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Improving plant productivity is an important aim for metabolic
engineering. There are few comprehensive methods that quanti-
tatively describe leaf metabolism, although such information
would be valuable for increasing photosynthetic capacity, enhanc-
ing biomass production, and rerouting carbon flux toward desir-
able end products. Isotopically nonstationary metabolic flux analysis
(INST-MFA) has been previously applied to map carbon fluxes in
photoautotrophic bacteria, which involves model-based regression
of transient 13C-labeling patterns of intracellular metabolites. How-
ever, experimental and computational difficulties have hindered its
application to terrestrial plant systems. We performed in vivo iso-
topic labeling of Arabidopsis thaliana rosettes with 13CO2 and esti-
mated fluxes throughout leaf photosynthetic metabolism by INST-
MFA. Plants grown at 200 μmol m-2s−1 light were compared with
plants acclimated for 9 d at an irradiance of 500 μmol·m−2·s−1. Ap-
proximately 1,400 independent mass isotopomer measurements
obtained from analysis of 37 metabolite fragment ions were
regressed to estimate 136 total fluxes (54 free fluxes) under each
condition. The results provide a comprehensive description of changes
in carbon partitioning and overall photosynthetic flux after long-
term developmental acclimation of leaves to high light. Despite
a doubling in the carboxylation rate, the photorespiratory flux in-
creased from 17 to 28% of net CO2 assimilation with high-light
acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights
the potential of 13C INST-MFA to describe emergent flux phenotypes
that respond to environmental conditions or plant physiology and
cannot be obtained by other complementary approaches.

isotopomer modeling | metabolic flux analysis | photosynthesis |
13C-labeling | primary metabolism

Photosynthetic organisms assimilate more than 100 billion
tons of carbon, ∼15% of the atmospheric total, each year and

generate organic compounds for food and renewable chemicals
(1). However, photosynthesis is a complex process that responds
to heterotrophic tissue demands and environmental stimuli such
as drought, temperature, and light intensity (2, 3). The light in-
cident on the plant varies with intensities in the range of 0–2,000
μmol photons·m−2·s−1 and can change dramatically because of
passing clouds, shading, and the position of the sun. Thus, plants
adjust light harvesting and carbon assimilation steps to accom-
modate many fluctuations, resulting in changes in plant mor-
phology, physiology, and metabolism (4).
For 95% of all terrestrial plants (i.e., C3 plants), the reductive

pentose phosphate (Calvin–Benson–Bassham, or CBB) cycle di-
rectly links light and dark reactions and sustains anabolic activities
(5). RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase)
plays a central role in the cycle by carboxylating ribulose-1,5-
bisphosphate (RUBP) with CO2 to form two 3-phosphoglycerate
(3PGA) molecules. The other 10 enzymes in the CBB cycle re-
generate the RUBP substrate to repeat this process. RuBisCO has
a low turnover rate (∼3/s; ref. 6) and also performs a competitive
oxygenation side reaction that limits carboxylation activity. The
binding of RuBisCO to oxygen produces 2-phosphoglycolate

(2PG), and additional enzymatic steps, known collectively as
photorespiration, are required to convert 2PG into 3PGA.
Rectifying the oxygenase-based production of 2PG, which would
otherwise be toxic, requires CO2 release and consumes energy
through photorespiration, thereby expending up to 50% of all
fixed carbon (7) to maintain plant health (8). Researchers have
attempted to augment RuBisCO’s specificity and throughput
(9), introduce nonnative forms of RuBisCO (6), increase the
regenerative capacity of the CBB cycle (10, 11), and minimize
metabolic costs associated with photorespiration (12). These
studies produced mixed results, thus advocating for a more
comprehensive, systems-level approach to enhance and/or re-
direct photosynthetic carbon flux.
In silico methods including kinetic (13) and stoichiometric

(14–16) models can simulate metabolic network behavior and
improve our mechanistic understanding of photosynthetic me-
tabolism, but the predictions must be experimentally verified by
other methods (17). We and others have used metabolic flux
analysis (MFA) based on steady-state 13C labeling studies to map
the flow of carbon through the biochemical pathways of plant
seeds (18–21) or cultured plant cells (22, 23), which exhibit ex-
tended periods of pseudosteady-state metabolism. However,
leaves exhibit diurnal patterns of metabolism with limited met-
abolic steady states (24, 25). Furthermore, autotrophic tissues
produce uniform steady-state 13C-labeling patterns that are largely
uninformative (26). Therefore, transient 13CO2 labeling studies are
necessary to quantify leaf metabolic fluxes.
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A prior 13CO2 labeling study by Szecowka et al. (27) applied
kinetic flux profiling (KFP) to estimate net carbon fixation and
photorespiration fluxes along with biosynthetic fluxes leading to
sucrose, starch, trehalose, and myo-inositol in Arabidopsis rosettes
under a single condition with illumination at 120 μmol·m−2·s−1. The
KFP approach (28) uses a differential equation model to regress
the trajectories of unlabeled mass isotopomer abundances (M0)
and intracellular pool size measurements obtained for multiple
13C-labeled metabolites, but without accounting for the distribution
of higher mass isotopomers (M1, M2) observed. In contrast, iso-
topically nonstationary MFA (INST-MFA) is able to describe the
full mass isotopomer distributions (MIDs) of measured metabolites,
and is therefore capable of distinguishing flux contributions from
different metabolic pathways based on the atomic rearrangements
they produce. This approach provides enhanced flux resolution and
does not require direct pool size measurements.
Previously, we applied 13C INST-MFA to map 76 fluxes

within the central carbon metabolism of the cyanobacterium
Synechocystis sp. PCC 6803 (29). The flux analysis revealed
unanticipated photosynthetic inefficiencies tied to oxidative
metabolic pathways, despite minimal photorespiration. In this
study, we applied a similar modeling approach to map auto-
trophic metabolism of Arabidopsis rosettes under varying light
intensities by administering 13CO2 to whole plants. 13C INST-
MFA was applied to determine (i) network-wide flux estimates
from isotopomer labeling for both low light (LL) and high light
acclimated (HL-ACC) Arabidopsis plants; (ii) a compartmen-
talized description of sucrose and starch biosynthesis; (iii)
a description of leaf export of sucrose and amino acids con-
sistent with measurements of vascular exudates; and (iv) model-
based estimates of inactive pools consistent with cellular
and subcellular leaf heterogeneity. The models were validated
through benchmarking fluxes with the literature and by in-
dependent experiments not used for model identification. This
study reveals the potential for 13C INST-MFA to provide pre-
viously unidentified insights into photosynthetic metabolism
that can guide plant metabolic engineering.

Results
Plant Development and Photosynthetic Rates. Developmental stages
and photosynthetic metabolism are closely linked. Leaf morphol-
ogy, pigmentation, photosynthetic rate, enzyme activities, and
carbon partitioning impact plant development. In turn, the ex-
pansion of leaves, development of reproductive sink, and leaf se-
nescence influence photosynthesis (30). Leaves of 3- to 5-wk-old
Arabidopsis plants had comparable amounts of chlorophyll per
unit of leaf fresh weight (FW) and net photosynthetic rates per
unit of leaf area; however, RuBisCO content per unit FW de-
creased with age (Fig. 1, Inset), and 5-wk-old plants exhibited
flower development. Fully expanded leaves of 4-wk-old plants
were selected for all further experiments. Light–response curves
(Fig. 1) indicated that plants acclimated to high light have ∼38 ±
4% greater maximum photosynthetic rates than nonacclimated
plants (measured at ∼2,000 μmol·m−2·s−1) and an altered ratio of
chlorophyll a/b (Fig. S1).

Starch and Sucrose Measurements. Starch and sucrose, two signif-
icant products of leaf photosynthetic metabolism, were quanti-
fied to determine the times during the day that leaves exhibit
pseudosteady-state metabolism. The amount of starch and
sucrose per unit FW were measured hourly from morning to
midday. The leaves produced starch at a rate of 6.3 ± 0.3 μmol
glucose·gFW−1·hr−1 throughout the experimental time course
(Fig. S1). The sucrose pool size did not change significantly during
the same period, indicating that the biosynthetic and export rates
were balanced. Therefore, plant leaves were isotopically labeled in
the late morning.

13C-Labeling of Arabidopsis Rosettes at Different Light Intensities. To
map carbon fluxes after acclimation to varied light intensities,
three to six replicate 13C-labeling experiments were performed at
low light (200 μmol·m−2·s−1; LL) or high light conditions after
acclimation (500 μmol·m−2·s−1, 9-d acclimation; HL-ACC). Im-
mediately after the introduction of 13C-labeled CO2, a time se-
ries of leaf samples were collected and the mass spectra of 37
fragment ions from each of 10 time points were analyzed by using
LC-MS/MS and GC-MS (Dataset S1). The average 13C enrich-
ment of most metabolites increased hyperbolically over time, with
the MID shifting gradually toward heavier mass isotopomers (Fig.
2 and Figs. S2 and S3). Intermediates involved in the CBB cycle,
photorespiration, and sugar synthesis became enriched at a faster
rate than organic and amino acids. Of the latter, only serine,
glycine, alanine, and aspartate were significantly enriched during
the initial 15-min labeling period.

ADP-Glucose and UDP-Glucose Reveal Metabolic Compartmentation.
The MIDs of ADP-glucose (ADPG) and UDP-glucose (UDPG),
which are the respective precursors for starch and sucrose bio-
synthesis, were examined to assess subcellular compartmentation
in central metabolic pathways. Initial tests indicated labeling only
within the glucosyl component of the nucleotide phosphates
(Dataset S1); therefore, labeling was quantified only in this
“metabolically active” component of ADPG and UDPG. Iso-
topic incorporation resulted in 81 ± 3% enrichment of ADPG
and 49 ± 4% enrichment of UDPG at 15 min (Fig. 2A). The
labeling differences confirm that starch and sucrose are gener-
ated from precursors that originate within distinct subcellular
locations (i.e., plastid and cytosol, respectively, Fig. 2 A and B)
and are consistent with current understanding of leaf carbon
partitioning (31, 32).

Isotopically Nonstationary Metabolic Flux Analysis. A set of com-
prehensive isotopomer models were constructed to estimate
metabolic fluxes based on the measured MIDs, the net CO2
assimilation and starch production rates, and steady-state levels
of sucrose and amino acids in vascular exudate (Fig. 3). The
reaction network and fluxes (Fig. S4 and Dataset S1) included
the CBB cycle, photorespiration, a bifurcated TCA pathway, and
pathways for starch, sucrose, and amino acid biosynthesis (33).
Inclusion of inactive pools and subcellular compartmentation
was required to pass the χ2 goodness-of-fit test and to describe
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Fig. 1. Net photosynthetic rate as a function of light intensity in 4-wk-old
plants. Plants were grown at light intensity of 200 μmol·m−2·s−1 (black dia-
monds) or acclimated to 500 μmol·m−2·s−1 for 9 d (white diamonds) before
measurement (SEM; n = 4). (Inset) Photosynthetic measurements of leaves
of 3- to 5-wk-old plants grown at 200 μmol·m−2·s−1 including chlorophyll
(Chl; mg·gFW−1; SEM, n = 4), RuBisCO (mg·gFW−1; SEM, n = 3), and net CO2

assimilation rate (Pn; μmol CO2·m
−2·s−1; SEM, n = 6). Dotted lines are drawn

to indicate trends.
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the multicellular, heterogeneous anatomy of a leaf (Fig. 2C). In
general, the model-estimated sizes of inactive pools (expressed
as a fraction of the total intracellular pool) were in qualitative
agreement with M0 mass isotopomer abundances measured after
a 60-min 13CO2-labeling experiment (Fig. S5). Some quantitative
disagreements were observed, most notably in the amino acid
measurements collected under LL conditions, which were likely
due to the existence of slowly labeled intracellular pools that were

not explicitly included in the isotopomer model. These unmodeled
pools appear inactive during the 15-min labeling experiment but
become gradually enriched at longer times. Such discrepancies
were less prevalent under HL-ACC conditions, likely because
overall photosynthetic rates were enhanced and amino acid la-
beling equilibrated more rapidly.
TCA cycle metabolism is challenging to model in leaves be-

cause the combination of large organic acid pool sizes and low

Fig. 2. Transient 13C-labeling in intracellular metabolites. (A) Average 13C-enrichments of ADP-glucose (ADPG; closed circles) and UDP-glucose (UDPG; open
circles) under LL conditions calculated by using the formula

�
1
N

�PN
i=1 Mi x i, where N is the number of carbon atoms in the metabolite andMi is the fractional

abundance of the ith mass isotopomer. The solid lines connecting average 13C enrichments were added to aid data visualization and do not represent model
fits. (B) Experimentally measured mass isotopomer abundances (data points) and INST-MFA model fits (solid lines) of ADPG (Left) and UDPG (Right) under LL
conditions. Error bars represent standard measurement errors (SEM, n = 6). Mass isotopomer data corrected for natural isotope abundance are shown.
Nominal masses of M0 mass isotopomers are shown in parentheses for ADPG and UDPG. (C) Experimentally measured MIDs and INST-MFA model fits of
glucose-1-phosphate (G1P) with (Left) and without (Right) inclusion of dilution parameters to account for inactive pools. Cellular heterogeneity can result in
inactive pools that are not significantly enriched within the time course of the experiment. The contribution of these pools to the measured MID can be
accommodated by incorporating dilution parameters into the model.

Fig. 3. Carbon assimilatory fluxes of a photosynthetic Arabidopsis leaf. (A) Arabidopsis net flux maps determined under varying light conditions for the LL
and HL-ACC conditions. Relative fluxes are presented after normalization to a net CO2 uptake rate of 100 (SEM, n = 6 LL; n = 4 HL-ACC). Values shown are the
medians of the 95% flux confidence intervals. The estimated SEs are calculated as (UB95-LB95)/3.92, where UB95 and LB95 are the upper and lower bounds of
each confidence interval, respectively, and 3.92 is the number of SEs that span the 95% confidence interval of a normally distributed random variable.
Metabolites compartmentalized to the plastid are denoted by “.p,” whereas metabolites compartmentalized to the cytosol are denoted by “.c.” (B) Selected
relative flux values (as a percentage of net CO2 assimilation). (C) Comparison of photosynthetic parameters; net CO2 assimilation is in terms of absolute fluxes
(μmol metabolite·gFW−1·hr−1). AGP, starch synthesis flux; netA, net CO2 assimilation; SPS, sucrose synthesis flux; Vc, carboxylation flux; Vo, oxygenation flux;
Vpr, photorespiratory CO2 release.
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fluxes relative to CBB cycle (i.e., ∼10% or less; ref. 33) result in
poorly identifiable fluxes. To accurately depict the noncyclic
TCA pathway activity, output fluxes to amino acids and sucrose
were stoichiometrically constrained to each other on the basis of
their measured steady-state concentrations in vascular exudate
(Fig. S6). As an apoplastic loader, Arabidopsis can export more
sucrose during high light acclimation because of H+/sucrose
symport (34, 35), which could result in an enhanced ratio of
sucrose production relative to amino acids in HL-ACC plants.
Model-determined fluxes were not constrained to a particular

measurement but rather were based on nonlinear regression of
numerous MID measurements and experimentally derived starch
and CO2 net assimilation rates. Each model included 54 free flux
parameters and required more than 1,000 ordinary differential
equations (ODEs) to simulate the labeling time course of the
measured MIDs (Fig. 3 and Figs. S2 and S3). Computing the
sensitivities of all MIDs to the adjustable parameters required an
additional ∼94,000 ODEs. The LL and HL-ACC models had
sum-of-squared residuals (SSR) of 1,003 and 808, which were
both accepted based on χ2 tests with degrees of freedom equal to
1,139 and 1,019, respectively (Fig. 3).

Metabolic Response to High Light Acclimation. Photosynthetic
adjustments range from less than seconds to weeks or months
dependent on the species and specific developmental process.
This study focused on metabolic fluxes determined after 9 d of
development with exposure to high light and was therefore
aimed at examining the acclimated metabolic phenotype and not
a short-term response to elevated irradiance. The 9-d time frame
allowed plants to acclimate developmentally to a new metabolic
pseudosteady state that was compared with LL leaves through
the use of transient isotopic labeling experiments. The short time
scale (∼15 min) of the labeling experiments relative to time scale
of acclimation enabled us to apply INST-MFA to obtain a
snapshot of the flux values at the end of the acclimation period.
Absolute fluxes (μmol metabolite·gFW−1·hr−1) obtained from

the best-fit models were subsequently normalized by the net
assimilation rate to enable direct comparisons of carbon parti-
tioning between LL and HL-ACC conditions (Fig. 3). Both the
carboxylation and oxygenation activities of RuBisCO were estab-
lished through the modeling process, resulting in a ratio of Vc/Vo
that dropped from 3.5:1 in LL plants to 2.3:1 in HL-ACC plants.
The change in this ratio reflected an absolute increase in photo-
respiratory flux from 19 to 60 μmol CO2 released·gFW−1·hr−1,
whereas carboxylation changed from 135 to 278 μmol CO2
fixed·gFW−1·hr−1. As a result, photorespiratory fluxes were
17 and 28% of net assimilation, respectively. The additional
carbon lost to photorespiration in the HL-ACC condition was
offset primarily by decreases in the relative flux to starch
accumulation (from 33 to 24% of net assimilation).
Despite the increase in photorespiration, the relative flux to

sucrose export also increased to support more biomass production
in HL-ACC plants. Sucrose export flux more than doubled from
11.7 to 26.4 μmol (hexose units)·gFW−1·hr−1, whereas starch
production increased marginally from 6.3 to 8.5 μmol (hexose
units)·gFW−1·hr−1. Higher carryover starch levels were observed in
HL-ACC leaves throughout the diurnal cycle (Fig. S1). HL-ACC
plants also had elevated levels of RuBisCO on the basis of leaf
area, FW, or chlorophyll and produced thicker leaves with more
biomass (Fig. S1). Furthermore, HL-ACC plants produced more
seed biomass (i.e., 10 plants produced approximately twice the
amount of seeds that resulted in 93% more biomass by weight)
with a greater amount of oil, had altered leaf chlorophyll levels
(Fig. S1), and had reduced measured concentrations of several of
the Calvin cycle intermediates (Table S1).
Interestingly, measured changes in several CBB intracellular

pool sizes were inversely correlated with the model-determined
increase in CBB cycle fluxes for HL-ACC plants. We did not

supply the pool size measurements to the model when per-
forming data regressions because accurate measurement of ab-
solute pool sizes can be challenging, and other methods aimed at
indirectly assessing subcellular compartmentation (36, 37) were
not applicable within the short time period of this study. As a
result, most intracellular pool sizes were not identifiable by
INST-MFA. Because pool size estimates were not strongly cor-
related to flux estimates (Figs. S7 and S8), precise determination
of fluxes could still be achieved despite poor identifiability of
pool sizes. This feature is a significant advantage of INST-MFA
over other modeling approaches that do not use full MID mea-
surements, require direct pool size measurements for data re-
gression, or depend on kinetic parameter values that may not be
reliably known in planta. We have observed a similar lack of cou-
pling between flux and pool size estimates in previous studies (29),
which appears to be a general characteristic of INST-MFA models.

Discussion
Leaf Metabolic Phenotyping by INST-MFA. INST-MFA provides
a comprehensive approach to map the flow and fate of carbon
throughout autotrophic metabolic networks (26). This method
enables quantitative studies of integrated metabolic pathways, rather
than individual reactions or nodes in isolation. Although INST-MFA
has been previously applied to cultured cyanobacteria (29), this is
the first time to our knowledge that it has been successfully per-
formed in a terrestrial plant. Other recent studies have used
13CO2 labeling to estimate fluxes (27) or metabolite turnover
(38) from dynamic labeling data by modeling total 13C enrich-
ments, but without applying comprehensive isotopomer models.
As presented here, isotopomer models that describe the full
MIDs of the measured metabolites are capable of distinguishing
flux contributions from different metabolic pathways based on
the atomic rearrangements they confer. This approach allows
increased pathway-specific information to be extracted from the
MS measurements and, importantly, does not require direct pool
size measurements to be supplied for model regression. The
latter consideration is particularly germane to plant systems,
because uncertainties introduced by metabolite compartmenta-
tion, rapid exchange with unmeasurable metabolites, heteroge-
neous cell populations, or losses during the extraction process
may corrupt the absolute pool size measurements and lead to
biased flux estimates when using previously established methods.
Although other models were considered based on biochemical

descriptions in the literature, we found that dilution parameters
to accommodate photosynthetically inactive metabolite pools
were required to achieve statistically acceptable fits to the ex-
perimental data (Fig. S5), reflecting the cellular heterogeneity of
leaves and also the mixing of compartmentalized pools that
occurs during cell lysis. Incorporation of dilution parameters into
the model enabled a parsimonious description of the labeling
dynamics, which did not require detailed modeling of pools that
cannot be independently measured and also did not depend
on ad hoc assumptions found in the literature. The dilution
parameters established by modeling were comparable to mea-
surements obtained from a longer-term labeling experiment (t =
60 min), thus providing independent validation of this approach.
Constraining the dilution parameters in the LL model to match
the measured M0 isotopomer abundances at t = 60 min (with the
exception of the amino acids alanine, serine, and glycine that
label more gradually than the other metabolites included in the
model), resulted in only a small increase in SSR from 1,003 to
1,087 and did not significantly alter the estimated flux values.
Therefore, the change in SSR remained within statistically
acceptable bounds and indicated that the estimated dilution
parameters were in quantitative agreement with isotope labeling
measurements at t = 60 min.
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Photorespiration Changes with Acclimation to High Light. Methods
to quantify photorespiration minimally include the following:
postillumination CO2 burst, inhibition of net CO2 assimilation by
O2, CO2 influx into CO2-free air, NH4 formation, and ratio of
14CO2 to 12CO2 uptake. The assumptions and limitations for
each approach have been summarized (39, 40). We considered
an alternative strategy using 13CO2 labeling followed by com-
putational flux estimation that does not require kinetic constants
and, therefore, avoids some of the measurements and assump-
tions inherent to other methods. Furthermore, the approach (i)
accounts for the exchange of intermediates across mitochondrial,
peroxisomal, and cytosolic compartments (e.g., ref. 41) that in-
teract with plastidic pools and (ii) couples photorespiration flux
to biosynthetic demands for folate (42) and amino acid (43)
metabolism. Thus, photorespiration is treated as a branched
network with multiple input and output nodes, consistent with
the known biochemistry.
Recent direct measurements of photorespiration indicate values

of 14–17% of carboxylation (43, 44), consistent with the LL model;
however, the range in the literature varies considerably (∼6–70%
photorespiratory CO2 release relative to net assimilation). Our
results indicate that the absolute rates of carboxylation and oxy-
genation increased with acclimation to high light intensity, but the
rate of oxygenation increased more substantially (Fig. 3B). The HL-
ACC case is not experimentally similar to a short-term exposure to
high light because the additional acclimation time results in changes
to leaf anatomy. In particular, HL-ACC plants have thicker leaves
that maximize exposed chloroplast surface area to the intracellular
space and swollen chloroplasts (Fig. S1) that contain heightened
levels of RuBisCO per unit leaf area. Because the internal CO2
conductance cannot increase in proportion to RuBisCO, leaves
have greater internal diffusion resistances and lower CO2 partial
pressures at the site of carboxylation (45) that enhance photores-
piration (46). Combining the ratio of model-derived Vo/Vc ratios
for the LL and HL-ACC plants with gas exchange relationships that
approximate photorespiration based on CO2 concentration (39), the
difference between LL and HL-ACC photorespiration would be
explained by an additional 34% drawdown in the stromal CO2
concentration at the carboxylation site Cc. This reduction is rea-
sonable, because other studies on high light acclimation in leaves
indicate up to 50% decrease in Cc (e.g., refs. 46 and 47).
Other parameters such as the enhanced levels of nucleotide

cofactors that are cosubstrates in photorespiration may also further
activate this pathway, rebalancing and consuming additional re-
ducing equivalents across organelles and subverting photodamage
(48). Photorespiration in HL-ACC plants led to consumption of an
additional 72% ATP and 65% NADPH relative to the minimum
required for CO2 fixation, whereas in LL these percentages were
lower (48% and 43%, respectively) but still significant.

Metabolism Adjusts in Light. The increase in photorespiratory
carbon loss under the HL-ACC condition was associated with
a repartitioning of flux among the major carbon sinks repre-
sented in the isotopomer model (Fig. 3). Relative flux to support
sucrose export increased, whereas relative flux to starch de-
creased, indicating a higher carbon export capacity that corre-
sponded to increased growth and photosynthetic flux in HL-ACC
plants (35). The modeled sucrose to starch ratio (1.9:1) in LL
plants was consistent with the literature and increased in HL-
ACC plants to 3.1:1. Thus, the description of intermediary fluxes
provided by INST-MFA enabled a global assessment of these
flux alterations that would not be observable without a compre-
hensive, model-based analysis of isotope labeling dynamics.
This study also illustrates how combined analysis of flux and

metabolite profiling data can provide complementary information
about cellular reprogramming in response to light. For example,
several measured metabolite intermediates appeared to adjust to
the long-term high light acclimation through decreased pool sizes

(on either a FW or chlorophyll basis) within the CBB cycle (Table
S1), even as their interconnected pathway fluxes increased. Al-
though this result was unanticipated, it was consistently obtained in
multiple experiments by using sample collection strategies specifi-
cally designed to minimize shading or other potential artifacts.
The pool size measurements were not used in the INST-MFA

model regressions, which provide an independent assessment of
the metabolic adaptation to high light. Unfortunately, measured
changes in metabolite levels could not be verified by INST-MFA,
because the 95% confidence intervals for most model-estimated
pool sizes exhibited overlap between the two conditions (Dataset
S1). Furthermore, subcellular compartmentation and/or dilution
by inactive pools will impact the model-estimated pool sizes but
will not be reflected in the pool size measurements, thus com-
plicating direct comparisons.
Although the inverse correlation between measured in-

termediate pool sizes and CBB cycle fluxes may seem counter-
intuitive from the standpoint of mass-action kinetics, it could be
explained by increases in enzyme expression or other regulatory
changes that occur during the acclimation process and is con-
sidered (49, 50). These longer-term physiological adaptations are
not simply an extrapolation of the short-term response to high
light. Further studies are needed to fully define the mechanism
underlying this unexpected relationship between CBB cycle
fluxes and intermediate pool sizes. However, this finding high-
lights the potential of 13C INST-MFA to uncover systems-level
properties of plant metabolic networks that are not directly ob-
servable by static metabolite profiling approaches.

Materials and Methods
Plant Growth Characteristics. Wild-type Arabidopsis thaliana ecotype Col-0
plants were grown in a Conviron growth chamber (model MTPS 120–2)
under 16/8-h day/night cycles, temperature of 22/18 °C, light intensity of
200 μmol·m−2·s−1, and 50% relative humidity. At 24 d of age, plants were
transferred to a Percival incubator (model E22L) that was set up with iden-
tical incubation conditions, where plants were maintained for 3 d before
isotopic labeling (LL). For the high light acclimation process, plants initially
grown to 17 d of age at 200·μmol m−2·s−1 were exposed to 500 μmol·m−2·s−1

for 9 d before isotope labeling at 500 μmol·m−2·s−1 (HL-ACC). In both cases,
plants were labeled 28 d after planting when leaves were fully expanded.
Pigments including chlorophyll were quantified spectroscopically, RuBisCO
was quantified by Western blot and gel image, sucrose was quantified by
GC-MS, starch was quantified by using an enzymatic assay (Megazyme), leaf
cross-sections and chloroplast ultrastructure were imaged in an energy filter
transmission electron microscope (LEO 912 AB; LEO), and oil was quantified
by gas chromatography flame ionization detection (GC-FID) (SI Materials
and Methods).

Gas Exchange and 13CO2 Labeling of Arabidopsis Rosettes. A LI-6400XT portable
photosynthesis system (Li-Cor) was used to monitor assimilation and light re-
sponse of 4-wk-old plants. Isotopic labeling experiments (n ≥ 3) were performed
on plants acclimated to light intensities of 200 μmol·m−2·s−1 (LL) or
500 μmol·m−2·s−1 (HL-ACC). Arabidopsis rosettes were labeled in a Percival
E22L incubator containing an inflated glove bag (Gas-Col) or custom-made in-
dividual gas-tight chambers, using premixed gas containing 13CO2 (Sigma) at a 13

CO2/N2/O2 ratio of 0.033/78/21.967. Ten samples were collected over a 15-min
interval at the following time points: 30, 60, 90, 120, 150, 180, 300, 420, 600, and
900 s followed by immediate quenching with liquid nitrogen. In each case, liquid
nitrogen was dumped directly on plants that were still in the incubator with care
to avoid any shading. The liquid nitrogen resulted in some leaves falling off of
the rosettes almost instantly (i.e., less than 1 s after the nitrogen was applied).
Therefore, we expect that the quenching process was adequate.

LC-MS/MS and GC-MS of Metabolite Labeling and Concentration. Methods to
extract metabolites were modified from Arrivault et al. (24). Leaf tissue was
extracted with methanol/chloroform/water (4 °C). Filtered samples were run
on an AB Sciex QTRAP 4000 linked to a Shimadzu HPLC by using negative
ionization. Ion-pair chromatography linked to tandem MS was performed as
described in refs. 24 and 29 with slight modifications. GC-MS was used to
inspect labeling in amino and organic acids (SI Materials and Methods).
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Isotopomer Network and Flux Determination.An isotopomer model describing
photosynthetic central carbon metabolism in Arabidopsis rosettes was con-
structed from reaction networks in biochemical literature. A list of the
reactions, assumptions, and abbreviations is provided in SI Materials and
Methods. INST-MFA was used to estimate intracellular metabolic fluxes.
Least-squares parameter regression, and statistical and sensitivity analysis of
the optimal solution, was performed by using the publically available soft-
ware package Isotopomer Network Compartmental Analysis (INCA; ref. 51),
which runs within MATLAB (19, 29). INCA relies on an elementary metabolite
unit decomposition of the underlying isotopomer network to efficiently simulate
the effects of varying fluxes on the labeling trajectories of measurable metab-
olites. Metabolic fluxes and pool sizes were estimated by minimizing
the lack-of-fit between experimentally measured and computationally sim-
ulated MIDs by using a Levenberg-Marquardt optimization algorithm (52).

Flux evaluation was repeated a minimum of 50 times from random initial
values to obtain best-fit estimates. All results were subjected to a χ2 statis-
tical test to assess goodness of fit, and accurate 95% confidence intervals
were computed for all estimated parameters by evaluating the sensitivity of
the SSR to parameter variations (53).
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