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In both theoretical and applied mechanics, the modeling of nonlinear constitutive

relations of materials is a topic of prime importance. To properly formulate consistent

constitutive laws some restrictions need to be impose on tensor functions. To that

aim representations theorems for both isotropic and anisotropic functions have been

extensively investigated since the middle of the XXth century. Nevertheless, in three-

dimensional physical space, most of the results are restricted to sets of tensors up to

second-order. The purpose of the present paper is thus to get one step further and to

provide an integrity basis for isotropic polynomial functions of a completely symmetric

third-order tensor. To explicitly construct this basis, the link that exists between the

O(3)-action on harmonic tensors and the SL(2,C)-action on the space of binary forms

is exploited. We believe that such an integrity basis may found interesting applications

both in continuum mechanics and in other fields of theoretical physics.
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I. INTRODUCTION

A. Physical motivation

The theory of representations for tensor functions is at the heart of the rational modeling of

material behaviors6,39,41. Taking into account the different restriction a constitutive law must

comply (material symmetry, material objectivity, . . .) representation theorems provide the

most general shape of tensorial functions satisfying all these constraints. Such a knowledge is

important both from theoretical and experimental perspectives, since it indicates the number

and the type of independent quantities to be observed in experience. A very interesting

and sound review on topic has been written by Zheng41, hence we refer the reader to this

publication for a deeper presentation of this subject.

In three-dimensional physical space, most of the results that are known today are restricted

to sets of tensors up to second-order. In this publication we extend these result to the case

of isotropic polynomial functions of a completely symmetric third-order tensor. This result

is a first step towards a generalization of classical results to include third and higher-order

tensors.

The motivation towards such a generalization is based on, at least, three physical needs:

1. To model non-linear constitutive relations for higher-order continua10,14,23,28,38. The

isotropic hyper-elastic strain-gradient elasticity, for example, need to be supplemented

by a non-linear constitutive relation between the hyper-stress tensor and the strain

gradient tensor, both of them of third-order28;

2. To describe behaviors for anisotropic materials described by third-order structural ten-

sors5,27,41. To take anisotropy into account in the formulation of non-linear laws, the

argument of the isotropic behavior is supplemented by some structural tensors, i.e.

tensors that describe the material anisotropy. And, indeed, some material symmetry

classes are described by higher-order structural tensors.

3. To identify the symmetry properties of a linear constitutive law experimentally identi-

fied in a non-optimal basis7. Expressed in a generic basis, it is difficult to identity the

symmetry class of a linear operator, and to determine one of its optimal basis or repre-

sentation. As studied, in a special case, for the elasticity tensor by Auffray et al.1 the
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study of polynomial relations between the elementary invariants of the tensor provide

important information. To be extended to other behaviors, such as the piezoelectricity

tensor (which is a third-order tensor), the first step is to know a set of elementary

invariants of that object.

In the present paper, as a first step towards this goal, an integrity basis for isotropic

polynomial functions of a completely symmetric third-order tensor is provided. The real

vector space of these tensors will be denoted T(ijk), the notation (..) indicates invariance

under permutation of the indices in parentheses. This tensor space can be decomposed into a

space of traceless completely symmetric third-order tensors (H3) and a space of vectors (H1).

Contrary to T(ijk) both H
3 and H

1 are O(3)-irreducible spaces22,36. Hence, the integrity basis

for isotropic polynomial functions for the space T(ijk) is equivalent to the integrity basis for

isotropic polynomial functions for the space H
3 ⊕ H

1. To make this paper as self-contained

as possible, and to precisely state our result, some definitions need to be introduced.

B. Some prior definitions

An isotropic scalar-valued invariant function W is formally defined by the property

∀T ∈ T(ijk), W (T) = W (g ⋆ T), ∀g ∈ O(3) (I.1)

in which the natural action of O(3) on T(ijk) is denoted by ⋆ and defined by:

⋆ : O(3)× T(ijk) → T(ijk) ; (g,T) 7→ g ⋆ T with (g ⋆ T)ijk := gipgjqgkrTpqr (I.2)

Two tensors T1 and T2 are said to be O(3)-related, and denoted T1 ≈ T2, if there exists

g ∈ O(3) such that T2 = g ⋆ T1. The set of all vectors T ∈ T(ijk) which are related to T1 by

O(3) is called the O(3)-orbit of T1 and is denoted by

O(3) ⋆ T1 := {T = g ⋆ T1 | g ∈ O(3)}

Hence, as it can directly be observed, isotropic invariant functions are constant on O(3)-

orbits. Now, among all functions, let us consider more specifically the polynomial ones. As

well-known from invariant theory, since the orthogonal Lie group O(3) is compact, the algebra

of invariant polynomial functions on T(ijk) is finitely generated4331 and, furthermore, in the
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real case, polynomial invariants separate the orbits. From now on, G will either be O(3) or

SO(3). A basis for the G-invariant polynomial algebra is called an integrity basis44:

Definition I.1. Let V be a real vector space with a G-action. A finite set p1, . . . , pk of

G-invariant polynomials on V is called an integrity basis if every G-invariant polynomial on

V can be written as a polynomial in p1, . . . , pk.

An integrity basis is said to be irreducible if none of its elements can be expressed as a

polynomial of the others. It is worth noting that this definition does not exclude that some

polynomial relations exist between generators. Such relations, which can not be avoided in

most cases, are known as syzygies and their determination is a difficult problem.

Beside integrity bases, functional bases5,7,40 can be defined:

Definition I.2. Let V be a real vector space with a G-action. A finite set s1, . . . , sk of

G-invariant functions of V is called a functional basis if

si(v1) = si(v2), ∀i = 1, . . . , n (I.3)

implies v1 = g.v2 for some g ∈ G.

A functional basis is said to be irreducible if none of its elements can be expressed as a

function of the others. It is worth noting that this definition does not preclude that some

functional relations between generators exist. In the definition of a functional basis, basis

invariants are not required to be polynomial. However for physical applications it is often

more convenient to determine polynomial functional bases5,6.

Before going any further, the two aforementioned definitions have to be discussed. While

the former is centered on finding a generating system for the algebra ofG-invariant polynomial

functions, the latter is concerned with the determination of a separating system, i.e. on finding

a set of (polynomial) functions that separates G-orbits of V elements. This distinction is

important because, although the algebra of invariant polynomials separates the orbits, this

set might be very large. As a consequence, an integrity basis is a functional basis, but the

converse is generally false7,40. Hence, the cardinal of a minimal integrity basis is generally

greater than that of a functional basis. In mathematics, an irreducible functional basis is
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called a separating set11, but if their conciseness is appealing, no general algorithm currently

exists to produce them. Let us now do a quick review on the state-of-the-art in invariant

functions modeling in continuum mechanics.

C. State-of-the-art in applied invariant theory

Integrity and functional bases are currently known for invariant functions of an arbitrary

number of vectors and skew and symmetric second order tensors6,27,41, that is for sets of

tensors up to second-order. For higher-order tensors results are very partial and restricted to

particular cases45. The reason lies in the fact that the classical geometrical methods used for

low-order tensors cease to function since third-order tensors. Even if not directly expressed in

these terms this point was clear to authors who worked on this topic7,33,34. As a consequence,

for higher-order tensors, methods stemming from the classical invariant theory have to be

employed. This change of point of view has important implications:

1. Due to the fact that, for sets of tensors up to second-order, with some geometric

intuition functional bases can be constructed results mostly concern the constructions

of such bases. For higher-order tensors this inductive procedure cannot be employed

anymore, and attention has moved to integrity bases. This point is clear in the late

works of Boehler7 and Smith33.

2. If up to second-order, whole tensors can be considered as the elementary variables of

isotropic functions, this point of view cannot be extended. Instead, tensor have to

be decomposed into O(3)-irreducible elements, that is, into a sum of completely sym-

metric traceless tensors. This decomposition is sometimes referred to as the harmonic

decomposition15,22. O(3)-irreducible tensors are the elementary variables of isotropic

functions46.

The problem we are presently interested in concerns an extension of a result previously

obtained by Smith and Bao33. In this reference the authors provide an integrity basis for

isotropic functions of a traceless symmetric third-order tensor (T ∈ H
3). In our present

paper we extend this result to isotropic functions of a full symmetric third-order tensor. In

terms of tensor space, this amounts to consider a space constituted of a traceless completely
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symmetric third-order tensor and a vector, i.e. the tensor space H
3 ⊕ H

1. As said in this

first part of the introduction, this result might found interesting applications in continuum

mechanics to construct constitutive laws6,10,13,41.

Let us now briefly draw the big picture of the approach used to determine an integrity

basis for T(ijk).

D. Technical construction

There exists a deep link between the SO(3)-action47 on harmonic tensors and the SL(2,C)-

action on the space of binary forms, i.e. the space of complex homogeneous polynomials

in x, y. This connection was already known by authors in mechanics7,33,35,41 but, except in

few references7,33, has not really been exploited. In Boehler et al.7, for example, to obtain

an integrity basis for a fourth-order completely symmetric traceless tensor (T ∈ H
4) the

authors used some purely mathematical results obtained by Shioda32. This work was about

the construction of an integrity basis for S8, the space of binary forms of degree 8 under

SL(2,C)-action. Hence, the problem of the determination of integrity bases for tensor spaces

can be rephrased in terms of binary forms. Such a reformulation allows one to reinvest

existing tools from classical invariant theory. This strategy is adopted in the present paper.

The most famous approach was initiated by Hilbert21, and successfully applied (without

any computer assistance) by Shioda32. More recently, and with the extensive use of computer,

Dixmier and Lazard12, Bedratyuk4 and Popovisciu and Brouwer8,9 have derived integrity

basis for binary forms up to S10, which would correspond to H
5, i.e. fifth-order completely

symmetric and traceless tensor space. It has to be emphasized that this approach relies

on very intensive computations since matrix ranks have to be tested up to order 20000.

According to a mathematical point of view, this is essentially an algebraical geometric method

that relies on the subtle notion of system of parameters of an algebra37. It appears that this

notion is not an effective one: up to our knowledge, there is no general algorithm to decide

whether a set of variables is a system of parameters or not. Instead we decide to use a

nineteenth century algorithm first given by Gordan in 186818. This approach leads to the

constructive theorem IV.2 used in the present paper.
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II. RESULTS

In this section our main results are summed-up, and proofs postponed to the next sections.

First let us consider the result obtained by Bao and Smith33. Their result will be given using

the diagrammatic representation already used by Boehler et al.7.

Theorem II.1. An integrity basis for R[H3]O(3) is given by I2, I4, I6 and I10

I2 I4 I6 I10

In this representation the big circle represents D ∈ H
3 and the lines index contractions. For

instance, the invariant48 λ = DijkDijk has the graphical representation:

Now let us consider the case of a completely symmetric third order tensor. This situation is

amount to add a vector u ∈ H
1 to the previous component D ∈ H

3. In the diagrammatic

notation this vector component will be denoted by a small black dot. Hence, our main result

is:

Theorem II.2. An integrity basis for R[H3 ⊕H
1]O(3) is given by:

I2 := DijkDijk J2 := u2
i I4 := DijkDijlDpqkDpql

J4 := DijkukDijlul K4 := DijkDijlDklpup L4 := Dijkukujui

I6 := v2i J6 := DijkDijlukDlpqupuq K6 := vkwk

L6 := DijkDijlDkvl M6 := DijkDpqkuiujupuq I8 := DijkDijlukDpqlDpqrvr

I10 := Dijkvivjvk
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in which

vp := DijkDijlDklp ; wk := Dijkuiuj

J2 J4 K4 L4 J6

K6 L6 M6

I8

III. MATHEMATICAL FRAMEWORK

A. O(3)-tensor spaces

The space T(ijk) is endowed with the natural O(3)-action given by I.2:

(g ⋆ T)ijk := gilgjmgknTlmn

More generally, this action, sometimes referred to as the Rayleigh action, can be defined on

any kth-order tensor space T. A subspace F ⊆ T is said to be O(3)-stable provided g ·F ⊆ F
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for every g ∈ O(3). As can be observed T(ijk) ⊆ Tijk is stable but can still be decomposed

into smaller stable subspaces. In other terms T(ijk) is not irreducible. As it will be detailed,

O(3)-irreducible tensors are encoded by harmonic tensors.

Let us consider H
k to be the space of kth-order harmonic tensors15. The denomination

harmonic is due to a classical isomorphism3 in R
3 between H

k and the space of kth-degree

harmonic polynomials49. A classical mathematical result36 states that SO(3)-action on H
k

is irreducible: non-trivial SO(3)-stable subspace50 cannot be found in H
k. Now, it is easy

to show that O(3)-action on each H
k is irreducible. Furthermore, since O(3) is compact,

the Peter-Weyl theorem36 ensures that every O(3)-space can be isomorphically decomposed

into irreducible subspaces. This decomposition is sometimes referred to as the harmonic

decomposition15,25.

The space T(ijk) can be uniquely decomposed51

T(ijk) ≃ H
3 ⊕H

1

i.e. there exists an isomorphism

T 7→ (D, u) with D ∈ H
3 and u ∈ H

1

such that g ⋆ T 7→ (g ⋆D, g ⋆ u).

B. SU(2)-spaces of binary forms

In this subsection the important link between the SU(2)-space of binary forms and the

SO(3)-space of harmonic tensors will be pointed out. Through this correspondence it is

possible to find polynomial invariants using classical invariant theory19. Most of the classical

results presented in this subsection are borrowed from the classcial monograph of Sternberg36.

Let us first consider the classical group morphism

ϕ : SU(2) −→ SO(3)

which kernel is {±id}.

Now, let S2k be the space of 2kth-degree binary forms over C2, meaning the C-vector space52

9



of f given by

f(x, y) :=
n

∑

i=0





2k − i

i



 aix
2k−iyi for (x, y) ∈ C

2

SU(2) has a natural irreducible action on the space S2k, which is:

(γ · f)(x, y) := f(γ−1 · (x, y)) for γ ∈ SU(2)

Another important result states53 that there exists an isomorphism

ψ : S2k −→ H
k (III.1)

satisfying

ψ(γ · f) = ϕ(γ) ⋆ ψ(f)

C. Polynomial invariants on tensor spaces

Let T be a stable O(3)-tensor space and C[T] the algebra of polynomials in T. Now

consider the following two invariant algebras

A := C[T]O(3) ; As := C[T]SO(3)

the first being the algebra of isotropic polynomials, while the second is the one of hemitropic

polynomials. These algebras satisfy the following obvious inclusion:

A ⊂ As (III.2)

As a graded algebra, As can be decomposed into ith-degree homogeneous polynomials:

As = As
0 ⊕As

1 ⊕ · · · ⊕ As
i · · ·

Hence

Lemma III.1. A is exactly the even part of As; that is

A = As
0 ⊕As

2 ⊕ · · · ⊕ As
2i · · ·

Proof. It has to be observed that if p is a jth-degree homogeneous polynomial in A, then

p(−g ⋆T) = p(T) = (−1)jp(g ⋆T) = (−1)jp(T)

for all g ∈ SO(3) and T ∈ T. This implies our lemma.
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This lemma allows to consider the algebra of SO(3)-invariant polynomials on tensor spaces.

Due to the isomorphism ψ of III.1, this amount to consider the algebra of SU(2)-invariant

polynomials on the space of binary forms. Once particularized to the space H
3 ⊕ H

1, the

following result is obtained

Lemma III.2. The algebra of SO(3)-invariant polynomials on the C-vector space H
3 ⊕ H

1

is isomorphic to the algebra of SU(2)-invariant polynomials on the C-vector space S6 ⊕ S2.

As noted by Boehler et al.7, the algebra of SO(3)-invariant polynomials on the real vector

space H3⊕H
1 is isomorphic to the algebra of SL(2,C)-invariant54 polynomials on the complex

vector space S6 ⊕ S2; that is

R
[

H
3 ⊕H

1
]SO(3)

≃ C [S6 ⊕ S2]
SL(2,C)

D. Polynomial invariants of S6 ⊕ S2

Let us consider the space V := S6 ⊕ S2 of binary forms. In the monograph of Sturmfels37,

some important and classical results about R := C[V ]SL(2,C) can be found. These results

provide important information to check whether a candidate basis of invariants generates or

not the sought invariant algebra.

1. As a graded algebra, R can be decomposed

R = R0 ⊕R1 ⊕ · · ·

where each homogeneous space Ri is a finite C-vector space. Let us consider the formal

Hilbert series37

HR(z) :=
∑

i

riz
i, with ri := dimRi

2. In the case of binary forms, this series can be computed a priori. An integration

approach26 leads to the following result:

Lemma III.3.

HR(z) :=
A(z)

(1− z2)(1− z4)3(1− z6)2(1− z10)
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where

A(z) := 1 + z2 + 2 z4 + 5 z6 + 3 z7 + 7 z8 + 10 z9 + 8 z10 + 14 z11

+10 z12 + 14 z13 + 10 z14 + 14 z15 + 8 z16 + 10 z17 + 7 z18

+3 z19 + 5 z20 + 2 z22 + z24 + z26

3. By Hilbert’s theorem21, the algebra R is finitely generated: there exist p1, p2, · · · , pn

such that

R = C[p1, p2, · · · , pn]

With the help of these results integrity bases can now be determined.

IV. INTEGRITY BASIS

A. Integrity basis for S6 ⊕ S2

For binary forms, a classical way to construct covariants is to use the transvectant

operator30:

Definition IV.1. Let f and g be two binary forms of respective order m and n. We define

the rth-order transvectant of f and g to be the binary form:

{f ,g}r :=
(m− r)!

m!
×

(n− r)!

n!

r
∑

i=0

(−1)i





r

i





∂rf

∂r−ix∂iy

∂rg

∂ix∂r−iy

As a first example, for a quadratic form u ∈ S2 given by

u(x, y) := a0x
2 + 2a1xy + a2y

2

we get

{u,u}2 = 2a0a2 − 2a21

which is a classical invariant. And for a cubic form g ∈ S3 given by

g(x, y) := b0x
3 + 3b1x

2y + 3b2xy
2 + b3y

3

we get a quadratic covariant:

{g,g}2 = 2(b0b2 − b21)x
2 + 2(b0b3 − b1b2)xy + 2(b1b3 − b22)y

2

12



Such a covariant is said to be of degree 2 (in the coefficients bi) and of order 2 (in the variables

x, y). This definition of degree and order is general: the degree of a covariant is the degree

of the coefficients, while the order concerns the degree of the variables. Hence a 0th-order

covariant is an invariant. The next computations will be made using the covariant basis for

a sextic form given in table IVA. Such a basis is classic and has been computed by the end

of nineteenth century19. In this table covariants of degree d and order o are denoted Cd,o.

d/o 0 2 4 6 8 10 12

1 f

2 {f , f}6 {f , f}4 {f , f}2

3 {C2,4, f}4 {C2,4, f}2 {C2,4, f}1 {C2,8, f}1

4 {C2,4,C2,4}4 {C3,2, f}2 {C3,2, f}1 {C2,8,C2,4}1

5 {C2,4,C3,2}2 {C2,4,C3,2}1 {C2,8,C3,2}1

6 {C3,2,C3,2}2
C6,6a := {C3,8,C3,2}2

C6,6b := {C3,6,C3,2}1

7 {f ,C2
3,2}4 {f ,C2

3,2}3

8 {C2,4,C
2
3,2}3

9 {C3,8,C
2
3,2}4

10 {C3
3,2, f}6 {C3

3,2, f}5

12 {C3,8,C
3
3,2}6

15 {C3,8,C
4
3,2}8

TABLE I. Covariant basis for S6

The following result19,29 is used to determine a finite generating set of invariants for the

algebra R:

Theorem IV.2. If {h1, · · · ,hs} is a covariant basis for Sn, and if u is a quadratic form,

then irreducible invariants of Sn ⊕ S2 are taken from one of this set:

• {hi,u
r}2r for i = 1 · · · s such that hi is of order 2r ;

• {hihj,u
r}2r where hi is of order 2p+ 1 and hj is of order 2r − 2p− 1.

13



It should be noted that the obtained generating set need not be irreducible. Hence,

invariants can be obtained, degree per degree:

• Degree 2:

i2 := {f , f}6 j2 := {u,u}2

• Degree 4:

i4 := {C2,4,C2,4}4 j4 := {C3,2,u}2

k4 := {C2,4,u
2}4 l4 := {f ,u3}6

• Degree 6:

i6 := {C3,2,C3,2}2 j6 := {C5,2,u}2 k6 := {C4,4,u
2}4

l6 := {C3,6,u
3}6 m6 := {C2,8,u

4}8

• Degree 7:

i7 := {C5,4,u
2}4 j7 := {C4,6,u

3}6 k7 := {C3,8,u
4}8

• Degree 8:

i8 := {C7,2,u}2

• Degree 9:

i9 := {C8,2,u}2 j9 := {C7,4,u
2}4 k9 := {C6,6a,u

3}6

l9 := {C6,6b,u
3}6 m9 := {C5,8,u

4}8 n9 := {C4,10,u
5}10

o9 := {C3,12,u
6}12

• Degree 10:

i10 := {C3
3,2, f}6

• Degree 11:

i11 := {C9,4,u
2}4 j11 := {C10,2,u}2

• Degree 13:

i13 := {C12,2,u}2
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• Degree 15:

i15 := {C3,8,C
4
3,2}8

By use of theorem IV.2 we know that R = C[i2, j2, · · · , i15]. Now we compute homoge-

neous space dimensions dim(Ri)i=1...15 and compare them with the ri of the Hilbert series

HR. These computations have been performed using scripts written in Macaulay 220, the

following result is obtained:

Proposition IV.3. A minimal Hilbert basis for the algebra C[S6 ⊕ S2]
SL2 is given by the 27

invariants

Name Degree Name Degree

i2, j2 2 i9 ,j9, k9, l9, m9, n9, o9 9

i4, j4, k4, l4 4 i10 10

i6, j6, k6, l6, m6, 6 i11, j11 11

i7, j7, k7 7 i13 13

i8 8 i15 15

B. Integrity basis for H
3 ⊕H

1

In order to obtain an integrity basis for H3 ⊕H
1, the even part of C[S6 ⊕ S2]

SL2 has to be

determined. For that purpose, we consider the algebra

B := C[i2, j2, i4, j4, k4, l4, i6, j6, k6, l6,m6, i8, i10]

and compute dim(B2j)j=1...13 to compare it with the r2j of the Hilbert series HR. Finally we

get:

Lemma IV.4. The even part of the algebra C[S6⊕S2]
SL2 is generated by the thirteen invari-

ants

i2, j2, i4, j4, k4, l4, i6, j6, k6, l6,m6, i8, i10

Now, from lemmas III.1 and IV.4 and using the isomorphism ψ of III.1:

Theorem IV.5. There exist polynomials A2, B2 of degree 2, A4, B4, C4, D4 of degree 4,

A6, B6, C6, D6, E6 of degree 6, A8 of degree 8 and A10 of degree 10 such that

C[H3 ⊕H
1]O(3) = C[A2, B2, . . . , A10]
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In other terms,

Theorem IV.6. An integrity basis for R[H3 ⊕H
1]O(3) is given by:

I2 := DijkDijk J2 := u2
i I4 := DijkDijlDpqkDpql

J4 := DijkukDijlul K4 := DijkDijlDklpup L4 := Dijkukujui

I6 := v2i J6 := DijkDijlukDlpqupuq K6 := vkwk

L6 := DijkDijlDkvl M6 := DijkDpqkuiujupuq I8 := DijkDijlukDpqlDpqrvr

I10 := Dijkvivjvk

in which

vp := DijkDijlDklp ; wk := Dijkuiuj

Proof. Let define

B := C[I2, J2, · · · , I10] and A := C[V ]O(3) = C[I2, B2, · · · , A10]

We put Bk (resp. Ak) to be the space of kth-degree homogeneous space of B (resp. A). Now

it is clear that

B ⊂ A

By computing dimensions of the vector spaces Bk up to k = 10 the same dimension as Ak

are obtained. Thus each generator A2, B2, · · · , A10 belongs to B. Hence it can be concluded

that A = B. Now, because all invariants I2, · · · , I10 have real coefficients, this leads us to an

integrity basis for R[H3 ⊕H
1]O(3).
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