1 2	ISOTOPIC TEMPERATURES FROM THE EARLY AND MID-PLIOCENE
3	OF THE US MIDDLE ATLANTIC COASTAL PLAIN,
4	AND THEIR IMPLICATIONS FOR THE CAUSE OF REGIONAL MARINE
5	CLIMATE CHANGE
6	
7	ANDREW L.A. JOHNSON, ^{1*} ANNEMARIE VALENTINE, ^{1†} MELANIE J. LENG, ²
8	HILARY J. SLOANE, ² BERND R. SCHÖNE, ³ and PETER S. BALSON ^{4††}
9	¹ Department of Natural Sciences, College of Life and Natural Sciences, University of
10	Derby, Kedleston Road, Derby DE22 1GB, UK, <u>a.l.a.johnson@derby.ac.uk</u> ; ² NERC
11	Isotope Geoscience Facilities, British Geological Survey, Nicker Hill, Keyworth
12	NG12 5GG, UK, <u>mjl@bgs.ac.uk</u> , <u>hjs@bgs.ac.uk</u> ; ³ Institute of Geosciences, University
13	of Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany, <u>schoeneb@uni-</u>
14	mainz.de; ⁴ British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK
15	
16	* Corresponding author
17	[†] Current address: Student Advice and Support Services, Loughborough
18	University, Loughborough LE11 3TU, UK, drmitzyvalentine@gmail.com
19	^{††} Current address: 6 Cherryholt Lane, East Bridgford NG13 8BN, UK,
20	<u>cragpad@btinternet.com</u>
21	
22	RRH: PLIOCENE MARINE TEMPERATURES
23	LLH: JOHNSON ET AL.
24	Keywords: sclerochronology, paleotemperature, paleoclimate,
25	paleoceanography, Pliocene
26	

ABSTRACT

27 28

29 Mean seasonal extreme temperatures on the seafloor calculated from the shell δ^{18} O of the scallop *Placopecten clintonius* from the basal part of the early 30 31 Pliocene Sunken Meadow Member (Yorktown Formation) in Virginia are very 32 similar to those from the same horizon at the latitude of Cape Hatteras in North 33 Carolina (~210 km to the south). The lowest and highest temperatures calculated from each shell (using $\delta^{18}O_{\text{seawater}} = +0.7\%$) give mean values for winter and 34 35 summer of 8.4 \pm 1.1 °C (\pm 1 σ) and 18.2 \pm 0.6 °C in Virginia, and 8.6 \pm 0.4 °C and 36 16.5 ± 1.1 °C in North Carolina (respective median temperatures: 13.3 °C and 12.6 °C). Patterns of ontogenetic variation in δ^{18} O, δ^{13} C and microgrowth 37 increment size indicate summer water-column stratification in both areas, with 38 39 summer surface temperatures perhaps 6 °C higher than on the seafloor. The low 40 winter paleotemperatures in both areas are most simply explained by the greater 41 southward penetration of cool northern waters in the absence of a feature 42 equivalent to Cape Hatteras. The same current configuration but a warmer 43 general climate can account for the high benthic seasonal range (over 15.0 °C in 44 some cases) but warmer median temperatures (15.7-21.3 °C) derived from existing δ^{18} O data from scallops of the higher Yorktown Formation (using 45 $\delta^{18}O_{seawater} = +0.7\%$ for the upper Sunken Meadow Member and $\delta^{18}O_{seawater} =$ 46 47 +1.1‰ for the mid-Pliocene Rushmere, Morgarts Beach and Moore House members). Existing δ^{18} O data from the infaunal bivalve *Mercenaria* of the 48 49 Rushmere Member yields a similarly high median temperature (21.6 °C) but a 50 low seasonal range (9.2 °C), pointing to the periodic influence of warm currents, 51 possibly at times when the Gulf Stream was exceptionally vigorous.

52	
53	INTRODUCTION
54	
55	The Pliocene (5.33–2.58 Ma) contains the most recent interval (~3.3-3.0 Ma) in
56	which global mean surface temperature was significantly higher than present (by 1.9-
57	3.6°C; Masson-Delmotte et al., 2013). This interval – the mid-Pliocene or, more
58	strictly, mid-Piacenzian Warm Period (both abbreviated to MPWP) - has been the
59	focus of study for nearly 30 years by the Pliocene Research, Interpretation and
60	Synoptic Mapping (PRISM) group of the United States Geological Survey (Dowsett
61	et al., 2016). It has been used extensively as a test-bed for numerical models of an
62	Earth with relatively high atmospheric CO ₂ because concentrations of this greenhouse
63	gas were well above pre-industrial interglacial values according to most
64	reconstructions (e.g., Masson-Delmotte et al., 2013; Martínez-Boti et al., 2015), yet
65	many other large-scale aspects of paleogeography (e.g., continental positions,
66	orography, ocean current patterns) were similar to now. Model outputs for the MPWP
67	are consistent with proxy estimates of temperature at the global scale and for many
68	regions. However, for certain parts of the North Atlantic, proxy estimates are
69	substantially higher (Dowsett et al., 2012, 2013), indicating either inadequacies in the
70	models (including the boundary conditions used) or the proxy data. At some relatively
71	high-latitude (>45 °N) sites in the North Atlantic, congruent evidence of substantial
72	warming (mean annual sea surface temperature >5 °C above present) is available from
73	multiple proxies (foraminiferal assemblage composition, foraminiferal Mg/Ca ratios
74	and alkenone unsaturation index; Dowsett et al., 2012), suggesting that it is the model
75	estimates that are inaccurate. The high-latitude warmth has been ascribed (e.g.,
76	Dowsett et al., 1992; Cronin and Dowsett, 1996) to stronger northward transfer of

heat by ocean currents than now, but model outputs do not support this (Fedorov etal., 2013; Zhang et al., 2013).

79	Enhanced ocean transport of heat during the Pliocene has also been inferred from
80	proxy temperature data for lower latitudes in the North Atlantic region, on the Middle
81	Atlantic Coastal Plain of the USA. At present, mean winter minimum and mean
82	summer maximum sea surface temperatures lie in the ranges 5.0-10.0 °C and 22.5-
83	27.5 °C, respectively, at coastal to outer shelf locations off northern North Carolina
84	(north of Cape Hatteras) and Virginia (Table 1, stations ORIN7, DUCN7, 44006,
85	44014, CHLV2, CBBV2, KPTV2, OCIM2, 44009). However, during deposition of
86	the upper (Rushmere, Morgarts Beach and Moore House) members of the Pliocene
87	Yorktown Formation, biotic assemblage evidence (see below) points to much warmer
88	conditions in this area: specifically, winter minimum temperatures above 10 °C.
89	Greater warmth north of Cape Hatteras during the interval concerned, which overlaps
90	the MPWP (Fig. 1), has been ascribed to more vigorous northward flow of warm
91	currents, supplying more heat (Cronin and Dowsett, 1996; Knowles et al., 2009;
92	Williams et al., 2009; Winkelstern et al., 2013). However, Ward et al. (1991)
93	attributed the greater warmth simply to higher sea level and the absence of a barrier
94	equivalent to modern Cape Hatteras, allowing free passage of warm waters
95	northwards across the shelf. If this explanation is correct, it has implications not only
96	for our understanding of the northward expansion of warm conditions on the Atlantic
97	Coastal Plain but also in the wider North Atlantic: elevated temperatures at higher
98	latitudes might reflect a more northward trajectory rather than increased strength of
99	warm-current flow. However, both of these explanations would be called into
100	question if the higher temperatures recognised north of Cape Hatteras are not the

result of greater warm-current influence but of generally warmer conditions, caused
by some other factor (e.g., increased atmospheric CO₂).

103 We attempt to identify the cause of mid-Pliocene warming north of the latitude of 104 Cape Hatteras using estimates of seasonal marine paleotemperature from the oxygen 105 isotopic (δ^{18} O) composition of bivalve shells from the Yorktown Formation. Most of 106 the data derives from scallops, which are a propitious subject because in early 107 ontogeny they typically grow rapidly and throughout the year, thus preserving an 108 easily recoverable record of the full range of seasonal temperature variation (e.g., 109 Johnson et al., 2009; Chute et al., 2012), and kinetic and 'vital' effects seem to be at 110 most small (e.g., Barrera at al., 1990; Hickson et al., 1999; Owen et al., 2002a, b). In 111 addition, most scallops live only in fully marine conditions, thus reducing uncertainties about the value to use for $\delta^{18}O_{seawater}$ in the isotopic temperature 112 113 equation. We present new data from the genus *Placopecten* of the early Pliocene 114 Sunken Meadow Member in Virginia and North Carolina, using this to formulate a 115 model of climate and water circulation for a time when coastline geometry was much 116 like that in the mid-Pliocene (i.e., no 'Cape Hatteras') yet sea temperatures were 117 lower according to independent evidence. We then derive a prediction for benthic 118 seasonal temperature range if the subsequent warming of marine climate in the area 119 was due to an increase in the influence of warm currents. We test this hypothesis 120 through a reanalysis of existing δ^{18} O data from other scallops (*Chesapecten* and 121 Carolinapecten) of the Yorktown Formation, both from a horizon in the Sunken 122 Meadow Member above that of the *Placopecten* shells and from all three of the higher 123 (mid-Pliocene) members of the Yorktown Formation. Finally, we review existing 124 mid-Pliocene isotopic temperature data from the infaunal (non-scallop) bivalve 125 *Mercenaria* and estimates of mid-Pliocene seasonal temperature range from bryozoan

126	zooid-size variation, identifying and attempting to explain discrepancies with the
127	scallop data and then making recommendations for further research. Since all the data
128	discussed is in the form of ontogenetic or astogenetic profiles from mineralised,
129	accretionarily-produced skeletal material, the investigation constitutes a case-study in
130	sclerochronology (Schöne and Gillikin, 2013).
131	
132	ISOTOPIC TEMPERATURES FROM PLACOPECTEN CLINTONIUS OF THE
133	BASAL SUNKEN MEADOW MEMBER
134	
135	Background Information
136	
137	Stratigraphy.—The Sunken Meadow Member is the lowermost of the four
138	members constituting the Yorktown Formation (Fig. 1), occurring in southeast
139	Virginia and northeast North Carolina and averaging about 3 m thick. It mainly
140	consists of fine-grained quartz sands, but towards the west the basal part is a medium
141	to coarse sand (with a coarse lag deposit at the very base), while the finer deposits to
142	the east are glauconitic in the north and phosphatic in the south; an abundant and
143	diverse marine fauna occurs throughout (Ward and Blackwelder, 1980; Ward et al.,
144	1991). Evidence of coeval marine sedimentation extending into South Carolina exists
145	in the form of lag deposits at the base of younger units (Ward et al., 1991). Other
146	marine deposits present farther south and considered to be of approximately the same
147	age are 'Unit 11' of the lower Tamiami Formation, which occurs in southwest Florida
148	(Williams et al., 2009), and the Wabasso Formation, which occurs in the subsurface
149	of eastern Georgia (Huddlestun, 1988). The latter falls within planktonic foraminiferal
150	biozone PL1 (of Berggren, 1973), which is dated at 4.9-3.7 Ma. The Sunken Meadow

151	Member itself is generally placed (e.g., Dowsett and Wiggs, 1992) within planktonic
152	for aminiferal biozone N19 (of Blow, 1969), which is dated at 4.8 to ~ 3.5 Ma
153	(essentially within the Zanclean) in the calibration of Berggren et al. (1985). Krantz
154	(1991) tentatively suggested a more precise date of 4.5-4.4 Ma for the Sunken
155	Meadow Member by relating the transgression associated with its deposition to a
156	phase of warming and global ice-volume reduction identified in the deep-ocean $\delta^{18}O$
157	record (more fully and recently documented by Lisiecki and Raymo, 2005). The
158	transgression was preceded by a phase of non-deposition or erosion (associated with a
159	sea-level lowstand), such that the Sunken Meadow Member rests unconformably on
160	either the Cobham Bay Member of the Eastover Formation, whose age is no younger
161	than ~4.9 Ma (Krantz, 1991), or on the Miocene Pungo River Formation (Ward and
162	Blackwelder, 1980).

164 Hydrography.—The transgression associated with the Sunken Meadow Member 165 pushed the coastline up to 150 km west of its present position in southeast Virginia 166 and northeast North Carolina (Ward et al., 1991; Krantz, 1991). Figure 2B shows its 167 position according to Ward et al. (1991, fig. 16-4A). If Pliocene non-marine deposits 168 in Maryland and Delaware correlate with the Sunken Meadow Member, the coastline 169 may have been somewhat farther south in this area, nearer the Virginia state line, as 170 reconstructed by Pazzaglia (1993). In a seismic study in eastern Albemarle Sound, 171 North Carolina (north of Cape Hatteras), Mallinson et al. (2005) identified south- to 172 southwestward-dipping clinoforms within lower Pliocene clastic sediments. They 173 considered that these might represent a delta advancing from the northeast (implying 174 that the coastline was recurved southward to this area) but also accepted that they 175 might represent advancing shelf bedforms, an interpretation supported by

176	foraminiferal evidence from the adjacent Mobil#1 well (Zarra, 1989). The eastward
177	fining within the Sunken Meadow Member mentioned above is inconsistent with the
178	existence of a delta advancing from the northeast but in full agreement with the
179	position inferred by Ward et al. (1991) for the Sunken Meadow coastline in northern
180	North Carolina (Fig. 2B). Farther south, the Mid-Carolina Platform High (centred on
181	the North/South Carolina state line and a persistent influence on Cenozoic
182	sedimentation; Riggs and Belknap, 1988) probably caused a reduction in water depth,
183	but the lag deposits referred to above argue against emergence. The coastline
184	therefore lay some distance inland of its present position (Fig. 2B). In summary, while
185	the exact form of the coastline during Sunken Meadow deposition may have differed
186	slightly from the configuration in Figure 2B, its shape was only mildly curvilinear,
187	lacking an eastward protrusion as large as modern Cape Hatteras (whose tip lies in
188	North Carolina at ~35°N, some 140 km south of the North Carolina-Virginia state
189	line). Consequently neither northward- nor southward-flowing currents would have
190	been deflected to the east as they are now (Fig. 2A).
191	At present, the Gulf Stream is a very warm and rapid western boundary current
192	flowing northward above the Florida-Hatteras Slope to Cape Hatteras, where it
193	diverges from the continental margin. Closer to the coast (on the shelf) current flow
194	is weaker and more variable in direction, but still generally towards the north
195	(Bumpus, 1973; Atkinson et al., 1983). This flow has been termed the Carolina
196	Coastal Current (Cronin, 1988). At times surface intrusions from the Gulf Stream
197	bring very warm water onto the North Carolina shelf south of Cape Hatteras
198	(Atkinson, 1977). Farther south in the South Atlantic Bight (SAB; Cape Hatteras to
199	Cape Canaveral) there also occur intrusions of deeper, relatively cool (and more
200	nutrient-rich) Gulf Stream water onto the shelf, but these are relatively infrequent in

201 the northern SAB (Atkinson et al., 1983). In the southern part of the Middle Atlantic 202 Bight (MAB; Cape Hatteras to Cape Cod), there is typically a weak southward flow 203 on the shelf (Bumpus, 1973), termed the Virginia Coastal Current (Cronin, 1988). 204 This is approximately paralleled by a similar surface current above the upper and 205 middle zones of the continental slope, in the western part of the Slope Sea between 206 the shelf and Gulf Stream (Csanady and Hamilton, 1988; Böhm et al., 2006). 207 In the absence of a feature analogous to Cape Hatteras during Sunken Meadow 208 deposition, it is reasonable to assume that there was no region of very steep latitudinal 209 gradient in sea-surface temperature (SST) as there is now adjacent to the Cape 210 because of the meeting of warm northward-flowing and cool southward-flowing 211 water. However, even if the Gulf Stream was as strong as at present (suggested by 212 evidence of early Pliocene submarine erosion on the Florida-Hatteras Slope; Pinet and 213 Popenoe, 1985), it is not certain that warm water would have extended north into the 214 area of present-day Virginia. The main current might still have turned eastwards, in 215 the manner of all western boundary currents at 30-40° from the equator, so surface 216 intrusions onto the Virginia shelf would have been rare. Also, any equivalent of the 217 Carolina Coastal Current might not have been strong enough to displace cool 218 southward-flowing waters, given that with the present coastal configuration northern 219 shelf waters penetrate as far south as Cape Fear (Fig. 2B) about 10% of the time 220 through wind-forcing (Pietrafesa et al., 1994). In fact, the Gulf Stream may have been 221 less strong than now (i.e., more like the Brazil Current and East Australian Current, 222 which are relatively weak western boundary currents) during deposition of the Sunken 223 Meadow Member, due to incomplete development of the Central American Isthmus 224 (Cronin and Dowsett, 1996; Schmidt, 2007). Hence, supply of warm water by currents 225 into the area of present-day Virginia is still less certain. Ward and Blackwelder (1980)

226 considered that at this time a structural high in the area of Cape Fear (essentially part 227 of the Mid-Carolina Platform High) was sufficiently elevated to prevent northward-228 flowing warm waters entering the area of deposition of the Sunken Meadow Member, 229 and Cronin and Dowsett (1996) took the view that the shelf off the eastern US was 230 influenced only by southward-flowing cool currents in the early Pliocene. 231 Ward et al. (1991) considered that deposition of the Sunken Meadow Member took 232 place in mid-shelf water depths of 20-40 m under the influence of upwelling (from the 233 evidence of glauconite and phosphate). Purdy et al. (2001) and Fierstine (2001) also 234 inferred upwelling but greater water depths (>50 m and >100m, respectively) from the 235 fish fauna. The generally fine-sand sediments suggest neither strong wave action nor 236 vigorous tidal currents, so it is possible that there was significant thermal stratification 237 of the water column in summer, as now at similar latitudes and depths off eastern 238 North America. For instance, at 30 m depth in the modern MAB (at approximately the 239 latitude of the North Carolina-Virginia state line), water temperature is about 6 °C less 240 than at the surface in summer (Winkelstern et al., 2013). Spring freshwater run-off 241 (reducing the salinity and hence density of surface waters) assists this stratification 242 but also causes a temporary reduction in the salinity of bottom waters (from about 243 34.5 psu to 32.5 psu) as far offshore as the outer shelf (Krantz et al., 1988, fig. 1). In 244 the modern SAB, bottom salinity is somewhat higher and essentially constant (at 245 about 36 psu) through the year (Krantz et al., 1988, fig. 1). It is difficult to determine 246 from first principles whether, in the absence of a feature analogous to Cape Hatteras, 247 the area of deposition of the Sunken Meadow Member would have more resembled 248 the modern MAB or SAB in respect of the influence of freshwater run-off. However, 249 it seems improbable that there were significant differences over the area of deposition. 250

251	Marine Climate.—The classification of terrestrial climates has been extensively
252	discussed and several schemes have been developed (e.g., 'K \Box ppen-Geiger',
253	'K ppen-Trewartha'; Belda et al., 2014), with each climate defined by precise
254	criteria. Marine climate (usually considered in terms of seasonal minimum and
255	maximum temperatures in surface or shallow subsurface waters) has received less
256	attention and the divisions recognised have been poorly and differently defined. For
257	'inner sublittoral' bottom waters of the modern eastern US shelf, Hazel (1971, 1988)
258	recognised a 'mild temperate' marine climate north of Cape Hatteras (to 38 °N, and
259	by implication to beyond 39 °N), defined by winter minimum temperatures in the
260	range 2.5-5.0 °C and summer maximum temperatures in the range 20.0-22.5 °C.
261	Winter minimum surface temperatures are actually higher than 5 °C (though less than
262	10 °C) at coastal to outer shelf locations up to 180 km north of Cape Hatteras (Table
263	1, stations ORIN7, DUCN7, 44006, 44014, CHLV2, CBBV2) and at depths of a few
264	tens of metres temperatures are probably a degree or two warmer (though still less
265	than 10 °C; Winkelstern et al., 2013). Summer maximum surface temperatures exceed
266	22.5 °C in this area and farther north (Table 1) but at a few tens of metres depth they
267	may be within the range for a mild temperate climate given by Hazel (1971, 1988), or
268	even the redefined range given by Krantz (1990; 17.5-20.0 °C), due to thermal
269	stratification (Winkelstern et al., 2013). Hazel (1971, 1988) recognised a 'subtropical'
270	marine climate at present immediately south of Cape Hatteras (to 35 °N, and by
271	implication to beyond 33 °N), defined by winter minimum and summer maximum
272	temperatures in the ranges 12.5-15.0 °C and 27.5-30.0 °C, respectively. His diagrams
273	(1971, fig. 6; 1988, fig. 8) belie the figures given for summer maximum temperature,
274	suggesting a range of 25.0-27.5 °C. This is the range given by Krantz (1990) for
275	summer maximum temperature in a subtropical marine climate (with temperatures

276	approaching 30 °C in shallow water), and the summer maximum surface temperature
277	at a mid-shelf location about 8 km south of the latitude of Cape Hatteras (27 °C:
278	Table 1, station DSLN7) is in agreement with this, as is the winter minimum surface
279	temperature at this location (15 °C) with the winter minimum range given by Hazel
280	(1971, 1988) for a subtropical marine climate. Farther south (to beyond 33 °N),
281	summer maximum surface temperature is in the range 27.5-30.0 °C, even at offshore
282	locations, and winter minimum surface temperature is below 12.5 °C at most coastal
283	locations and above 15 °C at most offshore locations, resulting in a much smaller
284	seasonal range offshore than is seen anywhere north of Cape Hatteras (Table 1). Ward
285	et al. (1991) termed the modern marine climate north of Cape Hatteras 'cool
286	temperate' but were in agreement with Hazel (1971, 1988) that the 'subtropical' zone
287	to the south is not separated by a zone of 'warm temperate' conditions, characterised
288	by Krantz (1990) as having winter minimum and summer maximum temperatures in
289	the ranges 10.0-12.5 °C and 22.5-25.0 °C, respectively. Such a zone has, however,
290	been recognised in southeast Virginia and northeast North Carolina during deposition
291	of the upper (Rushmere, Morgarts Beach and Moore House) members of the
292	Yorktown Formation (see below). By contrast, mollusk assemblages indicate a cool
293	(= mild) temperate marine climate in this area during deposition of the underlying
294	Sunken Meadow Member (Ward et al., 1991). Ostracod assemblages (Hazel 1971,
295	1988) support this in the sense that the summer maximum temperatures implied (no
296	higher than 20 °C) are within the redefined range given by Krantz (1990) for a mild
297	temperate marine climate. However, the winter minimum temperatures implied (no
298	lower than 12.5 °C) are above the range for a mild temperate marine climate, and
299	Hazel (1988) described the marine climate represented by the ostracod assemblages as
300	warm temperate. Existing isotopic (δ^{18} O) temperatures for the Sunken Meadow

301	Member (Krantz, 1990) support a mild temperate designation, maximum values (from
302	profiles exhibiting a summer) being within the redefined range given by Krantz
303	(1990) and minimum values being within the expanded range described above. The
304	temperature estimates of Krantz (1990) are considered further below in the light of
305	research into the oxygen-isotopic composition of ambient water.
306	
307	Materials and Methods
308	
309	We used complete and apparently pristine valves of <i>Placopecten clintonius</i> (Fig.
310	3A) from the basal 30 cm of the Sunken Meadow Member (L.W. Ward, personal
311	communication, 2011). Four specimens from locations on the James River, Virginia,
312	were provided from the collections of the Virginia Museum of Natural History: three
313	(VA1, VA2, VA4; VMNH 93624, 93625, 93626, respectively) from Grove Wharf (1
314	in Fig. 2B) and one (VA3; VMNH 93627) from Claremont (2 in Fig. 2B), which lies
315	just upstream of the Sunken Meadow type locality (Ward and Blackwelder, 1980).
316	Two specimens from Lee Creek Mine, North Carolina (3 in Fig. 2B), were collected
317	by A.L.A. Johnson (NC1, NC2; University of Derby, Geological Collections, 53346,
318	53347, respectively) and a further two specimens from this location were provided
319	from the collections of the Florida Museum of Natural History (NC3, NC4; UF
320	261869, 261868, respectively). Lee Creek Mine is about 210 km south of the Virginia
321	locations.
322	After washing the valves in tap-water to remove NH ₄ Cl (see below) and cleaning
323	following the method adopted by Valentine et al. (2011), a hand-held drill with a 0.5
324	mm bit was used to extract samples of calcite powder from the outer layer, starting
325	from a position near the dorsal margin (umbo) and continuing to the ventral margin,

326	except in VA4 (sampled only to 56 mm of the total height of 62 mm) and NC4
327	(sampled only to 60.5 mm of the total height of 110 mm). Grooves 0.1-0.5 mm in
328	depth and 5-60 mm in length were cut parallel to microgrowth-increment boundaries
329	(Fig. 3B) in order to yield sufficient material for analysis and possible repeat analysis.
330	Samples from VA1, VA2, NC1 and NC2 were extracted at height intervals averaging
331	1.3-1.5 mm ('fine' sampling) and analysed at the Stable Isotope Facility, British
332	Geological Survey, Keyworth, using an Isoprime dual inlet mass spectrometer
333	coupled to a Multiprep system. Powder samples were dissolved with concentrated
334	phosphoric acid in borosilicate wheeton vials at 90 °C. Samples from VA3, VA4,
335	NC3 and NC4 were extracted at height intervals averaging 2.3-2.5 mm ('coarse'
336	sampling) and analysed at the Institute of Geological Sciences, University of Mainz,
337	using a Thermo Finnigan MAT 253 continuous flow-isotope ratio mass spectrometer
338	coupled to a Gasbench II. Powder samples were dissolved with concentrated
339	phosphoric acid in helium-flushed borosilicate exetainers at 72 °C. Both laboratories
340	calibrated their $\delta^{18}O$ and $\delta^{13}C$ data against NBS-19 and their own Carrara marble
341	standard. Internal precision (1 σ) for both laboratories are <0.05 for δ^{18} O and δ^{13} C.
342	Isotope values were calculated against the Vienna Pee Dee Belemnite (VPDB), Craig
343	corrected, and reported in delta notation and given as parts per mil (McKinney et al.,
344	1950).
345	The living descendant of P. clintonius, P. magellanicus, is a stenohaline marine
346	form which has been shown to yield accurate information on seasonal temperatures
347	from δ^{18} O of serial ontogenetic samples (Krantz et al., 1984; Tan et al., 1988; Chute et
348	al., 2012). In conformity with the work on <i>P. magellanicus</i> , temperatures were
349	calculated using the equation for calcite (1) of Epstein et al. (1953).
350	

351
$$T = 16.5 - 4.3(\delta^{18}O_{calcite} - \delta^{18}O_{seawater}) + 0.14(\delta^{18}O_{calcite} - \delta^{18}O_{seawater})^2$$
(1).

Values for $\delta^{18}O_{seawater}$ (measured against VSMOW) must be adjusted downward 353 for correspondence with the VPDB scale used for $\delta^{18}O_{\text{calcite.}}$ An adjustment of 0.22% 354 355 was used by Chute et al. (2012) in recent work on P. magellanicus. However, the 356 internationally agreed figure is 0.27‰ (Gonfiantini et al., 1995), and this has been 357 used herein, in conformity with recent work on Pliocene Mercenaria from the Middle Atlantic Coastal Plain (Winkelstern et al., 2013). Various initial values of $\delta^{18}O_{\text{seawater}}$ 358 359 were used in accordance with the differing estimates available (see below). 360 Before the cleaning and isotopic sampling procedure outlined above, the valves 361 were coated with a sublimate of NH₄Cl (which enhances the visibility of surface 362 details) and digitally photographed. Images were then imported into the measurement 363 software Panopea© (2004, Peinl and Schöne) and both the position (shell height) of 364 growth breaks and the size of microgrowth increments (Fig. 3B) determined along the 365 axis of maximum growth, except in the umbonal region where (to varying heights) the 366 record of growth had been effaced by abrasion. Microgrowth-increment profiles 367 appear to offer insights into the degree of mixing of the water column and therefore 368 assist interpretation of oxygen-isotope temperature data from bivalves: specifically, 369 whether or not summer values correspond to surface temperatures or are an 370 underestimate as a result of the development of thermal stratification (Johnson et al., 371 2009). While benthic temperature data is useful in its own right, informed estimation 372 of the corresponding surface temperature is worthwhile for comparison with model 373 outputs. 374

375

Results

Oxygen Isotopes.—Nearly all δ^{18} O values (Fig. 4) are positive and, as expected, 377 378 show cyclic patterns in the case of every shell, assumed to reflect seasonal 379 temperature variation. There is some fairly low amplitude 'noise' (e.g., from about 380 30-50 mm in VA3 and 20-40 mm in NC2; Fig. 4C, 4F), possibly reflecting the local 381 occurrence of cement-lined micro-borings, as identified in Pliocene Aequipecten 382 opercularis (Johnson et al., 2009). Only a few major anomalies are evident. VA3 (Fig. 383 4C) shows two extremely low values at the end of ontogeny which are very different 384 from adjacent values and more than 1‰ lower than the minimum value of the 385 preceding summer in this shell and all summer minima in other shells. VA4 (Fig. 4D) 386 shows a single-point positive excursion of similar magnitude at a shell height of 16 mm. The anomalous δ^{18} O values in VA3 and VA4 are not accompanied by anomalous 387 δ^{13} C values, but in NC2 (Fig. 4F) a single-point positive excursion of about 1‰ in 388 δ^{18} O at 43.8 mm is matched by a slightly smaller one in δ^{13} C. The values shown for 389 390 NC2 are the result of resampling over a zone from 41.7-53.9 mm shell height after 391 similar anomalies had been identified in the original profiles. Re-detection rules out 392 contamination or instrumental malfunction. Diagenesis is an unlikely explanation (also for the anomalously high δ^{18} O value from VA4) because this typically causes a 393 reduction in δ^{18} O (Tucker and Wright, 1990), but may account for the anomalously 394 395 low values from VA3. The lack of concomitant shifts in δ^{13} C in VA3 could reflect the 396 generally low amount of carbon (relative to oxygen) in porewaters (Tucker and 397 Wright, 1990). Whatever their cause, it is appropriate to exclude from further analysis all the above values (signified by stars in Fig. 4). Abrupt excursions to lower δ^{18} O 398 399 values in the late ontogeny (shell height >80 mm) of the large specimens NC1 and

376

400

16

NC2 (Fig. 4E, 4F, respectively) might be thought to represent anomalies. However,

401 comparison with the large set of oxygen-isotope profiles from modern P.

402 *magellanicus* provided by Chute at al. (2012) suggests that they constitute summer 403 records from individuals whose growth rate had declined, perhaps to zero for some 404 intervals. The higher extreme values (i.e., lower peaks) than those in summer records 405 from early ontogeny are an expected result of this (through time-averaging in 406 sampling), as are the lower extreme values (i.e., shallower troughs) of intervening 407 winter records in comparison with early ontogeny. Such ontogenetic reduction in the 408 amplitude of seasonal oxygen-isotope cycles has been widely recognised in bivalves 409 and makes it wise to concentrate on the first few years of growth in any attempt to 410 document the full range of seasonal temperature fluctuation. For this reason, only 411 information from the first and second winters and summers is incorporated in 412 subsequent analysis. 413 Assignment of portions of the curves to summers or winters is generally 414 uncontroversial but in certain cases either lateral truncation of the profile or 'noise' 415 makes it impossible to determine the relevant seasonal extreme with accuracy, and in 416 a few instances 'noise' is sufficient to raise doubts about the seasonal assignment. 417 Thus, truncation at the ventral margin makes it impossible to say whether the lowest 418 values recorded for Summer 2 in VA1 and VA2 (Fig. 4A, 4C, respectively) are 419 representative of the extreme conditions in the summers concerned. Similarly, 420 truncation at the dorsal end of the profile makes it impossible to say whether the

421

highest value recorded for Winter 1 in NC3 (Fig. 4G) is representative of the extreme

422 conditions in the winter concerned. With respect to 'noise', while the portion of the

423 profile from NC2 (Fig. 4F) corresponding to Winter 1 is clear, identification of the

424 exact position and value for the winter extreme is made problematic by high-

425 frequency variability; it could indeed be argued that the two-point increase in δ^{18} O

426	defining Summer 1 at the dorsal end of this profile together with the one-point
427	decrease in δ^{18} O defining Winter 1 at the dorsal end of the profile from VA4 (Fig. 4D)
428	are both representative of 'noise'. However, in at least the latter case the value for the
429	winter extreme identified is similar to that of another winter extreme from the same
430	shell. Uncertainties over seasonal recognition and the most appropriate value for
431	seasonal extremes could be addressed by applying a smoothing function (e.g., Wang
432	et al., 2015) but this would lead to an underestimation of seasonal range in cases
433	where the extreme values measured are probably not representative of the extreme
434	conditions experienced by the animal $-$ i.e., where an extreme value derives from a
435	sample close to a growth-break (blue triangles in Fig. 4). Such cases are not
436	uncommon: the Summer 1 extremes in VA1, VA3, NC1 and NC4, the Summer 2
437	extremes in VA2, VA3, NC1 and NC3, and the Winter 2 extremes in VA3 and NC3
438	are from samples taken 0.5-1.5 mm from a major or moderate growth break, and there
439	are other cases where seasonal extremes are from samples a little farther from growth
440	breaks. Under these circumstances it seems best not to apply a smoothing function but
441	to take the most extreme value measured for a given season as representative of the
442	extreme conditions experienced. This has the additional benefit of enabling like-with-
443	like comparison with data from previous isotopic studies of Yorktown Formation
444	bivalves (Krantz, 1990; Goewert and Surge, 2008; Winkelstern et al., 2013). While
445	the most extreme conditions experienced by the organism in a given winter or
446	summer are probably not recorded in cases where the relevant measured extreme
447	derives from a sample close to a growth break, it is unlikely that the measured value is
448	seriously unrepresentative in years 1 and 2 because 'spring' and 'fall' growth breaks
449	at this age (e.g., Fig. 4A-C, 4G) are rarely associated with any steepening of the $\delta^{18}O$
450	profile, implying that growth interruptions were generally brief.

451	Table 2 shows the extreme δ^{18} O values for the winter and summer periods
452	identified. The 13 winter values range from $+1.80\%$ to $+2.73\%$. Of the six lowest
453	values, four (+1.90‰, +1.91‰, +2.01‰, +2.15‰) are second values from shells
454	showing another winter value of +2.25‰ or more. Of these four, one (Winter 1: NC3)
455	is from the dorsal end of a profile and may well reflect truncation, while the other
456	three (Winter 2: VA3, NC1, NC2) might be early manifestations of ontogenetic
457	reduction in growth-rate (combined with temporary cessation of growth in VA3),
458	leading to greater time-averaging in sampling. The mean of all the winter values
459	$(+2.24 \pm 0.3\%; \pm 1\sigma)$ may therefore be a less accurate guide to typical extreme winter
460	temperature on the seafloor than the mean of the highest winter value from each shell
461	$(+2.42 \pm 0.23\%)$. The highest winter values of the coarsely sampled shells are all less
462	than those of the finely sampled shells, and the lowest and third lowest winter values
463	recorded (+1.80‰ and +2.00‰) are from the most coarsely sampled shell (VA4),
464	suggesting that higher values went undetected in coarse sampling. Notwithstanding
465	the small sample size (4), the mean of the highest winter value from the finely
466	sampled shells (+2.61 \pm 0.10‰) is therefore probably the very best guide to typical
467	extreme winter temperature on the sea floor. Whether comparing all the winter values
468	from the Virginia and North Carolina shells (means: $+2.29 \pm 0.34\%$, $+2.20 \pm 0.25\%$,
469	respectively), the highest winter values (means: $+2.44 \pm 0.30\%$, $+2.40 \pm 0.12\%$,
470	respectively) or the highest winter values from finely sampled shells (means: +2.71 \pm
471	0.02 ‰, $+2.51 \pm 0.04$ ‰), the means from the North Carolina shells are consistently a
472	fraction lower, suggesting a corresponding slight difference in winter benthic
473	temperature.
474	The 14 summer values for δ^{18} O in Table 2 range from +0.98‰ to $\Box 0.13$ ‰. The
475	highest value (Summer 1: NC2) may well be representative of 'noise' rather than

476	summer conditions. The high Summer 2 values from VA3 (+0.62‰) and NC2
477	(+0.67%) are from samples respectively on or quite close (3.3 mm) to a growth break
478	(Fig. 4C, 4F) and therefore may not give an accurate picture of the extreme summer
479	conditions experienced. The same could apply to the high Summer 1 value (+0.69‰)
480	from NC4, from a sample close (1.5 mm) to a growth break (Fig. 4H), and to those
481	lower summer values which are from samples close or quite close to growth breaks
482	(Summer 1: VA1, VA3, NC1; Summer 2: VA2, NC1, NC3) and/or at the end of
483	laterally truncated profiles (Summer 2: VA1, VA2). However, while these values may
484	not give a wholly accurate picture of extreme conditions in the summers concerned, it
485	is unlikely that they are grossly misleading because they span a range ($\Box 0.13\%$ to
486	+0.69‰) which is similar to that spanned by values which are neither from samples
487	close to growth breaks nor from the ends of truncated profiles (Summer 1: VA2, NC3;
488	\Box 0.03‰, +0.56‰, respectively). It is also unlikely that sampling strategy has
489	influenced the results much because for North Carolina shells the mean of summer
490	values from coarsely sampled shells (+0.52 \pm 0.15‰) is only slightly higher than
491	from finely sampled shells (+0.37 \pm 0.23‰; +0.52 \pm 0.33‰ if the questionable very
492	high value from NC2 is included) and the same is true for Virginia shells (coarse:
493	+0.24 \pm 0.31‰; fine: +0.17 \pm 0.23‰). The mean of all summer values is +0.31 \pm
494	0.27% (+0.36 ± 0.31‰ if the questionable value from NC2 is included), and the mean
495	of North Carolina values (+0.45 \pm 0.21‰; +0.52 \pm 0.27‰ if the questionable value
496	from NC2 is included) is somewhat higher than the mean of Virginia values (+0.20 \pm
497	0.27‰), suggesting a corresponding small difference in summer seafloor temperature.
498	
499	<i>Carbon Isotopes.</i> —Most δ^{13} C values (Fig. 4) are positive but, with the exception

500 of VA4 (Fig. 4D), all the profiles show more or less pronounced ontogenetic trends to

501	lower values such that those from late ontogeny are often negative. Superimposed on
502	the ontogenetic reduction, and displayed in every profile, is a cyclicity in $\delta^{13}C$ which
503	parallels that in δ^{18} O except in the early ontogeny of VA1, VA2, VA4 and NC3 (Fig.
504	4A, 4B, 4D, 4G, respectively), where there are slight offsets or additional oscillations.
505	The range of mean δ^{13} C values from North Carolina shells (NC1: +0.44 ± 0.66‰,
506	NC2: $+0.77 \pm 0.54\%$, NC3: $+0.08 \pm 0.49\%$, NC4: $+0.65 \pm 0.58\%$) is less than from
507	Virginia shells (VA1: +1.01 ± 0.56‰, VA2: +1.09 ± 0.50‰, VA3: -0.04 ± 0.44‰,
508	VA4: +0.50 \pm 0.29‰) and the mean of the mean values from North Carolina shells
509	$(+0.49 \pm 0.26\%)$ is also less than from Virginia shells $(+0.64 \pm 0.45\%)$.
510	
511	Microgrowth Increments.—Trendlines (five-point averages) are included with the
512	raw increment data in Figure 4. These show low amplitude, high frequency variation,
513	particularly in the North Carolina shells, but in the Virginia shells VA1 and VA2 (Fig.
514	4A, 4C, respectively) a rather higher amplitude, lower frequency oscillation of about
515	six cycles per annum is evident. Superimposed on this in VA2, also discernible in
516	VA3 (Fig. 4C), and of high amplitude in VA4 (Fig. 4D) is an approximately annual
517	cycle of increment size variation, which is also evident in the North Carolina shells
518	NC1, NC3 and NC4 (Fig. 4E, 4G, 4H, respectively), and of high amplitude in NC3.
519	The cycles are typically offset somewhat from those of δ^{18} O variation. NC2 (Fig. 4F)
520	shows a supra-annual overall pattern of increment size variation.
521	
522	Discussion

Shell Preservation.—While the anomalous δ^{18} O values discussed above are only

525 explicable by diagenesis in the case of one shell, it might be argued that the

526	covariation between $\delta^{18}O$ and $\delta^{13}C$ noted in every shell is evidence of pervasive
527	alteration through interaction with meteoric waters, since these typically have low
528	δ^{18} O and low δ^{13} C signatures. However, the wavelengths of δ^{18} O cycles from <i>P</i> .
529	clintonius (typically 40-50 mm between Summer/Winter 1 and 2, decreasing
530	thereafter; Fig. 4) are like those derived from modern <i>P. magellanicus</i> at a similar
531	stage in ontogeny, and which undoubtedly relate to seasonal changes in ambient
532	temperature (Krantz et al., 1984; Chute et al., 2012). The covariance of δ^{13} C with
533	δ^{18} O must therefore relate to environmental changes which follow the seasonal
534	temperature cycle rather than to diagenesis. Parallelism between $\delta^{18}O$ and $\delta^{13}C$
535	profiles has been noted in modern P. magellanicus, as has ontogenetic reduction in
536	δ^{13} C like that seen in <i>P. clintonius</i> (Krantz et al., 1987, 1988), so there can be little
537	doubt that the isotopic composition of samples from the latter is essentially original
538	

Paleohydrography.— δ^{18} O from bivalves provides a record of temperature in the 539 540 benthic environment, but an estimate of SST is required for purposes of comparison 541 with numerical models. In the shallow shelf (0-20 m), winter benthic temperature is 542 usually almost identical to SST, and summer surface and seafloor temperatures are 543 typically also about the same. In the mid-shelf (20-40 m), winter benthic temperature 544 is usually only a little different from SST (typically a degree or two higher; e.g., 545 Winkelstern et al., 2013) but, as indicated above, summer benthic temperature can be 546 substantially lower than SST as a result of incomplete mixing down of warm, low 547 density surface waters. The amount of difference is dependent on the intensity of 548 summer heating, the depth of water and the degree of agitation by wave and current 549 action.

Attempts have been made to characterise hydrographic setting in terms of the $\delta^{13}C$ 550 of bivalves. Arthur et al. (1983) documented an antiphase relationship between δ^{13} C 551 and δ^{18} O in a modern specimen of *Spisula solidissima* from 10 m depth and an in-552 phase pattern in two further specimens from 45 m depth, below the summer 553 thermocline. They considered that this difference reflected removal of ¹²C from 554 surface waters by photosynthesis during the summer (giving high δ^{13} C alongside low 555 δ^{18} O in the 10 m specimen) and supply of 12 C to deep benthic waters during the 556 summer by oxidation of sedimented organic matter (giving low δ^{13} C alongside low 557 δ^{18} O in the 45 m specimens). The in-phase pattern occurs in modern *Placopecten* 558 559 magellanicus from 57 m (Krantz et al., 1987, 1988) so on the basis of its pervasive 560 occurrence in the analysed P. clintonius one might infer a similar sub-thermocline 561 setting for these shells. However, an antiphase pattern was recorded by Johnson et al. 562 (2009, fig. 5) in a modern Aequipecten opercularis specimen from a sub-thermocline setting at 50 m (Gulf of Tunis, Mediterranean Sea), and in-phase $\delta^{13}C/\delta^{18}O$ variation 563 564 was recorded by Krantz et al. (1987, figs. 4, 5) in modern S. solidissima from 14 m, a 565 depth almost certainly above the summer thermocline. Possible explanations exist for 566 these exceptions (e.g., in summer, insufficient dissolved oxygen and insufficient nutrients, respectively); however, the important point is that patterns of δ^{13} C variation 567 in relation to δ^{18} O are not an infallible guide to hydrographic setting. 568 569 Independent evidence may be supplied by patterns of microgrowth increment size, 570 especially in early ontogeny. The modern sub-thermocline specimen of A. opercularis referred to above was only one year old at death from the evidence of its δ^{18} O profile 571 572 (Fig. 5B, red line). It shows some fairly low amplitude, high frequency fluctuation in 573 increment size but superimposed on this is a high amplitude, approximately annual cycle of variation, out of phase with that of δ^{18} O (Fig. 5A, blue line). Similar 574

575	increment patterns occur in other specimens from the same location (Fig. 5A, green
576	and yellow lines), but their relationship with δ^{18} O is not known. However, high
577	amplitude, annual-scale variation, out of phase with $\delta^{18} O$ in early ontogeny (to an age
578	of about 1.5 years) but in phase later, occurs widely in fossil specimens of A.
579	opercularis from the inferred stratified setting of the Pliocene Coralline Crag in
580	eastern England (Johnson et al., 2009). By contrast, sub-fossil examples from the
581	fairly shallow (mostly <40 m), strongly tidal and hence continuously well-mixed
582	waters of the southern North Sea show no annual cycle or only a low amplitude one,
583	usually in phase with δ^{18} O in early ontogeny (Fig. 5B). The majority of the
584	investigated specimens of P. clintonius show an annual-scale variation in increment
585	size. This is of high amplitude and out of phase with $\delta^{18}O$ in some from both Virginia
586	and North Carolina (markedly so in the early ontogeny of VA2 and NC3; Fig. 4B, 4G,
587	respectively). Thus, by analogy with increment patterns in A. opercularis, it can be
588	deduced that seasonal stratification occurred in both areas. Microgrowth increment
589	evidence therefore supports the argument based on the pattern of $\delta^{13}C$ variation in
590	relation to δ^{18} O. The inference of seasonal stratification is consistent with the 20-40 m
591	depth estimate of Ward et al. (1991), since within this range on the modern shelf
592	adjacent to the studied areas water temperature is notably cooler than at the surface in
593	summer (see above).

Seafloor and Surface Paleotemperatures.—Isotope-derived temperatures are dependent on the value selected for $\delta^{18}O_{seawater}$ (Equation 1). Previous work on Pliocene scallops of the Middle Atlantic Coastal Plain (Krantz, 1990; Goewert and Surge, 2008) used a variety of mainly somewhat negative values based on the fact that global ice volume was generally lower than now. Modelling of regional variation,

600 taking account of differences in evaporation and precipitation, yields positive $\delta^{18}O_{seawater}$ for the area in question: +0.7‰ for the early Pliocene and +1.1‰ for the 601 602 mid-Pliocene (Williams et al., 2009). Our preferred estimates of temperature for the 603 early Pliocene Sunken Meadow Member are based on calculations using the former 604 value. However, we also supply the results of calculations using the latter value and, 605 for reference, the most extreme negative value used in earlier work on material from 606 the Sunken Meadow Member ($\Box 0.4\%$; Krantz, 1990). Figure 6 shows profiles of isotope-derived temperature from each shell using the three values of $\delta^{18}O_{\text{seawater}}$, with 607 608 the preferred data shown by a thicker line. Summer and winter extreme values are listed in Table 2. While salinity, and hence $\delta^{18}O_{seawater}$, might not have been constant 609 610 through the year, any significant departures from normal would probably have been in 611 the spring (from freshwater run-off; see above), so the calculated summer and winter 612 extreme temperatures do not need any adjustment for short-term salinity variation. Using the preferred value for $\delta^{18}O_{\text{seawater}}$ (+0.7‰), all the shells except VA4 (the 613 614 most coarsely sampled) yield at least one winter minimum temperature below the 615 lower limit for a warm temperate marine climate (10 °C), and the finely sampled shells all yield such a temperature even using the more positive value for $\delta^{18}O_{seawater}$ 616 (+1.1‰). Using the preferred value for $\delta^{18}O_{seawater}$, VA3 shows a second winter 617 618 minimum temperature below 10 °C but second minima from other shells (NC1, NC2, 619 NC3) are slightly above 10 °C. For NC3 (Winter 1) truncation of the profile is a likely 620 explanation but for NC1 and NC2 (both Winter 2) neither this, nor the existence of 621 growth breaks, can be invoked. While a general slowing of growth may have been 622 contributory in the case of NC1 and NC2, it seems more reasonable to conclude that 623 the evidence from these shells of slightly warmer winters in some years reflects a 624 slightly higher mean benthic winter temperature in North Carolina than Virginia.

625	Nevertheless, the temperature (9.3 \pm 0.9 °C; \pm 1 σ) calculated from the mean of all
626	winter (extreme) $\delta^{18}O$ values from North Carolina shells using the preferred value for
627	$\delta^{18}O_{seawater}$ is, like the corresponding temperature calculated from Virginia values (9.0
628	\pm 1.3 °C), still below the lower limit for a warm temperate marine climate. As argued
629	above, the most accurate indication of typical extreme winter temperature on the
630	seafloor may be supplied by the mean of the highest winter δ^{18} O value from each of
631	the finely sampled shells. The temperatures so-derived for North Carolina (8.2 ± 0.2
632	°C) and Virginia (7.4 \pm 0.1 °C) are even farther below the lower limit for a warm
633	temperate marine climate. Given the estimated depth of the shells and the likelihood
634	of a small insulating effect from the overlying water, winter surface temperature was
635	probably a degree or two lower than seafloor temperature and thus very firmly within
636	the mild/cool temperate range over the whole of the studied area.
637	Using the preferred value for $\delta^{18}O_{seawater}$ (+0.7‰), all 14 values for summer
638	seafloor temperature are below the lower limit (22.5 °C) of a warm temperate marine
639	climate yet within the range (upper boundary: 21-23.5 °C; Dickie, 1958) tolerated by
640	modern <i>P. magellanicus</i> . The lowest value (Summer 1 of NC2) may be an artefact of
641	noise and a significant underestimate of the maximum temperature experienced. Some
642	other values are probably also underestimates of benthic temperature due to the
643	effects of growth breaks, coarse sampling and truncation of the data series, but are
644	unlikely to be seriously misrepresentative. The temperatures calculated from the mean
645	of all summer δ^{18} O values from Virginia shells, North Carolina shells and the two sets
646	combined (excluding Summer 1 of NC2 in the last two cases) are, respectively, $17.5 \pm$
647	1.2 °C, 16.4 ± 0.9 °C and 17.0 ± 1.2 °C. While these figures are probably fairly
648	accurate for the seafloor, they are likely to be significant underestimates of SST, by an
649	amount in the order of 6 °C on the basis of the likely temperature/depth profile in

650 summer. Adding this amount to all the individual summer values (excluding Summer 651 1 in NC2) yields temperatures above the lower limit for a warm temperate marine 652 climate for five of the seven Virginia estimates and for three of the six North Carolina 653 estimates. Adding 6 °C to the temperature calculated from the mean of all summer 654 δ^{18} O values for each of Virginia and North Carolina (excluding Summer 1 in NC2) 655 yields for the former a temperature above (23.5 °C) and for the latter a temperature 656 fractionally below (22.4 °C) the warm temperate range. It is implausible that summer 657 SST was actually lower in North Carolina than Virginia (farther north) so it may be 658 that the shells from the former area occupied slightly deeper water and that a larger 659 'stratification factor' should have been applied.

660 While there is a solid basis for favouring those temperature estimates for the Sunken Meadow Member based on a value for $\delta^{18}O_{\text{seawater}}$ of +0.7‰, it cannot be 661 662 denied that some uncertainty attaches to the absolute values obtained. Very little 663 uncertainty attaches to estimates of seasonal range (i.e., relative temperature) because this parameter is only slightly affected by the value adopted for $\delta^{18}O_{seawater}$ (e.g., only 664 a 1.2 °C difference between the range estimates using $\delta^{18}O_{\text{seawater}} = \Box 0.4\%$ and 665 +1.1‰ for the largest range in $\delta^{18}O_{calcite}$ observed, in VA1). Using a $\delta^{18}O_{seawater}$ value 666 667 of +0.7‰ and calculating mean benthic seasonal range from the temperatures specified by the means of the most extreme winter and summer δ^{18} O values from each 668 669 shell (for winter: 8.4 ± 1.1 °C in Virginia, 8.6 ± 0.4 °C in North Carolina, 8.5 ± 0.9 °C 670 in both areas combined; for summer: 18.2 ± 0.6 °C in Virginia, 16.5 ± 1.1 °C in North 671 Carolina, 17.3 ± 1.2 °C in both areas combined) yields figures of 9.8 °C for Virginia, 672 7.9 °C for North Carolina and 8.8 °C for both areas combined. These figures, which 673 can be regarded as maximum estimates, are not very different from those (8.5 °C, 7.1 ^oC, 7.8 ^oC, respectively) calculated from the means of all winter and summer δ^{18} O 674

675 values (excluding Summer 1 in NC2) from the Virginia, North Carolina and 676 combined shells, which can be regarded as minimum estimates. From the fact that in 677 the present-day MAB, shelf surface temperature is higher than at 30 m by about 6 ${}^{\circ}C$ 678 in summer and lower than at 30 m by about 2 ^oC in winter (Winkelstern et al., 2013), 679 it can be reasonably surmised that the seasonal range in SST when the analysed P. 680 *clintonius* specimens were alive was about 8 °C more than the benthic estimates 681 derived from them, i.e., about 17 °C in Virginia and 15.5 °C in North Carolina. 682 The figures for absolute summer and winter seafloor temperatures derived above 683 are very similar to those obtained by Krantz (1990) through an isotopic study of the 684 scallop Chesapecten jeffersonius from the upper Sunken Meadow Member. However, 685 the temperatures from C. *jeffersonius* become significantly higher than those from P. *clintonius* when calculated using the preferred value for $\delta^{18}O_{\text{seawater}}$ (see below). The 686 687 estimate for summer temperature obtained by Hazel (1971, 1988) from analysis of 688 Sunken Meadow ostracod assemblages is consistent with the benthic summer figures 689 from *P. clintonius*, but his estimate for winter temperature (at least 12.5 °C) is 690 markedly higher than the winter estimate from P. clintonius. Possibly ostracod 691 assemblage composition is controlled more by summer temperature than winter and 692 gives inaccurate indications of the latter.

693

694 Paleoclimate and Paleoceanography.—The estimates derived above for absolute 695 surface temperature in summer and winter, and for surface seasonal range, are very 696 comparable with present-day figures for offshore locations in the MAB but differ in 697 all respects from present-day figures for offshore locations in the SAB, including a 698 location immediately south of the latitude of Cape Hatteras (Table 1). The data 699 derived from *P. clintonius* in Virginia thus show that surface conditions there when

700	the animals were alive closely resembled those on the adjacent shelf now, but the data
701	derived from <i>P. clintonius</i> in North Carolina (from a location at the same latitude as
702	Cape Hatteras) reveal that much the same conditions also existed some 210 km farther
703	south, where now shelf surface temperatures are higher, particularly in winter.
704	It is possible to invent explanations involving multiple causes for the
705	circumstances indicated by the P. clintonius data. For instance, one could propose a
706	cooler general climate combined with warm-current flow farther north, the former
707	outweighing current influence in North Carolina and balancing it in Virginia.
708	However, an explanation involving a single cause – cool-current flow farther south
709	(Cronin and Dowsett, 1996) - is available and should be favoured on grounds of
710	parsimony alone. In fact there are additional grounds for favouring this explanation.
711	Firstly, despite the barrier created by Cape Hatteras at present, northern shelf waters
712	probably penetrate into the SAB more than 50% of the time through wind-forcing
713	(Pietrafesa et al., 1994). Secondly, the cool surface waters of the Slope Sea adjacent to
714	the shelf north of Cape Hatteras have a higher nutrient content and primary
715	productivity than the warm Gulf Stream farther offshore (Fig. 7); flow of these waters
716	farther south to replace the Gulf Stream at the shelf edge (i.e., extension of the 'slope
717	current'; Fig. 8), with intrusions onto the shelf as occur from the Gulf Stream now,
718	provides a plausible explanation for the diverse fish fauna of the Sunken Meadow
719	Member in North Carolina (Fierstine, 2001; Purdy et al., 2001) and the similarly
720	diverse bird fauna, including many seabirds dependent on a rich marine food source
721	(Olson and Rasmussen, 2001). Phosphate once thought to be primary and related to
722	high productivity is now considered to be reworked from Miocene deposits (Riggs et
723	al., 2000). However, the benthic foraminifera of the Sunken Meadow in North
724	Carolina are still consistent with high nutrient supply (Snyder et al., 2001). The

725 present-day shelf of southeastern South America from 38-32 °S (i.e., to a latitude 726 lower than that of Cape Hatteras) provides an illustration of the scenario envisaged. Here, very high primary productivity (>500 mgC/m²/day and locally 770 727 $mgC/m^2/day$) supports major secondary production, including large populations of 728 729 commercially exploited fish (Bisbal, 1995). Discharge of terrestrially derived 730 nutrients from the Rio de La Plata and Patos-Mirim Lagoon system undoubtedly 731 contributes to the productivity. However, it is also supported by supply of nutrients 732 from the cold equatorward-flowing waters of the Falklands/Malvinas Current. These 733 waters are at the 150-200 m isobath north of 35 °S (equivalent to the latitude of Cape 734 Hatteras) but are locally returned to the surface on the shelf as far north as 23 °S 735 through offshore Ekman transport caused by winds blowing south-west (alongshore) 736 on the western side of the South Atlantic subtropical anticyclone. Given similar 737 equatorward penetration of cold 'surface' waters on the western side of the North 738 Atlantic during the Pliocene in the absence of a feature analogous to Cape Hatteras, 739 winds blowing north-east on the western side of the subtropical anticyclone would 740 likewise have led to nutrient enrichment of shelf waters. Greater southward spread of northern surface waters provides an explanation for the grand mean δ^{13} C values from 741 742 P. clintonius in North Carolina and Virginia which, although different and lower for the southern area, are evidently much less so than the δ^{13} C values from modern outer 743 744 shelf specimens of Argopecten gibbus in the SAB compared to outer shelf specimens 745 of P. clintonius in the MAB (Krantz et al., 1988). 746 Reversal of the current pattern proposed above - i.e., extension of warm-current

reversal of the current pattern proposed above – i.e., extension of warm-current
influence into the area of Virginia – is a simple and attractive explanation for the midPliocene warming evinced by the higher members of the Yorktown Formation, and, as
noted above, has been widely adopted. However, it is theoretically possible that cold-

750	current flow continued over the area of deposition but its effect on water temperature
751	was outweighed by general climatic warming. We evaluate this possibility in the next
752	section through an investigation of isotopic temperatures from the upper part of the
753	Sunken Meadow Member and from the higher members of the Yorktown Formation.
754	We take particular note of the evidence of seasonal temperature range, since this is
755	almost independent of the value used for $\delta^{18}O_{seawater}$ and is a parameter which can
756	determine whether warming was caused by northward extension of warm-current
757	influence. This circumstance would effectively bring the conditions of the modern
758	SAB into the area of Virginia. Maps of average monthly benthic temperature supplied
759	by Atkinson et al. (1983) enable reconstruction of the present benthic seasonal range
760	over the SAB. Oceanward of the mid-shelf, the range is less than 10 °C, and landward
761	it is more. However, only in very nearshore locations, in water shallower than 20 m, is
762	the benthic seasonal range above 15 °C. Hence, any significant evidence of a benthic
763	seasonal range greater than 15 °C from the higher Yorktown Formation would argue
764	against northward extension of warm-current influence.
765	
766	ISOTOPIC TEMPERATURES FROM
767	THE HIGHER YORKTOWN FORMATION
768	
769	Data from Other Scallop Genera
770	
771	Placopecten does not occur in the Yorktown Formation above the basal section of
772	the Sunken Meadow Member. However, the extinct scallop genera Chesapecten and
773	Carolinapecten occur in all four members. They do not occur with brackish-water
774	taxa and it can therefore be assumed that they were stenohaline marine, tolerating

only brief reductions in salinity. Krantz (1990) obtained profiles of δ^{18} O and δ^{13} C 775 776 from *Chesapecten jeffersonius* of the upper part of the Sunken Meadow Member, C. 777 madisonius of the Rushmere and Moore House members and Carolinapecten eboreus 778 of the Morgarts Beach and Moore House members. Further profiles from C. 779 madisonius of the Moore House Member were obtained by Goewert and Surge (2008). These authors listed the extreme $\delta^{18}O$ values from each specimen. We have 780 used their data, in conjunction with appropriate figures for $\delta^{18}O_{\text{seawater}}$, to calculate 781 782 maximum estimates of benthic seasonal temperature range for comparison with the test value identified above. We have employed the equation (1) and set of $\delta^{18}O_{seawater}$ 783 784 values ($\Box 0.4\%$, +0.7‰, +1.1‰) used for *Placopecten clintonius* to derive figures for 785 winter and summer benthic temperature for each specimen (Table 2), although arguably for the mid-Pliocene material the low value for $\delta^{18}O_{\text{seawater}}$ should have been 786 787 set at -0.6‰ for Rushmere and Morgarts Beach individuals and -0.5‰ for Moore 788 House individuals in recognition of the use of these figures by Krantz (1990) and 789 Goewert and Surge (2008). Following Williams et al. (2009), our preferred value for 790 these units is +1.1%. Although our focus is the seasonal range in benthic temperature, 791 we comment below on the winter and summer benthic temperatures from which the 792 ranges are derived, and also attempt to determine surface temperatures using the evidence of depth supplied by patterns of variation in δ^{13} C relative to δ^{18} O, together 793 794 with other indicators. The sampling of *Chesapecten* and *Carolinapecten* shells by 795 Krantz (1990) and Goewert and Surge (2008) was in the outer shell layer but at a 796 higher spatial resolution (1 mm or less) than our sampling of *Placopecten* shells; 797 hence, although few in number for some horizons, the estimates of seasonal benthic 798 (and surface) temperature for the higher Yorktown Formation are certainly at least as 799 reliable as those for the basal part of the Sunken Meadow Member.

801	Upper Sunken Meadow MemberKrantz (1990) obtained isotope profiles from
802	three specimens of Chesapecten jeffersonius from two locations on the James River,
803	Virginia, close to the collection locations of the specimens of <i>Placopecten clintonius</i>
804	from Virginia discussed above. The two specimens (SM-CJ1, SM-CJ2) from the first
805	location, Sunken Meadow Creek (the Sunken Meadow type locality; 4 in Fig. 2B),
806	were collected about 1 m above the base of the member and the single specimen
807	(KING-CJ) from the second, Kingsmill (5 in Fig. 2B), immediately below the contact
808	with the overlying Rushmere Member, 2-3 m above the base of the Sunken Meadow
809	Member (Ward and Blackwelder, 1980, fig. 22). The interpretation of depth and
810	water-column structure derived for the basal Sunken Meadow Member from the
811	pattern of variation in δ^{13} C in relation to δ^{18} O within <i>P. clintonius</i> shells can also be
812	applied to higher horizons from the evidence of strong parallelism in the profiles
813	derived from C. jeffersonius specimens KING-CJ and SM-CJ1 by Krantz (1990, figs.
814	3b, c). Krantz ascribed the lack of parallelism in SM-CJ2 (1990, fig. 3a) to diagenesis.
815	All three specimens contain at least one winter record of δ^{18} O. The temperatures
816	derived from the most extreme values represented in each shell for the preferred value
817	of $\delta^{18}O_{seawater}$ (+0.7‰; Table 2) give a winter mean of 11.4 ± 0.7 °C (± 1 σ). The
818	equivalent for summer (based on only two extreme values because SM-CJ1 lacks a
819	full summer record) is 23.0 ± 1.0 °C. The winter mean may be a slight overestimate
820	and the summer mean a slight underestimate because the winter value from SM-CJ2
821	and the summer value from KING-CJ are each from samples close to major growth
822	breaks. Because these potential errors have opposite effects on the estimate of annual
823	range, the figure (11.6 °C) derived for this from the winter and summer means is
824	probably quite accurate. The figures for winter and summer mean temperature,

825	median temperature (17.2 °C; taken as an approximation of annual mean temperature)
826	and for annual range are all notably higher than the corresponding figures for <i>P</i> .
827	clintonius in Virginia (respectively, 8.4 °C, 18.2 °C, 13.3 °C, 9.8 °C), and also North
828	Carolina (8.6 °C, 16.5 °C, 12.6 °C, 7.9 °C). While the higher summer temperature and
829	annual range might reflect closer sample spacing, this would not have led to
830	recognition of a higher winter temperature. Thus, although one must acknowledge the
831	rather small sample size, the data from C. jeffersonius in the upper part of the Sunken
832	Meadow Member does seem to suggest warmer conditions on the seafloor. It also
833	suggests warmer surface temperatures: about 9.5 °C in winter and 29 °C in summer
834	from the arguments applied to <i>P. clintonius</i> , giving a median temperature (19.3 °C)
835	which is higher than is specified by modern winter and summer surface temperatures
836	at any location in the MAB (Table 1). While the increase in benthic seasonal range
837	from that indicated by the earlier <i>P. clintonius</i> shells is not sufficient to meet the test
838	criterion of a value of 15 °C, it is consistent with the idea that higher seawater
839	temperatures were brought about by a warming of general climate rather than
840	increased influence of warm currents from the south.
841	

842 Rushmere and Morgarts Beach Members.-It is unfortunate that published isotope 843 profiles exist for only single scallop specimens from each of these members, which 844 were deposited as the result of a major transgression, leading to the highest stand of 845 sea level in the late Neogene (Krantz, 1991) and the establishment of marine 846 conditions across the Atlantic Coastal Plain from Maryland to Florida. Figure 2B 847 shows the coastline according to Ward et al. (1991, fig. 16-4B), which is similar to the 848 reconstruction of Rowley et al. (2013). Its only slightly curvilinear form would have 849 presented no obstruction to northward- or southward-flowing currents, but shoals

850	identified by Ward et al. (1991) in the area of the Mid-Carolina Platform High would
851	have restricted the passage of warm waters into northeast North Carolina and
852	southeast Virginia. Winkelstern et al. (2013) placed the Morgarts Beach Member
853	within the MPWP but considered that the lower part of the underlying Rushmere
854	Member might have been deposited before it, a deduction consistent with the 4.0-3.0
855	Ma age range for both members indicated by microfossil biostratigraphy (Krantz,
856	1991; Fig. 1). Whatever the time of onset of the transgression, assemblage evidence
857	from ostracods (Hazel, 1971, 1988; Cronin, 1991), mollusks (Ward et al., 1991) and
858	foraminifers (Dowsett and Wiggs, 1992) points unequivocally to warmer ('warm
859	temperate') conditions in southeast Virginia and northeast North Carolina during
860	deposition of the Rushmere and Morgarts Beach members than during Sunken
861	Meadow deposition.
862	Rushmere sediments are closely similar to those of the Sunken Meadow Member
863	but sometimes with a larger admixture of clay (Ward and Blackwelder, 1980),
864	suggesting quieter, somewhat deeper conditions, although still within the mid-shelf
865	depth range (Krantz, 1991). The analysed specimen (BB-CM; Krantz, 1990, fig. 4a) is
866	from near Fort Boykin, Burwell Bay, on the James River, Virginia (6 in Fig. 2B). The
867	$\delta^{13}C$ and $\delta^{18}O$ profiles show only short parallel trends and so provide no positive
868	support for a seasonally stratified and hence fairly deep setting. Equally, however,
869	they provide no clear support for a shallow setting. The winter and summer seafloor
870	temperatures calculated from extreme δ^{18} O values using the preferred (mid-Pliocene)
871	value for $\delta^{18}O_{seawater}$ (+1.1‰; Table 2) are, respectively, 13.3 °C and 29.3 °C (median:
872	21.3 °C). These seasonal temperatures are considerably higher than the equivalents
873	from any Sunken Meadow specimen (P. clintonius or C. jeffersonius) and entirely in
874	accordance with previous deductions of very warm conditions during deposition of

the Rushmere Member. Even when calculated using a value for $\delta^{18}O_{\text{seawater}}$ of +0.7‰, 875 876 summer temperature (27.3 °C) is still higher than from all the Sunken Meadow specimens using the same value for $\delta^{18}O_{\text{seawater}}$; however, winter temperature (11.7 877 878 °C) is only higher than from the eight *P. clintonius* specimens and one (SM-CJ1) of 879 the three C. *jeffersonius* specimens. Assuming the depth of the specimen was similar 880 to that of Sunken Meadow specimens, and using the argument applied to them, yields 881 for the Rushmere Member a surface winter temperature of about 11.5 °C and surface 882 summer temperature of about 35.5 °C (this is not implausible given a modern record 883 of 33 °C at a location 330 km north of Cape Hatteras; NDBC, undated, station OCIM2). The benthic seasonal range (16 °C, using +1.1‰ for $\delta^{18}O_{\text{seawater}}$) supplied by 884 885 the Rushmere Member specimen exceeds the 15 °C test criterion so, while one cannot 886 draw firm conclusions from a single shell, the suggestion is of a warming of general 887 climate rather than an increase in warm-current influence. 888 The analysed specimen of *Carolinapecten eboreus* from the Morgarts Berach 889 Member (LTRUN-EB; Krantz, 1990, fig. 4b) is from Lieutenant Run, Petersburg, 890 Virginia (7 in Fig. 2B). The setting is a barred embayment, probably quite shallow, 891 notwithstanding the clayey silt sediment. The profile appears to record a winter 892 minimum temperature – 12.5 °C using the preferred value for $\delta^{18}O_{\text{seawater}}$ (+1.1‰) – which is again higher than any Sunken Meadow specimen (using $\delta^{18}O_{\text{seawater}} =$ 893 894 +0.7%). Given the probable shallow setting, a similar surface temperature can be 895 inferred. The profile lacks a full summer record but the highest temperature recorded 896 (18.8 °C) indicates a median benthic temperature of at least 15.7 °C: higher than from 897 the basal Sunken Meadow Member.

898
899	Moore House Member.—This unit only occurs in a small area of southeast
900	Virginia, with age-equivalent strata known locally in the subsurface of northeast
901	North Carolina (Ward et al., 1991). It represents a further but less extensive
902	transgression after a fall in sea level following the Rushmere/Morgarts Beach
903	transgression. Figure 2B shows the coastline according to Ward et al. (1991, fig. 16-
904	4C). The possible recurvature to the east indicated in the area of modern Cape
905	Hatteras is a reflection of the absence of any unequivocally age-equivalent marine
906	strata farther south (Krantz, 1991). While this may be a result of erosion (Ward and
907	Blackwelder, 1980) it is quite possible that the Coastal Plain was emergent south of
908	the area of Moore House occurrence, creating a barrier to the entry of warm waters. Sr
909	isotope dating gives ages (2.6-2.5 Ma) well after the MPWP (Winkelstern et al., 2013)
910	but microfossil biostratigraphy gives an older date (no younger than 2.8 Ma; Krantz,
911	1990), and correlation with the eustatic sea level curve suggests an age of 3.1-3.0 Ma,
912	i.e., within the MPWP (Krantz, 1991; Fig. 1). On the basis of the common presence of
913	subtropical molluscan taxa at downdip (more easterly) locations, Ward et al. (1991)
914	considered that the marine climate was even warmer than during the
915	Rushmere/Morgarts Beach transgression. The three specimens of Chesapecten
916	madisonious investigated by Goewert and Surge (2008) were collected from a
917	sequence of glauconitic sands and shell hash at Riddick Pit, Chuckatuck, Virginia (8
918	in Fig. 2B), about 50 km from the contemporary shoreline. The setting was probably
919	an offshore bar, but one permanently submerged on the evidence of the fully marine
920	associated fauna (including common Glycymeris, as well as Marvacrassatella and
921	Dinocardium; A.L.A. Johnson, personal observations, 2007). While the sedimentary
922	evidence suggests quite shallow, and hence well-mixed, waters, the strong covariation
923	of δ^{13} C and δ^{18} O in two of the <i>C. madisonius</i> specimens (CMAD-4, CMAD-5;

924	Goewert and Surge, 2008, fig. 3b, 3c) seems to imply a deeper, seasonally stratified
925	situation. It is possible, however, that the reductions in $\delta^{13}C$ alongside the spring-
926	summer reductions in δ^{18} O in these specimens are an ontogenetic rather than
927	environmental effect. The two specimens of C. madisonius and one of Carolinapecten
928	eboreus investigated by Krantz (1990) were collected from a sequence of shelly sands
929	at Yadkin Pit, near Deep Creek, Virginia (9 in Fig. 2B), some 25 km southeast of
930	Chuckatuck and farther from the contemporary shoreline. The δ^{13} C profiles of two
931	specimens (YAD-EB1, YAD-CM1; Krantz, 1990, fig. 5b, 5c) are rather 'flat' and
932	hence uninformative about hydrographic setting. That of the third (YAD-CM2;
933	Krantz, 1990, fig. 5a) shows strong covariation of δ^{13} C and δ^{18} O, which might reflect
934	seasonal stratification but could, again, be an ontogenetic effect. The mean winter and
935	summer seafloor temperatures calculated from all the extreme δ^{18} O values using the
936	preferred (mid-Pliocene) value for $\delta^{18}O_{seawater}$ (+1.1‰; Table 2) are, respectively, 12.0
937	\pm 2.2 °C and 27.6 \pm 1.5 °C, similar to the corresponding temperatures obtained from
938	the single Rushmere and Morgarts Beach specimens, and the median temperature
939	(19.8 °C) is also similar to that from the Rushmere specimen. The winter mean is
940	probably something of an overestimate because the raw values from all six specimens
941	are from samples close to major growth breaks. The seasonal range calculated from
942	the winter and summer means (15.6 °C) is therefore likely to be somewhat
943	underestimated. It is in any case higher than the test criterion, suggesting that the
944	warm winter and summer benthic temperatures are the consequence of a warmer
945	general climate rather than greater influence of warm currents. Given the conflicting
946	evidence of depth from sedimentology and $\delta^{13}C$ variation in relation to $\delta^{18}O$, seasonal
947	surface temperatures are difficult to infer. However, it is important to point out that
948	even if the water was shallow (<20 m) the interpretation of the benthic data in terms

949 of general climate is valid because the source locations for the analysed specimens are 950 at least 50 km from the contemporary shoreline, and hence not comparable with those 951 present-day shallow settings close to the coast in the SAB where benthic seasonal 952 temperature range exceeds 15 °C (see above). Local shallow areas distant from the 953 SAB coastline have a much lower seasonal range in surface temperature (e.g., 11 °C 954 at Frying Pan Shoals, about 50 km offshore from Cape Fear; Table 2, stations FPSN7, 955 41013) and the benthic range is almost certainly a little lower still. 956 When calculated separately for each of the Moore House locations, the seasonal 957 mean temperatures for Yadkin Pit are higher than for Riddick Pit – only slightly in 958 summer (respectively, 28.6 ± 1.3 °C and 26.5 ± 0.8 °C) but quite markedly in winter 959 (respectively, 14.1 ± 0.6 °C and 9.8 ± 0.8 °C). Given the more offshore position of the 960 former site, it is tempting to think of this as a reflection of Gulf Stream influence. However, the large seasonal range (14.5 °C) argues against this. It therefore seems 961 962 likely that the specimens from the two locations are not exactly contemporaneous and 963 reflect fluctuations in general climate (albeit smaller than the overall change over the 964 duration of the Yorktown Formation) during deposition of the Moore House Member. 965 966 Overview.—The above isotopic data from scallops confirms the mid-Pliocene

967 warming of marine climate on the eastern seaboard of the US that has been adduced

968 from other evidence, and shows that warming also occurred in the early Pliocene.

969 Evidence of a benthic seasonal range in excess of 15 °C from the mid-Pliocene

970 Rushmere and Moore House members indicates that warming was brought about by a

971 change in general climate rather than an increase in warm-current influence. Indeed,

972 shallow or emergent areas south of the depositional basin make it hard to countenance

973 greater warm-current influence. In so far as the benthic seasonal ranges determined

974	for the mid-Pliocene of Virginia are as great as the present surface range in the outer
975	MAB (Table 1, station 44014), and only a little short of the surface range nearer
976	shore, it may be concluded that the cold-current influence on this area now, which has
977	also been inferred for the early Pliocene (Placopecten data), existed additionally in
978	the mid-Pliocene. While the envisaged current pattern is like that inferred for the early
979	Pliocene (Fig. 8), the shelf current would have been displaced eastwards during
980	deposition of the Moore House Member, when sea level was lower (Fig. 2).
981	
982	Data from Mercenaria
983	
984	Winkelstern et al. (2013) obtained δ^{18} O and δ^{13} C profiles from the hinge plates of
985	six specimens of the infaunal bivalve Mercenaria, collected from the Rushmere
986	Member at a location on the James River, Virginia, approximately the same as that of
987	the Chesapecten madisonus specimen from the Rushmere Member discussed above (6
988	in Fig. 2B). Three of the specimens (FB5, FB16, FB25; Winkelstern et al., 2013, fig.
989	6H, 6J, 6L) show a clear antiphase relationship between $\delta^{18}O$ and $\delta^{13}C$, suggesting a
990	shallow-water setting, unlike that inferred for the Rushmere Member in general.
991	Winkelstern et al. (2013) did not tabulate values of maximum and minimum $\delta^{18}O$
992	from each shell but listed winter (15.7 °C, 15.3 °C, 20.2 °C, 16.5 °C, 18.6 °C, 15.5
993	°C) and summer (24.7 °C, 25.8 °C, 27.7 °C, 26.0 °C, 29.2 °C, 23.7 °C) temperatures
994	calculated from these data using an equation appropriate for the aragonite mineralogy
995	of <i>Mercenaria</i> (Grossman and Ku, 1986) and a value for $\delta^{18}O_{seawater}$ of +1.1‰
996	(reduced by 0.27‰ for temperature calculation; see above). The temperatures can
997	thus be directly compared with those calculated from mid-Pliocene scallop data using
998	the same value for $\delta^{18}O_{seawater}$. The summer temperature (29.3 °C) obtained from the

999	single investigated Rushmere scallop is higher than any obtained from Mercenaria
1000	and the winter temperature (13.3 °C) is lower. The winter temperature (12.5 °C) from
1001	the single investigated Morgarts Beach scallop is similarly lower, as are all the winter
1002	temperatures (8.9–14.5 $^{\circ}$ C) from the six Moore House scallops. The summer
1003	temperatures from the Moore House scallops (25.3–29.8 °C) overlap the range of
1004	<i>Mercenaria</i> data but the mean of the former $(27.6 \pm 1.5 \text{ °C}; \pm 1\sigma)$ is a little higher
1005	than the mean from the <i>Mercenaria</i> data (26.2 ± 1.8 °C), while the winter mean from
1006	the Moore House scallops $(12.0 \pm 2.2 \text{ °C})$ is substantially lower than from <i>Mercenaria</i>
1007	$(17.0 \pm 1.8 \text{ °C})$. Although the <i>Mercenaria</i> data agrees with that from mid-Pliocene
1008	scallops in that it demonstrates higher winter and summer benthic temperatures (and a
1009	higher median temperature: 21.6 °C) than in the early Pliocene, it differs radically by
1010	evincing a low seasonal range (9.2 °C). Irrespective of the fact that a higher surface
1011	range can be inferred if the shells derive from a stratified setting (as seems probable
1012	for the Rushmere Member in general but is contradicted by the $\delta^{18}O/\delta^{13}C$ evidence
1013	from these shells), the figure for benthic range (which is well short of the test criterion
1014	of 15 °C) argues against the model of general climatic warming and continuing cold-
1015	current influence adduced above. Indeed, Winkelstern et al. (2013) argue perfectly
1016	logically from their data that the mid-Pliocene warming of marine climate on the
1017	eastern US seaboard was a consequence of increased warm-current influence.
1018	The low benthic seasonal range identified by Winkelstern et al. (2013) results
1019	largely from the relatively high winter temperatures determined from their $\delta^{18}O$
1020	profiles. It is possible that these are an artefact of growth in a setting influenced by
1021	winter freshwater influxes; this would have reduced shell $\delta^{18}O$, resulting in an
1022	overestimate of winter temperature. While the Rushmere Member was undoubtedly
1023	deposited in an offshore, fully marine setting, it is conceivable that some faunal

1024	elements were transported from a nearer shore, freshwater-influenced environment.
1025	Certainly Mercenaria is able to tolerate reduced salinity (Elliot et al., 2003) and the
1026	$\delta^{18}O/\delta^{13}C$ evidence from the Rushmere specimens is consistent with growth in a
1027	nearshore setting. Many (but not all) individuals from the shell bed concerned are
1028	disarticulated and broken (I.Z. Winkelstern, personal communication, 2016),
1029	suggesting a measure of transport. However, it is questionable whether the shells
1030	could have been moved offshore the many tens of kilometers implied from near the
1031	contemporary shoreline (Fig. 2), especially as storm currents (the only plausible
1032	agent) have a weaker offshore than alongshore component (Swift et al., 1986).
1033	An alternative explanation for the winter temperatures from Rushmere Mercenaria
1034	is that growth slowed during that season and sampling was insufficiently close to
1035	identify winter extremes of shell δ^{18} O. In modern <i>Mercenaria</i> the optimum
1036	temperature for growth is about 20 °C, and in most populations growth is significantly
1037	reduced at temperatures below the minimum (15.3 °C) recorded by Rushmere forms,
1038	although it may continue to 9 °C (Ansell, 1968). The reduction in growth with
1039	declining temperature seems a likely explanation for the relatively low winter values
1040	of shell δ^{18} O, compared to those predicted, in modern forms from Cedar Key, Florida,
1041	where water temperature does not fall below 10 °C (Elliot et al., 2003, figs. 2, 7). The
1042	possibility of a combined growth rate/sampling effect on the winter temperatures
1043	supplied by Rushmere forms is borne out by a comparison of the data of Winkelstern
1044	et al. (2013) from Mercenaria of the early Pleistocene Chowan River Formation with
1045	that of Krantz (1990) from Carolinapecten eboreus of the same unit. The former was
1046	obtained, like the data from Rushmere Mercenaria, by sampling the hinge plate, while
1047	the latter derives from sampling the full shell along the axis of maximum growth,
1048	providing better temporal resolution even at the greater sample spacing ($\sim 1 \text{ mm}$

1049	compared to ~ 0.1 mm). The mean of maximum summer temperatures from six
1050	Chowan River Mercenaria (Winkelstern et al., 2013, p. 655; calculated with
1051	$\delta^{18}O_{seawater} = 0.0\%$) is 22.0 ± 2.2 °C, similar to the mean of 20.8 ± 1.9 °C derived
1052	from eight Chowan River C. <i>eboreus</i> calculated using data for minimum shell δ^{18} O
1053	(Krantz et al., 1990, table 4), the same value for $\delta^{18}O_{seawater}$, and Equation 1. By
1054	contrast, the equivalent winter temperature from Chowan River Mercenaria is 10.5 \pm
1055	0.5 °C while that from <i>C. eboreus</i> is 7.5 ± 1.6 °C, and it should be noted that the latter
1056	figure is probably something of an overestimate because four of the shells used have
1057	major growth breaks close to the position of the samples yielding the highest value of
1058	δ^{18} O (Krantz, 1990, figs. 6, 7). Notwithstanding this confirmation of differences
1059	between estimates of winter temperature from the full shell of scallops and the hinge
1060	plate of Mercenaria, it should be noted that at least some of the Mercenaria profiles
1061	(both from the Rushmere Member and the Chowan River Formation) have well-
1062	resolved ('sinusoidal') winter portions, and a profile obtained from the full shell of
1063	one Mercenaria specimen shows winter (and summer) extreme values very similar to
1064	those in an equivalent profile from the hinge plate (Winkelstern et al., 2013, fig. 5).
1065	Moreover, while some of the winter sectors of Chowan River Mercenaria profiles
1066	correspond to dark shell material (usually associated with slow growth), others
1067	correspond to light shell material, and this is generally the case for Rushmere shells,
1068	arguing for relatively fast growth in winter.
1069	While certain possibilities require further investigation, there is at present nothing
1070	to invalidate the temperature data from Rushmere Mercenaria. One must therefore
1071	accept that these lived at a time when winter temperature was higher than that
1072	experienced by the investigated mid-Pliocene scallops, and that this resulted from

1073 warm-current influence, probably in addition to the effect of general climatic

1074 warming.

1075

1076 SEASONAL TEMPERATURE RANGE FOR THE HIGHER YORKTOWN 1077 FORMATION FROM BRYOZOAN ZOOID SIZE

1078

1079 Knowles at al. (2009) measured variation in the size of zooids through the growth 1080 (astogeny) of colonies of various cheilostome bryozoan species to obtain estimates of 1081 mean annual range in temperature (MART) for the Rushmere $(6.39 \pm 0.69 \text{ °C}; \pm 1\sigma)$, 1082 Morgarts Beach (6.54 ± 1.24 °C) and Moore House (6.39 ± 0.96 °C) members in 1083 Virginia. These estimates are very much lower than the figures for seasonal 1084 temperature range obtained by isotopic analysis of scallops and also lower than the 1085 figure obtained by isotopic analysis of *Mercenaria*. The bryozoan MART technique is 1086 generally robust (Okamura et al., 2011), and the colonies analysed by Knowles et al. 1087 (2009) did not apparently contain any growth breaks which would have led to 1088 underestimates of seasonal range, so on the face of it one must take these results as a 1089 further indication of the periodic influence of warm currents in the mid-Pliocene of 1090 Virginia. However, the maps of average monthly benthic temperature supplied by 1091 Atkinson et al. (1983) show that in the shelf region at present influenced by warm 1092 currents on the eastern seaboard of the USA only a small area of the outer shelf within 1093 the southern SAB experiences a seasonal range in benthic temperature as low as that 1094 indicated by bryozoans for the mid-Pliocene in Virginia. While there are some 1095 uncertainties about the depth and distance from shore at which the sequences 1096 concerned accumulated, it is unlikely that they represent outer shelf settings, so it is 1097 questionable whether the figures supplied by the bryozoan MART technique are

1098	accurate in this case. One way of testing would be to obtain oxygen isotope profiles
1099	across the colonies, although extracting samples which are not time-averaged would
1100	be difficult in species exhibiting secondary skeletal wall thickening (Knowles et al.,
1101	2010). Until confirmatory isotopic evidence is provided we feel that the figures for
1102	seasonal temperature range from zooid-size variation in Yorktown Formation
1103	bryozoans cannot be accepted.
1104	
1105	CONCLUSIONS AND FURTHER WORK
1106	
1107	New oxygen isotope data presented herein from the scallop Placopecten clintonius
1108	of the early Pliocene Sunken Meadow Member (Yorktown Formation) confirms other
1109	indications of a relatively cool marine climate at this time on the US eastern seaboard
1110	in the area of Virginia and North Carolina. The uniformity of cool conditions over this
1111	region is most simply interpreted as a consequence of greater southward penetration
1112	of cold currents in the absence of a feature analogous to Cape Hatteras. This
1113	interpretation is supported by evidence of high primary productivity, which could
1114	have been promoted by supply of nutrient-rich cold water from the north. Reanalysis
1115	of existing oxygen isotope data from other scallop taxa confirms previous reports of a
1116	warming of marine climate in the mid-Pliocene but indicates that this was not due to
1117	the impingement of warm currents but to a warming of general climate, with cold
1118	currents still penetrating the area. Existing oxygen isotope data from examples of the
1119	infaunal bivalve Mercenaria from the mid-Pliocene Rushmere member of the
1120	Yorktown Formation suggests otherwise. The warm-current influence indicated by the
1121	high median temperature and low seasonal range derived from these shells probably
1122	reflects a temporary increase in the vigour of the Gulf Stream rather than a switch

1123 from an 'off' to an 'on' state. The former state may have existed in marine isotope 1124 stage M2 (\sim 3.3 Ma; Lisiecki ad Raymo, 2005), when there is evidence of extensive 1125 glaciation in the northern hemisphere, but during the subsequent MPWP the Gulf 1126 Stream was probably continuously 'on' (De Schepper et al., 2013). While local 1127 topographic change might have allowed Gulf Stream water to temporarily displace 1128 water derived from the north on the shelf of the eastern USA, the evidence of Pliocene 1129 fluctuations in warm-current influence derived from isotopic and other indications of 1130 temperature on the other side of the North Atlantic (Fig. 1; Johnson et al., 2009; 1131 Knowles et al., 2009; Williams et al., 2009; Valentine et al., 2011) indicates the 1132 likelihood of regional oceanographic change, e.g., in the strength and position of the 1133 North Atlantic gyre, of which the Gulf Stream is part. 1134 Clearly, there is a need for data from co-occurring, autochthonous bivalves and 1135 bryozoans from the mid-Pliocene of the eastern USA to determine whether the 1136 divergent estimates of seasonal temperature range from isotopic analysis of the former 1137 and zooid-size analysis of the latter are a reflection of inaccuracies in one or other 1138 approach, or representative of real differences resulting from temporal variation in 1139 warm-current influence. If congruent data are obtained, it will be useful to chart 1140 stratigraphic changes in seasonality in greater detail and to investigate whether there 1141 is a matching pattern on the other side of the Atlantic, and hence a common cause. 1142 Insights into the controls on marine climate in the North Atlantic region are likely to

1143 be derived from investigations into primary productivity, since this is dependent on

1144 nutrient supply, which is in turn influenced by current patterns. Indications of primary

1145 productivity can be obtained from sediment composition, and from the abundance,

1146 diversity and type of the fossil biota (see above). However, they can also be obtained

1147 from shell profiles of indicative trace elements (Krantz et al., 1988; Haveles et al.,

1148	2010; Thébault and Chauvaud, 2013) and from evidence of shell growth rates (Kirby,
1149	2000, 2001; Johnson et al., 2007; Haveles et al., 2010). In the latter respect it is of
1150	interest that Goewert and Surge (2008) recorded extensional growth rates up to nearly
1151	70 mm per annum in their specimens of Chesapecten madisonius from the Moore
1152	House Member. This is similar to the maximum annual growth rate in wild modern
1153	scallops (Yamamoto, 1953; Bricelj and Shumway, 1991, fig. 7) and certainly implies
1154	an abundant food source, probably phytoplankton. Other bivalve taxa (e.g.,
1155	Carolinapecten, Mercenaria, Glycymeris, Marvacrassatella, Dinocardium) reach a
1156	large size in the Yorktown Formation and may likewise have grown rapidly.
1157	Sclerochronological techniques provide a means of testing this.
1158	
1159	ACKNOWLEDGMENTS
1160	
1161	We are deeply grateful to Lauck ('Buck') Ward for guiding ALAJ in the field,
1162	supplying material from the Virginia Museum of Natural History (Martinsville) and
1163	providing information on the precise stratigraphic provenance of specimens. Roger

1164 Portell (Florida Museum of Natural History, Gainesville) and Virginie Héros

1165 (Muséum National d'Histoire Naturelle, Paris) also kindly supplied material from

1166 collections in their care. Isotopic analysis at Mainz was conducted with the assistance

1167 of Michael Maus. Isotopic analysis at Keyworth was conducted in the context of

1168 agreed collaborative work between the NERC Isotope Geosciences Laboratory and

1169 British Geological Survey (BGS) in 2010-2011. AV was in receipt of a PhD

1170 studentship award through the BGS University Funding Initiative (BUFI S157).

1171 ALAJ received support for travel from the Research-Inspired Curriculum Fund,

1172 University of Derby. We thank Harry Dowsett (US Geological Survey), Joel Hudley

1173 (University of North Carolina), Stan Riggs (East Carolina University), Mark Williams

1174 (University of Leicester) and numerous students from the University of Derby for

1175 contributing useful insights during the course of the work, and the reviewers

- 1176 (especially David Krantz) for constructive comments on the manuscript.
- 1177
- 1178 REFERENCES
- 1179

1180 ANSELL, A.D., 1968, The rate of growth of the hard clam Mercenaria mercenaria (L)

throughout the geographical range: Journal du Conseil permanent international pour

1182 l'Exploration de la Mer, v. 31, p. 364–409.

1183 ARTHUR, M.A., WILLIAMS, D.F., and JONES, D.S., 1983, Seasonal temperature-salinity

1184 changes and thermocline development in the mid-Atlantic Bight as recorded by the

1185 isotopic composition of bivalves: Geology, v. 11, p. 655-659, doi: 10.1130/0091-

1186 7613(1983)11<655:STCATD>2.0.CO;2.

1187 ATKINSON, L.P., 1977, Modes of Gulf Stream intrusions into the South Atlantic Bight

- 1188 shelf waters: Geophysical Research Letters, v. 4, p. 583-586, doi:
- 1189 10.1029/GL004i012p00583.
- 1190 ATKINSON, L.P., LEE, T.N., BLANTON, J.O., and CHANDLER, W.S., 1983, Climatology of
- 1191 southeastern United States shelf waters: Journal of Geophysical Research Oceans
- and Atmospheres, v. 88, p. 4705-4718, doi:10.1029/JC088iC08p04705.
- 1193 BARRERA, E., TEVESJ, M.J.S., and CARTER, J.G., 1990, Variations in oxygen and carbon
- 1194 isotopic compositions and microstructure of the shell of Adamussium colbecki
- 1195 (Bivalvia): PALAIOS, v. 5, p. 149-159, doi: 10.2307/3514811.

1196 BELDA, M., HOLTANOVÁ, E., HALENKA, T., and KALVOVÁ, J., 2014, Climate

- classification revisited: from K□ppen to Trewartha: Climate Research, v. 59, p. 1-13,
 doi: 10.3354/cr01204.
- 1199 BERGGREN, W.A., 1973, Pliocene time scale: Calibration of planktonic foraminiferal and
- 1200 calcareous nannoplankton zones: Nature, v. 243, p. 391-397, doi: 10.1038/243391a0.
- 1201 BERGGREN, W.A., KENT, D.V., and VAN COUVERING, J.A., 1985, Neogene
- 1202 geochronology and chronostratigraphy, in Snelling, N.J., ed., The Chronology of the
- 1203 Geological Record. Memoir 10: The Geological Society, London, UK, p. 211-260.

1204 BISBAL, G.A., 1995, The Southeast South American shelf large marine ecosystem:

- 1205 Evolution and components: Marine Policy, v. 19, p. 21-38, doi: 10.1016/0308-
- 1206 597X(95)92570-W.
- 1207 BLOW, W.H., 1969, Late middle Eocene to Recent planktonic foraminiferal
- 1208 biostratigraphy, in Bronniman, P., and Renz, H.H., eds., Proceedings of the First
- 1209 International Conference on Planktonic Microfossils: E.J. Brill, Leiden, The
- 1210 Netherlands, p. 199-422.
- 1211 BÖHM, E., HOPKINS, T.S., PIETRAFESA, L.J., and CHURCHILL, J.H., 2006, Continental
- 1212 slope sea level and flow variability induced by lateral movements of the Gulf Stream
- 1213 in the Middle Atlantic Bight: Progress in Oceanography, v. 70, p. 196-212, doi:
- 1214 10.1016/j.pocean.2006.07.005.
- 1215 BRICELJ, V.M., and SHUMWAY, S., 1991, Physiology: energy acquisition and utilization,
- 1216 in Shumway, S.E., ed., Scallops: Biology, Ecology and Aquaculture. Developments in
- 1217 Aquaculture and Fisheries Science 21: Elsevier, Amsterdam, The Netherlands and
- 1218 New York, p. 305-346.
- 1219 BUMPUS, D.F., 1973, A description of the circulation on the continental shelf of the east
- 1220 coast of the United States: Progress in Oceanography, v. 6, p. 111-157.

- 1221 CHUTE, A.S., WAINRIGHT, S.C., and HART, D.R., 2012, Timing of shell ring formation
- and patterns of shell growth in the sea scallop *Placopecten magellanicus* based on
- 1223 stable oxygen isotopes: Journal of Shellfish Research, v. 31, p. 649-662, doi:
- 1224 10.2983/035.031.0308.
- 1225 COLLING, A., ed., 2001. Ocean Circulation, 2nd edition: Butterworth Heinemann, Oxford,
- 1226 UK and New York, 286 p.
- 1227 CRAIG, H., 1961, Standard for reporting concentrations of deuterium and oxygen-18 in
- 1228 natural waters: Science, v. 33, p. 1833-1834.
- 1229 CRONIN, T.M., 1988. Evolution of marine climates of the U.S. Atlantic coast during the
- 1230 past four million years: Philosophical Transactions of the Royal Society of London B,
- 1231 v. 318, p. 661-678, doi: 10.1098/rstb.1988.0029.
- 1232 CRONIN, T.M., 1991, Pliocene shallow water paleoceanography of the North Atlantic
- 1233 Ocean based on marine ostracodes: Quaternary Science Reviews, v. 10, p. 175–188,
- 1234 doi: 10.1016/0277-3791(91)90017-O.
- 1235 CRONIN, T.M., and DOWSETT, H.J., 1996, Biotic and oceanographic response to the
- 1236 Pliocene closing of the Central American Isthmus, in Jackson, J.B.C., Budd, A.F., and
- 1237 Coates, A.G., eds., Evolution and Environment in Tropical America: University of
- 1238 Chicago Press, Chicago, Illinois, p. 76-104.
- 1239 CSANADY, G.T., and HAMILTON, P., 1988, Circulation of slopewater: Continental Shelf
- 1240 Research, v. 8, p. 565-624, doi: 10.1016/0278-4343(88)90068-4.
- 1241 DE SCHEPPER, S., HEAD, M.J., and LOUWYE, S., 2009, Pliocene dinoflagellate cyst
- 1242 stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal dock,
- 1243 Belgium: Geological Magazine, v. 146, p. 92-112, doi: 10.1017/S0016756808005438.
- 1244 DE SCHEPPER, S., GROENEVELD, J., NAAFS, B.D.A., VAN RENTERGHEM, C., HENNISSEN,
- 1245 J., HEAD, M.J., LOUWYE, S., and FABIAN, K., 2013, Northern hemisphere glaciation

- during the globally warm early Late Pliocene. PLoS ONE, vol. 8, no. e81508, 52.07
- 1247 KB, http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0081508.
- 1248 Checked August 2016.
- 1249 DICKIE, L. M., 1958, Effects of high temperatures on survival of the giant scallop:
- 1250 Journal of the Fisheries Research Board of Canada. v. 15, p. 1189-1121.
- 1251 DOWSETT, H.J., and WIGGS, L.B., 1992, Planktonic foraminiferal assemblage of the
- 1252 Yorktown Formation, Virginia: Micropaleontology, v. 38, p. 75-86, doi:
- 1253 10.2307/1485844.
- 1254 DOWSETT, H.J., CRONIN, T., POORE, R.Z., THOMPSON, R.S., WHATLEY, R.C., and
- 1255 WOOD, A.M., 1992, Micropaleontological evidence for increased meridional heat
- 1256 transport in the North Atlantic Ocean during the Pliocene: Science, v. 258, p. 1133-
- 1257 1135, doi: 10.1126/science.258.5085.1133.
- 1258 DOWSETT, H.J., ROBINSON, M.M., HAYWOOD, A.M., HILL, D.J., DOLAN, A.M., STOLL,
- 1259 D.K., CHAN, W.-L., ABE-OUCHI, A., CHANDLER, M.A., ROSENBLOOM, N.A., OTTO-
- 1260 BLIESNER, B.L., BRAGG, F.J, LUNT, D.J. FOLEY, K.M., and RIESSELMAN, C.R., 2012,
- 1261 Assessing confidence in Pliocene sea surface temperatures to evaluate predictive
- 1262 models: Nature Climate Change, v. 2, p. 365-371, doi: 10.1038/NCLIMATE1455.
- 1263 DOWSETT, H.J., FOLEY, K.M., STOLL, D.K., CHANDLER, M.A., SOHL, L.E., BENTSEN,
- 1264 M., Otto-Bliesner, B.L., Bragg, F.J., Chan, W.-L., Contoux, C., Dolan, A.M.,
- 1265 HAYWOOD, A.M., JONAS, J.A., JOST, A., KAMAE, Y., LOHMANN, G., LUNT, D.J.,
- 1266 NISANCIOGLU, K.H., ABE-OUCHI, A., RAMSTEIN, G., RIESSELMAN, C.R., ROBINSON,
- 1267 M.M., ROSENBLOOM, N.A., SALZMANN, U., STEPANEK, C., STROTHER, S.L., UEDA,
- 1268 H., YAN, Q., and ZHANG, Z., 2013, Sea surface temperature of the mid-Piacenzian
- 1269 ocean: a data-model comparison: Scientific Reports, vol. 3, no. 2013, 55.51 KB,
- 1270 http://www.nature.com/articles/srep02013. Checked August 2016.

- 1271 DOWSETT, H., DOLAN, A., ROWLEY, D., MOUCHA, R., FORTE, A.M., MITROVICA, J.X.,
- 1272 POUND, M., SALZMANN, U., ROBINSON, M., CHANDLER, M., FOLEY, K., and
- 1273 HAYWOOD, A., 2016, The PRISM4 (mid-Piacenzian) palaeoclimate reconstruction:
- 1274 Climate of the Past, v. 12, p. 1519-1538, doi: 10.5194/cp-12-1519-2016.
- 1275 ELLIOT, M., DEMENOCAL, P.B., LINSLEY, B.K., and HOWE, S.S., 2003, Environmental
- 1276 controls on the stable isotopic composition of *Mercenaria mercenaria*: Potential
- 1277 application to paleoenvironmental studies: Geochemistry, Geophysics, Geosystems,
- 1278 vol. 4, iss. 7, 247.66 KB,
- 1279 http://onlinelibrary.wiley.com.ezproxy.derby.ac.uk/doi/10.1029/2002GC000425/full.
- 1280 Checked August 2016.
- 1281 EPSTEIN, S., BUCHSBAUM, R., LOWENSTAM, H.A., and UREY, H.C., 1953, Revised
- 1282 carbonate-water isotopic temperature scale: Bulletin of the Geological Society of
- 1283 America, v. 64, p. 1315-1326.
- 1284 FEDOROV, A.V., BRIERLEY, C.M., LAWRENCE, K.T., LIU, Z., DEKENS, P.S., and RAVELO,
- 1285 A.C., 2013, Patterns and mechanisms of early Pliocene warmth: Nature, v. 496, p. 43-
- 1286 49, doi: 10.1038/nature12003.
- 1287 FIERSTINE, H.L., 2001, Analysis and new records of billfish (Teleostei: Perciformes:
- 1288 Istiophoridae) from the Yorktown Formation, early Pliocene of eastern North
- 1289 Carolina at Lee Creek Mine, in Ray, C.E., and Bohaska, D.J., eds., Geology and
- 1290 Paleontology of the Lee Creek Mine, North Carolina, III: Smithsonian Contributions
- 1291 to Paleobiology, no. 90, p. 21-70.
- 1292 GOEWERT, A.E., and SURGE, D., 2008, Seasonality and growth patterns using isotope
- sclerochronology in shells of the Pliocene scallop *Chesapecten madisonius*:
- 1294 GeoMarine Letters, v. 28, p. 327–338, doi: 10.1007/s00367-008-0113-7.

1295 GONFIANTINI, R., STICHLER, W., and ROZANSKI, K., 1995, Standards and

- 1296 intercomparison materials distributed by the International Atomic Energy Agency for
- 1297 stable isotope measurements, in International Atomic Energy Agency, Reference and
- 1298 Intercomparison Materials for Stable Isotopes of Light Elements: IAEA-TECDOC-
- 1299 825, Vienna, Austria, p. 13-29.
- 1300 GROSSMAN, E.L., and KU, T., 1986, Oxygen and carbon isotope fractionation in biogenic
- aragonite: Temperature effects: Chemical Geology (Isotope Geoscience Section), v.
- 1302 59, p. 59–74, doi: 10.1016/0009-2541(86)90044-6.
- 1303 HAVELES, A.W., and IVANY, L.C., 2010, Rapid growth explains large size of mollusks in
- the Eocene Gosport Sand, United States Gulf Coast: PALAIOS, v. 25, p. 550-564,
- 1305 doi: 10.2110/palo.2009.p09-148r.
- 1306 HAZEL, J.E., 1971, Paleoclimatology of the Yorktown Formation (upper Miocene and
- 1307 Lower Pliocene) of Virginia and North Carolina: Bulletin du Centre de Recherches de
- 1308 Pau, SNPA (Société Nationale de Pétroles d'Aquitaine), v. 5 (suppl.), p. 361-375.
- 1309 HAZEL, J.E., 1988, Determining late Neogene and Quaternary palaeoclimates and
- 1310 palaeotemperature regimes using ostracods, in De Deckker, P., Colin, J.P., and
- 1311 Peypouquet, J.P., eds., Ostracoda in the Earth Sciences: Elsevier, Amsterdam, The
- 1312 Netherlands, p. 89–101.
- 1313 HICKSON, J.A., JOHNSON, A.L.A., HEATON, T.H.E., and BALSON, P.S., 1999, The shell of
- 1314 the Queen Scallop Aequipecten opercularis (L.) as a promising tool for
- 1315 palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-
- 1316 isotope incorporation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 154, p.
- 1317 325-337, doi: 10.1016/S0031-0182(99)00120-0.

- 1318 HUDDLESTUN, P.F. 1988. A revision of the lithostratigraphic units of the coastal plain of
- 1319 Georgia, the Miocene through Holocene: Georgia Geological Survey Bulletin, v. 104,1320 p. 1-162.
- 1321 JOHNSON, A.L.A., LIQUORISH, M.N., and SHA, J., 2007. Variation in growth-rate and
- 1322 form of a Bathonian (Middle Jurassic) oyster in England, and its environmental
- 1323 implications: Palaeontology, v. 50, p. 1155-1173, doi: 10.1111/j.1475-
- 1324 4983.2007.00698.x.
- 1325 JOHNSON, A.L.A., HICKSON, J.A., BIRD, A., SCHÖNE, B.R., BALSON, P.S., HEATON,
- 1326 T.H.E., and WILLIAMS, M., 2009, Comparative sclerochronology of modern and mid-
- 1327 Pliocene (c. 3.5 Ma) Aequipecten opercularis (Mollusca, Bivalvia): an insight into
- 1328 past and future climate change in the north-east Atlantic region: Palaeogeography,
- 1329 Palaeoclimatology, Palaeoecology, v. 284, p. 164-179, doi:
- 1330 10.1016/j.palaeo.2009.09.022.
- 1331 KIRBY, M.X., 2000, Paleoecological differences between Tertiary and Quaternary
- 1332 *Crassostrea* oysters as revealed by stable isotope sclerochronology: PALAIOS, v. 15,
- 1333 p. 132-141, doi: 10.2307/3515499.
- 1334 KIRBY, M.X., 2001, Differences in growth rate and environment between Tertiary and
- 1335 Quaternary Crassostrea oysters: Paleobiology, v. 27, p. 84-103, doi: 10.1666/0094-
- 1336 8373(2001)027<0084:DIGRAE>2.0.CO;2.
- 1337 KNOWLES, T., TAYLOR, P.D., WILLIAMS, M., HAYWOOD, A.M., and OKAMURA, B.,
- 1338 2009, Pliocene seasonality across the North Atlantic inferred from cheilostome
- bryozoans. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 77, p. 226-235,
- 1340 doi: 10.1016/j.palaeo.2009.04.006.
- 1341 KNOWLES, T., LENG, M.J., WILLIAMS, M., TAYLOR, P.D., SLOANE, H.J., and OKAMURA,
- 1342 B., 2010, Interpreting seawater temperature range using oxygen isotopes and zooid

- 1343 size variation in *Pentapora foliacea* (Bryozoa): Marine Biology, v. 157, p. 1171-1180,
- 1344 doi: 10.1007/s00227-010-1397-5.

1345 KRANTZ, D.E., 1990, Mollusk-isotope records of Plio-Pleistocene marine paleoclimate,

- 1346 U.S. Middle Atlantic Coastal Plain: PALAIOS, v. 5, p. 317–335, doi:
- 1347 10.2307/3514888.
- 1348 KRANTZ, D.E., 1991, A chronology of Pliocene sea-level fluctuations: The U.S. Middle
- 1349 Atlantic Coastal Plain record: Quaternary Science Reviews, v. 10, p. 163-174, doi:
- 1350 10.1016/0277-3791(91)90016-N.
- 1351 KRANTZ, D.E., JONES, D.S., and WILLIAMS, D.F., 1984, Growth rates of the sea scallop,
- 1352 *Placopecten magellanicus*, determined from the ${}^{18}O/{}^{16}O$ record in shell calcite:
- 1353 Biological Bulletin, v. 167, p. 186-199, doi: 10.2307/1541347.
- 1354 KRANTZ, D.E., KRONICK, A.T., and WILLIAMS, D.F., 1988, A model for interpreting
- 1355 continental-shelf hydrographic processes from the stable isotope and
- 1356 cadmium:calcium profiles of scallop shells: Palaeogeography, Palaeoclimatology,
- 1357 Palaeoecology, v. 64, 123-140, doi: 10.1016/0031-0182(88)90002-8.
- 1358 KRANTZ, D.E., WILLIAMS, D.F., and JONES, D.S., 1987, Ecological and
- 1359 paleoenvironmental information using stable isotope profiles from living and fossil
- 1360 molluscs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 58, p. 249-266,
- 1361 doi: 10.1016/0031-0182(87)90064-2.
- 1362 LISIECKI, L.E., and RAYMO, M.E., 2005, A Pliocene-Pleistocene stack of 57 globally
- 1363 distributed benthic δ^{18} O records: Paleoceanography, vol. 20, no. PA1003, 322.11 KB,
- 1364 http://onlinelibrary.wiley.com.ezproxy.derby.ac.uk/doi/10.1029/2004PA001071/full.
- 1365 Checked December 2016.
- 1366 MALLINSON, D., RIGGS, S., THIELER, E.R., CULVER, S., FARRELL, K., FOSTER, D.S.,
- 1367 CORBETT, D.R., HORTON, B., and WEHMILLER, J.F., 2005, Late Neogene and

- 1368 Quaternary evolution of the northern Albemarle Embayment (mid-Atlantic
- 1369 continental margin, USA): Marine Geology, v. 217, p. 97-117, doi:
- 1370 10.1016/j.margeo.2005.02.030.
- 1371 MARTÍNEZ-BOTI, M.A., FOSTER, G.L., CHALK, T.B., ROHLING, E.J., SEXTON, P.F., LUNT,
- 1372 D.J., PANCOST, R.D., BADGER, M.P.S., and SCHMIDT, D.N., 2015, Plio-Pleistocene
- 1373 climate sensitivity evaluated using high-resolution CO₂ records: Nature, v. 518, p. 49-54, doi:
- 1374 10.1038/nature14954.
- 1375 MASSON-DELMOTTE, V., SCHULZ, M., ABE-OUCHI, A., BEER, J., GANOPOLSKI, A.,
- 1376 GONZÁLEZ ROUCO, J.F., JANSEN, E., LAMBECK, K., LUTERBACHER, J., NAISH, T.,
- 1377 OSBORN, T., OTTO-BLIESNER, B., QUINN, T., RAMESH, R., ROJAS, M., SHAO, X., and
- 1378 TIMMERMANN, A., 2013, Information from paleoclimate archives, in Stocker, T.F.,
- 1379 Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y.,
- 1380 Bex, V., and Midgley, P.M., eds., Climate Change 2013: The Physical Science Basis.
- 1381 Contribution of Working Group I to the Fifth Assessment Report of the
- 1382 Intergovernmental Panel on Climate Change: Cambridge University Press,
- 1383 Cambridge, UK and New York, p. 383-464.
- 1384 MCKINNEY, C.R., MCCREA, J.M., EPSTEIN, S., ALLEN, H.A., and UREY, H.C., 1950,
- 1385 Improvements in mass spectrometers for the measurement of small differences in
- 1386 isotope abundance ratios: Review of Scientific Instruments, v. 21, p. 724-730.
- 1387 NDBC (National Data Buoy Center, US Department of Commerce, National Oceanic
- 1388 and Atmospheric Administration), undated, Southeast USA (including Chesapeake
- 1389 Bay) Historical Marine Data, http://www.ndbc.noaa.gov/maps/southeast_hist.shtml.
- 1390 Checked August 2016.

1391 OKAMURA, B., O'DEA, A., and KNOWLES, T., 2011, Bryozoan growth and environmental

reconstruction by zooid size variation: Marine Ecology Progress Series, v. 430, p.

1393 133-146, doi: 10.3354/meps08965.

1394 OLSON, S.L., and RASMUSSEN, P.C., 2001, Miocene and Pliocene birds from the Lee

1395 Creek Mine, North Carolina, in Ray, C.E., and Bohaska, D.J., eds., Geology and

1396 Paleontology of the Lee Creek Mine, North Carolina, III: Smithsonian Contributions

1397 to Paleobiology, no. 90, p. 233-365.

1398 OWEN, R., KENNEDY, H., and RICHARDSON, C., 2002a, Isotopic partitioning between

1399 scallop shell calcite and seawater: Effect of shell growth rate: Geochimica et

1400 Cosmochimica Acta v. 66, p. 1727-1737, doi: 10.1016/S0016-7037(01)00882-1.

1401 OWEN, R., KENNEDY, H., and RICHARDSON, C., 2002b, Experimental investigation into

1402 partitioning of stable isotopes between scallop (*Pecten maximus*) shell calcite and sea

1403 water: Palaeogeography, Palaeclimatology, Palaeoecology, v. 185, p. 163-174, doi:

1404 10.1016/S0031-0182(02)00297-3.

1405 PAZZAGLIA, F.J., 1993, Stratigraphy, petrography, and correlation of late Cenozoic

1406 middle Atlantic Coastal Plain deposits: Implications for late-stage passive-margin

1407 geologic evolution: Geological Society of America Bulletin, v. 105, p. 1617-1634,

1408 doi: 10.1130/0016-7606(1993)105<1617:SPACOL>2.3.CO;2.

1409 PIETRAFESA, L.J., MORRISON, J.M., MCCANN, M.P., CHURCHILL, J., BÖHM, E., and

1410 HOUGHTON, R.W., 1994, Water mass linkages between the Middle and South Atlantic

1411 Bights: Deep Sea Research, Part II-Topical Studies in Oceanography, v. 41, p. 365–

1412 389, doi: 10.1016/0967-0645(94)90028-0.

1413 PINET, P.R., and POPENOE, P., 1985, A scenario of Mesozoic-Cenozoic ocean circulation

1414 over the Blake Plateau and its environs: Geological Society of America Bulletin, v.

1415 96, p. 618-626, doi: 10.1130/0016-7606(1985)96<618:ASOMOC>2.0.CO;2.

1416 PURDY, R.W., SCHNEIDER, V.P., APPLEGATE, S.P., MCLELLAN, J.H., MEYER, R.L., and

- 1417 SLAUGHTER, B.H., 2001, The Neogene sharks, rays, and bony fishes from the Lee
- 1418 Creek Mine, Aurora, North Carolina, in Ray, C.E., and Bohaska, D.J., eds., Geology
- 1419 and Paleontology of the Lee Creek Mine, North Carolina, III: Smithsonian
- 1420 Contributions to Paleobiology, no. 90, p. 71-202.
- 1421 RIGGS, S.R., and BELKNAP, D.F., 1988, Upper Cenozoic processes and environments of
- 1422 continental margin sedimentation: eastern United States, *in* Sheridan, R.E. and Grow,
- 1423 J.A., eds., The Geology of North America, v. I-2, The Atlantic Continental Margin,

1424 U.S.: The Geological Society of America, Boulder, Colorado, p. 131-176.

1425 RIGGS, S., SNYDER, S., AMES, D., and STILLE, P., 2000, Chronostratigraphy of Upper

1426 Cenozoic phosphorites on the North Carolina continental margin and the

1427 oceanographic implications for phosphogenesis, in Glenn, C.R, Prév t-Lucas, L., and

1428 Lucas, J., eds., Marine Authigenesis: From Global to Microbial: Society of Economic

1429 Paleontologists and Mineralogists, Special Publication, No. 66, p. 369-385.

1430 ROWLEY, D.B., FORTE, A.M., MOUCHA, R., MITROVICA, J.X., SIMMONS, N.A., and

- 1431 GRAND, S.P., 2013, Dynamic topography change of the eastern United States since
- 1432 three million years ago: Science, v. 340, p. 1560-1563, doi: 10.1126/science.1229180.

1433 SCHMIDT, D.N., 2007. The closure history of the Central American Seaway: evidence

- 1434 from isotopes and fossils to models and molecules, in Williams, M., Haywood, A.M.,
- 1435 Gregory, F.J., and Schmidt, D.N., eds., Deep Time Perspectives on Climate Change:
- 1436 Marrying the Signal from Computer Models and Biological Proxies. The
- 1437 Micropalaeontological Society, Special Publications: The Geological Society,
- 1438 London, UK, p. 427-442.

1439 SCHÖNE, B.R., and GILLIKIN, D.P., 2013, Unraveling environmental histories from

1440 skeletal diaries – Advances in sclerochronology: Palaeogeography,

1441 Palaeoclimatology, Palaeoecology, v. 373, p. 1-5, doi: 10.1016/j.palaeo.2012.11.026.

1442 SNYDER, S.W., MAUGER, L.L., and AMES, D., 2001. Benthic foraminifera and

1443 paleoecology of the Pliocene Yorktown and Chowan River Formations, Lee Creek

1444 Mine, North Carolina, USA: Journal of Foraminiferal Research, v. 31, p. 244-274,

1445 doi: 10.2113/31.3.244.

1446 SWIFT, D.J.P., HAN, G., and VINCENT, C.E., 1986, Fluid processes and sea floor response

1447 on a modern storm-dominated shelf: middle Atlantic shelf of North America. Part I,

1448 the storm current regime, in Knight, R.J., and McLean, J.R., eds., Shelf Sands and

1449 Sandstone Reservoirs: Canadian Society of Petroleum Geologists, Memoir 11, p. 99-

1450 119.

1451 TAN, F.C., CAI, D., and RODDICK, D.L., 1988. Oxygen isotope studies on sea scallops,

1452 Placopecten magellanicus, from Browns Bank, Nova Scotia: Canadian Journal of

1453 Fisheries and Aquatic Sciences, v. 45, p. 1378-1386.

1454 THÉBAULT, J., and CHAUVAUD, L., 2013, Li/Ca enrichments in great scallop shells

1455 (*Pecten maximus*) and their relationship with phytoplankton blooms.

1456 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 373, p. 108-122, doi:

1457 10.1016/j.palaeo.2011.12.014.

1458 TUCKER, M.E., and WRIGHT, V.P., 1990, Carbonate Sedimentology: Blackwell, Oxford,1459 482 p.

1460 VALENTINE, A., JOHNSON, A.L.A., LENG, M.J., SLOANE, H.J., and BALSON, P.S., 2011,

1461 Isotopic evidence of cool winter conditions in the mid-Piacenzian (Pliocene) of the

southern North Sea Basin: Palaeogeography, Palaeoclimatology, Palaeoecology, v.

1463 309, p. 9-16, doi: 10.1016/j.palaeo.2011.05.015.

- 1464 WANG, T., SURGE, D., and LEES, J.M., 2015, ClamR: A statistical evaluation of isotopic
- 1465 and temperature records in sclerochronologic studies: Palaeogeography,
- 1466 Palaeoclimatology, Palaeoecology, v. 437, 26-32, doi: 10.1016/j.palaeo.2015.07.008.
- 1467 WARD, L.W., 1989, Tertiary stratigraphy of the central Virginia Coastal Plain, in Harris,
- 1468 W.B., Hurst, V.J., Nystrom, P.G., Jr., and Ward, L.W., Upper Cretaceous and
- 1469 Cenozoic Geology of the Southeastern Atlantic Coastal Plain. Field Trip Guidebook
- 1470 T172: 28th International Geological Congress, Washington, D.C., p. 63-90.
- 1471 WARD, L.W., and BLACKWELDER, B.W., 1980, Stratigraphic revision of upper Miocene
- 1472 and lower Pliocene beds of the Chesapeake Group, Middle Atlantic Coastal Plain:
- 1473 U.S. Geological Survey Bulletin, v.1482-D, p. 1-61.
- 1474 WARD, L.W., BAILEY R.H., and CARTER, J.G., 1991, Pliocene and early Pleistocene
- stratigraphy, depositional history, and molluscan paleobiogeography of the Coastal
- 1476 Plain, *in* Horton, J.W., Jr., and Zullo, V.A., eds., The Geology of the Carolinas:
- 1477 University of Tennessee Press, Knoxville, Tennessee, p. 274–289.
- 1478 WILLIAMS, M., HAYWOOD, A.M., HARPER, E.M., JOHNSON, A.L.A., KNOWLES, T.,
- 1479 LENG, M.J., LUNT, D.J., OKAMURA, B., TAYLOR, P.D., and ZALAZIEWICZ, J., 2009,
- 1480 Pliocene climate and seasonality in North Atlantic shelf seas: Philosophical
- 1481 Transactions of the Royal Society of London, Series A, v. 367, p. 85–108, doi:
- 1482 10.1098/rsta.2008.0224.
- 1483 WINKELSTERN, I., SURGE, D., and HUDLEY, J.W., 2013, Multiproxy sclerochronological
- 1484 evidence for Plio-Pleistocene regional warmth: United States Mid-Atlantic Coastal
- 1485 Plain: PALAIOS, v. 28, p. 649-660, doi: 10.2110/palo.2013.p13-010r.
- 1486 YAMAMOTO, G., 1953, Ecology of the scallop, Pecten yessoensis Jay: Science Reports of
- 1487 the Tohoku University, 4th Series (Biology), v. 20, p. 11-32.

1488 ZARRA, L., 1989, Sequence stratigraphy and foraminiferal biostratigraphy for selected

1489 wells in the Albemarle embayment, North Carolina: North Carolina Geological

1490 Survey, Open-File Report 89-5, p. 1-48.

1491 ZHANG, Z.-S., NISANCIOGLU, K.H., CHANDLER, M.A., HAYWOOD, A.M., OTTO-

- 1492 BLIESNER, B.L., RAMSTEIN, G., STEPANEK, C., ABE-OUCHI, A., CHAN, W.-L., BRAGG,
- 1493 F.J., CONTOUX, C., DOLAN, A.M., HILL, D.J., JOST, A., KAMAE, Y., LOHMANN, G.,
- 1494 LUNT, D.J., ROSENBLOOM, N.A., SOHL, L.E., and UEDA, H., 2013, Mid-pliocene

1495 Atlantic Meridional Overturning Circulation not unlike modern: Climate of the Past,

1496 v. 9, p. 1495-1504, doi: 10.5194/cp-9-1495-2013.

- 1497
- 1498 FIGURE CAPTIONS
- 1499

1500 FIG. 1.—Stratigraphy of the Yorktown Formation and correlative formations in the

1501 southern North Sea Basin, based on Krantz (1991), Williams et al. (2009), De

1502

Schepper et al. (2009), Winkelstern et al. (2013) and discussion herein (ages in Ma;

1503 MPWP = Mid-Pliocene/Piacenzian Warm Period). Note that Winkelstern et al. (2013)

1504 placed the Moore House Member after the MPWP (3.29-2.97 Ma) on the basis of Sr

isotope dating but Krantz (1991) related it to a phase of warming and global ice-1505

volume reduction identified in the deep-ocean δ^{18} O record at 3.1-3.0 Ma. Williams et 1506

1507 al. (2009) placed the Rushmere Member before the MPWP but since it and the

1508 succeeding Morgarts Beach Member are representative of the same major

1509 transgression we consider, like Winkelstern et al. (2013), that at least part of the

- 1510 Rushmere Member must fall within the MPWP. Asterisks indicate units for which
- 1511 there are existing isotopic paleotemperature determinations (Krantz, 1990; Goewert

and Surge, 2008; Johnson et al., 2009; Williams et al., 2009; Valentine et al., 2011; Winkelstern et al. 2013).

1515	FIG. 2.—Geography and Pliocene paleogeography of study area, and sample sites. A)
1516	Surface currents adjacent to the eastern US seaboard at present, principally based on
1517	Cronin (1988), Csanady and Hamilton (1988) and Böhm et al. (2006). Thick red
1518	arrow = Gulf Stream (strong, warm); thin red arrow = Carolina Coastal Current
1519	(weak, warm); thin blue arrows = (left) Virginia Coastal Current (weak, cool) and
1520	(right) 'slope current' (weak, cool); \Box 200m contour included to show position of
1521	shelf edge. B) Enlargement of area indicated by box in A, with positions of Sunken
1522	Meadow (brown), Rushmere/Morgarts Beach (mauve) and Moore House (green)
1523	shorelines according to Ward et al. (1991). Numbers indicate collection locations
1524	referred to herein (coloured to match the relevant shoreline): $1 =$ Grove Wharf; $2 =$
1525	Claremont; 3 = Lee Creek Mine, Aurora; 4 = Sunken Meadow Creek; 5 = Kingsmill;
1526	6 = Fort Boykin, Burwell Bay; 7 = Lieutenant Run, Petersburg; 8 = Riddick Pit,
1527	Chuckatuck; 9 = Yadkin Pit, Deep Creek. Note that location 2 is actually closer to
1528	Sunken Meadow Creek than location 4. Locations 1, 2, 3, 4, 5 and 7 correspond to
1529	localities 31, 7, 49, 42, 81 and 43, respectively, of Ward and Blackwelder (1980).
1530	Location 6 is midway between localities 55 and 61 of Ward and Blackwelder (1980).
1531	Goewert and Surge (2008) and Ward (1989) provide sedimentary logs for locations 8
1532	and 9, respectively.
1533	
1534	FIG. 3.—Morphology of <i>Placopecten clintonius</i> . A) Specimen NC1, showing the

positions of major (filled triangles) and moderate (open triangles) growth breaks

indicated in Figs. 4E and 6E. B) Microgrowth increments in the mid-ventral sector of

specimen VA2 (filled triangle identifies the major growth break at 68 mm shell height
indicated in Figs. 4B and 6B). Scale bars = 10 mm.

1539

1540	FIG. 4.—Oxygen isotope (red line), carbon isotope (black line) and microgrowth
1541	increment (blue line) data from Placopecten clintonius specimens from the Sunken
1542	Meadow Member of Virginia (A-D) and North Carolina (E-H). Isotopic axis reversed
1543	so that lower values of $\delta^{18}O$ (representative of higher temperatures) plot towards the
1544	top. Thin, dashed blue lines = raw increment data; thicker, continuous blue lines =
1545	five-point averages. Filled blue triangles = major growth breaks; open blue triangles =
1546	moderate growth breaks (indicated by a less pronounced 'step' in the shell profile).
1547	S1, S2 and W1, W2 refer respectively to summers and winters as identified from
1548	the δ^{18} O profiles. Stars = anomalous values which are excluded from subsequent
1549	analysis (see text for explanation). Exclusion of the two anomalous values in C has
1550	the effect of making the immediately preceding value representative of S2 (see Fig.
1551	6C for clarification).
1552	
1553	FIG. 5.—Patterns of variation in microgrowth increment size in Aequipecten
1554	opercularis. A) Three individuals (blue, green and yellow lines) from a seasonally
1555	stratified setting (50 m depth) in the Gulf of Tunis, Mediterranean Sea. B) Three
1556	individuals (blue, green and yellow lines) from the continuously well-mixed waters of

1557 the southern North Sea. Plots are five-point averages of the raw data, which has been

1558 excluded for purposes of clarity. Red lines = δ^{18} O profiles from the specimens

1559 providing the blue increment profiles in A and B (data from Johnson et al., 2009, figs.

1560 5, 4C, respectively). Profiles of δ^{18} O for the specimens providing the green and

1561 yellow increment profiles in B are given in Johnson et al. (2009, fig. 4B, 4D,

1562 respectively) but are not available for the specimens providing the green and yellow 1563 profiles in A. The scales of the axes are the same as those of Figure 4 to facilitate 1564 comparison (note, however, that the bounds of the increment height axes differ). Specimens represented in A are: blue increment profile (and δ^{18} O profile), Muséum 1565 1566 National d'Histoire Naturelle, Paris (MNHN) IM-2008-1537; green increment profile, 1567 MNHN IM-2008-1539; yellow increment profile, MNHN IM-2008-1538. Specimens represented in B are: blue increment profile (and δ^{18} O profile). British Geological 1568 1569 Survey (BGS), Zt 9955; green increment profile, BGS Zt 9953; yellow increment 1570 profile, BGS Zt 9957. 1571

1572 FIG. 6.—Temperature profiles from *Placopecten clintonius* specimens from the

1573 Sunken Meadow Member of Virginia (A-D) and North Carolina (E-H), calculated

1574 using the data in Figure 4 (anomalous points excluded), Equation 1 and values for

1575 $\delta^{18}O_{seawater}$ of $\Box 0.4\%$, +0.7‰ and +1.1‰ (respectively, lower, middle and upper lines

1576 in each plot). The preferred profiles ($\delta^{18}O_{seawater} = +0.7\%$) are indicated by a thicker

1577 line. Symbols indicating seasonal assignment (S1, S2...; W1, W2...) and growth

1578 breaks (filled and open blue triangles) are explained in Figure 4. Symbols for growth

1579 breaks beyond the ventral end of the temperature profile have been excluded from H.

1580

1581 FIG. 7.—False colour satellite images of the Atlantic Ocean off the coast of

1582 southeastern Canada and the northeastern US (Gulf of Maine to Cape Hatteras),

1583 showing geographic variation in environmental parameters of surface waters. A)

1584 Temperature. B) Concentration of phytoplankton pigments. Data collected on 14 June

1585 1979 by the Coastal Zone Color Scanner on the Nimbus-7 satellite. In A the warmest

1586 water (about 25 °C) is shown by orange/red and the coldest (about 6 °C) by dark blue,

1587	with water of intermediate temperature shown by yellow and green; in B the highest
1588	concentrations of phytoplankton pigment are shown by dark brown and the lowest by
1589	blue, with intermediate concentrations shown by yellow and green (land is light
1590	brown and clouds are white or beige). Note the low concentration of phytoplankton
1591	pigments (implied low primary productivity) in warm, Gulf Stream water (including a
1592	warm-core eddy east of the Delmarva Peninsula) and the higher concentration of
1593	phytoplankton pigments typical of the cooler water nearer the shelf (Slope Sea). The
1594	very high concentration of phytoplankton pigments close to much of the coastline is a
1595	reflection of nutrient input from the land, itself strongly influenced by human
1596	activities. Adapted from Colling et al. (2001, fig. 4.31), with permission from
1597	Elsevier.

1599 FIG. 8.—Envisaged disposition of currents in the area shown in Figure 2B during 1600 deposition of the basal Sunken Meadow Member. Brown line = position of shoreline 1601 according to Ward et al. (1991); position of shelf edge is that of present $\Box 200 \text{ m}$ 1602 contour. The greater southward penetration of cool currents (medium thickness blue 1603 arrows) on shelf and slope compared to now (Fig. 2A) is explained in the text, as are 1604 the intrusions of slope water (thin blue arrows) onto the shelf. Arguably, shallows in 1605 the region of the Mid-Carolina Platform High (see text) may have prevented cool-1606 current flow on the shelf as far south as is shown (i.e. into southernmost North 1607 Carolina). The point of meeting and eastward deflection of the slope current and Gulf 1608 Stream (thick red arrow) may have been farther south than shown. A similar 1609 disposition of currents is envisaged during deposition of most of the higher Yorktown 1610 Formation, but at times the Gulf Stream may have been more vigorous, penetrating 1611 farther north and influencing marine climate on the shelf (see text).

1612	
1613	TABLE CAPTIONS
1614	
1615	TABLE 1.—Mean winter minimum and mean summer maximum sea-surface
1616	temperatures, and seasonal ranges, for selected coastal to outer shelf locations up to
1617	approximately three degrees of latitude north and south of Cape Hatteras. Locations
1618	listed in order of decreasing latitude. Descriptions of shelf settings refer to relative
1619	position between the coast and shelf break, not water depth. Minimum and maximum
1620	temperatures were read from graphs of mean monthly temperature supplied by the
1621	National Data Buoy Center (NDBC, undated) and are accurate to the nearest whole
1622	number.
1623	
1624	TABLE 2.—Calculated temperatures (°C) for maximum (winter) and minimum
1625	(summer) values of $\delta^{18}O_{calcite}(\delta^{18}O_c; \infty)$ in scallop specimens from the Yorktown
1626	Formation, using selected values for $\delta^{18}O_{seawater}$ ($\delta^{18}O_{sw}$; ‰). ^a = specimens of
1627	<i>Placopecten clintonius</i> for which raw data are presented herein; ^b = specimens of
1628	Chesapecten jeffersonius (CJ), C. madisonius (CM) and Carolinapecten eboreus (EB)
1629	for which raw data are given by Krantz (1990), and c = specimens of <i>C. madisonius</i>
1630	(CMAD) for which raw data are given by Goewert and Surge (2008). The δ^{18} O values
1631	for Chesapecten and Carolinapecten are the extreme maxima and minima from the
1632	shells concerned as given in Krantz (1990, table 3) and Goewert and Surge (2008,
1633	table 2). These values have been assigned to a particular winter or summer by
1634	reference to the full δ^{18} O profiles supplied by these authors. The Summer 1 values
1635	from NC2, SM-CJ1 and LTRUN-EB are considered to be from incomplete summer
1636	records and have been handled accordingly (see text). The Summer 2 value from

- 1637 CMAD-4 has been corrected to agree with the corresponding profile (Goewert and
- 1638 Surge, 2008, fig. 3b).

Station	Setting	Latitude and	Period of	Minimum	Maximum	Range in	
code	Setting	longitude	records	temp. (°C)	temp. (°C)	temp. (°C)	
44009	Inner shelf	38.5° N 74.7° W	1984-2008	5	23	18	
OCIM2	Shore	38.3° N 75.1° W	2008-2012	5	24	19	
KPTV2	Shore	37.2° N 76.0° W	2005-2012	5	26	21	
CBBV2	Estuary	37.0° N 76.1° W	2005-2012	6	26	20	
CHLV2	Inner shelf	36.9° N 75.7° W	1984-2005	6	25	19	
44014	Outer shelf	36.6° N 74.8° W	1990-2008	9	25	16	
44006	Mid-shelf	36.3° N 75.4° W	1980-1995	6	25	19	
DUCN7	Shore	36.2° N 75.7° W	1997-2008	7	24	17	
ORIN7	Shore	35.8° N 75.5° W	2005-2012	8	27	19	
CAPE HATTERAS		35.3° N 75.5° W					
DSLN7	Mid-shelf	35.2° N 75.3° W	1984-2001	15	27	12	
41025	Mid-shelf	35.0° N 75.4° W	2003-2008	16	28	12	
JMPN7	Shore	34.2° N 77.8° W	2006-2012	11	28	17	
41036	Mid-shelf	34.2° N 76.9° W	2006-2008	15	28	13	
MROS1	Shore	33.7° N 78.9° W	2005-2012	10	29	19	
FPSN7	Mid-shelf	33.5° N 77.6° W	1984-1996	17	28	11	
41013	Mid-shelf	33.4° N 77.7° W	2003-2008	17	28	11	
SCIS1	Shore	32.9° N 79.7° W	2006-2008	13	29	16	
41004	Inner shelf	32.5° N 79.1° W	1978-2008	18	28	10	
FRPS1	Shore	32.3° N 80.5° W	2006-2008	12	29	17	

Member and shell ID	Winter 1				Winter 2					Sum	mer 1		Summer 2			
	$\delta^{18}O_c$	Temperature			- 18 -	Temperature			218 0	Temperature			- 18 -	Temperature		
		$\delta^{18}O_{sw}$ $\Box 0.4$	$\delta^{18}O_{sw}$ +0.7	$\delta^{18}O_{sw}$ +1.1	δ ¹ °O _c	$\delta^{18}O_{sw}$ $\Box 0.4$	$\begin{array}{c} \delta^{18}O_{sw} \\ +0.7 \end{array}$	$\delta^{18}O_{sw}$ +1.1	δ ^{ro} O _c	$\delta^{18}O_{sw}$ $\Box 0.4$	$\begin{array}{c} \delta^{18}O_{sw} \\ +0.7 \end{array}$	$\delta^{18}O_{sw}$ +1.1	δ ¹⁰ O _c	$\delta^{18}O_{sw}$ $\Box 0.4$	$\delta^{18}O_{sw}$ +0.7	$\delta^{18}O_{sw}$ +1.1
Sunken Meadow								1			1					
VA1 ^a	+2.73	3.5	7.3	8.8	-	-	-	-	+0.07	13.4	18.1	19.9	+0.57	11.4	15.9	17.6
VA2 ^a	+2.69	3.6	7.5	9.0	-	-	-	-	□0.03	13.8	18.5	20.3	+0.08	13.4	18.0	19.8
VA3 ^a	+2.34	4.8	8.8	10.3	+2.15	5.5	9.5	11.1	□0.13	14.2	18.9	20.7	+0.62	11.2	15.7	17.4
VA4 ^a	+2.00	6.0	10.1	11.7	+1.80	6.7	10.9	12.5	+0.23	12.8	17.4	19.1	-	-	-	-
NC1 ^a	+2.55	4.1	8.0	9.5	+1.91	6.3	10.4	12.0	+0.10	13.3	17.9	19.7	+0.34	12.3	16.9	18.7
NC2 ^a	+2.47	4.4	8.3	9.8	+2.01	6.0	10.1	11.7	+0.98	9.8	14.2	15.9	+0.67	11.0	15.5	17.2
NC3 ^a	+1.90	6.4	10.5	12.0	+2.25	5.1	9.1	10.7	+0.56	11.4	15.9	17.7	+0.32	12.4	17.0	18.7
NC4 ^a	+2.33	4.9	8.9	10.4	-	-	-	-	+0.69	10.9	15.4	17.1	-	-	-	-
KING-CJ ^b	-	-	-	-	+1.5	7.8	12.1	13.7	□1.2	18.8	23.9	25.8	-	-	-	-
SM-CJ1 ^b	+1.9	6.4	10.5	12.1	-	-	-	-	□0.3	14.9	19.7	21.5	-	-	-	-
SM-CJ2 ^b	-	-	-	-	+1.6	7.5	11.7	13.3	□0.8	17.1	22.0	23.9	-	-	-	-

Rushmere																
BB-CM ^b	+1.6	7.5	11.7	13.3	-	-	-	-	-	-	-	-	□1.9	22.0	27.3	29.3
Morgarts Beach																
LTRUN- EB ^b	+1.8	6.7	10.9	12.5	-	-	-	-	+0.3	12.5	17.1	18.8	-	-	-	-
Moore House																
YAD-CM1 ^b	+1.6	7.5	11.7	13.3	-	-	-	-	□1.9	22.0	27.3	29.3	-	-	-	-
YAD-CM2 ^b	+1.3	8.6	12.9	14.5	-	-	-	-	□2.0	22.5	27.8	29.8	-	-	-	-
YAD-EB1 ^b	+1.3	8.6	12.9	14.5	-	-	-	-	□1.4	19.7	24.8	26.8	-	-	-	-
CMAD-2 ^c	+2.7	3.6	7.5	8.9	-	-	-	-	□1.4	19.7	24.8	26.8	-	-	-	-
CMAD-4 ^c	+2.5	4.3	8.2	9.7	-	-	-	-	-	-	-	-	□1.5	20.2	25.3	27.3
CMAD-5 ^c	+2.2	5.3	9.3	10.9	-	-	-	-	-	-	-	-	□1.1	18.4	23.4	25.3