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Abstract In this study we have obtained a new exact model for relativistic stellar object by solving Einstein’s
field equation with help of Buchdahl metric. The model is capable to represent some known compact stars like
Her X-1,4U 1538-52 and SAX J1808.4-3658. The model satisfies the regularity, casuality, stability and energy
conditions. Using the Tolman–Oppenheimer–Volkoff equations, we explore the hydrostatic equilibrium for an
uncharged case. We have also compared these conditions with graphical representations that provide strong
evidences for more realistic and viable models.

Mathematics Subject Classification 83C05 · 83C15 · 83C75

1 Introduction

An analysis of the solution of Einstein field equation shows that the exact solution plays an important role in the
development of many areas of the gravitational field such as black hole solution, solar system test, gravitational
collapse and so on. Generally in astrophysics compact stars are considered to fall in three categories, white
dwarfs, neutron stars and black holeswhich are formeddue to gradual gravitational collapses. This classification
is based on the internal structure and composition of stars, where the former contains matter which is one of the
densest forms found in the universe. According to the strange matter hypothesis, strange quark matter could
be more stable than nuclear matter and thus neutrons star should largely be composed of pure quark matter.
Possible observational signatures associated with theoretically proposed states of matter inside the compact
stars have remained an active research area in astrophysics and different types of mathematical modeling of
such compact objects being considered. The singularity-free interior solutions of the compact object have
important consequences in relativistic astrophysics. The study of high-density objects like neutron stars, quark
stars, and white dwarfs, form their microscopic composition and properties of dense matter is one of the most
fundamental problems in modern astrophysics.

In general, it is important to measure the mass and radius [1,2] of compact stars which depends on the
equation of state [3–6]. The motivation to undertake such a task because the interior structure of compact
stars can vary with masses. On the other hand, Buchdahl [7] proposed a method on the mass-radius ratio of
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relativistic fluid spheres which is an important contribution to study the stability of the fluid spheres. Thus the
motivation of this study is to predict the mass and radius of compact stars. The mass and radius of compact
stars such as Her X-1,4U 1538-52 and SAX J1808.4-3658 have been analyzed by Gangopadhyay et al. [10].

A super-dense compact star with mass M and radius R exhibit some limits on the upper bound of rotation
frequency (eg. Keplerian limit), exceeding which the stability of the star is disrupted. Thus assuming such
limit holds, a stable configuration of such object is of utmost importance in theoretical astrophysics. Our work
provides a critical mass-radius-based analysis of a stable configuration. The candidate stars we have chosen to
represent our model are Her X-1, 4U 1538-52 and SAX J1808.4-3658. We have not taken a possible rotation
of Her X-1 into account. In [11] the rotation of Her X-1 is shown to be very slow compared to the critical

angular velocity ωc =
√

GM
b3

, and hence the effect of this rotation on the M − R relation and thus on our

model, will be negligible. For the wind-fed binary X-ray pulsar 4U 1538-52 the orbital period is 8.38 days
whereas Her X-1 has orbital period of 1.7 days. Thus, for the same reason as above the rotational aspect of this
slow rotator has been ignored [12] SAX J1808.4-3658 is fairly a new X-ray pulsar that has been discovered by
NASA’s Rossi X-ray Timing Explorer (RXTE) spacecraft . This candidate star for the verification our model
parameters has a significant rotational aspect (spin period of 2.5 ms) in contrast to the other two. Still we have
chosen this star which is one of seven known accreting ms X-ray pulsars, only because it is equally important
to analyse the mass-radius behaviour of a compact object under different theoretical models to provide results
helping distinguish the composition of the super-nuclear matter. Our model offers a new method of measuring
the M − R relation, which are painfully difficult to determine in accreting binary systems. Thus, even if this
candidate star shows significant rotating behaviour. Our model exhibits a stable configuration to determine
mass–radius relation for an accreting binary system.

The exact solution of Einstein-Maxwell field equations for a static isotropic astrophysical object is the
continuous interest to a mathematician as well as physicists [13,14]. A large number of solutions have studied
in [15–26] for exact solution of Einstein-Maxwell field equations. Some pioneering work in relativity is given
by Ivanov [27], Ray et al. [28], Stettner [29], Krori and Barua [30], Ray and Das [31], Pant and Negi [32],
Florides [33], Dionysiou [34], Pant et al. [35], etc. for the charged fluid sphere.

The equation of state (EOS) is an important feature to describe a self-gravitating fluid when it comes
to solving the field equations. Ivanov [27] has shown that the analytical solutions in the static, spherically
symmetric uncharged case of a perfect fluid with linear EOS is an extremely difficult problem. Sharma and
Maharaj [36] have demonstrated this complexity in the case of a static, spherically symmetric uncharged
anisotropic fluid. In the resent model we choose the Buchdahl metric and solve the system of field equations
and obtain a linear EOS.

The algorithm for an anisotropic uncharged fluid has been done by Maurya et al. [37], Lake and Herrera
[38,39,41]. In this work, Lake [38,39] has considered an algorithm and choose a single monotonic function
which generates a static spherically symmetric perfect fluid solutions of Einstein’s equations. Against the
above studies, we have considered an uncharged isotropic fluid distribution in the context of the formation
of the compact stars and find a new solution in Sect. 2, whereas Sect. 3 consists of physical conditions for
well-behaved solutions. In Sect. 4, the matching condition of interior metric to an exterior Reissner-Nordstrom
line element and determining the constant coefficients have been done. Stability analysis of compact objects
and for better illustration of our result, the relevant physical quantities are presented by table and figure in
Sect. 5. Finally in Sect. 6, we have drawn contains about present model.

2 Field equations for uncharged fluid sphere in Schwarzschild coordinates

Let us consider the spherically symmetric metric in Schwarzschild Coordinates

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) + eν(r)dt2 (1)

where λ(r) and ν(r) are the functions of r only. The Einstein equation for a perfect fluid distribution is given
by

Ri
j − 1

2
Rδij = −κ

[
(c2ρ + p)νiν j − pδij

]
(2)

where κ = 8πG

c4
, with G and c are the gravitational constant and speed of light in vacuum, respectively. Here

ρ and p denote matter density and fluid pressure respectively. The νi is the time-like 4-velocity vector such
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that

νiνi = 1

In view of the metric (1) the Einstein field equations are given by

ν′

r
e−λ − (1 − e−λ)

r2
= κp (3)

(
ν′′

2
− λ′ν′

4
+ ν

′2

4
+ ν′ − λ′

2r

)
e−λ = κp (4)

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ (5)

where prime (′) denotes the differentiation with respect to r . Now we consider a well known form of metric
potential, which was proposed by Buchdahl [7] of the form as

eλ = K (1 + Cr2)

K + Cr2
, K > 1 (6)

where K and C are arbitrary constant. The metric function (6) is regular and non-singular at the center of
the star which satisfies the primary physical requirements of a realistic star. Buchdahl metric could also be
extendable for positive and negative values of the spheroidal parameter K . In the range of 0 < K < 1, the
pressure and density will be negative or increasing towards the boundary [8]. When K = 0, one can get the
Schwarzschild interior solution and for K = 1 the hypersurfaces {t = constant} are flat. When K = −CR2,
one could get the Vaidya and Tikekar [9] solution. In the present model, we consider K > 1. Now using (6),
the Eqs. (3)–(5) reduce to the following form

(K + Cr2)

K (1 + Cr2)

[−2y′

ry
+ C(K − 1)

K + Cr2

]
= −κp (7)

C(K − 1)(3 + Cr2)

K (1 + Cr2)2
= κc2ρ (8)

(K + Cr2)

K (1 + Cr2)

[
y′′

y
− y′

ry
+ C(K − 1)r(Cr − y′/y)

(K + Cr2)(1 + Cr2)

]
= 0 (9)

where eν = y2. Now to solve the Eq. (9) we introduce the new variables define by

X =
√

K + Cr2

K − 1
, K > 1 (10)

and

y(X) = (X2 − 1)1/4Ψ (X) (11)

Using the Eqs. (10) and (11), the Eq. (9) reduce to the following form of second-order differential equation
(see Appendix for details)

d2Ψ

dX2 + IΨ = 0 (12)

where

I = 2(1 − 2K )(1 − X2) − 5X2

4(1 − X2)2
(13)

In order to solve Eq. (12) more easily if we set K = 7
4 , then the Eq. (12) takes the form

Ψ ′′ − 5

4(1 − X2)2
Ψ = 0 (14)
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Fig. 1 Variation of metric potential eλ (left) and eν (right) with respect to fractional radius r/R for compact star SAX J1808.4-
3658,4U 1538-52 and Her X-1. For plotting this figure the numerical values of physical parameters and constants are as follows:
(1) K = 1.75,CR2 = 0.4137, M =0.9M� and R = 14.35 km for SAX J1808.4-3658, (2) K = 1.75,CR2 = 0.4138, M =
0.87M� and R = 13.87 km for 4U 1538-52 and (3) K = 1.75,CR2 = 0.414, M = 0.85M� and R = 13.548 km for Her X-1

So the solution of (14) is given as

Ψ (X) = (X + 1)

[
A1

∣∣∣∣
X + 1

X − 1

∣∣∣∣
(0.25)

+ A2

∣∣∣∣
X + 1

X − 1

∣∣∣∣
(−1.25)

]
(15)

where A1 and A2 are arbitrary constants of integration. Now put the value of Ψ (X) from Eq. (15) and

X =
√

K + Cr2

K − 1
into the Eq. (11), we get

y(r) =
[
4(1 + Cr2)

3

]1/4 (
g(r) + 1

)[
A1

∣∣∣F(r)
∣∣∣
(0.25) + A2

∣∣∣F(r)
∣∣∣
(−1.25)

]
(16)

where g(r) =
√

7+4Cr2
3 , F(r) = 5 + 2Cr2 + 3g(r)

2(1 + Cr2)
. Therefore the expressions of density and pressure are

given by

κc2ρ = 3C(3 + Cr2)

7(1 + Cr2)2
(17)

κp = 2(7 + 4Cr2)

7ry(r)(1 + Cr2)

[
N1(r)

(
A1

∣∣∣F(r)
∣∣∣
(0.25) + A2

∣∣∣F(r)
∣∣∣
(−1.25)

)
+ N2(r)N3(r)N4(r)

]
− 3C

7(1 + Cr2)

(18)

where

N1(r) = 2Cr

3

[(
g(r) + 1

)( 4(1+Cr2)
3

)−3/4

+ 2

(
4(1+Cr2)

3

)1/4

g(r)

]
, N4(r) = −8Cr

3g(r)
(
g(r) − 1

)2

N2(r) =
(

4(1+Cr2)
3

)1/4(
g(r) + 1

)
, N3(r) =

[
A1(0.25)

∣∣∣F(r)
∣∣∣
(−0.75) + A2(−1.25)

∣∣∣F(r)
∣∣∣
(−2.25)

]
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Fig. 2 Behaviour of pressure (p in km−2 left), density (ρ in km−2 middle) and p/ρ(right) vs. fractional radius r/R for SAX
J1808.4-3658, 4U 1538-52 and Her X-1. For plotting this figure the numerical values of physical parameters and constants
with G = c = 1 are as follows: (1) K = 1.75,CR2 = 0.4137, M =0.9M� and R = 14.35 km for SAX J1808.4-3658, (2)
K = 1.75,CR2 = 0.4138, M = 0.87M� and R = 13.87 km for for 4U 1538-52 , (3) K = 1.75,CR2 = 0.414, M = 0.85M�
and R = 13.548 km Her X-1

3 Physical features for well behaved solution

1. FromEq. (6), we observe (eλ)(r=0) = 1 and (eν)(r=0) > 0. This shows that metric potentials are singularity
free and positive at center. It is monotonically increasing with increasing the radius of the compact star(see
Fig. 1).

2. Pressure p should be zero at the boundary r = R.
3. (dp/dr)r=0 = 0 and (d2 p/dr2)r=0 < 0, so that pressure gradient dp/dr is negative for 0 < r ≤ R.
4. (dρ/dr)r=0 = 0 and (d2ρ/dr2)r=0 < 0, so that density gradient dρ/dr is negative for 0 < r ≤ R.

The above two condition implies that the pressure and density should be maximum at the center and
monotonically decreasing towards the surface (see Fig. 2).

5. The velocity of sound (dp/c2dρ)1/2 should be less than the speed of light throughout the fluid sphere
(0 ≤ r ≤ R). This is called causality condition.

6. The ratio of pressure and density (p/c2ρ) should be monotonically decreasing with the increase in r. (see
Fig. 2)

7. c2ρ ≥ p > 0 or c2ρ ≥ 3p > 0, 0 ≤ r ≤ R, where former inequality denotes weak energy condition
(WEC) and later inequality denotes strong energy condition (SEC).

4 Matching conditions of boundary

The solution is smoothly connected to the pressure free boundary with the Schwarzschild exterior metric

ds2 = −
(
1 − 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2) +
(
1 − 2M

r

)
dt2 (19)

In this model, the spacetime is timelike so we consider the metric signature (−, −, −,+) see further details
in [40]. Besides the above, the smooth joining with the Schwarzschild metric which requires the continuity of
eλ and eν across the boundary r = R and we get

e−λ = 1 − 2M

R
(20)

y2 = 1 − 2M

R
(21)

p(R) = 0. (22)

Using the Eqs. (21) and (22), we get the expressions of arbitrary constant A1 and A2 as follow

A1

A2
= M1(R)N1(R)G(R) + M1(R)N4(R)N2(R)G1(R) − M2(R)N2(R)G(R)

M2(R)N2(R)G2(R) + M1(R)N2(R)N4(R)G3(R) − M1(R)N1(R)G2(R)
(23)

123



674 Arab. J. Math. (2021) 10:669–683

A2 =
√

7+4CR2

7(1+CR2)[
4(1 + Cr2)

3

]1/4 (
g(R) + 1

)[
A1
A2

∣∣∣F(R)

∣∣∣
(0.25) +

∣∣∣F(R)

∣∣∣
(−1.25)

] (24)

The expression of mass M is given as

M = R

2

[
1 − 7 + 4CR2

7(1 + CR2)

]
(25)

where the expressions of g(R), F(R), N1(R), N2(R), N4(R), M1(R), M2(R), G(R), G1(R), G2(R), and
G3(R) in the Eqs. (23) and (24) are given in the Appendix.

5 Stability analysis of compact objects

In this section, we have studied the physical properties of interior of the fluid sphere and equilibrium conditions
under different forces.

5.1 Causality condition

The velocity of sound
dp

c2dρ
should be less than the speed of light. Here we fix c = 1, and obtained velocity

of sound for the uncharged fluid matter. Herrera [42] states that for the stability, the value of sound belongs to
the interval 0 < v2 = dp

dρ < 1 and should be monotonically decreasing away from the center. Now from the
Eqs. (17) and (18), we get the expression of the velocity of sound

dp

dρ
=

L1(r)

(
L2(r) + L3(r)

)
− L4(r)L5(r) − L6(r)

(
L1(r)

)2

(
L1(r)

)2

L7(r)

(26)

where L1(r) =
[
4(1 + Cr2)

3

]1/4 (
g(r) + 1

)[∣∣∣F(r)
∣∣∣
(0.25) + A2

A1

∣∣∣F(r)
∣∣∣
(−1.25)

]

L2(r) = −12C2r

7(1 + Cr2)2

[
N1(r)S(r) + N2(r)S1(r)N4(r)

]
,

L4(r) = 2C(7 + 4Cr2)

7(1 + Cr2)

[
N1(r)S(r) + N2(r)S1(r)N4(r)

]

L3(r) = 2C(7 + 4Cr2)

7(1 + Cr2)

[
S2(r)S(r) + 2N1(r)S1(r)N4(r) + N2(r)S3(r)S1(r) + N2(r)N4(r)S4(r)

]

L5(r) = N1(r)S(r) + N2(r)S1(r)N4(r), L6(r) = −6C2r

7(1 + Cr2)2
, L7(r) = −6C2r(5 + Cr2)

7(1 + Cr2)3

S(r) =
[∣∣∣F(r)

∣∣∣
1/4 + A2

A1

∣∣∣F(r)
∣∣∣
−5/4

]
, S1(r) =

[
(0.25)

∣∣∣F(r)
∣∣∣
−3/4 + A2

A1
(−1.25)

∣∣∣F(r)
∣∣∣
−9/4

]

S2(r) = 8Cr
9

⎡
⎢⎣− 6

(
g(r) + 1

)
(
44(1+Cr2)

3

)7/4 + 2

g(r)
(
4(1+Cr2)

3

)3/4 −
2
(
4(1+Cr2)

3

)1/4
(
g(r)

)3

⎤
⎥⎦ , S3(r) = 16Cr

3g(r)

(
g(r) − 1

)3

S4(r) =
[
(−3/16)

∣∣∣F(r)
∣∣∣
−7/4 − A2

A1
(−45/16)

∣∣∣F(r)
∣∣∣
−13/4

]
N4(r)

For better understanding, we use the graphical representation to represent Fig. 3.Thus, it is clear that in Fig. 3,
the velocity of sound lies within the proposed interval and therefore this result maintains stability.
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Fig. 3 Behaviour of velocity of sound vs. fractional radius r/R for SAX J1808.4-3658,4U 1538-52 and Her X-1. For plotting this
figure we have employed data set values of physical parameters and constants which are the same as used in Fig. 2
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Fig. 4 Behaviour of different forces(in km−3 with G = c = 1 ) vs. fractional radius r/R. For plotting this figure the numerical
values of physical parameters and constants are as follows: (1) K = 1.75,CR2 = 0.4137, M = 0.9M� and R = 14.35 km for
SAX J1808.4-3658 (left), (2) Her X-1 (left) K = 1.74,CR2 = 0.4138, M =0.87M� and R = 13.87 km for 4u 1538-52 (middle)
and (3) K = 1.74,CR2 = 0.414, M =0.85M� and R = 13.458 km for Her X-1 (left)

5.2 Tolman–Oppenheimer–Volkoff (TOV) equations

The general-relativistic hydrostatic equations were developed and used to models of compact stars by Tolman,
Oppenheimer and Volkoff in [43]. These equations are obtained from Einstein-Maxwell field equations when
metric is static and isotropic.The latter hypothesis is predicted to be a good approximation for the densest
interior of the static compact star because the strong gravitational force is balanced by a huge pressure and
rigid body forces have a negligible effect on the structure. In the connection of the microscopic theory for the
relationship between pressure and energy density, and the mass, this equation gives an equilibrium solution.
The Tolman-Oppenheimer-Volkoff (TOV) equation [43,44] in the presence of charge is given by

− MG(ρ + p)

r2
e

λ−ν
2 − dp

dr
+ σ

q

r2
e

λ
2 = 0, (27)

where σ is charge density, q is a charge and MG is the effective gravitational mass. It is derived from Tolman-
Whittaker formula [45] and written in the following form

MG(r) = 1

2
r2ν′e(ν−λ)/2. (28)

Plugging the value of MG(r) in Eq. (27), we get

− ν′

2
(ρ + p) − dp

dr
+ σ

q

r2
e

λ
2 = 0, (29)
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Fig. 5 Behaviour of different energy conditions (in km−2 with G = c = 1) vs. fractional radius curves are plotted for the
SEC,WEC and NEC for the compact objects SAX J1808.4-3658, 4U 1538-52 and Her X-1. For plotting this figure we have
employed data set values of physical parameters and constants which are the same as used in Fig. 2

But in our model, we have considered an uncharged isotropic fluid distribution, i.e. the charge (q ) is vanishing,
so Eq. (29) becomes

− ν′

2
(ρ + p) − dp

dr
= 0, (30)

The above equation can be expressed into three different components gravitational force (Fg), hydrostatic
force (Fh) and electric force (Fe), which are defined as:

Fg = −ν′

2
(ρ + p) = Z ′

8π Z
(ρ + p) (31)

Fh = − dp

8πdr
= − 1

8π

⎡
⎢⎢⎢⎣
L1(r)

(
L2(r) + L3(r)

)
− L4(r)L5(r)

(
L1(r)

)2 − L6(r)

⎤
⎥⎥⎥⎦ (32)

Fe = 0 (33)

whereweuse the samenotation as above. Figure 4 represents the behavior of the generalizedTOVequations.We
observed from these figures that the system is balanced by the gravitational force (Fg)which is counterbalanced
by hydrostatic force (Fh) and the system attains a static equilibrium.

5.3 Energy condition

The energy conditions depend on the matter density and pressure that follow certain restrictions. Basic
information about the energy condition in [15]. Here we focus on the (1) null energy condition, (2) weak
energy conditions and (3) strong energy condition , which have the following inequalities

ρ ≥ 0 (34)

ρ − p ≥ 0 (35)

ρ − 3p ≥ 0 (36)

Using these inequalities we justify the nature of energy conditions for the specific stellar configuration as
shown in Fig. 5, that obey the energy conditions and our model satisfy all conditions throughout the spacetime.

5.4 Adiabatic index

In order to have an equilibrium configuration, the matter must be stable against the collapse of local regions.
This requires Le Chateliers principle, also known as local or microscopic stability condition, that the pressure

must be monotonically decreasing function of r such that
dp

dρ
≥ 0. Heintzmann and Hillebrandt [46] also

proposed that compact star with the equation of state are stable for adiabatic index Γ = ( p+ρ
p

) dp
dρ > 4/3.

Figure 6 show that Γ > 4/3, so model developed in this paper is stable.
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Fig. 6 Behaviour of adiabatic constant (Γ ) vs. fractional radius r/R for SAX J1808.4-3658,4U 1538-52 and Her X-1. For plotting
this figure we have employed data set values of physical parameters and constants which are the same as used in Fig. 2
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Fig. 7 Behaviour of Redshift vs. fractional radius r/R for SAX J1808.4-3658, 4U 1538-52 and Her X-1. For plotting this figure
we have employed data set values of physical parameters and constants which are the same as used in Fig. 2

5.5 Surface redshift

The gravitational redshift Zs within a static line element can be obtained as

Zs = √
gtt (R) − 1 =

√
1 − 2M

R
− 1 (37)

where gtt (R) = eν(R) = 1 − 2M
R

Themaximum possible value of redshift should be at the center of the star and decrease with the increase of
radius. Buchdahl [7] and Straumann [47] have shown that for an isotropic star the surface redshift Zs ≤ 2. For
an anisotropic star Bohmer and Harko [48] showed that the surface redshift could be increased up to Zs ≤ 5.
Ivanov [27] modified the maximum value of redshift and showed that it could be as high as Zs = 5.211. In this
model, we have Zs ≤ 1 for compact stars SAX J1808.4-3658,4U 1538-52 and Her X-1. Also it is decreasing
towards the boundary (see Fig. 7).
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Fig. 8 Behaviour of pressure p (in km−2) vs. energy density ρ (km−2) for SAX J1808.4-3658, 4U 1538-52 and Her X-1
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Fig. 9 Behaviour of mass vs. central density (left) and dM/dρ0 vs. central density (right) for SAX J1808.4-3658, 4U 1538-52
and Her X-1

5.6 Equation of state (EOS)

The equation of state (EoS) i.e. a relation between pressure and density is an important features of neutron
star. So in this section we have discuss about EoS. It is worth-while to specify that different equation of state
(EoS) of the neutron star lead to different mass–radius (M-R) relation. Many authors [49–51] have suggested
that the EoS P = P(ρ) can be well approximated by a linear function of the energy density ρ of compact
star at high densities. Some researchers have also expressed more approximated form of the equation of state
(EOS) P = P(ρ) as a linear function of energy density ρ (in details see [52–54]). Here we find the EoS in a
linear function of form P = P(ρ) as,

κ pr (r) = 2 (7 + 4 ρ̃1)

7G(ρ1) (1 + ρ̃1)
×

[
f2(ρ1)

(
G1(ρ1s)

∣∣∣∣φ(ρ1)

∣∣∣∣
0.25

+
∣∣∣∣φ(ρ1)

∣∣∣∣
−1.25 )

− f1(ρ1) f3(ρ1) f4(ρ1)

]

− 3C

7 (1 + ρ̃1)
, (38)

where,

G(ρ1) =
[
4(1+ρ̃1)

3

] 1
4 [ f (ρ1) + 1)]

[
G1(ρ2s)

∣∣∣∣φ(ρ1)

∣∣∣∣
0.25

+
∣∣∣∣φ(ρ1)

∣∣∣∣
−1.25 ]

,

f2(ρ1) = 2C

3

[(
f (ρ1) + 1

)( 4(1+ρ̃1)
3

)−3/4

+ 2

(
4(1+ρ̃1)

3

)1/4

f (ρ1)

]
,

f3(ρ1) =
[
G1(ρ1s)(0.25)

∣∣∣∣φ(ρ1)

∣∣∣∣
(−0.75)

+ (−1.25)

∣∣∣∣φ(ρ1)

∣∣∣∣
(−2.25)]

, f4(ρ1) = −8C

3 f (ρ1)
(
f (ρ1) − 1

)2
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Table 1 Numerical value of parameters C, M�, R and Buchdahl limit for different compact stars

Compact star candidates M (M�) Predicted radius R (km) C(km−2) 2M/R ≤ 8/9

SAX J1808.4-3658 0.9 14.35 2.009 × 10−13 0.18501
4U 1538-52 0.87 13.87 2.151 × 10−13 0.18503
Her X-1 0.85 13.548 2.255 × 10−13 0.18508

Table 2 Energy densities, central pressure and Buchdahl condition for different compact star candidates for the above parameter
values of Tables 1

Compact star candidates Central density Surface density Central pressure
(gm/cm3) (gm/cm3) (dyne/cm2)

SAX J1808.4-3658 1.383 × 1014 7.873 × 1013 4.019 × 1033

4U 1538-52 1.48 × 1014 8.428 × 1013 4.304 × 1033

Her X-1 1.552 × 1014 8.836 × 1013 4.515 × 1033

f1(ρ1) =
(

4(1+ρ̃1)
3

)1/4(
f (ρ1) + 1

)
, φ(ρ1) = 5 + 2ρ̃1 + 3 f (ρ1)

2(1 + ρ̃1)
,

ρ̃1 = (1−2 ρ1)±√
1+8 ρ1

2 ρ1
, ρ1 = 7 κ ρ

3C , f (ρ1) =
√

7+4 ρ̃1
3 ,

G1(ρ1s) =
f2(ρ1s) L2(ρ1s)

∣∣∣∣φ(ρ1s )

∣∣∣∣
−5/4

− L(ρ1s )

f 2(ρ1s )

∣∣∣∣φ(ρ1s )

∣∣∣∣
−5/4

+S(ρ1s)

L(ρ1s )

f 2(ρ1s )

∣∣∣∣φ(ρ1s )

∣∣∣∣
1/4

− f2(ρ1s) L2(ρ1s)

∣∣∣∣φ(ρ1s)

∣∣∣∣
1/4

+P(ρ1s)

,

L(ρ1s) =
[
4(1+ ˜ρ1s)

3

] 1
4 [ f (ρ1s) + 1], L2(ρ1s) = 8 f (ρ1s)

9 (1+ ˜ρ1s)

f2(ρ1s) = 2C

3

[(
f (ρ1s) + 1

)( 4(1+ ˜ρ1s)
3

)−3/4

+ 2

(
4(1+ ˜ρ1s)

3

)1/4

f (ρ1s)

]
,

P(ρ2s) = f1(ρ2s) L2(ρ1s) (−1/4)

∣∣∣∣φ(ρ1s)

∣∣∣∣
−3/4

, φ(ρ1s) = 5 + 2 ˜ρ1s + 3 f (ρ1s)

2(1 + ˜ρ1s) ,

f1(ρ1s) = 2

[
4(1+ ˜ρ1s)

3

] 1
4 [ f (ρ1s)+1]

[ f (ρ1s)−1]2 , S(ρ1s) = f1(ρ1s) L2(ρ1s) (7/4)

∣∣∣∣φ(ρ1s)

∣∣∣∣
−9/2

,

˜ρ1s = (1−2 ρ1s)±√
1+8 ρ1s

2 ρ1s
, ρ1s = 7 κ ρs

3C , f (ρ2s) =
√

7+4 ρ1s
3 . ρ and ρs

From Eq. (38), we can observe that the pressure is a function of density, which describe the an EoS for
SAX J1808.4-3658, 4U 1538-52 and Her X-1. In an argument, Dey et al. [49] have proposed a new type of
EoSs mainly describe strange matter. This was later generalised by Gondek-Rosinska et al. [51] in a linear
function of density (ρ), as

p = α (ρ − ρs), (39)

where ρs denotes surface density and α is non-negative constant. Harko and Cheng [50] have demonstrated
that the equation (39), gives the maximum mass of a strange star which is Mmax = 1.83M� when ρs = 4B
( B = 56MeV fm3). In the present paper, we have developed the same relation as considered by [51]. In
that work, we have shown that Eq. (39) corresponds to self-bound matter at the surface density ρs . Figure 8
represents the behavior of pressure verses density for compact stars with realistic EoS . In Fig. 8, we observe
that the pressure p vanishes at surface density ρs i.e. at the boundary of our model. This implies that p can be
expressed by interpolation in power of ρ − ρs . Such parametrization is very convenient for stellar modelling,
which also significant to the interior of stable stellar configurations [51].
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Table 3 The numerical values of physical parameters of the star SAX J1808.4-3658 for C = 2.009 × 10−9m−2, K = 7/4

r/R p ρ p/ρ dp/dρ Redshift NEC WEC SEC
(Pa) (kg/m3) (Joule/m3) (Joule/m3) (Joule/m3)

0 4.019 × 1032 1.382 × 1017 0.032363 0.098283 0.114842 1.242 × 1034 1.202 × 1034 1.21 × 1034

0.1 3.957 × 1032 1.373 × 1017 0.032083 0.097498 0.114301 1.233 × 1034 1.194 × 1034 1.115 × 1034

0.2 3.775 × 1032 1.345 × 1017 0.031238 0.095115 0.11269 1.208 × 1034 1.171 × 1034 1.095 × 1034

0.3 3.484 × 1032 1.302 × 1017 0.029807 0.09106 0.110046 1.168 × 1034 1.134 × 1034 1.064 × 1034

0.4 3.1001 × 1032 1.243 × 1017 0.02776 0.085206 0.106427 1.116 × 1034 1.085 × 1034 1.023 × 1034

0.5 2.644 × 1032 1.175 × 1017 0.025056 0.077382 0.10191 1.055 × 1034 1.028 × 1034 9.759 × 1033

0.6 2.138 × 1032 1.099 × 1017 0.021649 0.067378 0.096586 9.876 × 1033 9.662 × 1033 9.234 × 1033

0.7 1.603 × 1032 1.021 × 1017 0.017489 0.054947 0.090557 9.166 × 1033 9.006 × 1033 8.685 × 1033

0.8 1.058 × 1032 9.407 × 1016 0.012525 0.039815 0.083927 8.499 × 1033 8.334 × 1033 8.132 × 1033

0.9 5.198 × 1031 8.624 × 1016 0.00671 0.021685 0.076806 7.746 × 1033 7.694 × 1033 7.591 × 1033

1 0 7.873 × 1016 0 0.000246 0.069299 7.072 × 1033 7.072 × 1033 7.072 × 1033

Table 4 The numerical values of physical parameters of the star 4U 1538-52 for C = 2.151 × 10−9m−2, K = 7/4

r/R p ρ p/ρ dp/dρ Redshift NEC WEC SEC
(Pa) (kg/m3) (Joule/m3) (Joule/m3) (Joule/m3)

0 4.304 × 1032 1.481 × 1017 0.032368 0.098284 0.114866 1.329 × 1034 1.286 × 1034 1.201 × 1034

0.1 4.238 × 1032 1.47 × 1017 0.032089 0.097499 0.114325 1.321 × 1034 1.278 × 1034 1.193 × 1034

0.2 4.043 × 1032 1.441 × 1017 0.031244 0.095116 0.112714 1.294 × 1034 1.253 × 1034 1.172 × 1034

0.3 3.731 × 1032 1.393 × 1017 0.029813 0.09106 0.110069 1.251 × 1034 1.214 × 1034 1.139 × 1034

0.4 3.319 × 1032 1.331 × 1017 0.027765 0.085204 0.106449 1.195 × 1034 1.162 × 1034 1.096 × 1034

0.5 2.831 × 1032 1.257 × 1017 0.025061 0.077378 0.101931 1.129 × 1034 1.101 × 1034 1.044 × 1034

0.6 2.289 × 1032 1.177 × 1017 0.021653 0.067371 0.096606 1.057 × 1034 1.034 × 1034 9.886 × 1033

0.7 1.716 × 1032 1.092 × 1017 0.017492 0.054937 0.090574 9.813 × 1033 9.642 × 1033 9.298 × 1033

0.8 1.133 × 1032 1.007 × 1017 0.012527 0.039801 0.083944 9.046 × 1033 8.932 × 1033 8.706 × 1033

0.9 5.566 × 1031 9.232 × 1016 0.006711 0.021666 0.076821 8.293 × 1033 8.237 × 1033 8.126 × 1033

1 0 8.428 × 1016 0 0.000221 0.069312 7.571 × 1033 7.571 × 1033 7.571 × 1033

5.7 Static stability criterion

The most important feature of stability for stellar configuration is static stability criterion [55,56]. In this
criterion, it is postulate that any stellar configuration has an increasing mass with increasing central density,
i.e. dM/dρ0 > 0 represents stable configuration and vice versa. If the mass remains constant with increasing
central density, i.e. dM/dρ0 = 0 we get the turning point between stable and unstable region. For this model,
we obtained M(R) and dM/dρ0 as follows-

M(R) = 12π ρ0 R3

(9 + 56π ρ0 R2)
and

dM

dρ0
= 108π R3

(9 + 56π ρ0 R2)2
(40)

Hence from Fig. 9, we can conclude that presenting model represents static stable configuration.

6 Conclusion

In this article, we have discussed a new solution of Vaidya-Tikekar model for the spherically symmetric
uncharged fluid ball and found it is physically valid solution. The Fluid ball contains an uncharged perfect
fluid matter and Schwarzschild exterior metric. Mainly, we perform a detailed investigation of the physical
result of a high-density system like uncharged fluid [38,39,41] and observe that the physical viability and
acceptable of our model in connection with compact star, like Her X-1, 4U 1538-52 and SAX J1808.4-3658.

It has been observed that the energy density and pressure are positive at the center i.e ρ0 > 0, p0 > 0 and
monotonically decreasing throughout the fluid ball, see Fig. 2. The energy conditions are very important to
understand many theorems of general relativity such as the singularity theorem of stellar collapse. Figure 5
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Table 5 The numerical values of physical parameters of the star 4U 1538-52 for C = 2.151 × 10−9m−2, K = 7/4

r/R p ρ p/ρ dp/dρ Redshift NEC WEC SEC
(Pa) (kg/m3) (Joule/m3) (Joule/m3) (Joule/m3)

0 4.515 × 1032 1.553 × 1017 0.03238 0.098287 0.114915 1.394 × 1034 1.349 × 1034 1.259 × 1034

0.1 4.445 × 1032 1.542 × 1017 0.0321 0.097501 0.114373 1.384 × 1034 1.340 × 1034 1.251 × 1034

0.2 4.421 × 1032 1.511 × 1017 0.031255 0.095117 0.112761 1.356 × 1034 1.314 × 1034 1.229 × 1034

0.3 3.913 × 1032 1.461 × 1017 0.029824 0.091059 0.110115 1.312 × 1034 1.273 × 1034 1.194 × 1034

0.4 3.482 × 1032 1.396 × 1017 0.027776 0.085201 0.106493 1.253 × 1034 1.218 × 1034 1.149 × 1034

0.5 2.97 × 1032 1.319 × 1017 0.02507 0.077371 0.101972 1.184 × 1034 1.155 × 1034 1.095 × 1034

0.6 2.401 × 1032 1.234 × 1017 0.021661 0.067359 0.096644 1.108 × 1034 1.084 × 1034 1.036 × 1034

0.7 1.801 × 1032 1.146 × 1017 0.017498 0.054918 0.09061 1.028 × 1034 1.011 × 1034 9.749 × 1033

0.8 1.188 × 1032 1.056 × 1017 0.012532 0.039773 0.083976 9.484 × 1033 9.365 × 1033 9.127 × 1033

0.9 5.836 × 1031 9.68 × 1016 0.006714 0.021628 0.076851 8.694 × 1033 8.636 × 1033 8.519 × 1033

1 0 8.836 × 1016 0 0.000171 0.069338 7.936 × 1033 7.936 × 1033 7.936 × 1033

shows that the energy conditions are positive throughout the star and model satisfy (1) strong energy condi-
tion(SEC) and (2) weak energy condition (WEC) [23]. We have also studied the surface redshift. It should be
maximum at the center and monotonically decreasing from the center to surface [27] see Fig. 7. The modified
TOV equation describes the equilibrium condition see Fig. 3 and observe that the gravitational force is balanced
by the hydrostatic force. For stability analysis, the adiabatic constant (Γ ) is an important physical parameter
and the compact star will be stable if Γ > 4/3 [46]. Figure 6 show that Γ > 4/3, so model developed in this
paper is stable.The mass-radius relation must be less than 8/9 [7]. Our model also satisfies this condition. The
numerical values of physical quantities are shown in Tables 1, 2, 3, 4 and 5. We have obtained the EoS for the
present compact star model, which is the significant physical property to describe the structure of any realistic
matter. We can see from Eq. (38) the pressure is a purely function of density. Hence we conclude that this
approach may help to describe the structure of a compact star in astrophysical point of view.
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Appendix

We use the transformation (10) in the Eq. (9), and get

d2y

dX2 + X

(1 − X2)

dy

dX
+ (1 − K )y = 0 (41)

Now, we comparing Eq. (41) with the standard differential equation

d2y

dX2 + Q(X)
dy

dX
+ Q1(X)y = Q2(X) (42)

where Q(X) = X

(1 − X2)
, Q1(X) = 1 − K and Q2(X) = 0

To solve Eq. (42) we choose the integrating factor u = e−1/2
∫
Q(X)dX .

Then we get y(X) = (X2 − 1)1/4Ψ (X) for K > 1 and X > 1. Which sends the Eq. (41) in the following
second order differential equation

d2Ψ

dX2 +
[

1 − K

(1 − X2)
− 2 + 3X2

4(1 − X2)2

]
Ψ = 0 (43)
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The expressions of g(R), F(R), N1(R), N2(R), N4(R), M1(R), M2(R), G(R), G1(R), G2(R), andG3(R)
used in Eqs. (23) and (24)

g(R) =
√

7+4CR2

3 , F(R) = 5 + 2Cr2 + 3g(R)

2(1 + CR2)
, N4(R) = −8

3g(R)
(
g(R) − 1

)2

N1(R) = (2/3)

[(
g(R) + 1

)( 4(1+CR2)
3

)−3/4

+ 2

(
4(1+CR2)

3

)1/4

g(R)

]
, M1(R) = 2C(7 + 4CR2)

7(1 + CR2)

N2(R) =
(

4(1+CR2)
3

)1/4(
g(R) + 1

)
, G(R) = (

F(R)
)1/4

G1(R) = 1
4

(
F(R)

)−3/4
,

G2(R) = (
F(R)

)−5/4
, G3(R) = 5

4

(
F(R)

)−9/4
, M2(R) = 3C

7(1 + CR2)
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