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Isotropic hypoellipticity and trend to the
equilibrium for the Fokker-Planck equation with

high degree potential

Frédéric Hérau

Abstract
We consider the Fokker-Planck equation with a confining or anti-confining

potential which behaves at infinity like a possibly high degree homogeneous
function. Hypoellipticity techniques provide the well-posedness of the weak-
Cauchy problem in both cases as well as instantaneous smoothing and expo-
nential trend to equilibrium. Lower and upper bounds for the rate of conver-
gence to equilibrium are obtained in terms of the lowest positive eigenvalue
of the corresponding Witten Laplacian, with detailed applications.

1. Introduction.
We present here a joint work [12] with Francis Nier, from the University of

Rennes. We consider the Fokker-Planck equation in R2d
x,v{

∂tf + v
m
.∂xf − 1

m
∂xV (x).∂vf − γ0∂v.

(
1

mβ
∂v + v

)
f = 0

f(x, v, t = 0) = f0(x, v)
(1)

with a “high degree potential”, V (x) ' ± |x|2n as x → ∞ with n ≥ 1 (possibly
n > 1/2). The physical constants denoted by m, β and γ0 are respectively the
particle mass, the inverse temperature β = 1

kT
where k is the Boltzmann constant

and the friction coefficient.
For V > 0 at infinity, all steady states in S ′(R2d) are proportional to the

Maxwellian

M(x, v) = e−βp(x,v),

where p(x, v) denotes the classical Hamiltonian 1
2
mv2 + V (x).

Meanwhile, it is clear that for V < 0 at infinity, the equation (1) has no steady
state in S ′(R2d) except 0. Note that although the Cauchy problem (1) might not be
well-posed for γ0 = 0, it is (and this will be checked further) for γ0 > 0 and T > 0.
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We are interested in accurate estimates of the rate of convergence to equilibrium
with respect to m, γ0, β and V . This question was raised by C. Villani in [28] and
is related to the physically relevant range of time for general kinetic models. In the
case of a negative potential, this can be interpreted as the life time of metastable
states (cf. [24]).

The trend to equilibrium was studied by several authors at least for some spe-
cific potentials. Bouchut and Dolbeault obtained it in [1] by some compactness
arguments and as well as decay for a nonlinear Vlasov-Fokker-Planck problem with
a free energy decay argument. Talay got some implicit exponential decay [26][27]
by studying directly the stochastic process. In [2], Villani and Desvillettes gave an
explicit polynomial decay for some decaying perturbations of quadratic potentials
with the help of logarithmic Sobolev inequalities. In the more complex situation of
a chain of anharmonic oscillators coupled to heat baths, Eckmann et al. proved in
[5] and [4] the existence and uniqueness of a steady state by the isotropic hypoellip-
ticity techniques that they introduced for such problems but resolvent and spectral
estimates are missing in order to get exponential trend to the steady state. More
recently, Rey-Bellet and Thomas in [21][22][23] have obtained implicit exponential
return to equilibrium in the mean for chains of anharmonic oscillators by going back
to the stochastic approach and by introducing some Lyapunov functional.

2. Statement of the main theorem
We first introduce the isotropic Sobolev chain (isotropy means here and in the

sequel that the phase-space position variables (x, v) and the associated frequency
variables play the same role):

Hs,s(R2d) =
{
G ∈ S ′(R2d),

(
1 +D2

x +D2
v + x2 + v2

)s/2
G ∈ L2(R2d)

}
(2)

with s ∈ R, Dx,v = 1
i
∂x,v, and for which we have S ′(R2d) = ∪s∈RH

s,s(R2d) and S(R2d) =
∩s∈RH

s,s(R2d). In fact we shall use the following spaces deduced from the preceding
ones after multiplication by the C∞-function M1/2 such as

M1/2S ′(R2d)
def
=

{
g ∈ D′(R2d), M−1/2g ∈ S ′(R2d)

}
,

and M1/2Hs,s(R2d).
When V is positive at infinity, M1/2 ∈ S and we denote by M0 the L1 normalized

Maxwellian. Then
∫
f =< M

−1/2
0 f,M

1/2
0 >S′,S is well defined for f ∈ M1/2S ′. We

introduce the following operators for f ∈M1/2S ′

M1/2S ′ 3 f 7−→
(
(
∫
f)M0

)
± =

{
(
∫
f)M0 if V > 0 near ∞,

0 if V < 0 near ∞.

The precise assumptions on the potential V are

Hypothesis 1. The potential V is a C∞ function and there exist n ≥ 1 (possibly
n > 1/2) and there are positive constants C1 and Cα for all α ∈ Nd so that for all
x ∈ Rd,

|∂α
xV (x)| ≤ Cα

(
1 + 〈x〉2n−min{|α|,2}

)
and |∂xV (x)| ≥ C−1

1 〈x〉2n−1 − C1
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Along the paper C(V ) will denote any finite family seminorms of V which can be
chosen positive and an index in C(V )index will possibly specify on which the choice
of this family depends. We introduce the scaled potential

Vβ(x) = βV (β−1/2nx)

and the associated Witten Laplacian on 0-forms

A0(Vβ) =

(
−∂x +

1

2
∂xVβ

)
.

(
∂x +

1

2
∂xVβ

)
.

Under the above assumptions, this operator after Friedrichs extension is self-adjoint,
non-negative and with a compact resolvent (about this subject see the comments at
the end of the paper). We introduce its smallest nonzero eigenvalue:

ω1(Vβ) = minσ (A0(Vβ)) \ {0} .

For convenience we define for ν ∈ N and R ∈ R the function QR on
(
R∗

+

)ν
by

QR(t1, . . . , tν) =
∏ν

j=1

(
tj + t−1

j

)R
.

Theorem 2.1. Under Hypothesis 1 (n > 1/2) and for γ0, β,m > 0, we have:

1) The Cauchy problem (1) is well-posed for t ≥ 0 in M1/2S ′(R2d). Moreover the
solution f(t) belongs to M1/2S(R2d) for t > 0.

2) There exists a real τ = τ(β, γ0,m) > 0 and for any s ≥ 0 two constant cs > 0
and Rs > 0 so that the estimate∥∥∥f(t)−

(
(
∫
f0)M0

)
±

∥∥∥
M1/2Hs,s

≤ csQRse
−τt ‖f0‖M1/2H−s,−s

holds for all f0 ∈ M1/2H−s,−s(R2d) with QRs = QRs (C(V )s,
√
mγ0, β, t, τ,m)

and for s = 0, QR0 = QR0 (C(V ),
√
mγ0, β, t, τ).

3) In part 2), we can take

τ(β, γ0,m) = τ1(β, γ0,m)
def
=

γ0 min {1, ω1(Vβ)}
64(5 + 3γ0

√
mβ

n−1
2n + 3CVβ

)2
(3)

where C2
Vβ

= max
{
sup

(
(HessVβ)2 −

(
1
4
(∂xVβ)2 − 1

2
∆Vβ

)
Id

)
, 0

}
.

4) There exists a constant c > 0, so that any τ satisfying part 2) is bounded by

τ ≤ c
√
ω1(Vβ) log

[
QR0(C(V ),

√
mγ0, β, ω1(Vβ))

]
.

For a probability measure f0 and in the case V > 0 near ∞, we get as a corol-
lary the exponential decay of the relative entropy with respect to the normalized
Maxwellian M0

H(f(t)
∣∣∣M0) =

∫
f(t) log

(
f(t)

M0

)
dxdv (t > 0).
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Corollary 2.2. There are two constants c′ > 0 and R′ > 0 so that for all proba-
bility measure f0 ∈M1/2Mb(R2d) the solution f(t) to the Fokker-Planck equation 1
satisfies

∀t > 0, H(f(t)|M0) ≤ c′QR′(C(V ),
√
mγ0, β, t, τ1)e

−τ1t

∫
M

−1/2
0 f0 dxdv.

where τ1 is defined in (3).

N.B. The only unspecified dependance of the constants in the two previous results
is the ones with respect to d and n which are supposed to be fixed.

3. Witten Laplacian and rate of convergence
The lower bound (part 3) of Theorem 2.1) and upper bound (part 4) of Theorem

2.1) for τ can be specified under additional assumptions by analyzing the Witten
Laplacian A0(Vβ). The simplest case is the c2-convex (resp. c2-concave) one:

∀x ∈ Rd, ±HessV (x) ≥ c2Id.

The low temperature asymptotics (β → ∞) crucially depends on the number of
local minima of V while high temperature asymptotics (β → 0) can be carried out
under rather general assumptions:

Hypothesis H2+. The potential V is positive near ∞ and satisfies

n > 1 : The potential V admits a principal part which is an homogeneous potential of
degree 2n, C∞ and non-vanishing outside x = 0: There exist δ, 0 < δ < 2n−2,
and for any α ∈ Nd, |α| ≤ 2, a constant C ′

α so that

∀x ∈ Rd, |∂α
xV (x)− ∂α

xV0(x)| ≤ C ′
α 〈x〉

2n−|α|−δ .

n = 1 : There exist two positive constants C2, κ2 and a function G ∈ L∞(Rd) so
that for all x ∈ Rd,

|∂xV (x)|2 ≥ C2
2 |x|

2 +G(x) and HessV (x) +
1

2
(dC2 −∆V )Id ≥ κ−1

2 Id.

Hypothesis H2-. The potential V is negative near ∞ and satisfies

n > 1 : There exist n′, 1 < n′ < n, and a constant C2 > 0 so that

∀x ∈ Rd, ∆V (x) ≤ C2

(
|x|2n′−2 + 1

)
.

n = 1 : There exist two positive constants C2, κ2 and a function G ∈ L∞(Rd) so
that for all x ∈ Rd,

|∂xV (x)|2 ≥ C2
2 |x|

2 +G(x) and dC2 −∆V (x) ≥ 2κ−1
2 .

–4



β � 1 c2 -convex (concave)
(n ≥ 1)

Hypothesis H2+ H2-

√
mγ0β

n−1
2n � 1 γ0β

n−1
n � τ �

− log

(
√

mγ0β
3n−1
2n

)
√

mβ
n−1
2n

γ0 � τ �
− log

(
√

mγ0β
3n−1
2n

)
√

mβ
n−1
2n

1 �
√
mγ0β

n−1
2n

1
mγ0

� τ �
log

(
√

mγ0β
−1−n

2n

)
√

mβ
n−1
2n

1

mγ0β
n−1

n
� τ �

log

(
√

mγ0β
−1−n

2n

)
√

mβ
n−1
2n

Table 1: High temperature asymptotics.

β � 1
(n ≥ 1)

Morse function with 1 or More than 1 or 0 minimum
0 local minimum

√
mγ0 � β

n−1
2n

γ0

β
2(n−1)

n

� τ �
− log

(
√

mγ0β
−n−1

n

)
√

m
τ � e

− β
3κV√
m

log
(√

mγ0 + 1√
mγ0

)

β
n−1
2n �

√
mγ0

1

mγ0β
n−1

n
� τ �

log

(
√

mγ0β
3n−1

n

)
√

m
τ � e

− β
3κV√
m

log (
√
mγ0)

Table 2: Low temperature asymptotics.
The notation a � b means a ≤ κV b where κV depends only on V .
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Note that things are completely known in the case of a quadratic potential by
low-energy approximation of the spectrum (see [24]) or by expressing the solution to
(1) with a Mehler formula ([14]). And this says that our lower bounds are optimal
in the case n = 1.

4. Isotropic hypoellipticity
After congugating by M1/2 and scaling, we can write the Fokker-Planck in the

more convenient following form (for an Hilbert-space type analysis)

∂tu+Ku = 0 (4)

with K = v.∂x − ∂xVβ.∂v + γ (−∂v + v/ 2). (∂v + v/2) (5)

and Vβ = βV (β−
1
2n ·), γ = γ0

√
mβ

n−1
2n , (6)

In the expression of operator K we recognize a transport part

X0 = v.∂x − ∂xVβ.∂v

and a diffusion part which is up to a multiplication by γ the harmonic oscillator
in the velocity variable. The last one can be written with the help of the classical
annihilation and creation operators

b = ∂v + v/2 =

 ∂v1 + v1/2
...
∂vd

+ vd/2

 , b∗ = (−∂v1 + v1/2, · · · ,−∂vd
+ vd/2),

and we get the following expression for operator K

K = X0 + b∗b.

Operator K is nor selfadjoint neither elliptic. Nevertheless the form vector field +
square of first order operator suggests as in [5] and in the spririt of the theorem
about sum of squares of vector fields of Hörmander the introduction of the following
operators

γ−1/2a
def
= γ−1/2[b,X0] = ∂x + ∂xV/2 =

 ∂x1 + ∂x1V/2
...
∂vd

+ ∂xd
V/2

 ,

γ−1/2a∗ = (−∂x1 + ∂x1V/2, · · · ,−∂xd
+ ∂x1V/2),

and (say for δ > 0)
Λ2 = a∗a+ b∗b+ δ.

Operator Λ2 is formally selfadjoint and elliptic (in an adapted metric). It appears
as the sum of the harmonic oscillator b∗b and the so-called Witten laplacian

a∗a = γ
(
−∆x + (∂xV )2/4−∆V/2

)
.
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The spectral study of operator the Witten laplacean a∗a and therefore Λ2 is well
studied (see for example [10, 15]. It is essentially selfadjoint, and under assumptions
H1 with compact resolvant and with S as a core. The strong relations between K,
and Λ2 where already known at least in simple cases [24]. Indeed some nice algebraic
relations appear such as

− HessVβb = [a,X0]

and [Λ2, X0] = −b∗(HessVβ − Id)a− a∗(HessVβ − Id)b.
(7)

The most readable link between operators K and Λ2 is the following isotropic hy-
poelliptic estimate for n > 1/2, δ = 1 and ε = min {1/4, 1/(4n− 2)} :

∀u ∈ S(R2d), ‖Λεu‖2 ≤ Chyp

(
‖Ku‖2 + ‖u‖2) .

The choice of ε comes from a ψdo analysis inspired by [5], in a metric associated
to the Sobolev chain

Hr =
{
u ∈ L2, Λru ∈ L2

}
( dual H−r).

In this calculus, Λ2, K and X0 are of order 2 whereas a, b and ∂xV are of order 1.
The gain of ε comes essentially from the fact that K is a differential operator with
coefficient with polynomial behavior (at least for the first derivatives) : indeed the
commutator [Λ2, X0] is of order 3 − ε and not only 3. In fact the theorem can be
deduced from a series of hypoelliptic lemmas that we give below.

As a consequence we get some spectral properties of operator K, a priori defined
as a differential operator on S and S ′ . For r ∈ R, we define the close operators Kr

with domain

D(Kr) = {u ∈ Hr, Ku ∈ Hr} .

For all r, we get that S is a core for Kr, that there is a constant λr depending
algebraically on the physical constant such that λr +Kr is maximal accretive, and
also that Kr is with compact resolvant. Besides all Kr have the same eigenvalues
and eigenfunctions which moreover belong to S. We remove the subscript r for the
following.

5. Some ideas about (pseudo-)spectral estimates
The Fokker Planck equation in the form ∂tu+Ku is of parabolic degenerate type.

To prove the properties of the solutions, we want to give a sense to the following
Dunford integral (see a.e. [20] [3, pp 556-577] for a general introduction)

e−tK =
1

2iπ

∫
Γ

e−tz(z −K)−1u dz. (8)

Some problems arise in this formula. It supposes that we have a good description of
the spectrum of K, in order to make the integral converging, and also that uniform
bounds for the norm of the resolvant are known (so-called pseudospectral estimates).
Let us mention that a priori the resolvant is not a pseudodifferential operator since
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K is not elliptic, and that the numerical range of K is the full right half complex
plane.

(Pseudo-)spectral estimates will be partly consequences of the key hypoelliptic
estimates of the following type

‖Λεu‖2 ≤ <e (Ku, (L+ L∗)u) + <e (LKu,Lu) (9)

+C ′
hyp

(
<e (Ku, u) + ‖u‖2) . (10)

for u ∈ S and where L = Λ2ε−2a∗b and ε = min {1/4, 1/(4n− 2)}. As a consequence
we get that the spectrum of K is contained in an infinite cusp

SK
def
=

{
z ∈ C, |z + 1| < C∞ |<e z + 1|N , <e z ≥ −1/2

}
, (11)

of frontier Γ = Γ1 ∪ Γ∞ and where N = 2/ε (see the picture below). We mention
that C∞ is of the form C∞ = cQR(C(V ), β, γ).

Figure 1: Integration contours: ∂SK = Γ0 ∪ Γ∞, ∂S ′K = Γ1 ∪ Γ∞.

Let us give some ideas about the proof of (11).

1st step : Hypoellipticity and eigenvectors. Let us consider an eigenfunction
u associated with an eigenvalue z = µ+ iν ∈ R+∗+ iR. the main tool is the estimate
(9) applied to u which gives:

‖Λεu‖2 ≤ <e (zu, (L+ L∗)u) + <e (L(zu), Lu)

+C ′
hyp

(
<e (zu, u) + ‖u‖2) .
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Since L+ L∗ and L∗L are symmetric operators we obtain

‖Λεu‖2 ≤ µ (u, (L+ L∗)u) + µ (Lu,Lu) + C ′
hyp(µ+ 1) ‖u‖2 . (12)

Now aΛ2ε−2 and its adjoint are bounded operators (by 1). Therefore ‖Lu‖2 =
(aΛ4ε−4a∗bu, bu) ≤ ‖bu‖2 = µ ‖u‖2. This yields of course µ ‖Lu‖2 ≤ µ2 ‖u‖2 and we
also obtain

µ (u, (L+ L∗)u) ≤ 2µ ‖Lu‖ ‖u‖ ≤ (µ+ 1)2 ‖u‖2

Hence we have
‖Λεu‖2 ≤ C ′′

hyp(µ+ 1)2 ‖u‖2 . (13)

for a constant C ′′
hyp. 2

2nd step : functionnal analysis. We want to generalize the estimate

|z + 1|2 ‖u‖2 ≤ 2 ((K + 1)∗(K + 1)u, u)

. Indeed we get for any η ∈]0, 1[,

|z + 1|2η ‖u‖2 ≤ 4 (((K + 1)∗(K + 1))η u, u) (14)

Note that this result is a consequence of a more general result for maximal accretive
operator ([12, Appendix B].

3rd step : Ψdo calculus and functional analysis. From the Ψdo calculus we
know that 1 ≤ (K + 1)∗(K + 1) ≤ CΛ4. Hence we have with ε ≤ 1/4 ≤ 1(

((K + 1)∗(K + 1))ε/2 u, u
)
≤ Cε/2(Λ2εu, u). (15)

Synthesis : locus of the spectrum. From steps 1, 2 with η = ε/2 and 3, we can
write

1

4
|z + 1|ε ‖u‖2 ≤

(
((K + 1)∗(K + 1))ε/2 u, u

)
≤ Cε/2(Λ2εu, u)

≤ Cε/2C ′′
hyp(µ+ 1)2 ‖u‖2

and the estimate follows. 2

Remark 5.1 Actually what is needed for the use of the Dunford integral is a
pseudospectral estimate. This can be carried out by using the ψ-do calculus and
taking Ku = zu + (K − z)u instead of Ku = zu in the three preceding steps. As
a consequence we get on the complement of some changed SK a uniform bound for
the resolvant.

Remark 5.2 For low frequencies, for which estimates imply in particular the lower
bound for the rate of convergence to the equilibrium, some hypoelliptic results of
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the form (9) are also needed. We bound from below the smallest positive real part of
the eigenvalues of K by some constant times the smallest positive eigenvalue of Λ2.
In the computations optimize the parameter δ in the definition of Λ2 and strongly
use the orthogonal decomposition

K = K
∣∣
E⊥

0
+K

∣∣
E0

where E0 = Span(M
1/2
0 ) when V is positive at infinity. Besides the upper bound is

obtained by using quasimodes.

6. Comments.
Our approach mimicks Hörmander’s method for the operators c+X0+

∑N
j=1X

∗
jXj

in [13] and its refined version by Kohn in [16]. After the work of Rotschild and Stein
[25] the most developed analysis was carried out by Helffer and Nourrigat in [9]
and [19] for arbitrary polynomials of vector fields and even polynomials of pseudo-
differential operators. Short introductions to this work can be found in [17][18]. We
recall that the strategy after the Rotschild-Stein Lifting theorem consists in study-
ing representation of some nilpotent Lie algebra associated with the Xk’s. This
supposes that the iXk’s are imaginary vector fields or, up to some lower order re-
mainder, symmetric pseudo-differential operators. In our analysis, this is not the
case for the annihilation-creation operators ib and −ib∗. Of course by adding a vari-
able θ, one gets the imaginary vector field ±i∂v− iv∂θ but no unitary representation
allows to go back to the initial situation. Hence there are two options for hypoel-
liptic problems: 1) Work with symmetric operators (−i∂v and v in our case) and
refer to the general theory; 2) Keep non symmetric operators and write adapted
commutator estimates. In any of these two cases, applications to pseudospectral
estimates rely on a variant of hypoelliptic estimates with symmetric factors of the
operator K like in Lemma 9. As previous applications of hypoelliptic techniques,
the work of Helffer and Morame [7][8][6] as well as the recent work [4] of Eckmann
and Hairer on Fokker-Planck equations follow the first approach. To our knowledge
the only work where the non real case was developed is the article [5] of Eckmann,
Pillet and Rey-Bellet on Fokker-Planck type equation with short-range perturba-
tions of quadratic potentials. We chose initially this second approach because we
thought that the compactness result for the resolvent had nothing to do with choice
of coordinate axes in the phase-space, which is contained in the splitting of ib into
−i∂v and v. thanks to the nice algebraic properties of the Fokker-Planck equation,
we were able to develop the low energy analysis which provides the bounds for the
rate of convergence to equilibrium. It is not obvious that such accurate analysis of
the low energy spectrum could be done without them.
Beside the nonlinear problems where some other structures given by thermodynami-
cal quantities might enter, possible developments of this work in the linear case may
be the study of the Fokker-Planck equation with periodic potential, the case of vari-
able friction, or other degenerate parabolic type equations coming from statistical
mechanics ([5]) or from linearized kinetic equations (see the survey paper [28]).

Eventually a recent answer to the conditions insuring the compactness of the
resolvant of the Witten Laplacian has been given in [11]. As a consequence it gives
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necessary conditions on the possible degeneracy at infinity of the potential leading
to exponential trend to the equilibrium. Meanwhile our proof has to be adapted to
this case.
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[19] J. Nourrigat. Systèmes sous-elliptiques. II. Invent. Math., 104(2), 1991. 6

[20] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 2.
Acad. Press, 1975. 5

[21] L. Rey-Bellet and L.E. Thomas. Asymptotic Behavior of Thermal Nonequi-
librium Steady States for a Driven Chain of Anharmonic Oscillators. Comm.
Math. Phys., 215:1–24, 2000. 1

[22] L. Rey-Bellet and L.E. Thomas. Exponential Convergence to Non-Equilibrium
Stationary States in Classical Statistical Mechanics. Comm. Math. Phys.,
225:305–329, 2000. 1

[23] L. Rey-Bellet and L.E. Thomas. Fluctuations of the Entropy Production in
Anharmonic Chains. preprint 2002. 1

[24] H. Risken. The Fokker-Planck equation. Springer-Verlag, Berlin, second edition,
1989. Methods of solution and applications. 1, 3, 4

[25] L.P. Rothschild and E.M. Stein. Hypoelliptic differential operators and nilpo-
tent groups. Acta Math., 137(3-4):247–320, 1976. 6

[26] D. Talay. Approximation of invariant measures of nonlinear Hamiltonian
and dissipative stochastic differential equations. In C. Soize R. Bouc, edi-
tor, Progress in Stochastic Structural Dynamics, volume 152 of Publication du
L.M.A.-C.N.R.S., pages 139–169, 1999. 1

–12



[27] D. Talay. Stochastic Hamiltonian dissipative systems with non globally Lip-
schitz coefficients: exponential convergence to the invariant measure and dis-
cretization by the implicit Euler scheme. to appear in Markov Processes and
Related Fields. 1

[28] C. Villani. A review of mathematical topics in collisional kinetic theory. to
appear in Handbook of Fluid Mechanics S. Friedlander and D. Serre Eds. 1, 6
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