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Isotropic Total Variation Regularization of

Displacements in Parametric Image Registration
Valeriy Vishnevskiy∗, Tobias Gass, Gabor Szekely, Christine Tanner, Orcun Goksel

Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract—Spatial regularization is essential in image registra-
tion, which is an ill-posed problem. Regularization can help to
avoid both physically implausible displacement fields and local
minima during optimization. Tikhonov regularization (squared
ℓ2-norm) is unable to correctly represent non-smooth displace-
ment fields, that can, for example, occur at sliding interfaces in
the thorax and abdomen in image time-series during respiration.
In this paper, isotropic Total Variation (TV) regularization is used
to enable accurate registration near such interfaces. We further
develop the TV-regularization for parametric displacement fields
and provide an efficient numerical solution scheme using the
Alternating Directions Method of Multipliers (ADMM). The pro-
posed method was successfully applied to four clinical databases
which capture breathing motion, including CT lung and MR liver
images. It provided accurate registration results for the whole
volume. A key strength of our proposed method is that it does not
depend on organ masks that are conventionally required by many
algorithms to avoid errors at sliding interfaces. Furthermore,
our method is robust to parameter selection, allowing the use of
the same parameters for all tested databases. The average target
registration error (TRE) of our method is superior (10% to 40%)
to other techniques in the literature. It provides precise motion
quantification and sliding detection with sub-pixel accuracy on
the publicly available breathing motion databases (mean TREs of
0.95 mm for DIR 4D CT, 0.96 mm for DIR COPDgene, 0.91 mm
for POPI databases).

Index Terms—Sliding at anatomical interfaces, breathing mo-
tion, ADMM, 4DCT, 4DMR

I. INTRODUCTION

Image registration is nowadays an essential part of many

applications in medical image analysis, such as image data

fusion, image guided interventions, atlas-based segmentation,

volumetric image reconstruction from sliced acquisitions, mo-

tion tracking, radiation-therapy planning, and tissue elasticity

estimation. All these applications rely on correctly estimating

spatial anatomical correspondences between images. Such

bijective correspondences might not exist in some scenarios,

e.g. inter-patient or 2D registrations. However, if the anatomy

changes are minimal, for example, in intra-patient registration

of time-series 3D (4D) volumes, one-to-one correspondences

can be assumed in the overlapping image regions. This is the

case for the breathing motion that involves sliding between

different parts of anatomy, such as the liver or the lungs and

their surrounding (cf. Fig. 1). The resulting motion fields are

non-smooth, and therefore difficult to represent and estimate

using the commonly-used registration techniques with squared

ℓ2-norm, also known as Tikhonov regularization. A lot of

more advanced regularization techniques, such as hyperelastic

regularization [1] imply smooth deformation as well.

A simple and popular way to accommodate for discon-

tinuities near sliding interfaces is to use binary masks for

objects to be registered, such that optimization is only with

respect to the image similarity inside these masks. This helps

to dismiss the discontinuities on the mask border and avoids

influence of the neighbouring structures on the registration

result, but cannot provide meaningful displacements outside

the mask. Binary masks have been employed for lung motion

estimation in several works, as lungs are easier to segment than

abdominal organs. Masks from automatic lung segmentations

were used in [2] for extracting the motion inside the lungs.

In landmark-based registration, lung masks are also used to

restrict the location of the detected lung-specific landmarks,

to be further used for matching and motion interpolation [3].

Lung masking allows for simple and effective registration

methods based on bending energy regularization and normal-

ized gradient-field image-metric as demonstrated in [4]. A

combined displacement field for the thorax was created by

simultaneously estimating two separate displacement fields

inside and outside, while enforcing physically-valid motions

along the mask surface through additional constraints [5].

Nevertheless, motion masking has several disadvantages. It

requires an initial segmentation stage, which is a challenging

problem in itself for many abdominal structures. Even when

such segmentation is viable, for example for lungs in CT,

this stage is still error-prone when done automatically and

quite cumbersome manually. Furthermore, such segmentation

poses a hard decision for any subsequent registration, i.e.

the success of the latter will depend on the accuracy of

the former. This will not only potentially yield errors where

segmentation failed, but may also cause error propagation to

other locations through smoothing. Additionally, using this

approach sliding can obviously be only recovered at the given

mask interface and neglects sliding outside or inside the mask,

for example, between lung lobes when using lung masks [6].

Other specialized lung registration methods utilize temporal

regularization, instead of spatial regularization of the displace-

ments [7]. However, these approaches require the acquisition

of intermediate breathing phases (not always available from

common breath-hold images), which may impose practical

limitations.

To allow for sliding motion, there also exist heuristic

approaches such as the modified demons [8], [9] or the

anisotropic demons [10], where the Gaussian filtering is sub-

stituted with anisotropic inhomogeneous filtering. Yet such

methods do not involve an explicit regularization term, hence

lacking a formal cost definition required for a proper opti-
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Fig. 1: Sliding motion example. (top) CT lung images of

two extreme breathing phases with two landmarks. (middle)

Estimated inferior-superior displacement field component in [-

16,0] mm for (left) smoothness and (right) TV regularization.

(bottom) Horizontal cross-section for inferior-superior dis-

placements at the level of right landmark. This illustrates that

TV-regularization does not oversmooth the motion transition.

mization scheme. In contrast, introducing an explicit penalty

such as smoothness, curvature, or total variation (TV) [11]

functionals allows for a well-defined optimization framework.

By penalizing TV of the displacement field it is possible

to constrain its spatial incoherence without restricting it to

be smooth. This property of TV was studied and applied

in the computer vision community for estimating optical

flow between scenes with independent motion of overlap-

ping objects [12]. Unlike the smooth (Tikhonov) regular-

ization, the TV functional is generally non-differentiable,

since ℓ1-norm is not smooth at zero. This greatly com-

plicates the use of gradient-based continuous optimization

methods, which usually rely on the problem smoothness.

In [12], a smooth semi-norm approximation to TV was

proposed, i.e. ‖x‖1 ≈ ϕε(x) =
√
x2 + ε. This approxima-

tion was used in [13] to estimate motion masks automat-

ically during the registration process via the segmentation

model of Chan et al. [14]. Starting with large ε values and

potentially-poor-but-smooth ℓ1 approximations, one can then

gradually decrease ε, and initialize in each step a gradient-

based optimization with the previous solution. However, since

∂ϕε/∂x = x/
√
x2 + ε is undefined when x=0 and ε=0, the

prescribed gradient-based optimization tends to be unstable in

practice [15].

To address the unreliable behaviour of common gradient-

based optimization algorithms for small ε values, discrete

optimization methods for the registration problem, e.g. Markov

random fields, were used in [16] for recovering breathing

motion. Yet, fine displacement estimation requires a dense

discretization of the search space, for which memory and

computational complexity of common message passing and

graph-cut based algorithms grow to an impractical level for

precise 3D image registration. This issue was addressed in [17]

by relaxing the graph structure to a minimum spanning

tree, which reduces the degrees of freedom and enables fast

(linear) inference. However, the minimum spanning tree was

constructed from a graph weighted by the image intensities

differences, which implies that the method “expects” sliding

motion only at interfaces with high intensity gradient, which

is not necessarily always true.

A recent approach for solving ℓ1-norm problems is based

on duality, which was applied to non-parametric medical

image registration earlier in [15], [18] using sum of square

differences as image dissimilarity metric. A census cost

function was later proposed in [19], yielding improved and

validated results for recovering breathing motion from 4D

CT lung images. However, such non-parametric pixel-level

approaches often lead to physically implausible motion fields,

for which the authors proposed a combined median and Gaus-

sian filtering of the displacement fields after each iteration.

Such additional heuristic regularization schemes again prevent

formal cost definitions and often complicate adaptation to new

imaging problems.

In contrast, many registration techniques use parametric

deformation models. For example, using B-splines [20] allows

for explicit cost function and optimization formalisms, as well

as offering more physically plausible displacements through

robust schemes with large displacement capture ranges [21].

In this work, parametric image registration is formulated as a

minimization problem with isotropic TV-regularization (pTV)

and linear grid interpolation and the framework is shown

to successfully approximate anatomical non-smooth (sliding)

motion through a coherent optimization framework. To accom-

modate TV regularization, we use an efficient solution scheme

via the alternating directions method of multipliers (ADMM),

enabling better convergence in practice than conventional

comparable techniques. Initial evaluation of our approach for

only three databases, employing a simpler anisotropic TV

regularization scheme (ℓ1-norm of the displacement gradient

magnitudes) with ad hoc parameter tuning, was presented

in [22] and is referred herein as aTV.

II. METHODS

Estimating the N -dimensional displacement field d : Ω →
R

N that maps a moving image fm : Ω → R to a fixed image

ff : Ω → R within a discrete image domain Ω is commonly

formulated as the following optimization problem:

d∗ = argmin
d

F(d) = argmin
d

ED(d; ff, fm)+λER(d), (1)

where each N -dimensional pixel (voxel) has physical dimen-

sions {δn}Nn=1 yielding a pixel volume of υ =
∏

n≤N δn
and each image consists of L pixels, i.e. |Ω| = L. Herein,

ED is an image dissimilarity metric and ER is a spatial

displacement regularization term, while λ controls the amount

of regularization.

In this work, images f ∈ R
L and displacement fields are

treated as vectors; i.e. d=
(

dT

1 , . . . ,d
T

N

)T ∈ R
LN , where dn ∈

R
L denotes the n-th component of the displacement field d.

The operator f [x] (or f [l]) is used to interpolate (or index) the

image or displacement field at the position x (or pixel index

l), where d[x]=(d1[x], . . . ,dN [x])
T∈RN . Derivative operator
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(which is a sparse matrix in the discrete image space) along

the i-th component will be denoted as ∇i ∈ R
L×L, and the

entire image gradient as ∇ =
(

∇T

1 , . . . ,∇T

N

)T ∈ R
LN×L. For

forward differences, each row l1 of ∇i will have two non-zero

elements (l1, l2) and (l1, l
′
2) containing values −1/δi and 1/δi,

respectively, if x[l′2] neighbors pixel x[l2] in the i-th direction.

A. Image Dissimilarity Metric

Typically, ED is a smooth metric, such as the sum of

squared differences (SSD), local correlation coefficient (LCC),

or normalized gradient field (NGF), to allow for explicit

differentiation. We evaluated the following two image metrics:

SSD is the sum of squared intensity-differences between

two images computed over all pixels, i.e.:

SSD(f1, f2) =
∑

x∈Ω

1

2
(f1[x]− f2[x])

2
υ =

υ

2
‖f1 − f2‖22 . (2)

Then, its gradient vector is

∂ SSD(f1, f2)

∂f1

= (f1 − f2) υ, (3)

where pixel volume υ is incorporated to keep measures consis-

tent when resampling images in pyramidal image registration.

LCC is the sum of weighted correlation coefficients of im-

age intensities computed over n-dimensional patches centered

at each pixel. As the patch size can be quite large, the explicit

computation of the LCC metric and its derivatives becomes

impractical. Following [23], [24], we use a spatial-invariant

Gaussian weighting kernel Hw with standard deviation (band-

width) w. LCC is then computed in terms of element-wise

arithmetical operations and convolutions. This can be carried

out in the Fourier domain, where the convolution’s computa-

tional complexity does not depend on the patch size.

f = Hw ⊗ f , σ2(f) = f2 − f2, (4)

〈f1, f2〉 = f1 ◦ f2 − f1 ◦ f2, (5)

LCC(f1, f2) = −
∑

x∈Ω

CC[x] = −
∑

x∈Ω

〈f1, f2〉
σ(f1) ◦ σ(f2)

[x]υ, (6)

∂ LCC(f1, f2)

∂f1

≈− 1

σ(f1) ◦ σ(f1)
◦
(

(f2 − f2)−

− (f1 − f1) ◦
〈f1, f2〉
σ2(f1)

)

,

(7)

where ⊗ denotes the convolution operator and ◦ denotes

element-wise multiplication. Eq. (7) for the metric gradient is

approximate by dropping the final convolution as in [24]. We

observed this approximation to outperform the exact formula

in our initial experiments. Further details can be found in [24].

B. Registration Regularization

The widely used smoothness regularization penalizes the

squared ℓ2-norm derivatives of the displacement field compo-

nents [20]:

Esm
R (d) = υ

∑

n≤N

‖∇dn‖22. (8)

Any continuous optimization method can then be applied for

minimizing (1) with such a regularization term, since dissim-

ilarity metric ED and regularizer ER are smooth and allow

for analytical differentiation with respect to the transformation

parameters.

C. TV-Regularization

Many methods employ the anisotropic version of total

variation measure by treating each gradient directional of each

displacement component independently:

EaTV
R (d) = υ

∑

n≤N

‖∇dn‖1. (9)

Note that TV does not “distinguish” a sharp transition from a

smooth one. Unlike our previous work [22], herein we use

isotropic TV-regularization [25] (referred hereafter as TV),

which considers all components of the displacement gradients

jointly. This is better suited to describe motion that is not

aligned with Cartesian axes:

ETV
R (d) = υ

∑

l≤L

√

∑

i,j≤N

(∇idj [l])2 = υ‖D(d)‖2,1, (10)

D(d) =
[

∇1d1 ∇2d1 . . .∇1d2 . . .∇NdN

]T

∈ R
N2×L.

(11)

This functional is no longer smooth, i.e. it is non-differentiable

at the spatial locations where transformation gradients vanish,

since
√
x is not smooth at zero. This leads to poor performance

when using continuous gradient-based optimization methods.

This is addressed in this work by using ADMM optimiza-

tion [26], [27], described later in Sec. II-F. Next, we introduce

our displacement parametrization approach that allows us to

impose TV regularization on the displacement field simply and

efficiently.

D. Parametrizing Displacement Fields

Reducing the dimensionality via parametrization of the

search space is often desired in practical optimization-based

algorithms, as it can improve robustness and convergence

speed of numerical methods. It is also a form of implicit reg-

ularization, since many physically implausible displacement

fields can not be represented by the selected parametrization.

As in the free-form deformations (FFD) framework [20],

[28], we parametrize the displacement field d via interpolation

of the displacements k on a regularly spaced (Kn-pixel span

in n-th direction) control point grid, i.e. d = d(k). Unlike

more popular cubic B-splines, which were shown in [20] to

be a suitable model for elastic deformations, we use 1st order

B-splines (linear interpolation), which guarantees that the

interpolated displacement values are strictly bounded by the

corresponding control point displacements. 1st order B-splines

also help to avoid overshooting effects while approximating

sharp transitions (see Fig. 2(a)) and have smaller spatial

support.

We impose regularization on the control grid displacements

k instead of the displacement field d itself. This approximation

was used in smooth FFD registration and it was shown in [29]



4

3rd order B-spline

1st order B-spline

(a) (b)

Fig. 2: (a) Linear (1st order) and cubic (3rd order) B-splines

approximation of a sharp transition. (b) Illustration of spatial

arrangement of the control grid points and parametrized dis-

placement d.

to be sufficient for the regularization. For 1st order B-splines,

TV of the control points displacements is an upper bound for

TV on the dense displacement field: ETV
R (d(k)) ≤ ETV

R (k),
see [22] for a proof. This can also be explained by Jensen’s

inequality using the fact that TV measure is a convex function.

Finally, we can formulate parametric TV-regularized image

registration as the following optimization problem:

k∗ = argmin
k

F(d(k))

= argmin
k

ED(d(k); ff, fm) + λη‖D(k)‖2,1,
(12)

where the volume of the control grid cell η =
∏

i≤N δiKi.

E. Full Image Metric Gradient

To speed-up any energy-based registration, it is beneficial

to compute analytical (rather than numerical) gradients of the

energy F = ED +λER that should be minimized with respect

to the free parameters (here grid displacements). As seen later,

in our algorithm we only need to compute the gradient of ED,

which can be done via the chain rule:

∂ED(ff, fm(d(k)))

∂ ki[p]
=
∑

x∈Ω

∂ED(ff, fm(d(k)))

∂ fm(d(k))
[x]·

∇ifm(d(k))[x] ·
∂ d(k)

∂ ki[p]
[x],

(13)

where the derivative is taken with respect to the i-th displace-

ment component of the control grid at pixel p. The first term is

the image metric derivative introduced in Eqs. (3) and (7). The

second term is the deformed image gradient in i-th direction

computed at position x. The third term is the Jacobian of the

displacement parametrization. Since trilinear parametrization

is a 1st order B-spline with finite spatial support, its Jacobian

also has finite support. Eventually, the image metric deriva-

tive (13) with respect to the i-th displacement component of

the control grid point at position p can be computed as the

weighted sum of the element-wise multiplications of the first

two terms [29]:

∂ d(k)

∂ ki[p]
[x] =

∏

n≤N

(

1− |p
n − xn|
Kn

)

+

. (14)

Here, xn and pn denote the n-th component of the correspond-

ing pixel and control point locations x and p in terms of pixel

spacing, and (x)+ = max{x, 0}.

F. Numerical Scheme: ADMM

As was mentioned above, it is challenging to solve (12),

as it involves simultaneous minimization of the smooth non-

convex term ED and non-differentiable but convex term ETV
R .

The gradient descent methods (GD) show a poor perfor-

mance (Fig. 3(a)), mostly because the target function gradient

∇F does not always exist. Among various duality-based

approaches for optimization proposed in the literature, we use

the alternative direction method of multipliers (ADMM) for its

flexibility, generality, and ease of implementation. We split the

parametrizations of the data and regularization terms, yielding

affine equality constrained composite optimization (AECCO),

which is solved by ADMM. To perform this separation, we

introduce a redundant variable Z to (12), which leads to the

following equivalent problem:

(k∗,Z∗) = argmin
k,Z

ED(d(k); ff, fm) + λη‖Z‖2,1 ,

s.t. D(k) = Z.
(15)

Using the augmented scaled Lagrangian formalism, the

ADMM is a variant of the dual descent method [26], which

can be explicitly written as the following iterative scheme:

k
j+1=argmin

k
ED(d(k); ff,fm)+ ρ

2
‖D(k)−(Zj−U

j)‖2
F , (16a)

Z
j+1=argmin

Z
‖Z‖2,1+

ρ
2λη

‖Z−(D(kj+1)+U
j)‖2

F , (16b)

U
j+1=U

j+D(kj+1)−Z
j+1, (16c)

where ‖.‖F denotes the Frobenius matrix norm, Eq. (16a) is

the smooth optimization problem, (16b) is the convex proximal

mapping and (16c) is the dual update. Note that none of these

steps involve simultaneous optimization over k and Z or of

ED and ETV
R .

The k-update step (16a) is computationally the most inten-

sive part, as it optimizes over all control grid displacements.

It is a smooth optimization problem that can be solved using

gradient-based minimization techniques by adding the gradient

of ρ
2‖D(k)−(Zj−Uj)‖2F , which equals to ρD∗(D(k)−(Zj−

Uj)), to the gradient of the dissimilarity metric in (13). Here

D∗ denotes conjugate finite difference operator such that

D∗(D(k))=
[

θ
⊤
1 . . .θ⊤

N

]⊤

, with θi =
∑

j≤N

∇⊤
j ∇jki. (17)

The penalty parameter ρ introduced by the Lagrangian aug-

mentation is usually initialized with a value between 1 and

1000 and then updated heuristically to accelerate conver-

gence [26], as is described in Algorithm 1. U is a scaled

dual variable. The Z-update step (16b) can be decomposed

into per-pixel Euclidean proximal operators on the rows of

matrix A = D(kj+1) +Uj :

Z
j+1
l,∗ = argmin

z∈Rn2

‖z‖2 +
ρ

2λη
‖z−Al,∗‖22, (18)

where Al,∗ denotes l-th row of the matrix A. The Euclidean

proximal mapping has an explicit closed-form solution some-

times called block soft thresholding [26]:
(

1− λη

ρ‖Al,∗‖2

)

+

Al,∗. (19)
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ALGORITHM. 1. The pTV registration algorithm.

fm, ff — images; λ — regularization; w — LCC kernel

bandwith; Mpyr — # of image pyramid levels;

Mref — # of grid refinements; Miter — max. # of

ADMM iterations; MLBFGS — max. # of LBFGS

iterations ; εtol — optimization argument tolerance

(10−2);

ADMM internal parameters ρ0 = 5, µ = 10, τ = 1.3.

Result: Displacement field d

k1,0 ← 0 or initialize

for j ← 1 to Mpyr +Mref do

if j ≤Mpyr then

f
j
m ← (Mpyr − j)-th Gaussian pyramid level of fm

f
j
f ← (Mpyr − j)-th Gaussian pyramid level of ff

else

f
j
m ← f

j−1
m ; f

j
f ← f

j−1
f

end

Zj,0 ← D(kj,0); U j,0 ← 0; ρ← ρ0
while i ≤Miter and ‖kj,i − kj,i−1‖∞ ≥ εtol do

kj,i+1 ←solution of (16a) with MLBFGS, w, f
j
m, f

j
f

Zj,i+1 ←solution of (16b)

U j,i+1 ←result of (16c)

r ← D(kj,i+1)−Zj,i+1; s← ρD∗(Zj,i+1−Zj,i)
if ‖r‖2 ≥ µ‖s‖2 then

ρ← τρ; U j,i+1 ← U j,i+1/τ
end

if ‖s‖2 ≥ µ‖r‖2 then

ρ← ρ/τ ; U j,i+1 ← τU j,i+1

end

i← i+ 1
end

kj+1,0 ← linearly upsample kj,i

end

return d = d(kj,i)

The foregoing numerical scheme is the core of our regis-

tration algorithm, which is formally described in Algorithm 1.

The method has three major parameters (λ,w,K) that affect

the registration quality and should be tuned.

Regularization parameter λ should be tuned for a given

database, taking into account the imaging modality, noise

level, and expected amount of motion. The first-order nec-

essary optimality condition for problem (1) can be written as

∇ED = −λ∇ER. Since correlation is inversely proportional

to the standard deviation of noise, s, the LCC metric gradient

(7) can be considered approximately to be proportional to
1
s

. Consequently, if λL
0 is the best performing regularization

parameter for a pair of images with noise level s0, then a

good initial point for images with noise level s1 is λL
1 = λL

0
s0
s1

.

Similar reasoning can be used for the SSD metric, yielding the

following tuning rule: λS
1 = λS

0
s1
s0

. Hence, λ needs to be tuned

only for different motion types.

The weighting kernel bandwidth w (for LCC) depends

purely on the image modality and pixel resolution. To have

sufficient statistics we should restrict the kernel’s full-width at

half-maximum (FWHM) to at least 1 pix. Also, setting w to

large values disables the LCC’s ability to handle local intensity

variations. As shown later, the registration results are in

practice insensitive to this parameter. For all experiments and

all databases we used w=2.5 px, which implies (using 3-sigma

rule) an effective patch size of ≈15 px edge-length. Control

grid spacing K controls the flexibility of the displacement

field. Small values of K imply finer grid resolutions and more

degrees of freedom in the transformation, at a cost of higher

computational complexity.

1) Implementation Details: Both fixed and moving image

intensities are converted to double precision and then mapped

to the [0, 1] interval as described in Sec. III. We use trilinear

interpolation for image warping.

Gaussian pyramids are used to downsample images, keeping

pixel spacing at each pyramid level as isotropic as possible.

The number of pyramid levels Mpyr is set to the largest value

such that the coarsest image level has at least 8 pixels along

each dimension: Mpyr = ⌈log2 m
8 ⌉, where m is the image size

along the direction with the minimum size after resampling

to isotropic resolution. Registration at each pyramid level is

initialized by linearly upsampling from the previous level’s

control grid displacements, keeping the same control grid

spacing in terms of pixels. When the finest level of the image

pyramid is reached, we start to subdivide the control grid

(Mref times), bisecting the pixel span of each grid cell. This

coarse-to-fine approach helps to avoid local minima during

optimization process and is finalized at the original image

resolution, where no image smoothing is applied. Blurring is

always kept below grid spacing to minimize its influence on

the registration of sliding interfaces.

Displacement field derivatives in (11) are calculated with the

forward difference scheme to allow for spatial discontinuities.

Image gradients ∇if in (13) are computed with the central

difference scheme.

Our method was implemented in Matlab with the time-

consuming procedures in C++. Computation of the LCC

metric and its gradients was done in Fourier domain using

GPUs, when available. The k-update step in (16a) is solved

with the quasi-Newton limited-memory BFGS distributed in

the minFunc
1 package with MLBFGS=5 and the number of

Hessian corrections set to 100 or 20, depending on available

memory. The LBFGS iterations were initialized with the

solution and Hessian approximation from the previous ADMM

iteration. The experiments were conducted on a 6-core Intel

Xeon 2.4 GHz processor. The peak memory consumption for

registering a pair of 256×256×100 voxel images was 1.2 GB.

III. RESULTS AND DISCUSSION

We evaluated our parametric TV registration (pTV) method

on four three-dimensional (N=3) abdominal time-series

databases that involve breathing motion: three lung CT

databases and one liver MRI database. All databases had man-

ually annotated landmarks. The target registration error (TRE)

is defined as the Euclidean distance between two correspond-

ing landmarks after registration. The mean TRE was used

to summarize registration accuracy. To keep the evaluation

methodology in accordance with the literature, we used the

snap-to-voxel TRE evaluation strategy (the landmark position

1http://www.di.ens.fr/∼mschmidt/Software/minFunc.html
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TABLE I: Mean TRE [mm] over 40 landmarks for the 9 POPI

registrations. The lowest value per column is marked in bold.

TRE for each image pair Mean

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 TRE

Demons 1.28 1.38 1.39 1.22 1.24 1.25 1.29 1.12 1.11 1.25

FFD 0.79 0.80 1.13 1.11 1.10 1.20 1.20 0.88 0.92 1.01

aTV [22] 0.72 0.71 1.12 1.01 1.11 1.03 1.06 0.84 0.81 0.93

pTV 0.66 0.66 1.11 0.98 1.08 1.06 1.08 0.76 0.82 0.91

from the registration is snapped to the nearest voxel center) for

4D-CT DIR and COPDgene databases (Secs. III-B, III-C). For

other datasets TREs were computed at (linearly interpolated)

sub-voxel positions, without snapping to voxels.

Following [6], [30] we estimate and visualize the local

amount of sliding of the computed displacement fields by the

maximum shear stretch γ extracted from the eigendecomposi-

tion of the Jacobian matrix J [x] of the local transformation:

γ[x] =

√

λN (JT
xJx)−

√

λ1(JT
xJx)

2
,

Jx(i, j) = δij +∇jdi[x], Jx ∈ R
N×N ,

(20)

where δij is the Kronecker’s delta, since d is the displacement

field. The largest and the smallest eigenvalues of the corre-

sponding matrix are denoted as λN and λ1, respectively. The

sliding amount γ[x] is a non-negative quantity, where higher

values indicate more prominent sliding at x.

To show the robustness of our method to parameter tuning,

we used a single parameter configuration for all datatsets and

all modalities, namely λ = 0.1, LCC image metric with w =
2.5 mm, and control point grid spacing K set to 4 × 4 × 4
voxels. The parameter tuning process is described in Sec. III-E.

For comparison, registration with smoothness regularization

(squared ℓ2-norm of gradients) was also performed using the

same image metric and grid configuration. The regularization

parameter of smooth registration was tuned via grid search for

its best performance in terms of mean TRE for all cases of a

particular database.

To test the proposed numerical optimization scheme, we

compared the described ADMM-based (pTV) optimization

of (12) with regular minimization algorithms: limited-memory

BFGS (LBFGS) and gradient descent (GD). Fig. 3(a) com-

pares algorithms in terms of minimized energy F(d(k)) and

mean TRE for one pair of 3D liver MR images. Unlike

ADMM, the LBFGS and GD implementations accept only

steps that decrease the target energy, which results in mono-

tonically decreasing energy. However, the pTV was able to

converge to a better optimum (lower energy) with fewer func-

tion evaluations. In the presented case, lower energy minimum

value generally led to better TRE. This statement also turned

out to be correct in our experiments on intra-patient CT and

MR image sequences capturing breathing data, with fixed

and sufficient amount of regularization λ. However, generally,

residual image metric or optimized target value should not

be treated as the direct measure of the non-rigid registration

quality [31].

A. 4D-CT POPI Database

The POPI database [32], which is freely available2, consists

of 10 3D CT reconstructions of different phases of a single

breathing cycle. Each breathing phase image has a resolution

of 0.98 × 0.98 × 2 mm3 and is complemented with a lung

mask and 40 corresponding anatomical landmarks. Following

the organizers’ approach, we resized all images to an isotropic

2×2×2 mm3 resolution. Then, the first image was registered

to others, yielding 9 image pairs for evaluating the method.

Mean run-time of our proposed registration method was 80

seconds per image-pair.

For this database the organizers also publicly distribute

the displacement fields produced by the FFD and demons

registrations, which we used for comparison in our evaluation.

Even though these methods already provide mean subpixel

registration accuracy, our method achieves an average TRE

improvement of 10% over FFD, as can be seen in Table I.

This is partially due to the replacement of the squared ℓ2-

regularization used by the FFD method, which is unable to

capture sliding motion near the lung wall.

B. 4D-CT DIR Database

Similarly to the POPI, the DIR3 database provides 4D-CT

breathing sequences with annotated landmarks. It consists of

10 different sequences with an average voxel resolution of

1× 1× 1 mm3 and typical size 256× 256× 100 voxels (see

Fig. 4, 5). For this database the average TRE is calculated for

300 anatomical landmarks between images of extreme inhale

and exhale phases. In our experiments we clipped the image

intensities between 50 and 1200 HU, and then scaled this range

to [0, 1]. All images were then resampled to an isotropic 1×1×
1mm3 voxel resolution, leading to an average pTV run-time

of 3 minutes.

Registration accuracy results of DIR evaluation are pub-

lished and updated online, which allows for a broad compar-

ison of methods. Fig. 3(c) and Table II show the mean TRE

for each 4D-CT case, comparing pTV to the best performing

published methods. The results on this database indicate that

pTV outperform all mask-free methods (excluding our initial

results [22]) at least by 0.36 mm (27%), with a mean TRE of

0.95 mm. This is merely 0.01 mm (1%) worse than the best

masked method (namely, NGF), which estimates the displace-

ment field only inside the lungs. The non-parametric method

with anisotropic TV regularization (cTVL1), which employs

a similar optimization approach to ours, is outperformed by

our parametric approach by 29% when no lung masks are

used. Compared to the masked cTVL1 version, our mask-free

method still shows a 4% reduction in TRE.

An illustration of the estimated displacement fields can

be seen in Figs. 4 and 5. The landmark errors visualized in

Figs. 5 (b,c), show that large errors occur in the vicinity of

sliding interfaces, especially at lung borders when smoothness-

regularized registration is used. Fig. 3(b) illustrates the ability

of pTV to capture sliding motion near lung walls.

After registration we compute the amount of sliding motion

using Eq. (20). Overlaying the estimated amount of sliding

2http://www.creatis.insa-lyon.fr/rio/popi-model
3http://www.dir-lab.com
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Fig. 3: (a) Image registration energy (1) and TRE for the same problem formulation. (b) Registration accuracy with respect to

landmark distance from the lung wall, which was calculated from the discrete approximate lung mask. (c) Proposed method

pTV compared to the best results from DIR website in Dec. 2015. Interobserver variability depicted with the gray region.

[mm] [mm]

(a) (b) (c) (d)

Fig. 4: Displacement fields estimated by the pTV method for the DIR 4D CT case # 4 (a,b) and COPDgene case #4 (c,d)

color-coded with the displacement magnitude. (a) 3D vector field visualization; (b) coronal image slice with displacement field

overlaid; (c) 3D vector field visualization; (d) axial image slice with displacement field overlaid. Displacement fields in (a,c)

are masked with coarse lung masks for 3D visualization purposes.

γ[x] on the dorsal and ventral coronal slices (Fig. 6), promi-

nent sliding can be seen on the lung border, especially in the

inferior parts. Sliding motion inside the lungs (between its

lobes) is also observed, and demonstrates an anatomically-

viable pattern similarly to those shown in [6].

C. 3D Breath-Hold CT DIR COPDgene Database

In contrast to the two previous databases that were ac-

quired with respiratory-correlated 4D reconstruction imaging,

the COPDgene study [41] provides 3D breath-hold CT lung

images. It consists of 10 cases, each case including a pair

of images at end-inhale and end-exhale, together with 300

publicly-available landmarks per image. The average image

resolution is 0.6 × 0.6 × 2.5mm3 and average image size is

512× 512× 120 voxels (see Fig. 4). Larger motion amplitude

than the 4D-CT images (12–31 mm vs. 4-15 mm) makes the

COPDgene a greater challenge for registration.

We resampled the images to 1× 1× 1mm3 voxel spacing

using Gaussian filter (with 1.5×1.5×0.5 voxels kernel width)

to avoid aliasing artifacts, and we clipped image intensities to

[50, 1200]HU interval. Image registration for each case took

3–6 minutes.

Much fewer registration algorithms were validated on the

more challenging COPDgene database. These methods all use

lung masks or specialized keypoint detectors tuned for lung

CT imaging. Even then, Table II shows that our method is

superior to alternatives regarding TRE for 8 out of 10 cases,

showing poor performance only for case #2. Overall mean

TRE is 0.96 mm, which is 0.12 mm (11%) better compared to

the state-of-the-art method [3], which is specialized for this

database.

D. 4D-MRI Liver Sequences

Since CT provides poor contrast for internal liver structures,

MRI is often used to observe its motion. The 4D-MR liver

database from [10] consists of 8 breathing sequences recorded

from 4 subjects. Unlike the previous three lung CTs, this

database provides 32 landmarks inside and 20 landmarks

outside the moving object (liver) at both extreme breathing

phases. The images have 1.37×1.37×4 mm3 resolution and

a typical size of 164×189×23 voxels. In accordance with

previous experiments, we resampled all images to an isotropic

1× 1× 1 mm3 voxel spacing. pTV run-time on this database

was 30–60 s.

The results reported in Table III indicate an accuracy

improvement with pTV registration by 38% inside and 45%

outside the liver in comparison to the results reported in [10].

Moreover, pTV was 22% more accurate than aTV. As in
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TABLE II: Mean (snap-to-voxel) TRE on DIR database for masked and mask free methods as reported of the DIR webpage

(09.12.2015). Per column the best TRE is given in bold, and the best TRE without masks is highlighted in green.
TRE [mm] for each 4D CT case TRE [mm] for each COPDgene case

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

No reg. 4.01 4.65 6.73 9.42 7.10 11.10 11.59 15.16 7.82 7.63 8.52 25.90 21.77 12.29 30.90 30.90 28.32 21.66 25.57 14.84 22.48 23.46

W
it

h
m

as
k

s

cEPE [33] 0.80 0.77 0.92 1.22 1.21 0.90 0.98 1.16 1.00 0.99 1.00
NLR [34] 0.77 0.78 0.93 1.27 1.11 0.91 0.86 1.03 0.97 0.87 0.95 1.33 2.34 1.12 1.54 1.39 2.08 1.10 1.57 0.99 1.42 1.49
LMP [35] 0.74 0.78 0.91 1.24 1.17 0.90 0.87 1.04 0.98 0.89 0.95 1.21 1.97 1.06 1.64 1.46 1.34 1.16 1.54 0.99 1.39 1.38
SGM3D [36] 0.76 0.72 0.94 1.24 1.15 0.90 0.89 1.13 0.91 0.83 0.95 1.22 2.48 1.01 2.42 1.93 1.45 1.05 1.16 0.81 1.28 1.48
NGF(a) [4] 0.78 0.79 0.93 1.27 1.07 0.90 0.85 1.03 0.94 0.86 0.94

NGF(b) [4] 0.76 0.80 0.96 1.33 1.18 1.03 0.92 1.13 1.00 0.91 1.00
LFC [37] 0.85 0.74 0.93 1.33 1.14 1.04 1.03 1.11 1.04 1.05 1.03
cTVL1 [19] 0.78 0.78 0.93 1.24 1.22 0.94 1.01 1.11 0.98 0.94 0.99
MILO [38] 0.93 1.77 0.99 1.14 1.02 0.99 1.03 1.31 0.86 1.23 1.13
MRF [3] 0.97 1.00 1.62 1.00 1.08 0.96 1.01 1.05 1.08 0.79 1.18 1.08

W
it

h
o

u
t

m
as

k
s CPP [39] 1.07 0.99 1.23 1.51 1.95 1.94 1.79 1.96 1.33 1.84 1.56

4DLTM [39] 0.97 0.86 1.01 1.40 1.67 1.58 1.46 1.77 1.19 1.59 1.35
cTVL1 [19] 0.79 0.80 1.02 1.23 1.27 1.09 1.87 3.01 1.11 1.17 1.34
cEPE [33] 0.81 0.80 0.93 1.25 1.28 1.19 3.03 3.52 1.16 1.52 1.55
ALK [40] 0.98 0.83 1.08 1.45 1.55 1.52 1.29 1.75 1.22 1.47 1.31
aTV [22] 0.76 0.78 0.82 1.31 1.25 1.11 0.97 1.28 1.04 0.99 1.03
pTV 0.76 0.77 0.90 1.24 1.12 0.85 0.80 1.34 0.92 0.82 0.95 0.77 2.22 0.82 0.85 0.77 0.86 0.74 0.81 0.83 0.92 0.96

[mm] [mm] [mm] [mm]

(a) (b) (c) (d) (e) (f)

Fig. 5: Motion magnitude and interpolated TRE maps for lung 4D CT (a-c) and liver MR (d-f) images. The top row depicts

the results of smoothness regularized (Esm
R ) registration, bottom row shows the results of the proposed pTV method. (a) axial

slice of inferior-superior component of the displacement field; (b) axial and (c) coronal CT image slices with overlaid TRE

map; (d) sagittal slice of the displacement magnitude map; (e) sagittal and (f) axial MR liver slices with overlaid TRE map.

TRE maps are computed by using the Nadaraya-Watson model with a Gaussian kernel (σ=12 mm).

previous experiments, landmark registration error maps in

Figs. 5 (e,f) indicate registration quality improvement around

expected sliding interface (depicted in Fig. 6 (c)) computed

using Eq. (20). Fig. 7 shows an example displacement field.

Comparing with the 4D CT data, this MR database has

higher image voxel anisotropy, more image artifacts, and

relatively large motion magnitudes; making the registration

challenging. On the other hand, liver images have smaller

image sizes and hence grid sizes, which decreases dimension-

ality of the optimization problem. This improves optimization

behavior and allows for a more exhaustive search.

E. Parameter sensitivity

As was mentioned earlier, a single set of parameters was

used for all the experiments. To show the influence of the

LCC weighting kernel w, we tested our method with 10 evenly

(a) (b) (c)

Fig. 6: Sliding amount γ[x] estimated for the displacement

fields produced by pTV. Result for (a) dorsal and (b) ventral

coronal slices of the 4D CT case # 4, (c) sagittal slice of the

4D liver MRI.

spaced w values in [0.5, 4.5] and 10 evenly spaced λ values in

[0, 0.5] for all cases of the 4D MR liver database. The resulting
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Fig. 7: Sagittal and axial slice of the displacement field

estimated by pTV for the 4D liver MRI, as color-coded by

displacement magnitude.
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Fig. 8: Sensitivity of TRE to grid spacing of pTV method on

the MRI liver database.

mean TRE versus w plots did not have any prominent minima.

The TRE’s standard deviation averaged over all cases and λ
values was 0.13 mm. Hence, we fixed w = 2.5 pixels.

Fig. 9 shows the TRE dependence on λ for the different

databases. Results show that for breathing motion all tested

databases of CT or MR images have optimal regularization

values λ∗ ≈ 0.1. Particularly interesting is the TRE behavior

of the different 4D MR liver sequences, which consists of

4 image pairs with relatively small motion (5–8 mm) and 4

image pairs with larger motion (14–17 mm). As can be seen

from Fig. 9, pTV is relatively insensitive to λ for the cases with

small motion. However, for the cases with prominent motion,

setting λ to large values leads to over-regularization, which

results in poorer registration accuracy. We did not investigate

adjusting λ to the image noise level as described in Sec. II-F.

Considering these results, we propose the following practi-

cal tuning scheme: (i) fix w = 2.5 pixels; (ii) select from the

database one pair of images with large motion and annotate it;

(iii) perform grid search for λ∗, which minimizes mean TRE.

To tune control point grid spacing K, one can evaluate

registration accuracy with reasonable grid spacings. Usually

at very fine grid spacing (K ∈ {1, 2, 3}) the optimization

search space becomes too large, yielding poor minimization

result. The trade-off between model flexibility (grid spacing)

and optimization robustness is common in model selection.

Registration accuracies for different grid spacings on the 4D

MRI liver database are given in Fig. 8. The best mean accuracy

was achieved for 4-voxel grid spacing. It is superior (62% TRE

reduction) to K=1 spacing, which is approximating the non-

parametric registration scenario.
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Fig. 9: Sensitivity of TRE to regularization parameter λ of

pTV method. For better illustration, each line was shifted

vertically (hence adjusted TRE) to align its minimal value with

zero. Mean values for different databases are shown with bold

lines. For the 4D liver database the adjusted TRE line for each

image pair is shown with its mean motion value.

TABLE III: Average mean (max) TRE [mm] for liver MRIs.

Method Inside the liver Outside the liver Overall

No reg. 14.18 (18.58) 5.71 (16.75) 10.98 (19.16)

Demons 3.57 (12.87) 4.25 (14.38) 3.83 (15.77)
Aniso. Demons [10] 3.00 (11.86) 4.05 (13.15) 3.40 (14.03)
aTV [22] 2.42 (11.00) 2.64 (7.52) 2.56 (9.78)
pTV 1.86 (9.87) 2.21 (10.00) 1.99 (11.87)

IV. CONCLUSIONS

In this paper we have further developed and validated a

parametric approach for image registration with total variation

regularization by incorporation of an isotropic TV and efficient

LCC image metric. The method was successfully evaluated

on the imaging data of different modalities (CT, MR) and

anatomies. An advantage of the proposed parametric regis-

tration based on TV regularization (pTV) is that it does not

rely on a specific anatomy or image modality, and can be used

generally for the quantitative analysis of organ sliding motion.

The fact that the same algorithm parameters could be used

for all four clinical datasets indicates that the method might

not need any further tuning in similar scenarios, i.e. breathing

motion estimation from CT and MR images. Our method does

not use organ masks and provides motion estimates on both

sides of the sliding interface, which were similar or more

accurate than the results of the methods with masks. On the

breath-hold lung CT COPDgene dataset, pTV outperformed all

other methods in terms of mean TRE by a minimum margin

of 11%, which we see as an important practical result.

From an application point of view, the major limiting factor

of pTV is the linear parametrization of the displacement field.

Reducing the degrees of freedom helps to better condition

the optimization process, although linear interpolation might

not always accurately represent sliding motion discontinuities.

Alternative solutions for this problem are not straightforward

and also have drawbacks: For example, displacement fields

parametrized with cubic function basis still cannot model sharp

transitions, and the interpolated values are furthermore not

bounded by control grid displacements. Wavelet transforms

have the drawback that their displacement parametrization

properties heavily depend on the choice of the generating

functions, and they generally parametrize smooth transitions

poorly. Adaptive grids require a local refinement strategy,

which implicitly increases the degrees of freedom and slows



10

down computation due to nonuniform grid spacing. While non-

parametric approaches have the flexibility to capture sliding

interfaces anywhere, their registration accuracy is often worse

since the regularization required to enable sliding appears to

be insufficient to make the problem well-posed. A way to

overcome the limitations of 1st order B-spline model, could be

an overcomplete parametrization of displacement fields with

different families (e.g. linear and cubic) of B-splines while

enforcing sparsity constraints on the coefficients of those basis

functions. A similar approach was introduced in [28] in the

context of estimating smooth cardiac motion using cubic B-

splines with different grid spacing.

Although no tuning was needed for breathing motion esti-

mation, further research should investigate the sensitivity of

the regularization parameter for different motion types, which

might make it possible to automatically tune this parameter

based on motion patterns.
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