
Eur. Phys. J. C (2019) 79:826

https://doi.org/10.1140/epjc/s10052-019-7358-3

Regular Article - Theoretical Physics

Isotropization and change of complexity by gravitational
decoupling

R. Casadio1,2,a, E. Contreras3,b, J. Ovalle4,5,c, A. Sotomayor6,d, Z. Stuchlik4,e

1 Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, I.S. FLAG viale Berti Pichat 6/2, 40127 Bologna, Italy
3 School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119 Urcuquí, Ecuador
4 Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in

Opava, 746 01 Opava, Czech Republic
5 Departamento de Física, Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela
6 Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta, Chile

Received: 5 September 2019 / Accepted: 29 September 2019 / Published online: 8 October 2019

© The Author(s) 2019

Abstract We employ the gravitational decoupling appro-

ach for static and spherically symmetric systems to develop

a simple and powerful method in order to (a) continuously

isotropize any anisotropic solution of the Einstein field equa-

tions, and (b) generate new solutions for self-gravitating dis-

tributions with the same or vanishing complexity factor. A

few working examples are given for illustrative purposes.

1 Introduction

The gravitational decoupling (GD) was introduced in Ref. [1]

as a systematic approach to study static and spherically sym-

metric self-gravitating systems governed by the Einstein field

equations1

Rμν −
1

2
R gμν = k2 T̃μν, (1)

and containing (at least) two sources which only interact

gravitationally. In its extended version, both time and radial

components of the metric are affected and these sources could

exchange energy–momentum to provide the decoupling of

Einstein’s equations [2]. The total energy–momentum tensor

can thus be expressed as

1 We shall use units with the speed of light c = 1 and k2 = 8 π GN,

where GN is Newton’s constant.
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T̃μν = Tμν + α θμν, (2)

where the constant α is here introduced for tracking the

effects of θμν with respect to Tμν . As we will review briefly

in the next Section, the key fact is that Eq. (1) can be split

(continuously in α) into two sets of equations, one given by

the Einstein field equations for the first source Tμν (obtained

in the limit α = 0) and a set of “quasi”-Einstein equations

(proportional to α) which describes the changes introduced

by adding the second source θμν (fully recovered for α = 1).

The way this split is implemented is by deforming the met-

ric functions which solve the first set, the deformation being

then determined by the second set provided θμν is also given.

In fact, the GD is a generalization of the minimal geomet-

ric deformation which was developed in Refs. [3,4] in the

context of the Randall-Sundrum brane-world [5,6], where

the geometric deformation is induced by the existence of

extra spatial dimensions and α is naturally proportional to

the inverse of the brane tension [7–19] (for some resent

applications see also [20–23]). The main applications of this

approach so far [24–48] were to build new solutions of Eq. (1)

with α = 1 starting from known solutions generated by Tμν

alone (that is, with α = 0). In order to complete this con-

struction, one needs to make assumptions about the second

source, for instance by fixing the equation of state for the

tensor θμν (for the application of the GD beyond general

relativity, see for instance Refs. [49,50]).

In this paper we are instead interested in the different pur-

pose of showing that the GD can be used to directly control

specific physical properties of a self-gravitating system. For

the sake of simplicity, we shall employ the minimal geomet-

ric deformation (MGD) in which only the radial component

of the metric is modified and there is no direct exchange
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of energy between the two energy–momentum tensors in

Eq. (2). We shall then require that the complete system (for

α = 1) enjoys specific properties, equal or different from

those of the case α = 0. In particular, we shall first require

that the anisotropic pressure for α = 0 becomes isotropic for

α = 1 in Sect. 3 and impose conditions on the complexity

factor which was recently introduced in Ref. [51] in Sect. 4.

It is important to remark that the MGD does not involve any

perturbative expansion and all results will be exact for all val-

ues of α. Finally we summarise our conclusions in Sect. 5.

2 Gravitational decoupling of Einstein’s equations

We briefly review how the (M)GD works by starting from the

standard Einstein field equations (1) with two sources (2),

Rμν −
1

2
R gμν = k2(Tμν + α θμν), (3)

where the parameter α will be set to 0 (respectively 1) when

we want to discard (fully include) the second source θμν .

Since the Einstein tensor in Eq. (3) satisfies the Bianchi iden-

tity, the total source in Eq. (2) must be conserved, that is

∇μ T̃ μν = 0. (4)

For static spherically symmetric systems, the metric com-

ponents gμν in Schwarzschild-like coordinates read

ds2 = eν(r) dt2 − eλ(r) dr2 − r2 d�2, (5)

where ν = ν(r) and λ = λ(r) are functions of the areal

radius r only and d� denotes the usual solid angle measure.

The metric (5) must satisfy the Einstein equations (3) which,

in terms of the two sources in (2), explicitly read

k2(T 0
0 + α θ 0

0 ) =
1

r2
[1 − e−λ(1 − r λ′)] (6)

k2(T 1
1 + α θ 1

1 ) =
1

r2
[1 − e−λ(1 + r ν′)] (7)

k2(T 2
2 + α θ 2

2 ) =
e−λ

4
(λ′ν′ − 2 ν′′ − ν′2)

−
e−λ

2 r
(ν′ − λ′), (8)

where f ′ ≡ ∂r f and T̃ 3
3 = T̃ 2

2 due to the spherical symme-

try. The conservation equation (4) is a linear combination of

Eqs. (6)–(8) and reads

0 = (T̃ 1
1 )′ −

ν′

2
(T̃ 0

0 − T̃ 1
1 ) −

2

r
(T̃ 2

2 − T̃ 1
1 )

= (T 1
1 )′ −

ν′

2
(T 0

0 − T 1
1 ) −

2

r
(T 2

2 − T 1
1 )

+α

[

(θ 1
1 )′ −

ν′

2
(θ 0

0 − θ 1
1 ) −

2

r
(θ 2

2 − θ 1
1 )

]

. (9)

We can clearly identify in Eqs. (6)–(8) an effective density

ρ̃ = T 0
0 + α θ 0

0 ≡ ρ + ρθ , (10)

an effective radial pressure

p̃r = −T 1
1 − α θ 1

1 ≡ pr + pθr , (11)

and an effective tangential pressure

p̃t = −T 2
2 − α θ 2

2 ≡ pt + pθ t . (12)

These definitions clearly lead to the total anisotropy


̃ ≡ p̃t − p̃r ≡ 
 + 
θ , (13)

where


 = pt − pr (14)

measures the anisotropy generated by the first source like 
θ

does for the second one.

We will now implement the GD by considering a solution

to Eqs. (6)–(9) with α = 0, which we formally write as

ds2 = eξ(r) dt2 − eμ(r) dr2 − r2 d�2, (15)

where

e−μ(r) ≡ 1 −
k2

r

∫ r

0

x2 T 0
0 (x) dx = 1 −

2 m(r)

r
(16)

is the standard general relativistic expression containing the

Misner–Sharp mass function m = m(r). The general effects

of the second source θμν can then be encoded in the geometric

deformation undergone by the geometric functions ξ → ν =

ξ + α g and

e−μ → e−λ = e−μ + α f. (17)

From now on we just consider the simplest case of the MGD

with a minimal deformation g(r) = 0, hence only the radial

metric component will be modified and ν = ξ . With the

decomposition (17), the Einstein equations (6)–(8) split into

two coupled sets: (i) the standard Einstein field equations for

the energy–momentum tensor Tμν and metric (15),

ρ =
1

k2 r2
[1 − e−μ(1 − r μ′)] (18)

pr = −
1

k2 r2
[1 − e−μ(1 + r ξ ′)] (19)

pt = −
e−μ

4 k2

(

μ′ξ ′ − 2 ξ ′′ − ξ ′2 − 2
ξ ′ − μ′

r

)

, (20)

with the conservation equation

p′
r +

ξ ′

2
(ρ + pr ) =

2 


r
; (21)
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and (ii) the quasi-Einstein field equations for the second

source θμν ,

ρθ = −
α f

k2 r2

(

1 +
r f ′

f

)

(22)

pθr =
α f

k2 r2
(1 + r ξ ′) (23)

pθ t =
α f

4 k2

[

2 ξ ′′ + ξ ′2 + 2
ξ ′

r
+

f ′

f

(

ξ ′ +
2

r

)]

, (24)

whose conservation equation likewise reads

p′
θr +

ξ ′

2
(ρθ + pθr ) =

2 
θ

r
. (25)

3 Isotropization of compact sources

In the previous section, we noticed that the total anisotropy 
̃

in Eq. (13) can be different from the anisotropy 
 generated

by the source Tμν . We can therefore consider an anisotropic

system (18)–(21) generated by Tμν with 
 �= 0 which is

transformed into the isotropic system (6)–(9) with 
̃ = 0 as

a consequence of adding the source θμν . This change can be

formally controlled by varying the parameter α, with α = 0

representing the anisotropic system (18)–(21), and α = 1

representing the isotropic system (6)–(9), for which 
̃ = 0,

or


θ ≡ θ 1
1 − θ 2

2 = −
. (26)

Replacing Eqs. (23) and (24) in the condition (26) yields a dif-

ferential equation for the geometric deformation in Eq. (17),

namely

f ′

4 k2

(

ξ ′ +
2

r

)

+
f

4 k2

(

2 ξ ′′ + ξ ′2 −
2 ξ ′

r
−

4

r2

)

+
 = 0.

(27)

As an example, we will implement the above approach

in order to isotropize the compact self-gravitating system

sustained only by tangential stresses described by

eξ = B2

(

1 +
r2

A2

)

, (28)

e−μ =
A2 + r2

A2 + 3 r2
, (29)

ρ =
6(A2 + r2)

k2(A2 + 3 r2)2
, (30)

pt =
3 r2

k2 (A2 + 3 r2)2
, (31)

pr = 0, (32)

where 0 ≤ r ≤ R and r = R defines the surface of the com-

pact object. A direct interpretation of this class of solutions

(albeit not unique, as pointed out in Ref. [52]) is in terms of

a cluster of particles moving in randomly oriented circular

orbits [53]. The constants A and B can be determined from

the matching conditions between this interior solution and

the exterior metric for r > R. If we assume the exterior is

the Schwarzschild vacuum,

eξ(R) = 1 −
2 M

R
(33)

e−μ(R) = 1 −
2 M

R
(34)

pr (R) = 0 (35)

are the necessary and sufficient conditions for a smooth

matching of the two metrics. This yields

A2

R2
=

R − 3 M

M
, B2 = 1 −

3 M

R
, (36)

where R > 3 M or M/R < 1/3 in order to have A2 > 0 and

B2 > 0.

Plugging the solution (28)–(32) in the differential equa-

tion (27), we obtain the geometric deformation

f (r) =
r2(A2 + r2)

A2 + 2 r2

(

1

A2 + 3 r2
−

1

ℓ2

)

, (37)

where ℓ is an integration constant with dimensions of a

length. Using the metric functions (17) and (28) in the field

equation (7), the effective radial pressure in (11) is expressed

as

p̃r =
α f (r)(A2 + 3 r2)

k2 r2(A2 + r2)
. (38)

Hence, the matching condition (35) for the outer Schwar-

zschild space-time yields

f (R) = 0, (39)

which in turn leads to

ℓ2 = A2 + 3 R2, (40)

and the deformation takes the final form

f (r) =
3 r2(A2 + r2)(R2 − r2)

(A2 + 2 r2)(A2 + 3 r2)(A2 + 3 R2)
(41)

Notice that the Misner–Sharp mass function m̃ of the sys-

tem (6)–(8) is related with the mass function (16) of the

system (18)–(20) by the simple expression

r

2
(1 − e−λ) ≡ m̃(r) = m(r) −

α r f (r)

2
. (42)
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Fig. 1 Isotropization: the radial pressure [ p̃ × 103] for different values

of the parameter α for a distribution with compactness M/R = 0.2

Hence, a direct consequence of (39) is that the total mass is

the same for both cases, namely

m̃(R) = m(R) = M, (43)

and therefore the values of the constants A and B remain the

same as shown in (36). The deformation (41) generates an

effective density

ρ̃(r, α) = ρ(r) − α
18 r8 − 6 r6 R2 + A6(5 r2 − 3 R2) + 2 A4(11 r4 − 5 r2 R2) + A2(31 r6 − 9 r4 R2)

k2(A2 + 2 r2)2(A2 + 3 r2)2(A2 + 2 R2)
, (44)

an effective radial pressure

p̃r (r, α) =
3 α(R2 − r2)

k2(A2 + 2r2)(A2 + 3 R2)
, (45)

and an effective tangential pressure p̃t = p̃r + 
̃ where the

total anisotropy is given by


̃(r, α) =
3 (1 − α) r2

k2(A2 + 3 r2)2
, (46)

which vanishes, by construction, for α = 1.

The expressions (28), (42) and (10)–(46) are exact solu-

tions of the Einstein field equations (6)–(8) for all values

of α. We can further see that the case α = 0 represents

the anisotropic model in (28)–(32), which is continuously

deformed into the isotropic case represented by α = 1. Hence

we can follow in details the isotropization process by con-

tinuously varying the parameter α between these two values

[see Figs 1, 2, where the effective pressure in Eq. (45) and

the anisotropy in Eq. (46) are shown for a few values of α].

4 Complexity of compact sources

The notion of complexity for static and spherically symmet-

ric self-gravitating systems we are interested in here was

introduced recently in Ref. [51], and further extended to

the dynamical case in Ref. [54] (for some applications, see

Fig. 2 Isotropization: total anisotropy [
 × 103] for different values

of the parameter α for a distribution with compactness M/R = 0.2

e.g. Refs. [55,56]). The main characteristic of this notion is

that it assigns a zero value of the complexity factor to uniform

and isotropic distributions (the least complex system).

The complexity of a given static and spherically symmet-

ric self-gravitating system is measured by the complexity

factor YTF, which is a scalar function defined in terms of the

anisotropy 
 and gradient ρ′ of the energy-density as [51]

YTF(r) = k2 
(r) −
k2

2 r3

∫ r

0

x3ρ′(x) dx . (47)

It describes the influence of these two functions on the Tol-

man mass mT which, for the same distribution of matter, is

defined as

mT(r) =
k2

2

∫ r

0

e(ξ+λ)/2(ρ + pr + 2 pt )x2 dx . (48)

The above definition gives the energy contained inside a fluid

sphere of radius r , and it has a clear physical interpretation.

In fact, we recall that we can write the Tolman mass as a

function of the metric components in Eq. (5) as

mT =
r2 ξ ′

2
e(ξ−λ)/2 (49)

and that the gravitational acceleration of a test particle,

instantaneously at rest in the static gravitational field (5),

is given by

a = −
e−ξ/2 mT

r2
, (50)

which shows that mT is the active gravitational mass (for

more details, see Refs. [52,57]).

In terms of the complexity factor, we can write the Tolman

mass as

123



Eur. Phys. J. C (2019) 79 :826 Page 5 of 8 826

mT = MT

( r

R

)3

+ r3

∫ R

r

e(ξ+λ)/2

x
YTF dx, (51)

where MT represents the total Tolman mass of an isotropic

and uniform stellar system of the same radius R. Hence,

we see that YTF can quantify the departure of the Tolman

mass mT of a given system from the Tolman mass MT of

a uniform isotropic fluid when the anisotropy and density

gradient do not vanish. It is in fact clear from Eq. (47) that a

uniform isotropic fluid will have zero complexity factor, but

this does not mean that a stellar configuration with vanishing

complexity factor is uniform and isotropic.

From Eq. (47) we see that the complexity factor for the

system (6)–(8) takes the form

ỸTF = k2 
̃ −
k2

2 r3

∫ r

0

r̃3ρ̃′ dr̃

= k2 
 −
k2

2 r3

∫ r

0

r̃3ρ′ dr̃

+ k2 
θ −
k2

2 r3

∫ r

0

r̃3ρθ
′ dr̃ , (52)

which we can write as

ỸTF = YTF + Y θ
TF, (53)

where YTF and Y θ
TF are the complexity factors correspond-

ing to the systems (18)–(20) and (22)–(24) respectively. We

conclude that the complexity factor is an additive quan-

tity. Hence, the complexity factor of a gravitational system

formed by two coexisting gravitational sources, Tμν and

θμν , will be the sum of the complexity factors of the two

sources. We remark that this result is independent of the MGD

described in Sect. 2, but it implies that we can employ the

GD in order to relate two different systems with the same or

different complexity factors.

4.1 Two systems with the same complexity factor

We first consider a case in which the complexity factor YTF

associated with the energy–momentum tensor Tμν remains

invariant after we add the second source θμν , that is ỸTF =

YTF, and therefore Y θ
TF = 0 or


θ =
1

2 r3

∫ r

0

r̃3ρ′
θ dr̃ . (54)

Using Eqs. (22)–(24) yields

1

2 r3

∫ r

0

r̃3ρ′
θ dr̃ =

α

k2

(

f

r2
−

f ′

2 r

)

(55)

and the condition (54) becomes the first order differential

equation

f ′

(

ξ ′ +
4

r

)

+ f

(

2 ξ ′′ + ξ ′2 −
2 ξ ′

r
−

8

r2

)

= 0. (56)

Any solution of Eq. (56) can be used to determine the source

θμν through (22)–(24). In other words, given a solution with

metric functions ξ and μ for the Einstein field equations (18)–

(20), we can find a second solution to (6)–(8) with the same

complexity factor by imposing the condition (54). Like with

isotropization in Sect. 3, the parameter α can be implemented

to continuously follow this process by identifying the original

solution with the case α = 0 and the final solution with

α = 1. However, since Eq. (56) does not contain α, we can

now actually require that the complexity remains the same

for all values of α. By implementing this procedure we will

moreover find that the matching conditions (33)–(35) play

a fundamental role in the determination of the final result

in that the condition ỸTF = YTF can only be satisfied if we

change the compactness of the system.

Let us start by considering as solution to (18)–(20) the

Tolman IV metric for perfect fluids [58],

eξ = B2(1 +
r2

A2
) (57)

e−μ =
(C2 − r2)(A2 + r2)

C2(A2 + 2 r2)
, (58)

which is generated by the density

ρ =
3 A4 + A2(3 C2 + 7 r2) + 2 r2(C2 + 3 r2)

k2 C2(A2 + 2 r2)2
, (59)

and isotropic pressure

p =
C2 − A2 − 3 r2

k2 C2(A2 + 2 r2)
. (60)

The constants A, B and C are again determined from the

matching conditions (33)–(35), which yield the same val-

ues (36) and

C2

R2
=

R

M
. (61)

From the definition (47) we obtain the complexity factor

YTF =
(A2 + 2 C2)r2

C2(A2 + 2 r2)2
. (62)

From the metric function (57), we can then compute the

deformation which keeps this factor unchanged by solving

Eq. (56), and obtain

f (r) =
r2(A2 + r2)

ℓ2(2 A2 + 3 r2)
, (63)

123
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where ℓ is an integration constant (with dimensions of

length). According to (17), the new radial metric component

therefore reads

e−λ =
(C2 − r2)(A2 + r2)

C2(A2 + 2 r2)
+

α r2(A2 + r2)

ℓ2(2 A2 + 3 r2)
(64)

and generates an effective density

ρ̃(r, α, ℓ) = ρ(r) −
α(6 A4 + 13 A2 r2 + 9 r4)

ℓ2 k2(2 A2 + 3 r2)2
, (65)

an effective radial pressure

p̃r (r, α, ℓ) = p(r) +
α(A2 + 3 r2)

ℓ2 k2(2 A2 + 3 r2)
, (66)

and an effective tangential pressure p̃t = p̃r + 
̃ where the

anisotropy is given by


̃(r, α, ℓ) =
α A2 r2

ℓ2 k2(2 A2 + 3 r2)2
. (67)

The expressions (57) and (64)–(67) describe an exact solu-

tion of the Einstein field equations (6)–(8). This is a new

anisotropic version of the Tolman IV solution (57)–(60),

whose complexity factor ỸTF is formally the same as that

in Eq. (62). However, after imposing the matching condi-

tions (33)–(35) to determine the new values for A, B and C

in the solution (57) and (64)–(67), we find that A and B have

the same expressions as shown in Eq. (36), but C is promoted

to a function of the anisotropic parameter α (and the length

ℓ), namely

C2
αℓ =

R3

M
−

α(A2 + 2 R2)(A2 + 3 R2)2

α(A4 + 5 A2 R2 + 6 R4) + ℓ2(2 A2 + 3 R2)
,

(68)

and the complexity factor becomes

ỸTF(r, α, ℓ) =
[A2 + 2 C2

αℓ]r
2

C2
αℓ(A2 + 2r2)2

. (69)

Comparing the expressions (62) and (69) shows that varying

α in fact changes the complexity factor (see Fig. 3) unless we

also change the mass M → Mαℓ and the radius R → Rαℓ in

such a way that

Cαℓ(Mαℓ, Rαℓ) = C(M, R) =
R3

M
. (70)

In the above equation for Mαℓ and Rαℓ, we can set α =

1 without loss of generality, but we are still left with the

freedom to set the arbitrary length scale ℓ. This means that

Fig. 3 Complexity factor [ỸTF ×10] for different values of the param-

eter α starting from the Tolman IV isotropic solution (α = 0)

we can generate a continuous family of systems with different

mass Mℓ and radius Rℓ but the same total complexity factor

YTF in Eq. (62).

4.2 Generating solutions with zero complexity

We will now show how one can build a solution with ỸTF = 0

starting from a first solution with YTF �= 0. According to

Eq. (53), we can therefore require the condition

ỸTF = YTF + k2 
θ −
k2

2 r3

∫ r

0

r̃3ρθ
′ dr̃ = 0, (71)

for α = 1.2 Using Eqs. (22)–(24) in the condition (71), we

obtain the first order differential equation for the geometric

deformation

f ′

4

(

ξ ′ +
4

r

)

+
f

4

(

2 ξ ′′ + ξ ′2 −
2 ξ ′

r
−

8

r2

)

+ YTF = 0,

(72)

whose solution can be used to generate a system with van-

ishing complexity factor ỸTF = 0 for α = 1.

Let us consider again the Tolman IV solution (57)–(60).

Using the metric function (57) and the complexity factor (62),

Eq. (72) can be solved exactly to yield

f =
r2(A2 + r2)

ℓ2(2 A2 + 3 r2)

[

1 +
ℓ2(A2 + 2 C2)

2 C2(A2 + 2r2)

]

, (73)

where ℓ is an arbitrary integration constant with dimensions

of a length. The corresponding new radial metric component

will change the complexity factor in Eq. (62) to

ỸTF(r, α) = (1 − α)
(A2 + 2 C2)r2

C2(A2 + 2 r2)2
, (74)

2 We recall that 
θ in Eq. (13) and ρθ in Eq. (10) are both proportional

to α, so that they vanish for α = 0 by construction.
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Fig. 4 Radial pressure [ p̃ × 103] for the Tolman IV solution (YTF �=

0) and its anisotropic version with ỸTF = 0 for a distribution with

compactness M/R = 0.2

which precisely interpolates continuously between the origi-

nal value (for α = 0) and vanishing complexity (for α = 1).

Note that the arbitrary scale ℓ does not appear explicitly in

Eq. (74). However, it will affect the value of the constant C

via the matching conditions like in the previous case.

For α = 1, we can determine all relevant quantities

explicitly. The matching conditions (33)–(35) with the outer

Schwarzschild vacuum yield the same A and B shown in

Eq. (36), while C is now given by

C2 =
3 ℓ2(A2 + 3 R2)

2(A2 + 3 R2 + 3 ℓ2)
. (75)

The radial metric component then takes the final form

e−λ =
(A2 + r2)(2 A2 − 3 r2 + 6 R2)

(2 A2 + 3 r2)(A2 + 3 R2)
, (76)

the effective radial pressure reads (see also Fig. 4)

p̃r =
9(R2 − r2)

k2(2 A2 + 3 r2)(A2 + 3R2)
, (77)

the effective density is

ρ̃ =
3[8 A4 + 2 A2(7 r2 + 3 R2) + 3 r2(3 r2 + R2)]

k2(2 A2 + 3 r2)2(A2 + 3R2)
, (78)

and the effective tangential pressure p̃t = p̃r + 
̃, where the

anisotropy is given by


̃ = −
3 r2(2 A2 + 3 R2)

k2(2 A2 + 3 r2)2(A2 + 3 R2)
. (79)

The main difference with respect to the case in Sect. 4.1

is that the complexity (74) vanishes for α = 1 regardless

of M and R, and therefore for any values of ℓ: we have

mapped the Tolman IV fluid of given mass M , radius R and

complexity (62) into a whole family of systems with the same

mass M and radius R but vanishing complexity parametrized

by the length scale ℓ.

5 Conclusions

The GD approach is a very effective way to investigate self-

gravitating systems with sources described by more than one

(spherically symmetric) energy–momentum tensor. Given an

exact solution generated by one of such sources, it will allow

one to obtain exact solutions with more sources. In most of the

previous papers, new solutions were obtained by assuming

particular equations of state for the added energy–momentum

tensors, or field equations for the added matter sources. In

this work we have instead considered the different task of

employing the GD in order to impose specific physical prop-

erties satisfied by the whole system.

In order to keep the presentation simpler, we just con-

sidered two energy–momentum tensors and the MGD in

which only the radial component of the metric is modified,

although the approach can be straightforwardly generalised

to more sources and to the GD in which the time compo-

nent of the metric is deformed as well. The specific prop-

erties we required were isotropic pressure starting from the

anisotropic solution (28)–(32) and control over the complex-

ity factor starting from the Tolman IV solution (57)–(60).

The examples we provided are mostly meant to illustrate the

flexibility and effectiveness of our procedure and different

physical requirements could indeed be demanded.
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