ISOTROPIC TRANSPORT PROCESS ON A RIEMANNIAN MANIFOLD

BY

MARK A. PINSKY(1)

ABSTRACT. We construct a canonical Markov process on the tangent bundle of a complete Riemannian manifold, which generalizes the isotropic scattering transport process on Euclidean space. By inserting a small parameter it is proved that the transition semigroup converges to the Brownian motion semigroup provided that the latter preserves the class C_0 . The special case of a manifold of negative curvature is considered as an illustration.

1. Introduction. In order to construct a diffusion process on a differentiable manifold it is necessary, in general, to solve stochastic differential equations in coordinate patches and then piece together the resulting local diffusions [4]. In the case of the sphere S^{n-1} , Stroock [10] has shown that the Brownian motion may be obtained by solving a single stochastic differential equation on \mathbb{R}^n , whose solution stays on the sphere of its own accord.

The purpose of this paper is to show that, on a wide class of Riemannian manifolds, the Brownian motion can be approximated in law by a globally defined stochastic process—the isotropic transport process. The paths of this process are piecewise geodesic. The joint position-velocity motion is a Markov process on the tangent bundle of the manifold. In the case of \mathbb{R}^n , it coincides with the usual transport process [11]. Using a theorem of Kurtz [8], we show that the Brownian motion on the manifold can be approximated, in the sense of weak convergence, by a sequence of isotropic transport processes. As a by-product we obtain a formula for the Laplace-Beltrami operator as the spherical average of the second covariant derivative along the geodesic flow field in the tangent bundle.

2. Geodesic flow field. Let M be a complete C^{∞} Riemannian manifold of dimension n. $T_x(M)$ denotes the tangent space at $x \in M$; T(M) denotes the tangent bundle over M. For $\tilde{x} = (x, \xi) \in T(M)$, we consider the geodesic flow $X = \{X^{(x,\xi)}(t), t \ge 0\}$. This satisfies the properties that $X^{(x,\xi)}(0) = x, \dot{X}^{(x,\xi)}(0) = \xi$ and $\dot{X}^{(x,\xi)}(t)$ is a parallel vector field along $\{X^{(x,\xi)}(t), t \ge 0\}$.

Copyright © 1976, American Mathematical Society

Received by the editors May 11, 1975.

AMS (MOS) subject classifications (1970). Primary 60J25, 60J65, 53C20; Secondary 58G99, 47D05.

Key words and phrases. Isotropic transport process, geodesic flow, Brownian motion, contraction semigroup.

⁽¹⁾ Supported by the National Science Foundation MPS71-02838 A04.

We consider the lifting of X to a curve \widetilde{X} in T(M), defined by $\widetilde{X}^{(x,\xi)}(t) = (X^{(x,\xi)}(t), \dot{X}^{(x,\xi)}(t))$. Let Z be the tangent vector to this curve at t = 0. Z is a vector field on T(M) and is called the *geodesic flow field* [6, 132]. We let D_Z denote the operation of (covariant) differentiation defined by Z.

Let $C_0(T(M))$ be the Banach space of continuous functions on T(M) with $\lim_{d(x,x_0)\to\infty} f(x) = 0$. [Here d is a metric consistent with the manifold topology and x_0 is a fixed point of M.] $C_0^k(T(M)) = \{f \in C_0(T(M)): f \text{ has } k \text{ continuous partial derivatives}\}$. $\|f\| = \sup_{\widetilde{x} \in T(M)} |f(\widetilde{x})|$. Finally, set

$$\begin{split} (T_t^0 f)(\widetilde{x}) &= f(\widetilde{X}^{\widetilde{x}}(t)), \qquad (t > 0) \\ (R_\lambda^0 f)(\widetilde{x}) &= \int_0^\infty e^{-\lambda t} (T_t^0 f)(\widetilde{x}) \ dt \qquad (\lambda > 0). \end{split}$$

PROPOSITION 2.1. R^0_{λ} maps $C^1_0(T(M))$ into $C^1_0(T(M))$ and satisfies

(2.2)
$$(\lambda - D_Z) R_{\lambda}^0 f = f \qquad (f \in C_0^1(T(M))).$$

PROOF. Let $f \in C_0^1(T(M))$. By the smooth dependence on initial conditions, $(x, \xi) \to \widetilde{X}^{(x,\xi)}(t)$ is a C^{∞} mapping for each t > 0. Therefore $T_t^0 f \in C^1(T(M))$. The dominated convergence theorem implies that $R_{\lambda}^0 f \in C^1(T(M))$. To show that $R_{\lambda}^0 f$ vanishes at ∞ , let $\epsilon > 0$. Choose T > 0 such that $e^{-\lambda T} ||f||/\lambda \leq \epsilon/2$. Since $f \in C_0(T(M))$, we can find R > 0 such that $|f(\widetilde{x})| \leq \epsilon\lambda/2$ if $d(\widetilde{x}, \widetilde{x}_0) \geq R$. Now let $d(\widetilde{x}, \widetilde{x}_0) \geq R + T$; then $d(\widetilde{X}_t, \widetilde{x}_0) \geq R$ for $t \leq T$. Hence

$$\begin{aligned} |R_{\lambda}^{0}f(x)| &\leq \left| \int_{0}^{T} e^{-\lambda t} f(\widetilde{X}(t)) dt \right| + \left| \int_{T}^{\infty} e^{-\lambda t} f(\widetilde{X}(t)) dt \right| \\ &\leq \frac{\epsilon \lambda}{2} \left(\frac{1 - e^{-\lambda T}}{\lambda} \right) + \frac{\epsilon}{2} \leq \epsilon, \end{aligned}$$

for $d(\tilde{x}, \tilde{x}_0) \ge R + T$. Thus $R_{\lambda}^0 f \in C_0(T(M))$. To verify (2.2) write, for h > 0,

$$T_h^0 R_\lambda^0 f = \int_0^\infty e^{-\lambda t} T_{t+h}^0 f \, dt = e^{\lambda h} \int_h^\infty e^{-\lambda u} T_u^0 f \, du$$
$$= e^{\lambda h} \left[R_\lambda^0 f - \int_0^h e^{-\lambda u} (T_u^0 f) \, du \right].$$

But $(T_u^0 g)(\widetilde{x}) = g(\widetilde{X}^{\widetilde{x}}(u))$. Therefore

$$D_{Z}(R^{0}_{\lambda}f) \equiv \lim_{h \to 0} \frac{T^{0}_{h}(R^{0}_{\lambda}f) - R^{0}_{\lambda}f}{h}$$
$$= \lim_{h \to 0} \left[\frac{e^{\lambda h} - 1}{h} R^{0}_{\lambda}f - \frac{1}{h} \int_{0}^{h} e^{-\lambda u}(T^{0}_{u}f) du \right] = \lambda R^{0}_{\lambda}f - f.$$

354

3. Isotropic transport process. Let (Ω, \mathcal{B}, P) be a probability space. On Ω we assume given a sequence $\{e_n\}_{n \ge 1}$ of independent random variables with the common distribution

$$P\{e_n > t\} = e^{-t} \quad (t > 0, n = 1, 2, ...).$$

We set $\tau_0 = 0$, $\tau_n = e_1 + \cdots + e_n (n \ge 1)$. Let $\mu_x(d\eta)$ be the unique rotationally invariant probability measure on the unit sphere in $T_x(M)$. For $(x, \xi) \in T(M)$, we define a sequence of random variables $\{Y_1, \xi_1, Y_2, \xi_2, \ldots\}$ as follows:

$$Y_0 = x, \qquad \xi_0 = \xi$$

Assuming that the joint distributions of $\{Y_1, \xi_1, \ldots, Y_{n-1}, \xi_{n-1}\}$ have been defined, we set

$$Y_n = X^{(Y_{n-1},\xi_{n-1})}(e_n) \qquad (n = 1, 2, 3, ...),$$
$$P\{\xi_n \in d\eta\} = \mu_{Y_n}(d\eta) \qquad (n = 1, 2, 3, ...).$$

It is readily verified that the probability law of $(Y_1, \xi_1, ...)$ is well defined by these conditional distributions. We now define a stochastic process $\{Y(t), t \ge 0\}$ by

$$Y^{(x,\xi)}(t) = X^{(Y_n,\xi_n)}(t-\tau_n) \quad (\tau_n \le t \le \tau_{n+1}).$$

The curve $t \to Y(t) \in M$ is piecewise differentiable and therefore the tangent vector $\dot{Y}(t)$ is defined for $t \neq \tau_n$ $(n \ge 1)$. We normalize $\dot{Y}(t)$ so that $\dot{Y}(\tau_n) = \dot{Y}(\tau_n + 0)$. The pair $\tilde{Y}(t) = (Y(t), \dot{Y}(t))$ will be called the *isotropic transport process* on T(M).

Let

$$T_t f(\widetilde{x}) = E\{f(Y^{(x, \xi)}(t), \dot{Y}^{(x,\xi)}(t))\},\$$
$$R_{\lambda} f(\widetilde{x}) = \int_0^\infty e^{-\lambda t} T_t f(\widetilde{x}) dt.$$

THEOREM 3.1. $\{T_t, t \ge 0\}$ is a strongly continuous contraction semigroup on $C_0(T(M))$. For $f \in C_0^1(T(M))$, the function $u = T_t f$ satisfies the differential equation

$$\frac{\partial u}{\partial t}\left(t,\,x,\,\xi\right)=(D_Z u)(t,\,x,\,\xi)+\int_{T_x(M)}\left[u(t,\,x,\,\eta)-u(t,\,x,\,\xi)\right]\mu_x(d\eta).$$

This result will be established by working with the operators $\{R_{\lambda}, \lambda > 0\}$. Of course the semigroup property follows from the Markov property which can be established along the lines of [2, pp. 65–68]. But since we make no explicit use of the Markov property below, this proof is omitted.

PROPOSITION 3.2. R_{λ} maps $C_0(T(M))$ into $C_0(T(M))$ and satisfies

(3.2a)
$$R_{\lambda}f = R_{1+\lambda}^{0}f + R_{1+\lambda}^{0}PR_{\lambda}f \quad (f \in C_{0}(T(M)))$$

where $Pf(x, \xi) = \int_{T_x(M)} f(x, \eta) \mu_x(d\eta)$.

PROOF. Following a similar argument above, we have

$$(R_{\lambda}f)(\widetilde{x}) = \left\{\int_{0}^{T} + \int_{T}^{\infty}\right\} e^{-\lambda t} Ef(\widetilde{Y}(t)) dt$$

Given $\epsilon > 0$, choose T such that $e^{-\lambda T} ||f||/T < \epsilon/2$. Choose R such that $|f(\tilde{x})| \le \epsilon$ for $d(x, x_0) \ge R$. Then for $d(x, x_0) \ge R + T$, the first integral is $\le \epsilon/2$. Thus $|R_{\lambda}f(\tilde{x})| \le \epsilon$ for $d(x, x_0) \ge R + T$. To prove (3.2a), we write

$$(R_{\lambda}f)(\widetilde{x}) = E\left\{\int_{0}^{\tau_{1}} + \int_{\tau_{1}}^{\infty}\right\} e^{-\lambda t}f(\widetilde{Y}(t)) dt$$
$$= E\int_{0}^{\infty} I_{(t<\tau_{1})}e^{-\lambda t}f(\widetilde{X}(t)) dt$$
$$+ E\left\{e^{-\lambda\tau_{1}}\int_{0}^{\infty} e^{-\lambda s}f(\widetilde{X}(\tau_{1}+s)) ds\right\}$$

The first integral = $\int_0^\infty e^{-t} e^{-\lambda t} f(\widetilde{X}(t)) dt = (R_{1+\lambda}^0 f)(\widetilde{x})$. For the second, note that $\widetilde{X}(\tau_1 + s) = (X^{(Y_1,\xi_1)}(s), X^{(Y_1,\xi_1)}(s))$. Taking the conditional expectation with respect to (Y_1, ξ_1) and noting that $Y_1 = X^{(x,\xi)}(\tau_1)$, we have

$$E\left\{e^{-\lambda\tau_1}\int_0^\infty e^{-\lambda s}f(\widetilde{X}(\tau_1+s))\,ds\right\} = E\{e^{-\lambda\tau_1}(R_\lambda f)(Y_1,\xi_1)\}$$
$$= E\{e^{-\lambda\tau_1}(PR_\lambda f)(Y_1)\} = \int_0^\infty e^{-\lambda s}(PR_\lambda f)(X^{(x,\xi)}(s))e^{-s}\,ds$$
$$= (R_{1+\lambda}^0 PR_\lambda f)(x,\xi).$$

PROPOSITION 3.3. Let $f \in C_0^1(T(M))$. Then $R_{\lambda} f \in C_0^1(T(M))$ and

(3.3a)
$$(\lambda - D_Z - P + I)(R_\lambda f) = f$$

PROOF. Using Proposition 3.2, we iterate (3.2a), obtaining

$$R_{\lambda}f = R_{1+\lambda}^{0}f + \sum_{n=1}^{\infty} (R_{1+\lambda}^{0}P)^{n}(R_{1+\lambda}^{0}f).$$

The series converges uniformly due to the estimation $||R_{1+\lambda}^0 P|| \le 1/(1+\lambda)$. Thus $R_{\lambda}f \in C_0(T(M))$. For $f \in C_0^1(T(M))$, this series may be differentiated termby-term and the differentiated series also converges uniformly. Hence $R_{\lambda}f \in C_0^1(T(M))$ which was to be shown.

To prove (3.3a), we apply the operator $(1 + \lambda - D_Z)$ to both sides of (3.2a) and use (2.2). Thus

$$(1 + \lambda - D_Z)R_{\lambda}f = f + PR_{\lambda}f,$$

which was to be proved.

PROPOSITION 3.4. Let $u \in C_0^1(T(M))$, $(\lambda - D_Z - P + I)u = 0$ for some $\lambda > 0$. Then $u \equiv 0$.

PROOF. Assume that $\sup_{\widetilde{x} \in T(M)} u(x) > 0$. Then this sup is assumed at some $\widetilde{x}_0 \in M$, for otherwise $\exists \widetilde{x}_n \to \infty$ such that $u(\widetilde{x}_n) \to \sup u(x) > 0$ which contradicts $f \in C_0(T(M))$. Now at $\widetilde{x}_0, D_Z u(\widetilde{x}_0) = 0$ and $Pu(\widetilde{x}_0) - u(\widetilde{x}_0) \leq 0$. But $Pu(\widetilde{x}_0) - u(\widetilde{x}_0) = \lambda u(\widetilde{x}_0) > 0$, a contradiction. Therefore $u(\widetilde{x}) \leq 0$ on T(M). Applying the argument to -u, we see that $u(\widetilde{x}) \geq 0$ on T(M). Thus $u \equiv 0$.

To complete the proof of Theorem 3.1, we appeal to the Hille-Yosida theorem. $u = R_{\lambda} f$ is the unique solution of the equation $(\lambda - D_Z - P + I)u = f$ and satisfies $||u|| \leq ||f||/\lambda$. Hence there exists a strongly continuous contraction semigroup $\{\overline{T}_t, t \ge 0\}$ whose resolvent operators are given by $\{R_{\lambda}, \lambda > 0\}$. By the uniqueness of Laplace transform, we conclude that $\overline{T}_t = T_t$.

To identify the domain of T_t , we recall that $\mathcal{D} = R_{\lambda}(C_0(T(M)))$ which is independent of λ . Clearly $C_0^1(T(M)) \subseteq \mathcal{D}$. Now if $u \in \mathcal{D}$, $u = R_{\lambda}f$ for some $f \in C_0(T(M))$. By 3.2a, $u = R_{1+\lambda}^0 g$, $g = f + PR_{\lambda}f$. But for any $g \in C_0(T(M))$ the proof of Proposition 2.1 shows that $R_{\lambda}^0 g$ is differentiable in the Z direction, and that $D_Z(R_{\lambda}^0 g) = \lambda(R_{\lambda}^0 g) - g$. Hence $D_Z u$ exists and is an element of $C_0(T(M))$. Thus $\mathcal{D} = \{u \in C_0(M): D_Z u \in C_0(M)\}$. The proof is now complete.

4. Convergence to Brownian motion. We introduce a parameter $\epsilon > 0$ and consider a one-parameter family of isotropic transport processes corresponding to the backward equation

(4.1)
$$\partial u/\partial t = \epsilon D_Z u + (Pu - u).$$

This process can be constructed by replacing $\{\xi_n\}_{n\geq 1}$ by $\{\epsilon\xi_n\}_{n\geq 1}$ in the definition of $\widetilde{Y}(t)$. The solution of equation (4.1) with $u(0, x, \xi) = f(x, \xi)$ will be denoted by $T_t^{(\epsilon)} f$.

The Laplace-Beltrami operator Δ defines a Markov process on M, the Brownian notion $\{B^x(t), t < \zeta\}$ where ζ is the lifetime. We introduce the semigroup

$$U_t f(x) = E\{f(B^x(t)), t < \zeta\}$$

whose infinitesimal generator is an extension of Δ . We shall assume the following:

(4.2)
$$U_t$$
 maps $C_0(T(M))$ into $C_0(T(M))$.

THEOREM 4.3. Assume (4.2). Then for $f \in C_0(M)$,

$$\lim_{\epsilon \to 0} T_{t/\epsilon^2}^{(\epsilon)} f = U_{t/n} f$$

uniformly on M.

If (4.2) is satisfied, then $P(\zeta = \infty) = 1$, but not conversely. (4.2) is satisfied if (a) *M* is compact of (b) *M* has bounded negative curvature (see below).

To prepare the proof, we set B = P - I, $A = D_Z$. Then

(4.4) $PAPf = 0, \quad f \in C_0^1(T(M)).$

(4.5)
$$\{f: Bf = 0\} = C_0(M),$$

(4.6)
$$\lim_{t\to\infty} e^{tB}f = Pf, \quad f \in C_0(T(M)).$$

The following proposition defines B^{-1} .

PROPOSITION 4.7. Let $g \in C_0(T(M))$ with $\int_{T_x(M)} g(x, \xi) \mu_x(d\xi) = 0$. The unique solution of the equations

$$Bf = g, \qquad \int_{T_X(M)} f(x, \xi) \mu_x(d\xi) = 0$$

is given by $f(x, \xi) = -g(x, \xi)$.

The proof is omitted.

We now define the operator

$$(4.7a) C = PAB^{-1}AP.$$

PROPOSITION 4.8. Let $f \in C_0^2(M)$. Then $Cf = n^{-1}\Delta f$, where Δ is the Laplace-Beltrami operator on M.

PROOF. We first verify that the components of any covariant vector (ξ_1) satisfy

(4.9)
$$\int_{T_x(M)} \xi_i \xi_j \mu_x(d\xi) = g_{ij}(x)/n \quad (1 \le i, j \le n).$$

Indeed, by the rotational invariance of μ_x , we must have $\int \langle \xi, \mu \rangle \langle \xi, \nu \rangle \mu_x(d\xi) = \langle \mu, \nu \rangle / n$ for any two vectors $\mu, \nu \in T_x(M)$. The left-hand member of this equation is $\mu_k \nu_s g^{ik}(x) g^{js}(x) \int \xi_i \xi_j \mu_x(d\xi)$ and the right-hand side is $g^{ij}(x) \mu_i \nu_j$. Clearly the only possible choice is (4.9). Now we write the second covariant derivative

$$D_Z D_Z f = g^{il} \xi_i g^{js} \xi_s \left(\frac{\partial^2 f}{\partial x^i \partial x^j} - \Gamma^k_{ij} \frac{\partial f}{\partial x^k} \right).$$

Using (4.7a), we have

$$\begin{split} nPD_Z D_Z f &= g_{ls}(x)g^{il}(x)g^{js}(x) \left(\frac{\partial^2 f}{\partial x^i \partial x^j} - \Gamma_{ij}^k \frac{\partial f}{\partial x^k}\right) \\ &= g^{ij}(x) \left(\frac{\partial^2 f}{\partial x^i \partial x^i} - \Gamma_{ij}^k \frac{\partial f}{\partial x^2}\right) \\ &= g^{ij}(x)D_i D_j f, \end{split}$$

which is the usual expression for the Laplace-Beltrami operator [5].

PROOF OF THEOREM 4.3. We apply the method of T. G. Kurtz [8, Theorem 2.2]. $u = T_{t/\epsilon^2}^{(\epsilon)} f$ satisfies the equation

$$du/dt = A/\epsilon + Bu/\epsilon^2$$

where

$$PAP = 0, \qquad \lim_{\lambda \to \infty} \int_0^\infty \lambda e^{-\lambda t} e^{tB} f \, dt = Pf.$$

We must show that $C_0^1(M) \subseteq$ the closure of the range of $\lambda - \Delta$, $\lambda > 0$. But (4.2) implies [1] that the resolvent operator maps $C_0(M) \longrightarrow C_0(M)$. Therefore, the equation $(\lambda - \Delta)f = g \in C_0^1(M)$ is solved by $f(x) = E\{\int_0^\infty e^{-\lambda t}g(B_t^x) dt\} \in C_0(M)$. Hence by the theorem of Kurtz, we have for $f \in C_0^1(M)$,

$$\lim_{\epsilon \to 0} e^{t(A/\epsilon + B/\epsilon^2)} f = e^{tPAB^{-1}AP} P f = e^{t\Delta/n} P f$$

in the norm of $C_0(T(M))$, which was to be shown.

5. Manifolds of negative curvature. In order to verify (4.2) in some noncompact cases, we assume in addition that M is an analytic simply connected manifold of negative curvature. In this case, the problem was considered by Azencott [1], who used a method based on Hasminskii's test. We will show below that by using a simple observation of Itô [7], (4.2) may be proved by a direct examination of the stochastic equations.

Indeed, in this case M is homeomorphic to its tangent space at some $x_0 \in M$. Taking geodesic polar coordinates at x, we have [3]

$$r^{2}(B_{t}) = \int_{0}^{t} 2r(B_{s}) dW_{s} + \int_{0}^{t} \left[2 + 2\frac{\Theta'}{\Theta}(B_{s})r(B_{s}) \right] ds$$

where Θ is the volume element in these coordinates $\Theta'/\Theta \le (n-1)b$ coth br, where $K \ge -b^2$. Now we apply Itô's formula to $f = \log(1 + r^2)$:

$$\log[1 + r^{2}(B_{t})] = \int_{0}^{t} \frac{2r(B_{s})dW_{s}}{1 + r^{2}(B_{s})} + \int_{0}^{t} \frac{2 + 2(\Theta'/\Theta)(B_{s})r(B_{s})}{1 + r^{2}(B_{s})} ds$$
$$-\int_{0}^{t} \frac{4r^{2}(B_{s})}{[1 + r^{2}(B_{s})]^{2}} ds.$$

To estimate the expectation, note that the first term above is an L^2 -martingale and hence has mean 0. The third term is negative. For the second term, note that $|x \coth x| \le 2 + 2x$. Therefore

$$E\{\log[1+r^2(B_t)]\} \le \int_0^t \frac{2+4(n-1)[1+br(B_s)]}{1+r^2(B_s)} ds$$
$$\le [4n-2+2b(n-1)]t$$

where we have used the inequality $r/(1 + r^2) \le \frac{1}{2}$.

PROPOSITION 5.1. Let M be an analytic simply connected Riemann mani-

fold with $K \ge -b^2$. Then the diffusion semigroup U_t maps $C_0(M)$ into $C_0(M)$.

PROOF. Let $f \in C_0(M)$: given $\epsilon > 0$, let K_R be a geodesic ball such that $|f(x)| \leq \epsilon$ if $x \notin K_R$. Now

$$U_t f(x) = Ef(B_t^x) = \left\{ \int_{K_R^c} + \int_{K_R} \right\} f(y) P_t^x(dy).$$

The first integral is bounded by ϵ , by definition of K_R . To estimate the second integral, notice that if $B_t^x \in K_R$, then $d(B_t^x, x) \ge d(x, x_0) - R$. Therefore if $d(x, x_0) > R$,

$$\begin{split} \int_{K_R^c} P_t^x(dy) &\leq P\{d(B_t^x, x) \geq d(x, x_0) - R\} \\ &\leq P\{\log[1 + d^2(B_t^x, x)] \geq \log[1 + (d(x, x_0) - R)^2]\} \\ &\leq t(4n - 2 + 2b(n - 1))/\log(1 + (d(x, x_0) - R)^2). \end{split}$$

Now let $d(x, x_0) \to \infty$. Thus $\lim_{t \to \infty} |T_t f(x)| \le \epsilon$ for each $\epsilon > 0$. Hence $U_t f \in C_0(M)$ which was to be proved.

ADDED IN PROOF. We have just learned of similar approximations of Brownian motion by geodesics in the works of Jorgensen [12] and Malliavin [13]. The latter construction generalizes the classical balayage method of Poincaré.

REFERENCES

1. R. Azencott, Behavior of diffusion semigroups at infinity, Bull. Soc. Math. France 102 (1974), 193-240.

2. R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Appl. Math., vol. 29, Academic Press, New York and London, 1968. MR 41 #9348.

3. A. Debiard, B. Gaveau and E. Mazet, Temps d'arrêt des diffusions riemanniennes, C. R. Acad. Sci. Paris Sér. A.-B 278 (1974), A723–A725. MR 49 #6381a.

4. R. Gangolli, On the construction of certain diffusions on a differentiable manifold, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 406-419. MR 29 #2870.

5. R. Goldberg, Curvature and homology, Academic Press, New York, 1968.

6. N. J. Hicks, Notes on differential geometry, Van Nostrand Math. Studies, no. 3, Van Nostrand, Princeton, N. J., 1965. MR 31 #3936.

7. K. Itô, Stability of stochastic dynamical systems, Lecture Notes in Math., vol. 294, Springer-Verlag, New York, 1973, pp. 1-7.

8. T. G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Functional Analysis 12 (1973), 55-67.

9. _____, Semigroups of conditioned shifts and approximation of Markov processes, Ann. Probability 3 (1975), 618–642.

10. D. W. Stroock, On the growth of stochastic integrals, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 340-344. MR 44 #4825.

11. S. Watanabe and T. Watanabe, Convergence of isotropic scattering transport process to Brownian motion, Nagoya Math. J. 40 (1970), 161–171. MR 43 #5606.

12. E. Jorgensen, The central limit problem for geodesic random walk, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 1-64.

13. P. Malliavin, Diffusions et géométrie différentielle globale, Lecture Notes, August 1975, Institut Henri Poincaré, 11 rue Pierre et Marie Curie, Paris 5.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201