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ABSTRACT.  We construct a canonical Markov process on the tangent

bundle of a complete Riemannian manifold, which generalizes the isotropic

scattering transport process on Euclidean space.   By inserting a small parameter

it is proved that the transition semigroup converges to the Brownian motion

semigroup provided that the latter preserves the class CQ. The special case of

a manifold of negative curvature is considered as an illustration.

1. Introduction. In order to construct a diffusion process on a differen-

tiable manifold it is necessary, in general, to solve stochastic differential equations

in coordinate patches and then piece together the resulting local diffusions [4].

In the case of the sphere S"_1, Stroock [10] has shown that the Brownian mo-

tion may be obtained by solving a single stochastic differential equation on R",

whose solution stays on the sphere of its own accord.

The purpose of this paper is to show that, on a wide class of Riemannian

manifolds, the Brownian motion can be approximated in law by a globally defined

stochastic process—the isotropic transport process. The paths of this process are

piecewise geodesic. The joint position-velocity motion is a Markov process on the

tangent bundle of the manifold. In the case of R", it coincides with the usual

transport process [11]. Using a theorem of Kurtz [8], we show that the Brown-

ian motion on the manifold can be approximated, in the sense of weak conver-

gence, by a sequence of isotropic transport processes. As a by-product we obtain

a formula for the Laplace-Beltrami operator as the spherical average of the second

covariant derivative along the geodesic flow field in the tangent bundle.

2. Geodesic flow field. Let M be a complete C°° Riemannian manifold of

dimension n. TX(M) denotes the tangent space at x G M; T(M) denotes the tan-

gent bundle over M. For x = (x, £) G T(M), we consider the geodesic flow X =

{A<x'f)(0, t > 0}. This satisfies the properties that A^'^O) = x, #*•*>(()) = S

and Á^ty) is a parallel vector field along {A**'$)(f), t > 0}.
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We consider the lifting of AT to a curve X in T(M), defined by 3(Sx^(f) =

(XSx,i)(t), XÏx*\t)). Let Z be the tangent vector to this curve at f = 0. Z is

a vector field on T(M) and is called the geodesic flow field [6, 132]. We let Dz

denote the operation of (covariant) differentiation defined by Z.

Let C0(T(M)) be the Banach space of continuous functions on T(M) with

^md(x,xn)-*«> ̂ (JC) = 0-   [Here d is a metric consistent with the manifold topol-

ogy and xQ is a fixed point of M.]   C%(T(M)) = {/G C0(T(M)): /has k contin-

uous partial derivatives}.   Il/ll = sup~er(M) 1/001. Finally, set

(T?f)(x)=f(Xx(t)), (f>0)

(R£/X3c) = J" e-^fXx) dt     (X > 0).

Proposition 2.1. R° maps C^(T(M)) into C\(T(M)) and satisfies

(2.2) (X - Dz)R°Kf = f     (fE C¿(T(M))).

Proof.   Let/G Cq(T(M)). By the smooth dependence on initial condi-

tions, (x, Ç) —*• Aïx'i)(f) is a C~ mapping for each t > 0. Therefore T°fE

Cl(T(M)). The dominated convergence theorem implies that R°fE Cl(T(M)).

To show that R^f vanishes at °°, let e > 0. Choose T > 0 such that e~KT Il/ll A

< e/2. Since /G C0(71(M)), we can find R > 0 such that l/(!x)l < eX/2 if

d(x, lc0)>R. Now let d(x, x0)>R + T; then c/(^r jc0) >Rioi t<T.

Hence

'*£/T*)l < \So e~Xtf&(® *\ + |J~ e-x,/(*(f)) rff|

geX/l-e-xr\, e .
^tI—x--;+2<e'

for d(x, x0) > R + T.   Thus R^fE C0(T(M)).

To verify (2.2) write, for « > 0,

rX/= J0" e-XtT?+hfdt = ¿* /; e-^TSfdu

'¿"[Rlf-f*e-XuV%f)*t]

But (7>)(x) - g(Xx(u)). Therefore

Z)z(F°/)-ftlim -¡-
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3. Isotropie transport process. Let (Í2, B, P) be a probability space. On

Í2 we assume given a sequence {en}n>i of independent random variables with

the common distribution

P{en>t} = e~t     (i>0,«=l,2,...).

We set r0 = 0, t„ = et + • • • + en(n > 1). Let px(dr[) be the unique rotation-

ally invariant probability measure on the unit sphere in TX(M). For (x, £) G

T(M), we define a sequence of random variables {Yly^v Y2, %2,... } as follows:

lo -*•      So = £•

Assuming that the joint distributions oí{Y1,^l, . . . , Yn_1, |„_j} have been

defined, we set

Yn = XlYn-l'*n-l)(en)       (n= 1,2,3,... ),

nlin^dn}=ßYH(dn) («=1,2,3,...).

It is readily verified that the probability law of (Yt, (fj,... ) is well defined by

these conditional distributions. We now define a stochastic process { Y(t), r > 0}

by

y(x,f)(0 = xfYn.%n\t - Tn)      (Tn<t< rn + 1).

The curve t —► Y(t) EM is piecewise differentiable and therefore the tangent

vector Y(t) is defined for t^rn (n> 1). We normalize Y(t) so that Y(rn) =

Y(t„ + 0). The pair Y(t) = (Y(t), Y(t)) will be called the isotropic transport

process on T(M).

Let

Ttf(x) = E{f(Ytx-V(t),Y<x-t\t))}t

R*f& =/o~ é~UTtf® dt

Theorem 3.1.   { Tt, t > 0} is a strongly continuous contraction semigroup

on C0(T(M)). ForfE C^(T(M)), the function u = Ttf satisfies the differential

equation

yt (t, x, Ç) = (Dzu)(t, x, £) + fTx(M) [u(t, x, r¡) - u(t, x, %)]px(dri).

This result will be established by working with the operators {Rx, X > 0}. Of

course the semigroup property follows from the Markov property which can be

established along the lines of [2, pp. 65-68].  But since we make no explicit use

of the Markov property below, this proof is omitted.

Proposition 3.2. Rx maps C0(T(M)) into C0(T(Mj) and satisfies

(3.2a) Rxf=R°+xf+R0+xPRxf     (f£C0(T(M)))

where Pf(x, £) - hx(M)f(x, r))px(dn).
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Proof.   Following a similar argument above, we have

(Rxf)(x) = | Jor + J~ } e-^Ef(Y(t)) dt.

Given e > 0, choose 7 such that e~XT Wß/T < e/2. Choose R such that \flx)\ <

e for d(x, x0) > R. Then for d(x, x0)>R + T, the first integral is < e/2. Thus

lÄx/00' < e for d(x, x0)>R + T.  To prove (3.2a), we write

(Rx/X?) = * {£' + JT" } e-*<f(Y(t)) dt

= ESôht<Toe~KtMWdt

+ eL~Xti J*~ e-Xsf(X(Tl + s)) ds\.

The first integral = /0°° e-íe"Xí/(Á^(í)) dt = (Ä?+x/)(x). For the second, note

that X(tx + s) =(A'(yi,çi)(s), A<yi,?i)(s)). Taking the conditional expectation

with respect to (Yt, |j) and noting-that Yt = A**'^(rj), we have

E{e~XTl IÔ e~XSfMTi + s»ds\ = Eie-^HRxfXYi,^)}

= E{e-XTKPRxf)(Yi)} =/0" e-^CRRx/X^*'"^"* *

= CR?+XJKX/X*. 0.

Proposition 33.  Let fEC¿(T(M)). Then RxfEC¿(T(M)) and

(3.3a) (X-Dz-P + IXRKf) = f.

Proof. Using Proposition 3.2, we iterate (3.2a), obtaining

*x/=*?+x/+ ¿ (*i+xT(*?+x.O-
n = l

The series converges uniformly due to the estimation I/îj+xPl < 1/(1 + X).

Thus RxfE C0(T(M)). For /G Cq(T(M)), this series may be differentiated term-

by-term and the differentiated series also converges uniformly.  Hence RxfE

C¿(T(M)) which was to be shown.

To prove (3.3a), we apply the operator (1 + X - Dz) to both sides of (3.2a)

and use (2.2). Thus

(l+\-Dz)Rxf = f + PRxf,

which was to be proved.
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Proposition 3.4. Let u E Cl(T(M)), (X-Dz-P + I)u = 0 for some

X > 0. Then u = 0.

Proof.  Assume that sup~eT(M) u(x) > 0. Then this sup is assumed at

some x0 E M, for otherwise 3 xn —*■ °° such that u(xn) —*■ sup u(x) > 0 which

contradicts /G C0(T(M)). Now at x0, Dzu(x0) = 0 and Pu(x0) - u(x0) < 0.

But Pu(x0) - u(x0) = Xu(x0) > 0, a contradiction. Therefore u(x) < 0 on T(M).

Applying the argument to -u, we see that u(x) > 0 on T(M). Thus u = 0.

To complete the proof of Theorem 3.1, we appeal to the Hille-Yosida theo-

rem. « = Rxf is the unique solution of the equation (X-Dz-P + r)u=f and

satisfies Hull < ll/ll/X. Hence there exists a strongly continuous contraction semi-

group {Tt, t> 0} whose resolvent operators are given by {Rx, X > 0}. By the

uniqueness of Laplace transform, we conclude that Tt = Tt.

To identify the domain of Tt, we recall that V = R^(C0(T(M))) which is

independent of X. Clearly C¿(T(M)) C p. now if UEV,u = Rxf ioi some /G

C0(T(M))- By 3.2a, u=R°1+xg,g = f + PRxf. But for any g G C0(T(M)) the

proof of Proposition 2.1 shows that R°g is differentiable in the Z direction, and

that Dz(R°Kg) = X(R^g) -g. Hence Dzu exists and is an element of CQ(T(M)).

Thus V = {uE C0(M): Dzu E C0(M)}. The proof is now complete.

4. Convergence to Brownian motion. We introduce a parameter e > 0 and

consider a one-parameter family of isotropic transport processes corresponding to

the backward equation

(4.1) du/dt = eDzu + (Pu- u).

This process can be constructed by replacing {|„}n>1 by {e|„}n>1 in the defini-

tion of Y(t). The solution of equation (4.1) with «(0, x, £) = f(x, £) will be de-

noted by T)e)f

The Laplace-Beltrami operator A defines a Markov process on M, the Brown-

ian notion {5^(0, f < f} where f is the lifetime. We introduce the semigroup

Utf(x) = E{f(Bx(t)),t<n

whose infinitesimal generator is an extension of A. We shall assume the following:

(42) Ut maps C0(T(M)) into C0(T(M)).

Theorem 43. Assume (4.2). Then for f E C0(M),

limrft)2/=i/f/n/

uniformly on M.

If (4.2) is satisfied, then P(f = °°) = 1, but not conversely. (4.2) is satis-

fied if (a) M is compact of (b) M has bounded negative curvature (see below).
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To prepare the proof, we set B — P -1, A = Dz. Then

(4.4) PAPf=0.    fECl(T(M))>

(4.5) {/: Bf= 0} = C0(M),

(4.6) Hm etBf=Pf,    fEC0(T(M)).
t—*-oo

The following proposition defines 5-1.

Proposition 4.7. Let g E C0(T(M)) with Stx(m)S(x, %)ßx(d%) = 0. The

unique solution of the equations

is given by f(x, £) = - g(x, £).

The proof is omitted.

We now define the operator

(4.7a) C = PAB~lAP.

Proposition 4.8. LetfE C%(M). Then Cf= n~xAf, where A is the

Laplace-Beltrami operator on M.

Proof.   We first verify that the components of any covariant vector (j^)

satisfy

(4-9) St^m^M*® = M*)/n      (1 < *> * < n)-

Indeed, by the rotational invariance of px, we must have /<£, pj{%, v)px(d'£) = (p, u)/n

for any two vectors p, v G TX(M). The' left-hand member of this equation is

'ikl'.s£/k(x)s'i(JC) / htyx^dX) and the right-hand side is gi'(x)piu]-. Clearly the only

possible choice is (4.9). Now we write the second covariant derivative

Using (4.7a), we have

nPDzDzf = gls(xYXx)g¡°(x) (£L - r¡ ^

-     / 92/       t  9/\•"«fes-**)
-g'Kx-pPif,

which is the usual expression for the Laplace-Beltrami operator [5].

Proof of Theorem 4.3.   We apply the method of T. G. Kurtz [8, Theo-

rem 2.2]. « = 7^2/satisfies the equation
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du/dt = A/e + Bu/e2

where

PAP = 0,       lim   P \é~uetBfdt = Pf.

We must show that C£(M) Ç the closure of the range of X - A, X > 0. But (4.2)

implies [1] that the resolvent operator maps C0(M) —► C0(M). Therefore, the

equation (X - A)/ = g G Cl0(M) is solved by f(x) = E{£ e~ug(Bx) dt} E C0(M).

Hence by the theorem of Kurtz, we have for /G C¿(M),

lim et(A/e+B/e2)f■__ gtPAB~]lAPpj•_ etA/npf
e->0

in the norm of CQ(T(M)), which was to be shown.

5. Manifolds of negative curvature. In order to verify (4.2) in some non-

compact cases, we assume in addition that M is an analytic simply connected

manifold of negative curvature. In this case, the problem was considered by

Azencott [1], who used a method based on Hasminskii's test. We will show be-

low that by using a simple observation of Itô [7], (4.2) may be proved by a

direct examination of the stochastic equations.

Indeed, in this case M is homeomorphic to its tangent space at some x0 G

M. Taking geodesic polar coordinates at x, we have [3]

¿(B,) = /J 2r(Bs) dWs + JÓ [ 2 + 2%(ßtfßS\ *

where 0 is the volume element in these coordinates 0'/0 < (n - \)b coth br,

where K > -b2. Now we apply Itô's formula to/= log(l + r2):

log[1+,, w]. r sags.+ri±Mmmi ds
st ft"     Jo ! +r*(Bs)    J°        1 +r2(Bs)

rt 4/"

Jo   [I Arr2(BS))2

To estimate the expectation, note that the first term above is an L2-martingale

and hence has mean 0. The third term is negative. For the second term, note

that Ixcothxl < 2 + 2x. Therefore

,               ft 2 + 4(n - 1)[1 + br(Bt)]
£{log[l + r2(Bt)]} </0-\+*9j       **

< [4n-2 + 2b(n-l)]t

where we have used the inequality r/(l + r2) < Yi.

Proposition 5.1.  Let M be an analytic simply connected Riemann mani-
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fold with K > -b2.  Then the diffusion semigroup Ut maps C0(M) into C0(M).

Proof.   Let /G C0(M): given e > 0, let KR be a geodesic ball such that

\f(x)\<eiíx$KR. Now

The first integral is bounded by e, by definition of KR. To estimate the second

integral, notice that if BxEKR, then d(Bx, x) > d(x, x0) -R.  Therefore if

d(x, x0)>R,

Lc p*t(dy) <pWxf *)> <*(*• *o) -Rï
R

<F{log[l + d2(Bx, x)] > log[l + (d(x, x0) -R)2)}

<t(4n-2 + 2b(n - l))/log(l + (d(x, x0) -R)2).

Now let d(x, x0) —*■ <*>. Thus Urn \Ttf(x)\ < e for each e > 0. Hence UtfE

C0(M) which was to be proved.

Added in proof. We have just learned of similar approximations of Brown-

ian motion by geodesies in the works of Jorgensen [12] and Malliavin [13].

The latter construction generalizes the classical balayage method of Poincaré.
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