
This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry: h t t p s://o rc a.c a r diff.ac.uk/105 0 3 4/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Wang,  Fa n gfa n g,  Leon e nko, Nikolai a n d  M a,  Ch u n s h e n g  2 0 1 8.  Iso t ropic

r a n do m  fields  wi t h  infini t e  divisible  di s t r ib u tions.  S toc h a s tic  Analysis  a n d

Applica tions  3 6  , p p .  1 8 9-2 0 8.  1 0.1 0 8 0/073 6 2 9 9 4.20 1 7.1 3 8 5 0 2 8  file  

P u blish e r s  p a g e:  h t t p s://doi.o rg/10.10 8 0/07 3 6 2 9 9 4.2 0 1 7.13 8 5 0 2 8

< h t t p s://doi.o rg/10.10 8 0/07 3 6 2 9 9 4.20 1 7.13 8 5 0 2 8 >

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,

for m a t ting  a n d  p a g e  n u m b e r s  m ay no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e

d efini tive  ve r sion  of t his  p u blica tion,  ple a s e  r ef e r  to  t h e  p u blish e d  sou rc e.  You

a r e  a dvise d  to  cons ul t  t h e  p u blish e r’s ve r sion  if you  wish  to  ci t e  t his  p a p er.

This ve r sion  is b ein g  m a d e  av ailable  in  a cco r d a n c e  wit h  p u blish e r  policie s.

S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s

for  p u blica tions  m a d e  available  in ORCA a r e  r e t ain e d  by t h e  copyrig h t

hold e r s .



For P
eer R

eview
 O

nly
�

�

�

�

�

�

���������		�
���	������				����				

		��������		���������	
����
�	��������������
�

�

�������	� ����������	
������	���	
������������


������������ ������������������


������������ 	� !�"��������� �

# �$��%�	�
&�'����� �(���)�*������+� ����������������� %����%�(�* �%+�,�������
���%�(�* �%+��*�� ���%'�-� +�� '������ ���

��

.�� 	��/ �*����$�"�*� ��$ � ���-(�� %�-���/ ����/���*����  ��� ' $+�-����������- ����' �� %����
0�1���2���(����' $��/ � �*� ��3 �"��(�' �4����� ��

5��"� �� �6�
��1����� )�

�

�

URL: http://mc.manuscriptcentral.com/lsaa  Email: gladde@usf.edu

Stochastic Analysis and Applications



For P
eer R

eview
 O

nly
Isotropic random fields with

infinitely divisible marginal distributions

Fangfang Wang

Department of Statistics, University of Wisconsin, Madison, WI 53706, USA

E-mail: fangfang@stat.wisc.edu

Nikolai Leonenko

School of Mathematics, Cardiff University, Cardiff, UK

E-mail: LeonekoN@Cardiff.ac.uk

Chunsheng Ma

Department of Mathematics, Statistics, and Physics

Wichita State University, Wichita, KS 67260-0033, USA

E-mail: chunsheng.ma@wichita.edu

ABSTRACT

A simple but efficient approach is proposed in this paper to construct the isotropic ran-

dom field in R
d (d ≥ 2), whose univariate marginal distributions may be taken as any

infinitely divisible distribution with finite variance. The three building blocks in our

building tool box are a second-order Lévy process on the real line, a d-variate random

vector uniformly distributed on the unit sphere, and a positive random variable that gen-

erates a Pólya-type function. The approach extends readily to the multivariate case and

results in a vector random field in R
d with isotropic direct covariance functions and with

any specified infinitely divisible marginal distributions. A characterization of the turning

bands simulation feature is also derived for the covariance matrix function of a Gaussian

or elliptically contoured random field that is isotropic and mean square continuous in R
d.

KEYWORDS

Covariance matrix function; cross covariance; direct covariance; elliptically contoured ran-

dom field; Gaussian random field; infinitely divisible; Lévy process; Pólya-type function;

turning bands method
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MATHEMATICS SUBJECT CLASSIFICATION

60G60; 60G51; 60E07

1 Introduction

Spatial or spatio-temporal data are frequently modeled as realizations of random fields

in spatial statistics [11], [14], [15], [26], a fundamental characterization of which would

be the underlying finite-dimensional distributions. When a random field is assumed to

be of second-order, its correlation structure is often of crucial importance. The Gaus-

sian random field model is among the most popular choices, mostly due to the fact that

its correlation structure is one of the richest structures, in the sense that any positive

definite function could be employed as its covariance function. Including the Gaussian

one as a special case, the set of second-order elliptically contoured random fields is one

of the largest, if not the largest, sets that allow any positive definite function to be a

covariance function [36]. On the other hand, non-Gaussian models are called for and are

encountered in various natural and applied science fields, such as agriculture, astronomy,

economics, environment, finance, geophysics, hydrology, and other areas [29]. Occasion-

ally, a positive definite function is adopted in the literature as the covariance function of a

non-Gaussian or non-elliptically-contoured random field, as is pointed out in [44], without

awareness that positive definiteness is a necessary condition for the covariance function

of a second-order random field to be satisfied but whether it is sufficient must be checked

on a case-by-case basis. The primary objectives of this paper are to connect a subset of

isotropic positive definite functions in R
d to a class of non-Gaussian or non-elliptically-

contoured random fields in R
d (d ≥ 2), and to propose a simple but efficient approach

to construct isotropic random fields in R
d, whose univariate marginal distributions could

be an arbitrary infinitely divisible distribution, and whose covariance functions are of the

form (4) below that is an important particular case of (1) or (3).

Given an even and continuous function C(x) on R, C(‖x‖) is a positive definite func-

tion in R
d (d ≥ 2) if and only if it possesses an integral representation [47]

C(‖x‖) =
∫ ∞

0

Ωd(‖x‖u)dF (u), x ∈ R
d, (1)

where F (u) is an increasing and bounded function on [0,∞), ‖x‖ is the usual Euclidean

norm of x ∈ R
d,

Ωd(ω) = Γ

(

d

2

)(

2

ω

) d
2
−1

J d
2
−1(ω), ω ∈ R, (2)
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and Jν(x) stands for a Bessel function of order ν. In other words, C(‖x‖) is the covariance
function of an isotropic Gaussian or elliptically contoured random field in R

d if and only

if (1) holds [35], [41], [54], [55]. The so-called turning bands method was introduced by

Matheron [43] to simulate an isotropic random field in R
d, after observing that (1) is

equivalent to

C(‖x‖) = 2Γ
(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

C1(‖x‖u)(1− u2)
d−3

2 du, x ∈ R
d, (3)

where C1(x) is a positive definite function on R. The mapping C1 → C(‖·‖) is one-to-one
from the set of positive definite functions on R onto that in R

d, in that, for every isotropic

positive definite function C(‖x‖) in R
d, there exists a unique positive definite function

C1(x) on R such that (3) holds. In Section 3 we restrict our attention to the cases that

C1(x) are Pólya-type functions.

Section 3 proposes a simple but efficient approach to generate isotropic random fields

in R
d, whose marginal distributions could be an arbitrary infinitely divisible distribution,

and whose covariance functions take the form

C(‖x‖) = 2Γ
(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

g(‖x‖u)(1− u2)
d−3

2 du, x ∈ R
d, (4)

where g(x) is a Pólya-type function on R that is even, continuous, and nonnegative, and

is convex on (0,∞), with g(0) = 1 and lim
x→∞

g(x) = 0. A Pólya-type function g(x) can be

treated either as the covariance function of a stationary Gaussian or elliptically contoured

stochastic process on R by Bochner’s theorem [21], or as the characteristic function of

an absolutely continuous distribution function [12], [21], [34], whose density function

is an even function and is continuous everywhere except possibly at the point x = 0.

Properties of Gaussian processes with Pólya-type covariance function are studied in [7] and

[31]. Probabilistic constructions are given in [21] for time series reformulations of Pólya’s

theorem on characteristic functions, with the marginal distributions of the process to be

any infinitely divisible distribution with finite variance. A class of stationary Gaussian or

elliptically contoured vector stochastic processes on R is formulated by [17], with Pólya-

type direct and cross covariance functions. Another class of stationary vector stochastic

processes on R is constructed by [23], whose marginal distributions are infinitely divisible

distributions with finite variance, and whose direct covariance functions are of Pólya type.

A stationary stochastic process on R is built in [39], of which the covariance function is

of Pólya-type and the marginal distributions may be taken as any infinitely divisible

distribution with finite variance, just like those in [21]. A stationary random field in R
d

or Z
d is constructed and characterized by [24] that can take any (univariate) infinitely
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divisible distribution with finite variance and has the covariance function expressed as a

product of Pólya-type functions. See also [33], which constructs classes of homogeneous

random fields on R
3 that take values in linear spaces of tensors of a fixed rank and are

isotropic with respect to a fixed orthogonal representation of the group of orthogonal

matrices.

A vector random field in R
d is built in Section 4, whose marginal distributions could be

any infinitely divisible distribution with finite variance, and whose direct covariances are

of the form (4). For the covariance matrix function of a Gaussian or elliptically contoured

vector random field in R
d, we also obtain a matrix version of (3), which may be regarded

as a turning bands method to simulate the vector random field just as Matheron [43]

did. Some preliminary results are given in Section 2, and all the proofs are presented in

Section 5.

2 Preliminary results

This section recalls some basic properties of second-order Lévy processes, uniform distri-

bution on the unit sphere S
d−1 = {x ∈ R

d, ‖x‖ = 1}, and Pólya-type functions, which

constitute the three building blocks in our tool box in Sections 3 and 4. For Lévy pro-

cesses and infinitely divisible distributions we refer the reader to [1], [9], [46], and [50], to

[19] and [20] for the uniformly distributed random vector on S
d−1, and to [21] and [34] for

the Pólya-type function on R.

An m-variate Lévy process {Y(x), x ∈ R} is a real stochastic process that possesses

the following properties:

(i) P (Y(0) = 0) = 1,

(ii) (independent increments) Y(x2)−Y(x1), . . . ,Y(xn)−Y(xn−1) are independent for

every positive integer n and any x1 < x2 < . . . < xn,

(iii) (stationary increments) for any x1 < x2, Y(x2) − Y(x1) and Y(x2 − x1) have the

same distribution,

(iv) it is stochastically continuous.

The distribution of Y(x) is infinitely divisible, for each x ∈ R. It may or may not have

first or second-order moments. When second-order moment exists, a general form of the

covariance matrix function is given in Lemma 1 for a second-order Lévy process.
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Lemma 1. If {Y(x), x ∈ R} is an m-variate second-order Lévy process, then its covari-

ance matrix function is of the form

cov(Y(x1),Y(x2)) =

( |x1|+ |x2|
2

− |x1 − x2|
2

)

Σ, x1, x2 ∈ R, (5)

where Σ = cov(Y(1),Y(1)) is a positive definite matrix.

A d-variate random vector V = (V1, . . . , Vd)
′ uniformly distributed on S

d−1 has a

stochastic representation [19], [20],

V =













W1

(

d
∑

k=1

W 2
k

)
1

2

, . . . ,
Wd

(

d
∑

k=1

W 2
k

)
1

2













′

, (6)

where W1, . . . ,Wd are independent standard normal random variables. The joint density

of (V1, . . . , Vk)
′ is











Γ( d
2)

Γ( d−k
2 )π

k
2

(

1−
k
∑

i=1

v2i

)
d−k
2

−1

,
k
∑

i=1

v2i < 1,

0, otherwise,

for 1 ≤ k < d. In particular, the density function of V1 is given by

fV1
(v) =







Γ( d
2)√

πΓ( d−1

2 )
(1− v2)

d−3

2 , |v| < 1,

0, otherwise.

The function Ωd(‖ω‖) appearing in (2) is nothing but V’s characteristic function, namely,

Ωd(‖ω‖) = E exp(ıω′V) =
1

ωd−1

∫

Sd−1

exp(ıω′v)dv, ω ∈ R
d, (7)

where ωd−1 = 2π
d
2

Γ( d
2)

is the surface area of the unit sphere S
d−1 and ı is the imaginary

unit. If F (u) in (1) is assumed to be a cumulative distribution function of a nonnegative

random variable, U0, say, that is independent of V, then (1) becomes

C(‖x‖) = E exp(ıx′VU0), x ∈ R
d, (8)

5
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and (3) is identical to

C(‖x‖) = E exp(ı‖x‖V1U0), x ∈ R
d, (9)

since x′V and ‖x‖V1 have the same distribution, according to Theorem 2.4 of [19].

Note that a Pólya-type function g(x) on R can be represented in the form

g(x) =

∫ ∞

0

(

1− |x|
u

)

+

dFU(u), x ∈ R, (10)

where x+ = max(x, 0), and FU(u) is the distribution function of a positive random variable

U with P (U ≤ 0) = 0. See, e.g., Theorem 4.3.3 of [34]. For this reason [39] we say that

the random variable U generates the Pólya-type function g(x). If g(x) is given, then the

density or distribution function of U could be obtained, as shown in Lemmas 2 and 3,

by solving the equation (10) when g(x) possesses a second-order derivative on (0,∞) or

FU(u) is continuous.

Lemma 2. If g(x) is a Pólya-type function on R and is twice differentiable on (0,∞),

then it can be generated by a positive random variable U having a density

fU(x) =

{

xg′′(x), x > 0,

0, x ≤ 0.
(11)

Lemma 3. If the distribution function FU(u) is continuous, then the Pólya-type function

g(x) is continuously differentiable on (0,∞) and FU(u) can be recovered from g(x) with

FU(x) =

{

1 + xg′(x)− g(x), x > 0,

0, x ≤ 0.
(12)

Let V0 be a random variable with density function 1
2π

(

sin(v/2)
v/2

)2

, v ∈ R, and be

independent of U that generates g(x). Then (10) can be alternatively written as

g(x) = E exp

(

ı
V0

U
x

)

, x ∈ R, (13)

by noticing that the characteristic function of V0 is (1− |x|)+. Furthermore, g(x) may be

interpreted as the covariance function of the following stationary process,

Z(x) = cos

(

V0

U
x+Θ

)

, x ∈ R,

where Θ is a random variable uniformly distributed on [0, 2π] and independent of (U, V0).

As a result, (4) is a special case of (1) or (3).
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3 Isotropic random fields with infinitely divisible marginal

distributions

This section introduces a new class of isotropic random fields in R
d (d ≥ 2) with infinitely

divisible marginal distributions and their covariance functions take the form (4). Our

three building blocks are a second-order Lévy process on R, a random variable U that

generates a Pólya-type function on R, and a random vector V uniformly distributed on

S
d−1.

Theorem 1. Suppose that g(x) is a Pólya-type function on R and U is a positive random

variable generating g(x), and that V is a d-variate random vector uniformly distributed

on S
d−1. If {Y (x), x ∈ R} is a second-order Lévy process with covariance

cov(Y (x1), Y (x2)) =
|x1|+ |x2|

2
− |x1 − x2|

2
, x1, x2 ∈ R,

and {Y (x), x ∈ R}, U , and V are independent of each other, then

Z(x) = Y

(

x′V

U
+ 1

)

− Y

(

x′V

U

)

, x ∈ R
d, (14)

is an isotropic random field. Moreover,

(i) for each fixed x ∈ R
d, Z(x) follows the same infinitely divisible distribution as Y (1);

(ii) the covariance function of {Z(x),x ∈ R
d} is

cov(Z(x1), Z(x2)) = Eg(‖x1 − x2‖V1)

=
2Γ( d

2)√
πΓ( d−1

2 )

∫ 1

0
g(‖x1 − x2‖u)(1− u2)

d−3

2 du,
(15)

or, equivalently,

cov(Z(x1), Z(x2)) =
∫∞
0

Ωd(‖x1 − x2‖u)dF (u), x1,x2 ∈ R
d, (16)

where

F (u) =

{

2P
(

V0

U
≤ u

)

, u ≥ 0,

0, otherwise,

and V0 is a random variable with characteristic function (1−|x|)+ and is independent

of U ;

7
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(iii) The spectral distribution function of (14) is identical to the distribution function

of a d-variate isotropic random vector V0

U
V, where V0 is a random variable with

characteristic function (1− |x|)+ and is independent of U and V; and, whenever it

exists, the density function of V0

U
V is the spectral density function of (14).

As a remark, the covariance function of the isotropic random field {Z(x),x ∈ R
d}

gets the random variable V0U
−1 involved through either the characteristic function g(x)

as in (15) or half its distribution function F (u) as in (16). Interestingly, the isotropic

covariance function (4) or (15) enjoys a Pólya-type property similar to that of g(x), as is

described below.

Corollary 1. The isotropic covariance function (15) possesses the following properties:

(i) C(‖x‖) is a decreasing function of ‖x‖, and takes nonnegative values;

(ii) C(‖x‖) is a convex function in R
d, in the sense that the inequality

C(‖λx1 + (1− λ)x2‖) ≤ λC(‖x1‖) + (1− λ)C(‖x2‖), x1,x2 ∈ R
d,

holds for every λ ∈ [0, 1].

Indeed, these properties follow directly from (15), in view of the fact that g(x) is

decreasing, nonnegative, and convex on [0,∞), and ‖λx1 + (1 − λ)x2‖) ≤ λ‖x1‖ + (1 −
λ)‖x2‖. The condition lim

x→∞
g(x) = 0 in a Pólya-type function may be substituted [12],

[21] by lim
x→∞

g(x) = a0 ≥ 0. Theorem 1 can be modified appropriately to cover this case

as well.

The set of second-order Lévy processes is rich. Familiar special cases include Brownian

motion, Poisson process, negative binomial process, gamma process, inverse Gaussian pro-

cess, normal inverse Gaussian process [3], inverse Gamma process [25], variance Gamma

process [40], [22], and second-order Student process [30].

To simulate the isotropic random field (14), we need the simulators of the second-order

Lévy process {Y (x), x ∈ R}, the uniformly distributed random vector V on S
d−1, and

the random variable U that generates g(x). Methods for simulating Lévy processes are

available in the literature [48], [49], [53]. Simulation of V can be made through that

of d independent standard normal random variables and the stochastic representation

(6). What remains is to simulate the random variable U , which would be simple if its

distribution is known. For a given g(x), the distribution function of U may be found by

solving the equation (10), to which solutions are given in Lemmas 2 and 3. The former

deals with the scenario when g(x) possesses a second-order derivative on (0,∞), while the

latter requires only g(x) to be continuously differentiable on (0,∞).

8
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Corollary 2. In the particular case d = 3, the isotropic covariance function (15) reduces

to

C(‖x1 − x2‖) =
∫ ‖x1−x2‖
0

g(u)du

‖x1 − x2‖
, x1,x2 ∈ R

3, (17)

and, conversely, g(x) can be recovered from (17),

g(x) =
d

dx
(xC(x)), x > 0.

Examples of Pólya-type functions are given next, with which we will explain how to

find the associated generator U and the resulting isotropic covariance functions.

Example 1. For τ ≥ 1, g(x) = (1− |x|)τ+ is a Pólya-type function on R generated from

a beta random variable U , and (17) becomes

cov(Z(x1), Z(x2)) =
1− (1− ‖x1 − x2‖)τ+1

+

(τ + 1)‖x1 − x2‖
, x1,x2 ∈ R

3,

which is an isotropic and compactly supported covariance function in R
3. In (17) taking

another Pólya-type function

g(x) =







e−α|x|, |x| ≤ 1,

e−α(2− |x|), 1 < |x| ≤ 2,

0, |x| > 2,

where α > 0, we obtain an isotropic and power-law decaying covariance function

cov(Z(x1), Z(x2)) =















1−exp(−α‖x1−x2‖)
α‖x1−x2‖ , ‖x1 − x2‖ ≤ 1,

(

2− ‖x1−x2‖
2

)

e−α +
(

1
α
−

(

3
2
+ 1

α

)

e−α
)

1
‖x1−x2‖ , 1 < ‖x1 − x2‖ ≤ 2,

1
α‖x1−x2‖ +

(

1
2
− 1

α

)

e−α

‖x1−x2‖ , ‖x1 − x2‖ > 2,

for x1,x2 ∈ R
3.

Example 2. For a positive constant α, g(x) = exp(−α|x|) is a Pólya-type function on

R, which serves as the covariance function of the Ornstein-Uhlenbeck process. From (11)

we obtain that U is a Gamma random variable with density

fU(x) =

{

α2x exp(−αx), x > 0,

0, elsewhere.

9
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Using (14) one may build many non-Gaussian random fields of Ornstein-Uhlenbeck type

[4]. We next derive the covariance function of the resulting isotropic random field.

Noticing that (see, for example, formula (3.621.5) of [28])
∫ 1

0

uk(1− u2)
d−3

2 du =
Γ
(

k+1
2

)

Γ
(

d−1
2

)

2Γ
(

k+d
2

) , k ∈ N, (18)

the isotropic covariance function (15) becomes

C(‖x‖) =
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

exp(−‖x‖u)
(

1− u2
)

d−3

2 du

=
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∞
∑

k=0

(−‖x‖)k
k!

∫ 1

0

uk(1− u2)
d−3

2 du

= Γ

(

d

2

)

π− 1

2

∞
∑

k=0

(−1)kΓ
(

k+1
2

)

k!Γ
(

k+d
2

) ‖x‖k, x ∈ R
d.

For an odd d, d = 2d0 + 1 (d0 ∈ N), say, C(‖x‖) can be expressed as a linear combi-

nation of Mittag-Leffler functions Eα,β(x) =
∞
∑

k=0

xn

Γ(αk+β)
, x ∈ R, for α > 0 and β > 0. To

see this, we write C(‖x‖) as

C(‖x‖) = Γ

(

d

2

)

π− 1

22
d−1

2

∞
∑

k=0

(−‖x‖)k
(k + d− 2)(k + d− 4) · · · (k + 1)k!

,

by virtue of the following property

Γ

(

k + d

2

)

= 2−
d−1

2 (k + d− 2)(k + d− 4) · · · (k + 1)Γ

(

k + 1

2

)

,

if d is odd.

Note that 1
(k+d−2)(k+d−4)···(k+1)k!

can be expressed as a linear combination of 1
(k+2d0−1)!

,
1

(k+2d0−2)!
, . . . , 1

(k+d0)!
. In other words,

1

(k + d− 2)(k + d− 4) · · · (k + 1)k!
=

d0−1
∑

j=0

aj
(k + 2d0 − 1− j)!

(19)

for some constants aj that can be fully determined and their values are pertinent to d. The

proof of (19) is deferred to Subsection 5.4. As a result, the covariance function becomes

C(‖x‖) = Γ

(

d

2

)

π− 1

22
d−1

2

(d−3)/2
∑

j=0

ajE1,d−1−j(−‖x‖).

10
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In particular, when d = 3,

C(‖x‖) =
∞
∑

k=0

(−1)k

(k + 1)!
‖x‖k = E1,2(−‖x‖), x ∈ R

3,

and, when d = 5,

C(‖x‖) = 3
∞
∑

k=0

(−1)k

(k + 3)(k + 1)k!
‖x‖k,

= 3
∞
∑

k=0

(−‖x‖)k
(

1

(k + 2)!
− 1

(k + 3)!

)

= 3 (E1,3(−‖x‖)− E1,4(−‖x‖)) , x ∈ R
5.

See also [5] for a stationary process on R of Ornstein-Uhlenbeck type with covariance

Eα,β(−|x|), and [37] for Mittag-Leffler vector random fields in R
d with Mittag-Leffler

direct and cross covariance functions.

Example 3. For τ ∈ (0, 1], g(x) = (1 + |x|τ )−1 is a Pólya-type function on R. From (11)

we obtain U ’s density

fU(x) =

{

τxτ (1−τ+(1+τ)xτ

(1+xτ )3
, x > 0,

0, x ≤ 0.

The covariance function (15) is

C(‖x‖) =
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

(1 + (‖x‖u)τ )−1
(

1− u2
)

d−3

2 du

=
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∞
∑

k=0

(−‖x‖τ )k
∫ 1

0

uτk(1− u2)
d−3

2 du

= Γ

(

d

2

)

π− 1

2

∞
∑

k=0

(−1)kΓ
(

τk+1
2

)

Γ
(

τk+d
2

) ‖x‖k, x ∈ R
d.

When d is odd, d = 2d0 + 1, say, we have

Γ

(

τk + d

2

)

=2−
d−1

2 (τk + d− 2)(τk + d− 4) · · · (τk + 1)Γ

(

τk + 1

2

)

,
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and

C(‖x‖) = Γ

(

d

2

)

π− 1

22
d−1

2

∞
∑

k=0

(−1)k‖x‖k
(τk + d− 2)(τk + d− 4) · · · (τk + 1)

, x ∈ R
d.

It reduces to, when d = 3 and τ = 1,

C(‖x‖) =
∞
∑

k=0

(−1)k‖x‖k
k + 1

=
ln(1 + ‖x‖)

‖x‖ , x ∈ R
d.

Example 4. For a positive constant τ , g(x) = (1 + |x|)−τ is a Pólya-type function on R

generated from a positive random variable with density function

fU(x) = τ(τ + 1)x(1 + x)−τ−2, x ≥ 0.

In this case, the covariance function of the isotropic random field (14) decays in a power

law and

C(‖x‖) = 2Γ
(

d
2

)

Γ
(

d−1
2

)

π
1

2

∫ 1

0

(1 + ‖x‖v)−τ
(

1− v2
)

d−3

2 dv.

Note that

(1 + x)−τ =
∞
∑

k=0

(−1)kτ [k]

k!
xk, |x| < 1,

where τ [k] is the rising factorial, i.e., τ [k] = Γ(τ+k)
Γ(τ)

. In view of (18), we have

C(‖x‖) =Γ
(

d
2

)

π
1

2

∞
∑

k=0

(−1)kτ [k]

k!
‖x‖kΓ(1/2 + k/2)

Γ(d/2 + k/2)
.

When τ = 1, τ [k] = k! and thus

C(‖x‖) =Γ
(

d
2

)

π
1

2

∞
∑

k=0

(−1)k‖x‖kΓ(1/2 + k/2)

Γ(d/2 + k/2)
.

Example 5. The function

g(x) =

{

1− |x|, |x| ≤ 1
2
,

1
4|x| , |x| > 1

2
,
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is a Pólya-type function on R and is generated by the distribution function

FU(x) =

{

1− 1
2x
, x ≥ 1

2
,

0, x ≤ 1
2
.

The isotropic covariance function (17) becomes

C(‖x‖) =











1− ‖x‖
2
, ‖x‖ ≤ 1

2
,

3+2 ln ‖x‖+2 ln 2
8‖x‖ , ‖x‖ > 1

2
, x ∈ R

3.

If its domain is restricted on S
d−1, (14) becomes an isotropic random field on the

sphere, on which the spherical (angular, or geodesic) distance of two points x1 and x2 is

the distance between x1 and x2 on the largest circle on S
d−1 that passes through them;

more precisely,

ϑ(x1,x2) = arccos(x′
1x2), x1,x2 ∈ S

d−1,

or

ϑ(x1,x2) = arccos

(

1− 1

2
‖x1 − x2‖2

)

, x1,x2 ∈ S
d−1,

where x′
1x2 is the inner product between x1 and x2. Evidently, 0 ≤ ϑ(x1,x2) ≤ π, and

the Euclidean and spherical distances are closely connected on S
d−1, with

‖x1 − x2‖ = (2− 2x′
1x2)

1

2 = (2− 2 cosϑ(x1,x2))
1

2 = 2 sin

(

ϑ(x1,x2)

2

)

, x1,x2 ∈ S
d−1.

For properties of isotropic random fields on spheres see [38] and the references therein.

Corollary 3. Suppose that g(x) is a Pólya-type function on R and U is a positive random

variable generating g(x), and that V is a d-variate random vector uniformly distributed

on S
d−1. If {Y (x), x ∈ R} is a second-order Lévy process with covariance

cov(Y (x1), Y (x2)) =
|x1|+ |x2|

2
− |x1 − x2|

2
, x1, x2 ∈ R,

and {Y (x), x ∈ R}, U , and V are independent of each other, then

Z(x) = Y

(

x′V

U
+ 1

)

− Y

(

x′V

U

)

, x ∈ S
d−1, (20)

is an isotropic random field, and
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(i) for each fixed x ∈ S

d−1, Z(x) follows the same infinitely divisible distribution as

Y (1);

(ii) the covariance function of {Z(x),x ∈ S
d−1} is

cov(Z(x1), Z(x2))

= Eg
(

2V1 sin
(

ϑ(x1,x2)
2

))

=
2Γ( d

2)√
πΓ( d−1

2 )

∫ 1

0
g
(

2u sin
(

ϑ(x1,x2)
2

))

(1− u2)
d−3

2 du, x1,x2 ∈ S
d−1.

It is of interest to compare the subclass of isotropic covariance functions of the form

(15) with others constructed earlier in the literature, for instance, those in [2], [8], [27],

[45]. To this end, define

Cd(x) =
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

g(xu)(1− u2)
d−3

2 du, x ≥ 0.

Then Cd(‖x‖),x ∈ R
d, is identical to the covariance function (15). For d ≥ 3, it can be

verified the following recursive relationship between Cd(x) and Cd−2(x),

Cd−2(x) = Cd(x) +
xC ′

d(x)

d− 2
, x ≥ 0. (21)

For d ≥ 4, equation (21) differs from equation (25) in [27], or equation (3.9) in [45],

and thus the subclass of isotropic covariance functions of the form (15) differs from that

constructed in [8], [27], [45].

For d = 2, we have

C2(x) =
2

π

∫ 1

0

g(xu)(1− u2)−
1

2du, x ≥ 0,

and

xC ′
2(x) = − 2

π

∫ 1

0

(1− u2)−
3

2 g(xu)du, x ≥ 0.

Since xC ′
2(x) doesn’t converge to 0 when x → 0, condition (b) in Theorem 2 of [45] is not

fulfilled, and, consequently, C2(‖x‖) differs from that constructed in [45].

Interestingly, for d = 3, C3(x) satisfies conditions (a), (b), and (c) of Theorem 1 of

[45], if g(x) is twice differentiable on (0,∞) and x−1g
′′

(x) is non-increasing in x > 0. In

fact, condition (a) is satisfied since

C3(x) =

∫ 1

0

g(xu)du, x ≥ 0,
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is continuous, convex, C3(0) = 1, and C3(x) = o(1) for x → ∞ (due to the properties of

g(x) and Corollary 1). Condition (b) is fulfilled, because

xC ′
3(x) = g(x)− C3(x), x ≥ 0,

C ′
3(x) is absolutely continuous on [ǫ,∞) for every ǫ > 0, and limx→0 xC

′
3(x) = limx→∞ xC ′

3(x) =

0. Moreover, for x > 0,
1

x
C

′′

3 (x) =
1

x

∫ 1

0

g
′′

(xu)u2du,

is non-negative and non-increasing in x, in that g(x) is convex and x−1g
′′

(x) is non-

increasing in x, and thus condition (c) of [45] is also satisfied. More precisely, C3(‖x‖) is
an isotropic covariance function in R

3 given by (1.2) of [45] for the density function

f
(x

2

)

= 2xC
′′

3 (x) = 2

∫ 1

0

fU(xu)u
2du,

where the second equality is due to Lemma 2. The covariance function considered in

Example 2, i.e., C(‖x‖) = E1,2(−‖x‖), fulfills these conditions.

As another comparison, consider Askey’s isotropic covariance functions [2]. For an

odd integer d ≥ 3, let

C̃d(x) = (1− x)
d+1

2

+ , x ≥ 0.

As is shown in [2], C̃d(‖x‖) is an isotropic covariance function in R
d. In such a case, the

recursive relationship between C̃d(x) and C̃d−2(x) is

C̃d−2(x) = C̃d(x)−
2

d+ 1
x
d

dx
C̃d(x), x ≥ 0,

but differs from (21). It implies that the subclass of isotropic covariance functions of the

form (15) differs from that constructed in [2].

For further investigation, a question of interest would be to construct the isotropic

random field in R
d (d ≥ 2) with infinitely divisible marginals, whose covariance function

is of the form in [2], [8], [27], [45]. Another question would be to characterize the isotropic

covariance function (15), just as the subclass in [45] is generated as the scale mixture of

Euclid’s hat [27].

4 Vector random fields with isotropic direct covari-

ance functions

This section contains two results: a vector version of (14) where the vector random field

has infinitely divisible marginal distributions and isotropic direct covariance functions,
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and a characterization of the covariance matrix function of a Gaussian or elliptically

contoured vector random field that is isotropic and mean square continuous in R
d. The

latter may be used as the turning bands method to simulate an isotropic random field in

R
d.

Theorem 2. Suppose that the Pólya-type functions g1(x), . . . , gm(x) are generated by

positive random variables U1, . . . , Um, respectively, and V is a d-variate random vector

uniformly distributed on S
d−1. Let {Y(x), x ∈ R} be an m-variate second-order Lévy

process with covariance matrix function (5) and write Σ as (σij)m×m. If {Y(x), x ∈ R},
V, and U1, . . . , Um are independent, then

Z(x) =

(

Y1

(

x′V

U1

+ 1

)

− Y1

(

x′V

U1

)

, . . . , Ym

(

x′V

Um

+ 1

)

− Ym

(

x′V

Um

))′
, x ∈ R

d,

(22)

is an m-variate random field with direct covariance functions

cov(Zi(x1), Zi(x2)) = σiiEgi(‖x1 − x2‖V1), x1,x2 ∈ R
d,

and cross covariance functions

cov(Zi(x1), Zj(x2)) = σij

∫ ∞

0

∫ ∞

0

E

(

1−
∥

∥

∥

∥

x1

ui

− x2

uj

∥

∥

∥

∥

V1

)

+

dFUi
(ui)dFUj

(uj), i 6= j.

Furthermore, Z(x) follows the same infinitely divisible distribution as Y(1) for each fixed

x ∈ R
d.

In the particular case m = 1, (22) reduces to (14). The vector random field (22) is

nonstationary, but each of its components is stationary and isotropic in R
d. Random

variables U1, . . . , Um in Theorem 2 may be relaxed to be dependent, provided that each

individually is the generator of a Pólya-type function.

The covariance matrix function of an isotropic Gaussian or second-order elliptically

contoured vector random field in R
d is characterized in [52], with a matrix version of (1)

derived there. The following theorem gives a matrix version of (3).

Theorem 3. Let C(x), x ∈ R, be an m×m matrix function whose entries are even and

continuous on R.

(i) If C(‖x‖) is the covariance matrix function of an m-variate isotropic random field

in R
d, then it can be expressed as

C(‖x‖) = 2Γ
(

d
2

)

√
πΓ

(

d−1
2

)

∫ ∞

0

C1(‖x‖u)(1− u2)
d−3

2 du, x ∈ R
d, (23)
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where C1(x) is the covariance matrix function of an m-variate stationary process

on R.

(ii) Conversely, if C(‖x‖) adopts the representation (23), then it is the covariance ma-

trix function of an m-variate isotropic elliptically contoured random field in R
d.

The relationship (23) enables one to use the turning bands method to simulate an

isotropic vector random field in R
d, with scalar examples in [10], [16], [18], [32], [42], [51].

Examples of stationary covariance matrix functions on R may be found in, for instance,

[17] and [39].

Remark. It would be of interest to construct a non-Gaussian or non-elliptically-

contoured random field with the covariance matrix function of the form (23), while we

have worked out a part of them in Theorems 1 and 2. Note that the vector random field

defined in (22) is not isotropic, though it enjoys an isotropic direct covariance function.

Thus, how to construct a vector isotropic random field is left for future research.

Example 6. For distinct positive constants α1, . . . , αm, the m×m matrix functions

Cij,1(x) =







2αi exp
(

− |x|
2αi

)

, i = j,

(αi + αj) exp
(

− |x|
αi+αj

)

− |αi − αj| exp
(

− |x|
|αi−αj |

)

, i 6= j,

for i, j = 1, . . . ,m and x ∈ R, form a stationary covariance function on R, as Example

2 of [17] illustrates. In (23) taking d = 3 yields an isotropic covariance matrix function

with direct/cross covariances

Cij(‖x‖) =























4α2
iE1,2

(

−‖x‖
2αi

)

, i = j,

(αi + αj)
2E1,2

(

− ‖x‖
αi+αj

)

− (αi − αj)
2E1,2

(

− ‖x‖
|αi−αj |

)

, i 6= j, x ∈ R
3,

i, j = 1, . . . ,m.

5 Proofs

5.1 Proof of Lemma 1

Denote by Σ(x) the variance-covariance matrix of Y(x) for each x ∈ R, i.e., Σ(x) =

cov(Y(x),Y(x)). It is an even function, since, by the stationary increment property,

Y(0)−Y(−x) = −Y(−x) and Y(0− (−x)) = Y(x) have the same distribution, so that

Σ(−x) = cov(Y(−x),Y(−x)) = cov(Y(x),Y(x)), x ≥ 0.
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In terms of Σ(x), the covariance matrix function of {Y(x), x ∈ R} is given by, for x1, x2 ≥
0,

cov(Y(x1),Y(x2)) = Σ(min(x1, x2)) = min(x1, x2)Σ,

as is shown by [39], where Σ = cov(Y(1),Y(1)) is a positive definite matrix. For x1 and

x2 having opposite signs, we have

cov(Y(x1),Y(x2))

= − cov(Y(max(x1, x2))−Y(0),Y(0)−Y(min(x1, x2)))

= 0,

since Y(max(x1, x2)) −Y(0) and Y(0) −Y(min(x1, x2)) are independent of each other,

by noticing that min(x1, x2) ≤ 0 ≤ max(x1, x2). For x1, x2 ≤ 0, Y(0) −Y(max(x1, x2))

and Y(max(x1, x2))−Y(min(x1, x2)) are independent of each other, so that

cov(Y(x1),Y(x2))

= cov(Y(min(x1, x2)),Y(max(x1, x2))

= cov{(Y(0)−Y(max(x1, x2))) + (Y(max(x1, x2))−Y(min(x1, x2))), Y(0)−Y(max(x1, x2))}
= cov(Y(max(x1, x2)),Y(max(x1, x2)))

+ cov(Y(max(x1, x2))−Y(min(x1, x2)),Y(0)−Y(max(x1, x2)))

= Σ(max(x1, x2))

= Σ(−max(x1, x2))

= Σ(min(−x1,−x2))

= min(−x1,−x2)Σ,

where the fifth equality is due to the even property of Σ(x). Finally, (5) is confirmed.

5.2 Proof of Lemma 2

Assuming that U has a density function fU(x), (10) becomes
∫ ∞

x

(

1− x

u

)

fU(u)du = g(x), x ≥ 0,

or
∫ ∞

x

fU(u)du− x

∫ ∞

x

fU(u)

u
du = g(x), x ≥ 0.

Both sides taking derivatives yields

−
∫ ∞

x

fU(u)

u
du = g′(x),

18

Page 18 of 28

URL: http://mc.manuscriptcentral.com/lsaa  Email: gladde@usf.edu

Stochastic Analysis and Applications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly
from which (11) is established. It can verified that fU(x) is a solution of the equation

(10).

5.3 Proof of Lemma 3

Note that

g(x) =

∫ ∞

|x|

(

1− |x|
u

)

dFU(u)

=1− |x|
∫ ∞

|x|

1

u2
FU(u)du. (24)

Therefore, g(x) is continuously differentiable on (0,∞) and

g′(x) =−
∫ ∞

x

1

u2
FU(u)du+

1

x
FU(x), x > 0.

In view of (24), we have

FU(x) = 1 + xg′(x)− g(x), x > 0. (25)

Moreover, note that g(x) has the right-hand derivative at x = 0 and we write it as g′(0).

Thus the FU(x) determined in (25) is continuous at x = 0.

5.4 Derivation of (19)

Note that when d = 3 or d0 = 1, the left-hand side of (19) is 1
(k+1)!

. Assume (19) holds

when d0 = n ≥ 1, i.e.,

1

(k + 2n− 1)(k + 2n− 3) · · · (k + 1)k!
=

n−1
∑

j=0

an,j
(k + 2n− 1− j)!

,

for some constants an,j. We next show the following holds

1

(k + 2n+ 1)(k + 2n− 1) · · · (k + 1)k!
=

n
∑

j=0

an+1,j

(k + 2n+ 1− j)!
, (26)

for some constants an+1,j.
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Note that

1

(k + 2n+ 1)(k + 2n− 1) · · · (k + 3)(k + 1)!

=
1

(k + 2n)

n−1
∑

j=0

an,j
(k + 2n− 1− j)!

− 1

(k + 2n+ 1)(k + 2n)

n−1
∑

j=0

an,j
(k + 2n− 1− j)!

=− an,0
(k + 2n+ 1)!

+
an,0

(k + 2n)!
+

n−1
∑

j=1

(k + 2n− 1) · · · (k + 2n− j)an,j
(k + 2n)!

−
n−1
∑

j=1

(k + 2n− 1) · · · (k + 2n− j)an,j
(k + 2n+ 1)!

.

For j = 1,

(k + 2n− 1)

(k + 2n)!
=− 1

(k + 2n)!
+

1

(k + 2n− 1)!
,

(k + 2n− 1)

(k + 2n+ 1)!
=− 2

(k + 2n+ 1)!
+

1

(k + 2n)!
.

When j > 1,

(k + 2n− 1) · · · (k + 2n− j)

(k + 2n)!

=
(k + 2n)(k + 2n− 1) · · · (k + 2n− j + 1)

(k + 2n)!
− j

(k + 2n− 1) · · · (k + 2n− j + 1)

(k + 2n)!

=
1

(k + 2n− j)!
− j

(k + 2n− 1) · · · (k + 2n− j + 1)

(k + 2n)!
.

Thus (k+2n−1)···(k+2n−j)
(k+2n)!

can be written as a linear combination of 1
(k+2n−j)!

, 1
(k+2n−j+1)!

, · · · ,
1

(k+2n)!
. Moreover, note that

(k + 2n− 1) · · · (k + 2n− j)

(k + 2n+ 1)!

=
(k + 2n− 1) · · · (k + 2n− j + 1)(k + 2n+ 1− (j + 1))

(k + 2n+ 1)!

=
(k + 2n− 1) · · · (k + 2n− j + 1)

(k + 2n)!
− (j + 1)

(k + 2n− 1) · · · (k + 2n− j + 1)

(k + 2n+ 1)!
.

We have (k+2n−1)···(k+2n−j)
(k+2n+1)!

can be expressed as a linear combination of 1
(k+2n−j+1)!

, · · · ,
1

(k+2n)!
, 1

(k+2n+1)!
.
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As a result,

∑n−1
j=1

(k+2n−1)···(k+2n−j)an,j

(k+2n)!
can be written as a linear combination of

1
(k+n+1)!

, 1
(k+n+2)!

, · · · , 1
(k+2n)!

, while
∑n−1

j=1
(k+2n−1)···(k+2n−j)an,j

(k+2n+1)!
is a linear combination

of 1
(k+n+2)!

, · · · , 1
(k+2n)!

, 1
(k+2n+1)!

. Thus (26) holds. In other words, (19) holds true.

5.5 Proof of Theorem 1

(i) Since U ,V, and {Y (x), x ∈ R} are independent and, for each fixed x ∈ R
d, Y

(

x
′
v

u
+ 1

)

−
Y
(

x
′
v

u

)

and Y (1) or Y (−1) have the same distribution, we obtain the characteristic func-

tion of Z(x),

E exp(ıZ(x)ω) = E exp

{

ıω

(

Y

(

x′V

U
+ 1

)

− Y

(

x′V

U

))}

=
1

ωd−1

∫

Sd

∫ ∞

0

E exp

{

ıω

(

Y

(

x′v

u
+ 1

)

− Y

(

x′v

u

))}

dFU(u)dv

=
1

ωd−1

∫

Sd

∫ ∞

0

E exp (ıωY (1)) dFU(u)dv

= Eexp (ıωY (1)) ; x ∈ R
d,

that is, the distribution of Z(x) is identical to that of Y (1), and is thus an infinitely

divisible distribution. As a consequence, EZ(x) = EY (1).

(ii) It is easy to check that

|x+ 1|+ |x− 1| − 2|x| = 2(1− |x|)+, x ∈ R, (27)

from which we obtain the the covariance function of {Z(x),x ∈ R
d},

cov(Z(x1), Z(x2))

= cov

(

Y

(

x′
1V

U
+ 1

)

− Y

(

x′
1V

U

)

, Y

(

x′
2V

U
+ 1

)

− Y

(

x′
2V

U

))

=
1

ωd

∫

Sd

∫ ∞

0

cov

(

Y

(

x′
1v

u
+ 1

)

− Y

(

x′
1v

u

)

, Y

(

x′
2v

u
+ 1

)

− Y

(

x′
2v

u

))

dFU(u)dv

=
1

2ωd

∫

Sd

∫ ∞

0

{∣

∣

∣

∣

(x1 − x2)
′v

u
+ 1

∣

∣

∣

∣

+

∣

∣

∣

∣

(x1 − x2)
′v

u
− 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

(x1 − x2)
′v

u

∣

∣

∣

∣

}

dFU(u)dv

=
1

ωd

∫

Sd

∫ ∞

0

(

1− |(x1 − x2)
′v|

u

)

+

dFU(u)dv

= Eg((x1 − x2)
′V), x1,x2 ∈ R

d,

where the last equality is due to the formula (10). Since V is uniformly distributed on

S
d−1, it follows from Theorem 2.4 of [19] that (x1−x2)

′V and ‖x1−x2‖V1 have the same
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distribution. Consequently,

cov(Z(x1), Z(x2)) = Eg((x1 − x2)
′V)

= Eg(‖x1 − x2‖V1)

=
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

g(‖x1 − x2‖u)(1− u2)
d−3

2 du, x1,x2 ∈ R
d,

and {Z(x),x ∈ R
d} is an isotropic random field with covariance function (4).

To derive an alternative form of (15), from (13) we obtain

cov(Z(x1), Z(x2)) = Eg((x1 − x2)
′V)

= E exp

(

ı(x1 − x2)
′V

V0

U

)

=

∫ ∞

−∞
E exp (ı(x1 − x2)

′Vu) dP

(

V0

U
≤ u

)

=

∫ ∞

0

Ωd(‖x1 − x2‖u)dF (u), x1,x2 ∈ R
d,

where F (u) = 2P
(

V0

U
≤ u

)

, u ≥ 0.

(iii) By Bochner’s theorem, C(‖x‖) can be expressed as

C(‖x‖) =
∫

Rd

exp(ıx′
ω)dF(ω) = E exp(ıx′W), x ∈ R

d.

where W is a d-variate random vector with distribution function F(ω). On the other

hand, it follows from (13) that

C(‖x‖) = Eg(x′V) = E exp

(

ıx′V0

U
V

)

, x ∈ R
d.

By the unique theorem, W and V0

U
V have the same distribution, so that the latter’s

distribution function is the spectral distribution function of (14) and the latter’s density

function, if it exists, is the spectral density function of (14).

5.6 Proof of Theorem 2

The distribution of Z(x) is infinitely divisible, because it can be verified to be identical to

that of Y(1), in a way analogous to the proof of Theorem 1. Also, the direct covariance

function cov(Zi(x1), Zi(x2)) can be derived in the same way as the proof of Theorem 1.
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For i 6= j, we obtain the cross covariance function cov(Zi(x1), Zj(x2)) from identity (27)

as follows,

cov(Zi(x1), Zj(x2))

= cov

(

Yi

(

x′
1V

Ui

+ 1

)

− Yi

(

x′
1V

Ui

)

, Yj

(

x′
2V

Uj

+ 1

)

− Yj

(

x′
2V

Uj

))

=
1

ωd−1

∫

Sd−1

∫ ∞

0

∫ ∞

0

cov

(

Yi

(

x′
1v

ui

+ 1

)

− Yi

(

x′
1v

ui

)

,

Yj

(

x′
2v

uj

+ 1

)

− Yj

(

x′
2v

uj

))

dFUi
(ui)dFUj

(uj)dv

=
σij

ωd−1

∫

Sd−1

∫ ∞

0

∫ ∞

0

(

1−
∣

∣

∣

∣

x′
1v

ui

− x′
2v

uj

∣

∣

∣

∣

)

+

dFUi
(ui)dFUj

(uj)dv

= σij

∫ ∞

0

∫ ∞

0

E

(

1−
∣

∣

∣

∣

x′
1V

ui

− x′
2V

uj

∣

∣

∣

∣

)

+

dFUi
(ui)dFUj

(uj)

= σij

∫ ∞

0

∫ ∞

0

E

(

1−
∥

∥

∥

∥

x1

ui

− x2

uj

∥

∥

∥

∥

V1

)

+

dFUi
(ui)dFUj

(uj), x1,x2 ∈ R
d,

where the last equality follows from the fact that
(

x1

ui
− x2

uj

)′
V and

∥

∥

∥

x1

ui
− x2

uj

∥

∥

∥V1 have the

same distribution, according to Theorem 2.4 of [19].

5.7 Proof of Theorem 3

(i) Since C(‖x‖),x ∈ R
d, is an isotropic covariance matrix function, it adopts an integral

expression, by Theorem 3.1 of [52],

C(‖x‖) =
∫ ∞

0

Ωd(‖x‖ω)dF(ω), x ∈ R
d,

where F(ω), ω ∈ [0,∞), is an m × m right-continuous, bounded matrix function with

F(0) = 0, and F(ω2) − F(ω1) is positive definite for every pair of ω1 and ω2 with 0 ≤
ω1 ≤ ω2. It can be rewritten as, via the identity (7) and Theorem 2.4 of [19],

C(‖x‖) =

∫ ∞

0

E exp(ıx′Vω)dF(ω)

=

∫ ∞

0

E exp(ı‖x‖V1ω)dF(ω)

=
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ ∞

0

∫ 1

0

exp(ı‖x‖uω)(1− u2)
d−3

2 dudF(ω)

23

Page 23 of 28

URL: http://mc.manuscriptcentral.com/lsaa  Email: gladde@usf.edu

Stochastic Analysis and Applications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly
=

2Γ
(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

C1(‖x‖u)(1− u2)
d−3

2 du, x ∈ R
d,

where

C1(x) =

∫ ∞

0

exp(ıxω)dF(ω), x ∈ R,

is an m×m stationary covariance matrix function on R, as is shown in Section 8.1 of [13].

(ii) For C(‖x‖) being of the form (23), since C1(x) is an m×m stationary covariance

matrix function on R, it follows from Section 8.1 of [13] that

C1(x) =

∫ ∞

0

exp(ıxω)dF(ω), x ∈ R,

where F(ω), ω ∈ [0,∞), is an m × m right-continuous, bounded matrix function with

F(0) = 0, and F(ω2) − F(ω1) is positive definite for every pair of ω1 and ω2 with 0 ≤
ω1 ≤ ω2. In terms of the identity (7), (23) can be rewritten as

C(‖x‖) =
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ 1

0

C1(‖x‖u)(1− u2)
d−3

2 du

=
2Γ

(

d
2

)

√
πΓ

(

d−1
2

)

∫ ∞

0

∫ 1

0

exp(ı‖x‖uω)(1− u2)
d−3

2 dudF(ω)

=

∫ ∞

0

E exp(ı‖x‖V1ω)dF(ω)

=

∫ ∞

0

E exp(ıx′Vω)dF(ω)

=

∫ ∞

0

Ωd(‖x‖ω)dF(ω), x ∈ R
d.

By Theorem 3.1 of [52], there exists an m-variate elliptically contoured random field with

C(‖x‖) as its covariance matrix function.
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