms, it allows the preservation of the notions of straight and intersecting lines,
thus permitting the reconstruction of trigonometric and hyperbolic functions under
the Riemannian metric g (x) = η̂(6q).

(5) Isominkowskian geometry(5e), i.e., the geometry of isomanifolds M over
the isoreals R̂, which satisfies all abstract Minkovskian axioms because of the joint
liftings η → η̂ = T (x, . . .) × η and I → Î = T−1, while preserving the machinery of
Riemannian spaces (covariant derivatives, connections, etc.), although expressed in
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terms of the isodifferential calculus for consistency. In this new geometry Rieman-
nian line elements are turned into identical Minkovskian forms via the embedding
of gravity in the differentials, e.g., for the Schwarzschild exterior metric we have the
isominkowskian reformulation (Ref.[5e], Eq.s (2.57)), where the space-time coordi-
nates are assumed to be covariant,

d̂ŝ = d̂ŝ2̂+̂r̂2̂×̂(d̂θ̂
2̂
+̂iso sin2̂ θ̂)−̂d̂t̂2̂, (18a)

d̂r̂ = T̂r × dr̂, d̂t̂ = T̂t × dt̂, T̂r = (1 − 2 × M/r)−1, T̂t = 1 − 2 × M/r. (18b)

(6) Relativistic hadronic mechanics(4f) characterized by the isohilbert space
Ĥ first introduced by Myung and Santilli(9c) in 1982 with isoinner product and isonor-
malization over Ĉ 〈

φ̂̂|ψ̂
〉

=
〈
φ̂

∣∣×̂∣∣ ψ̂
〉
× Î ,

〈
ψ̂̂|ψ̂

〉
= Î . (19)

Among the various properties we recall that: the isohermiticity on Ĥ coincides
with the conventional Hermiticity (thus, all conventional observables remain observ-
ables under isotopies); the isoeigenvalues of isohermitian operators are real and con-
ventional (because of the identities Ĥ×̂

∣∣∣ψ̂〉
= Ê×̂

∣∣∣ψ̂〉
= E ×

∣∣∣ψ̂〉
); the condition

of isounitarity on Ĥ over Ĉ is given by Û×̂Û† = Û†×̂Û = Î (see in memoir(4f) for
details).

(7) The Lie-Santilli isotheory(4,6,8d,10c) with: conventional (ordered) basis of
generators X = (Xk), and parameters ω = (ωk) k = 1, 2, . . . , n, only formulated
in isospaces over isofields with a common isounit; universal enveloping isoassocia-
tive algebras ξ̂ with infinite-dimensional basis characterized by the isotopic Poincaré-
Birkhoff-Witt theorem(4a,4c,6g)

Î , X̂i×̂X̂j , (i ≤ j) , X̂i×̂X̂j × X̂k, (i ≤ j ≤ k) , . . . (20)

Lie-Santilli isoalgebras:[
X̂î,X̂j

]
= X̂i×̂X̂j − X̂j×̂X̂i = Ĉk

ij(x, . . .)×̂X̂k, (21)

where Ĉn
ij are the structure isofunctions; and isogroups characterized by isoexponen-

tiation on ξ̂ with structure

êX̂ = Î+̂X̂/̂1̂̂!+̂X̂×̂X̂/̂2̂̂!+̂ . . . =
(
eX̂×T̂

)
× Î = Î ×

(
eT̂×X̂

)
. (22)

Despite the isomorhism between isotopic and conventional structures, the lifting
of Lie’s theory is nontrivial because of the appearance of the matrix T̂ with nonlinear
elements in the very exponent of the group structure, Eq.s (22). To avoid misrepresen-
tations, one must therefore keep in mind that the isotopies of Lie’s theory were not
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proposed to build ”new algebras” (an impossible task since all simple Lie algebras
are known from Cartan’s classification), but to construct instead the most general
possible nonlinear, nonlocal and noncanonical or nonunitary ”realizations” of known
Lie algebras.

Another important aspect the reader should keep in mind is that the isotopies are
such to reconstruct linearity, locality and canonicity or unitarity on isospaces over
isofields, called isolinearity, isolocality and isocanonicity or isounitary. As a result,
the use of the conventional linear transformations on M over R, X

′
= A (a)×x violates

isolinearity on M̂ over R̂. In general, any use of conventional mathematics for isotopic
theories leads to a number of inconsistencies which generally remain undetected by
nonexperts in the field.

We are now minimally equipped to introduce the desired isogauge theory which
can be characterized by an n-dimensional connected and non-abelian isosymmetry
Ĝ with: basic n-dimensional isounit (1); isohermitean operators X̂ on an isohilbert
space Ĥ over the isofield Ĉ(ĉ, +̂, ×̂); universal enveloping associative algebra ξ̂ with
infinite isobasis (20); isocommutation rules (21); isogroup structure

Û = ê−i×Xk×θ(x)k = (e−i×Xk×T̂×θ(x)k) × Î , Û†×̂Û = Î; (23)

where one should note the appearance of the gravitational isotopic elements in the
exponent, and the parameters θ(x)k now depend on the isominkowski space; isotrans-
forms of the isostates on Ĥ

ψ̂′ = Û×̂ψ̂ = (e−i×Xk×T̂ (x,...)×θ(x)k) × ψ̂; (24)

isocovariant derivatives(5c)

D̂µψ̂ = (∂̂µ − i×̂ĝ×̂Â(x̂)k
µ×̂X̂k×̂ψ̂; (25)

iso-Jacobi identity[
D̂α̂,

[
D̂β ,̂ D̂γ

]]
+̂

[
D̂β ,̂

[
D̂γ ,̂ D̂α

]]
+̂

[
D̂γ ,̂

[
D̂α̂, D̂β

]]
= 0; (26)

where g and ĝ = g×Î are the conventional and isotopic coupling constants, A(x)k
µ×Xk

and Â(x̂)k
µ×̂X̂k =

[
A(x)k

µ × Xk

]
× Î are the gauge and isogauge potentials; isocovari-

ance

(
D̂µψ̂

)′

=
(
∂̂µÛ

)
×̂ψ̂+̂Û×̂

(
∂̂µψ̂

)
−̂î×̂ĝ×̂Â

′
(x̂)µ×̂ψ̂ = Û×̂D̂µψ̂, (27a)

Â (x̂)
′

µ = −ĝ−1̂×̂
[
∂̂µÛ (x̂)

]
×̂Û (x̂)−1̂

, (27b)

δ̂Â (x̂)k
µ = −ĝ−1̂×̂∂̂µθ̂ (x̂)k +̂Ĉk

ij×̂θ̂ (x̂)i ×̂Â (x̂)j
µ , (27c)

δ̂ψ̂ = −î×̂ĝ×̂θ̂ (x̂)k ×̂X̂k×̂ψ̂; (27d)
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non-abelian iso-Yang-Mills fields

F̂µν = î×̂ĝ−1̂×̂
[
D̂µ, D̂ν

]
ψ̂, (28a)

F̂ k
µν = ∂̂µÂk

ν−̂∂̂νÂk
µ+̂ĝ×̂Ĉk

ij×̂Âi
µ×̂Âj

ν ; (28b)

related isocovariance properties

F̂µν → F̂
′

µν = Û×̂ F̂µν×̂Û−1, (29a)

Isotr
(
F̂µν′×̂F̂µν′

)
= Isotr

(
F̂µν×̂F̂µν

)
, (29b)

[
D̂α̂, F̂βγ

]
+̂

[
D̂β ,̂ F̂γα

]
+̂

[
D̂γ ,̂ F̂αβ

]
≡ 0; (29c)

derivability from the isoaction

Ŝ =
∫̂

d̂4̂x̂
(
−F̂µν×̂F̂µν /̂4̂

)
=

∫̂
d̂̂4x̂

(
−F̂ k

µν×̂F̂µν
k /̂4̂

)
; (30)

where
∫̂

=
∫
×Î, plus all other familiar properties in isotopic formulation.

The isodual isogauge theory is the preceding theory following the application of the
isodual map (8) to the totality of quantities and their operations. The latter theory
is characterized by the isodual isogroup Ĝd with isodual isounit Îd = −Î† = −Î.
The base fields are the field R̂d

(
n̂d, +̂

d
, ×̂d

)
of isodual isoreal numbers n̂d = −n̂ =

−n×Î and the field Ĉd
(
ĉd, +̂

d
, ×̂d

)
of isodual isocomplex numbers ĉd = −

(
c × Î

)†
=

(n1 − i × n2)× Îd = (n1 + i × n2) × Î .

The carrier spaces are the isodual isominkowski space M̂d
(
x̂d, η̂d, R̂d

)
on R̂d and

the isodual isohilbert space Hd on Ĉd with isodual isostates
∣∣∣ψ̂ >d= −

∣∣∣ψ̂ >† and

isodual isoinner product < φ̂
∣∣∣d × T̂ d ×

∣∣∣ψ̂ >d ×Îd. It is instructive to verify that all
eigenvalues of isodual isohermitean operators are negative-definite (when projected in
our space-time), Ĥd×̂d

∣∣∣ψ̂ >d= (−E)×
∣∣∣ψ̂ > .

Ĝd is characterized by the isodual Lie-Santilli isotheory with isodual generators
X̂d = −X̂, isodual isoassociative product Âd×̂d

B̂d = Âd × T̂ d × B̂d, T̂ d = −T̂ and
related isodual isoenveloping and Lie-Santilli isoalgebra. The elements of Ĝd are
the isodual isounitary isooperators Ûd

(
θ̂

d (
x̂d

))
= −Û

(
−θ̂ (−x̂)

)
. In this way, the

isodual isogauge theory is seen to be an anti-isomorphic image of the preceding theory,
as desired.

It is an instructive exercise for the reader interested in learning the new tech-
niques to study first the isodualities of the conventional gauge theory (rather than
of their isotopies), and show that they essentially provide a mere reinterpretation of
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the usually discarded, advanced solutions as characterizing antiparticles. Therefore,
in the isoselfdual theory with total gauge symmetry Ĝ × Ĝd, isotopic retarded solu-
tions are associated with particles and advanced isodual solutions are associated with
antiparticles.

No numerical difference is expected in the above reformulation because in con-
ventional theories particles and antiparticles are represented with retarded solutions
while advanced solutions are generally discarded. By comparison, in the isodual the-
ory retarded solutions are solely used for particles and advanced solutions are solely
used for antiparticles, the two solutions being formulated in their respective different
spaces over different fields.

It is also recommendable for the interested reader to verify that the isotopies are
indeed equivalent to charge conjugation for all massive particles, with the exception of
the photon(7c). In fact, isodual theories predict that the antihydrogen atom(12b) emits
a new photon, tentatively called by this author the isodual photon, which coincides
with the conventional photon for all possible interactions, thus including electroweak
interactions, except gravitation(7c). This indicates that the isodual map is inclusive
of charge conjugation for massive particles, but it is broader that the latter.

Isodual theory in general, thus including the proposed grand unification, predict
that all stable isodual particles, such as the isodual photon, the isodual electron
(positron), the isodual photon (antiproton) and their bound states (such as the anti-
hydrogen atom), experience antigravity in the field of Earth (defined as the reversal
of the sign of the curvature tensor). If confirmed, the prediction may offer the possi-
bility in the future to ascertain whether far away galaxies and quasars are made-up
of matter or of antimatter.

Known objections against antigravity are inapplicable because they are tacitly
referred to positive units and also because the isodual theory predicts that particle-
antiparticle bound states such as the positronium, experience attraction in both fields
of matter and antimatter(7). The latter predictions are currently under experimental
study by Mills(11a) and others(11b).

We also note that the isotopies leave unrestricted the functional dependence of
the isounit (1), provided that it is positive-definite. In this note we use only the
x-dependence to represent exterior gravitational problems in vacuum. The isotheory
also admits an arbitrary nonlinearity in the velocities and other variables which is used
for the study of interior gravitational problems. The isotheory naturally admits a
dependence of the isounit on the wavefunctions and their derivatives while preserving
isolinearity in isospace (thus preserving the superposition principle, as needed for a
consistent representation of composite systems). For these and other aspects we refer
the reader to memoir(4f).

We finally note that the isomathematics is a particular cases of the broader geno-
mathematics(4a, 4c, 4f), which occurs for non-Hermitian generalized units and is used
for an axiomatization of irreversibility. In turn, the genomathematics is a particular
case of the hypemathematics(4c, 4f), which occurs when the generalized units are given
by ordered sets of non-Hermitian quantities and is used for the representation of mul-
tivalued complex systems (e.g., biological) in irreversible conditions. Evidently both
the genomathematics and hypermathematics admit an anti-isomorphic image under
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isoduality (an outline of these novel mathematics can be found in Page 18 of Web
Site(9y)).

In conclusion the methods in this note permit the study of seven liftings of conven-
tional gauge theories; (1) the isodual gauge theories for the treatment of antimatter
without gravitation in vacuum; (2, 3), the isogauge theories and their isoduals, for
the inclusion of gravity for matter and antimatter in reversible conditions in vacuum
(exterior gravitational problem); (4, 5) the genogauge theories and their isoduals, for
the inclusion of gravity for matter and antimatter in irreversible interior conditions
(interior gravitational problems); and (6, 7) the hypergauge theories and their isodu-
als, for multivalued and irreversible generalizations. This note is restricted to theories
(1, 2, 3).

3 Iso-Grand-Unification

In this note we have submitted, apparently for the first time, an Iso-Grand-Unification
(IGU) with the inclusion of gravity characterized by the total isoselfdual symmetry

ŜTot =
(
P̂ (3.1) ×̂Ĝ

)
×

(
P̂ (3.1)d ×̂d

Ĝd
)

=

=
[
ŜL

(
2, Ĉ

)
×̂T̂ (3.1)

]
×

[
ŜL

d
(
2, Ĉd

)
×̂T̂ d (3.1)

]
, (31)

where P̂ is the Poincaré-Santilli isosymmetry(10c) in its isospinorial realization(6f),
Ĝ is the isogauge symmetry of the preceding section and the remaining structures are
the corresponding isoduals.

Without any claim of a final solution, it appears that the proposed IGU does
indeed offer realistic possibilities of at least resolving the axiomatic incompatibilities
(1), (2) and (3) between gravitational and electroweak interactions indicated in Sect.
1. In fact, IGU represents gravitation in a form geometrically compatible with that
of the electroweak interactions, represents antimatter at all levels via negative-energy
solutions, and characterizes both gravitation as well as electroweak interactions via
the universal isopoincaré symmetry.

It should be indicated that we are referring here to the axiomatic consistency. The
physical consistency is a separate problem which cannot possibly be investigate in this
introductory note and will be investigated in future works. At this point we merely
mention the general rule according to which isotopic liftings preserve not only the
original axioms, but also the original numerical values(6g) (as an example, the image in
isominkowskian space over the isoreals of the light cone, not only is a perfect cone, but
a cone why the original characteristic angle, preserving the speed of light in vacuum
as the maximal causal speed in isominkowskian space). This occurrence provides
realistic hopes for the joint achievement of axiomatic and physical consistency.

The reader should be aware that the methods of the recent memoir(4f) permit a
truly elementary, explicit construction of the proposed IGU. As well known, the tran-
sition from the Minkowskian metric η to Riemannian metrics g (x) is a noncanonical
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transform at the classical level and, therefore, a nonunitary transform at the operator
level. The method herein considered for turning a gauge theory into an IGU consists in
the following representation of the selected gravitational model, e.g., Schwarzschild’s
model,

g (x) = T (x) × η, T (x) =
(
U × U†)−1

, (32a)

(
U × U†) = Diag.

[
(1 − 2 × M/r) × Diag. (1, 1, 1) , (1 − 2 × M/r)−1

]
, (32b)

and then subjecting the totality of the gauge theory to the nonunitary transform
U × U†. The method then yields: the isounit I → Î = U × I × U†; the isonumbers
a → â = U ×a×U† = a×

(
U × U†) = a× Î , a = n, c; the isoproduct with the correct

expression and Hermiticity of the isotopic element, A × B → U× (A × B) × U† =(
U × A × U†)× (

U × U†)−1 ×
(
U × B × U†) = Â × T̂ × B̂ = Â×̂B̂; the correct

form of the isohilbert product on Ĉ, < φ| × |ψ >→ U× < φ| × |ψ > ×U† =
(< φ| × U†)×

(
U × U†)−1 × (U × |ψ )×

(
U × U†) = < φ̂

∣∣∣× T̂×
∣∣∣ψ̂ > ×Î; the

correct Lie-Santilli isoalgebra A × B− B × A → Â×̂B̂ − B̂×̂Â; the correct isogroup
U ×

(
eX

)
× U† =

(
eX×T̂

)
× Î , the isopoincaré symmetry P →P̂, and the isogauge

group G → Ĝ.
It is then easy to verify that the emerging IGU is indeed invariant under all

possible additional nonunitary transforms W × W † = Î provided that, for evident
reasons of consistency, they are written in their identical isounitary form, W = Ŵ×
T̂ 1/2, W ×W † = Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î . In fact, we have the invariance of the isounit
Î = Î

′
= Ŵ ×̂Î×̂Ŵ † = Î , the invariance of the isoproduct Â×̂B̂ → Ŵ ×̂

(
Â×̂B̂

)
×̂

Ŵ † = Â
′×̂B̂

′
, etc. Note that the isounit is numerically preserved, as it is the case for

the conventional unit I under unitary transform, and that the selection of a nonunitary
transform W × W † = Î

′
with value different from Î evidently implies the transition

to a different gravitational model.
Note that the lack of implementation of the above nonunitary-isounitary lifting to

only one aspect of the original gauge theory (e.g., the preservation of the old numbers
or of the old differential calculus) implies the loss of the invariance of the theory(4f).
The assumption of the negative-definite isounit Îd = −(U × U†) then yields the
isodual component of the IGU.

In closing, the most significant possibility we would like to convey is that gravitation
has always been present in unified gauge theories. It did creep in un-noticed because
embedded where nobody looked for, in the ”unit” of gauge theories. In fact, the isogauge
theory of Sect. 2 coincides with the conventional theory at the abstract level to such
an extent that we could have presented the proposed IGU with exactly the same
symbols of the conventional gauge theories without the ”hats”, and merely subjecting
the same symbols to a more general realization.

Also, the isounit representing gravitation as per rule (32) verifies all the properties
of the conventional unit I of gauge theories, Î n̂ = Î , Î1/̂2 = Î , dÎ/dt = Î×̂Ĥ−Ĥ×̂Î =
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Ĥ − Ĥ = 0, etc. The ”hidden” character of gravitation in conventional gauge theories
is then confirmed by the isoexpectation value(4f) of the isounit which recovers the
conventional unit I of gauge theories, <̂Î>̂ =< ψ̂

∣∣∣× T̂ × Î × T̂ ×
∣∣∣ψ̂ > / < ψ̂

∣∣∣× T̂×∣∣∣ψ̂ >= I.

It then follows that the proposed IGU constitutes an explicit and concrete real-
ization of the theory of ”hidden variables”(13a) λ = T (x) = g(x)/η, Ĥ×̂

∣∣∣ψ̂ >= Ĥ×

λ×
∣∣∣ψ̂ >= Eλ ×

∣∣∣ψ̂ >, and the theory is correctly reconstructed with respect to the

new unit Î = λ−1, in which von Neumann’s Theorem(13b) and Bell’s inequalities(13c)

do not apply, evidently because of the nonunitary character of the theory (see Vol. II
of Refs. [6g] for details).

In conclusion, as indicated beginning with the title of the recent memoir(4f), the
proposed inclusion of gravitation in unified gauge theories is essentially along the
teaching of Einstein, Podolsky and Rosen(14) on the ”lack of completion” of quantum
mechanics, only applied to gauge theories.
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