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Abstract In this work, we present a hierarchical solution-
generating technique employing the Minimum Gravitational
Decoupling (MGD) Method and the generalized concept of
Complexity as applied to Class I spacetime for bounded com-
pact objects in classical general relativity. Starting off with an
anisotropic seed solution described by Class I spacetime, we
apply the MGD technique with the constraint that the effec-
tive anisotropy vanishes which leads to an isotropic model. In
addition, we produce a second family of solutions in which
the Complexity factor [Herrera (Phys Rev D 97:044010,
2018)] for the seed solution and its MGD counterpart are the
same. We discuss the physical plausibility of both classes
of solutions as candidates for physically realizable compact
objects.

1 Introduction

Einstein’s general theory of relativity (GTR) is the corner-
stone of gravitation which has stood the test of time with
the concordance of predictions and observations. GTR has
cemented its place on the podium as a powerful mathe-
matical formulation of gravity and this has been borne out
in both astrophysical and cosmological fronts [1]. From
the observed expansion of the universe, Cosmic Microwave
Background Radiation, gravitational lensing, gravitational
waves [3], deflection of starlight in the vicinity of massive
gravitating bodies [2], perihelion precession of Mercury’s
orbit [4] through to the photographing of the shadow of a
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black hole [5], GTR continues to reward us with a deeper
understanding of gravitational phenomenology. With the suc-
cess of GTR over the last century there are shortcomings that
have also reared their unpretty heads such as the physics sur-
rounding the initial Big Bang singularity, observed acceler-
ation of the universe, end-states of continued gravitational
collapse, amongst others. In order to explain some of these
shortfalls and/or observations, researchers had to appeal to
conjuring up exotic matter fields such as dark matter, dark
energy, Skyrme fluids, Chameleons, to name a few [6]. The
�-CDM cosmological model seems to be a strong candi-
date which can account for present-day observations via the
Planck Collaboration of Age, mass density and the Hubble
constant within experimental error. With the next generation
of detectors and satellites will require fine-tuning of exist-
ing cosmological models or a complete overhaul of current
mathematical formulations [7].

On the astrophysical front, GTR has provided us with a
plethora of exact solutions describing stellar objects. Since
the discovery of the exterior Schwarzschild solution which
describes the exterior gravitational field of a static, bounded
configuration in GTR in 1916 [8]. Relativistic astrophysics
has grown in stature describing gravitational collapse, trans-
port phenomena in stellar objects, stability of equilibrium
configurations, observed luminosities and temperature pro-
files of compact objects amongst others [9–11]. In particu-
lar, the Cosmic Censorship Hypothesis [12] has attracted the
attention of researchers since the pioneering work of Oppen-
heimer and Snyder [13] on continued gravitational collapse
of an idealised dust sphere. This area has grown in leaps and
bounds with more realistic scenarios of gravitational collapse
being probed. Physics surrounding the final outcome of grav-
itational collapse, particularly at ultra-high densities of the
order of 1018 g/cm3 required modifications of GTR. Besides
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the search for a consistent and complete quantum theory of
gravity, extensions and modifications of GTR have provided
us with interesting new results which provide an increased
parameter space to account for observations.

Alternative theories to GTR include Brans-Dicke (BD)
scalar-tensor theory of gravity [14] which embodies Mach’s
principle. In this formulation the non-minimally coupled
scalar field mimics the spacetime-varying gravitational “con-
stant”. While there are other scalar theories of gravity, the
Brans-Dicke theory continues to be a preferred choice, par-
ticularly amongst cosmologists. BD formulation of grav-
ity has been utilised to inflation in the early universe and
the current accelerated epoch of the universe without the
need for exotic matter fields such as dark energy. A recent
investigation presented a solution of the Einstein–Maxwell
field equations in the presence of a massive scalar field
in the Brans–Dicke (BD) gravity which describes charged
anisotropic strange stars. A novel finding in this work showed
that the electric field and scalar field which have completely
different sources coupled to impact physical features such
as mass-radius relation and surface redshifts of compact
objects.

Further extensions and modifications to classical GTR
include the f (R) gravity framework proposed by Buchdahl
(1959). In this formalism the action is quadratic in the Ricci
scalar. One of the pathologies of the f (R) gravity is the pre-
diction of ghost fields associated with higher order deriva-
tives. The f (R) gravity theory was utilised by Starobinsky
to produce a family of cosmological solutions which differ
from the current �-CDM model but can account for obser-
vations on cosmological, Solar system and laboratory scales
[15]. A natural extension of GTR to higher dimensions is the
so-called Lovelock gravity. GTR is indistinguishable from
Lovelock gravity in D = 3 and 4 dimensions since higher
curvature contributions masquerade as a total derivative and
do not affect the dynamics [16,17]. The so-called Einstein-
Gauss-Bonnet (EGB) is a special case of a second-order
Lovelock polynomial and holds for dimensions D = 5 and
6. Further extensions to GTR include f (R, T ), Rastall and
f (T ) theories [18,19]. These theories have been success-
fully utilised to model compact objects such as neutron stars,
pulsars and strange stars.

The role of anisotropy in self-gravitating objects has
attracted a wide spectrum of interest amongst researchers,
especially over the past decade. The study of radiating stars
in the presence of heat dissipation and pressure anisotropy
has provided us with a myriad of interesting results regarding
stability, causality, thermodynamics and the end-state of col-
lapse. It was shown that the time of formation of the horizon
is advanced when the principal stresses are unequal within
the stellar fluid [20]. In addition, pressure anisotropy leads
to higher core temperatures within the collapsing configura-
tion. Gravitational decoupling (GD) and its articulation via

minimal geometric deformation (MGD) method [21] and its
generalisation, the complete geometric deformation (CGD)
[22] have enabled researchers to produce anisotropic models
from known isotropic solutions. MGD and CDG approaches
have led to an exponential growth of stellar models in both
GTR and modified gravity theories. A recent investigation
demonstrated that contributions from the decoupling param-
eter and the EGB constant predict neutron stars with masses
greater than M = 2M� without invoking exotic matter fields
[23]. Some more recent works in different contexts using
MGD and CGD can be found in the following Refs.[24–
53].

Recently there has been heightened interest in the con-
cept of complexity in self-gravitating systems, an idea largely
explored by Herrera and co-workers for static and dynamical
systems [54–56]. They proposed a definition of the so-called
complexity factor arising from the orthogonal splitting of the
Riemann tensor which gives rise to scalar structures. These
scalars inherently link the local anisotropy of the transverse
and radial stresses and density inhomogeneity to the Tolman
mass for a static, bounded stellar configuration. The simplest
static, self-gravitating system with a vanishing complexity
factor is the one featuring isotropic pressure and homoge-
neous density. It follows that the vanishing of the complexity
factor implies either, homogeneous energy density and pres-
sure isotropy, or inhomogeneous energy density and pressure
anisotropy. In order to close the system of equations govern-
ing the gravitational behaviour of a static star, many of the
recent studies have invoked the condition of vanishing com-
plexity factor as an additional constraint on the system. As
mentioned earlier gravitational decoupling method facilitates
the anisotropisation of isotropic seed solutions describing
bounded configurations in GTR and modified gravity theo-
ries. Gravitational decoupling and the vanishing of the com-
plexity factor have been widely exploited to produce compact
stellar models describing neutron stars, pulsars and strange
stars [57–59].

The paper is organized as follows: In Sect. 1 we provide
an over-arching introduction of gravitational theory and the
context of the problem under study. In Sect. 2, we present
the gravitationally decoupled Einstein field equations for two
sources which are divided into two Sects. 2.1 and 2.2. In Sect.
3, we discuss the complexity factors for the gravitationally
decoupled systems. The new gravitationally decoupled Class
I solutions have been presented in Sect. 4 which contain
two Sects. 4.1 and 4.2. In Sect. 4.1, we generate a Class I
MGD solution by using isotropization technique while new
version of Class I anisotropic solution using two systems
with the same complexity factor is given in Sect. 4.2. The
physical properties of the solutions are discussed in Sect.
5. The last Sect. 6 contains the concluding remarks of the
article.
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2 Gravitationally decoupled Einstein field equation
(EFE) generated by two sources

2.1 Field equations for gravitationally decoupled system

In this section, we present a concise review of gravitation-
ally decoupled Einstein field equations for two independent
sources with the relativistic units G = c = 1 as,

Gi j = Ri j − 1

2
gi j R = −8π T̂i j (1)

with,

T̂i j = Ti j + β �i j (2)

As usual the Ricci tensor is symbolized by Ri j , where R
reflects contracted Ricci scalar and β indicates the decou-
pling constant in the field equations. The energy–momentum
tensor is symbolized by Ti j , and the source θi j may incor-
porate new fields such as scalar, vector, and tensor fields.
Since the Bianchi identity is satisfied by the Einstein tensor
(Gi j ), then the effective energy-momentum tensor T̂i j must
be maintained,

∇i T̂
i j = 0, (3)

For expressing the space-time of the interior region for the
stellar system, the following static spherically symmetric line
element is being used,

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θ dφ2) + eν(r)dt2, (4)

where ν and λ are only radially dependent metric potentials.
We suppose that the internal structure of the self-gravitating
system described by energy–momentum tensor Ti j repre-
sents an anisotropic matter distribution, then

Ti j = (ρ + pr ) uiu j + pt gi j + (pr − pt )χi χ j , (5)

The radial and tangential pressures are indicated by pr and
pt , correspondingly, whereas the energy density of matter is
denoted by ρ. In addition, ui is a contravariant 4-velocity, and
χ i = √

1/grrδi1 is a unit space-like vector in the radial direc-
tion. The components of the effective energy–momentum
tensor T̂i j are taken as,

T̂ 0
0 = ε, T̂ 1

1 = −Pr , and T̂ 2
2 = −P⊥. (6)

Using Eqs. (4)–(6), the Einstein field equation (EFE) (1)
yields the following differential equations,

8πε = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (7)

8π Pr = − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (8)

8π P⊥ = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (9)

where,

ε = ρ + β �0
0, Pr = pr − β �1

1, and P⊥ = pt − β �2
2.

(10)

and the conservation equation of system (7)–(9) is,

(Pr )
′ + ν′

2

(
ε + Pr

) − 2

r
(P⊥ − Pr ) = 0, (11)

However, the explicit form of the conservation equation (11)
can be rewritten by using Eq. (10) as

p′
r + ν′

2
(ρ + pr ) + 2(pr − pt )

r

−β
[ (

�1
1

)′ + ν′

2

(
�0

0 − �1
1

)
+ 2

r

(
�1

1 − �2
2

) ]
. (12)

Now we defined θ -components in form of new variables as
[60],

ρ� = β�0
0, p�

r = −β�1
1, and p�

t = −β�2
2. (13)

The effective anisotropy can be expressed as,

�̂ = P⊥ − Pr = � + ��, (14)

where,

� = pt − pr and �� = p�
t − p�

r = β (�1
1 − �2

2)

(15)

The second source�i j generates the anisotropy ��, however
the Misner-Sharp mass functionm(r) for the effective system
may be computed using the formula,

m(r) = r

2
[1 − e−λ(r)] = 4π

∫ r

0
x2ε(x)dx

= 4π

∫ r

0
x2ρ(x)dx

︸ ︷︷ ︸
mGR

+ 4πβ

∫ r

0
x2�0

0(x)dx
︸ ︷︷ ︸

m�

. (16)

The mass functions relating to matter distribution Ti j and �i j

are represented by mGR and m�, respectively.
Many years ago, Tolman [61] introduced another defini-

tion for the energy content inside a fluid sphere. Using the
definition in [61], we can calculate the Tolman mass function
mT for the spherically symmetric static spacetime (4) under
the energy–momentum tensor T̂i j ,

mT = 4π

∫ r

0
x2 e(λ+ν)/2(ρ + Pr + 2P⊥)dx, (17)

The formula above was suggested to determine the amount
of energy contained within a fluid sphere of radius r . Further-
more, using the field equations (7)–(9) under the spacetime
(4), the Tolman mass function mT maybe interpreted as,

mT = r2 ν′

2
e(ν−λ)/2, (18)
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The gravitational acceleration of a test particle instanta-
neously at rest in a static gravitational field can be described
by the formula [54],

a = ν′ e−λ

2
= e−ν/2 mT

r2 . (19)

2.2 The field equations for the systems Ti j and �i j

generated by MGD approach

In this section, we will find the field equations for the two
systems Ti j and �i j by using the minimal geometric defor-
mation (MGD) approach. To do this, we apply the trans-
formation over the metric functions eλ and eν , which is as
follows [22],

ξ(r) �→ ν(r) = ξ(r) + β h(r), (20)

μ(r) �→ e−λ(r) = μ(r) + β f (r). (21)

The geometric deformation functions for the radial and tem-
poral metric components are denoted by f (r) and h(r),
respectively. We need to set f (r) 	= 0 and h(r) = 0 since
we’re dealing with the minimal geometric approach here.
The transformations (20) and (21), then allow us to separate
the field equations (7)–(9) into the following two sets: (i) the
Einstein field equations for the energy–momentum tensor Ti j
(same as for setting β = 0) as

8πρ = 1 − μ

r2 − μ′

r
, (22)

8πpr = μ − 1

r2 − μ ξ ′

r
, (23)

8πpt = μ

(
ξ ′′

2
+ ξ ′2

4
+ ξ ′

2r

)
+

(
ξ ′μ′

4
+ μ′

2r

)
, (24)

with the equation of conservation as,

(pr )
′ + ξ ′

2

(
ρ + pr

) = 2�

r
. (25)

and the following spacetime could be used to explain the
solution of the system (22)–(24),

ds2 = −μdr2 − r2(dθ2 + sin2 θdφ2) + eξdt2, (26)

with

μ = 1 − 2mGR

r
= 4π

∫ r

0
x2ρ(x)dx . (27)

(ii) Turning on β now determines the second system of equa-
tions for the extra source �i j as,

8π ρ� = −β

(
f ′

r
+ f

r2

)
, (28)

8πp�
r = β f

(
ξ ′

r
+ 1

r2

)
, (29)

8πp�
t = β f

2

(
ξ ′′ + ξ ′2

2
+ ξ ′

r

)
− β f ′

2

(
ξ ′

2
+ 1

r

)
.

(30)

whose conservation equation is as follows,

ξ ′

2

(
ρ� + p�

r

) + (
p�
r

)′ = 2��

r
. (31)

3 Complexity formula by gravitational decoupling

Recently, Herrera [54] established the concept of the com-
plexity factor in static and spherically symmetric self-
gravitating systems, which is a scalar function represented
by YT F and can be calculated using anisotropy � and energy
density gradient ρ′. In this continuation, Herrera and his col-
laborators later developed this complexity in the setting of
dissipative self-gravitating fluid distributions with dynami-
cal spherically symmetric dissipation. In the present case,
we represent ŶT F as a complexity factor for the spherically
symmetric static self-gravitating systems (7)–(9), which can
be written according to the Herrera definition as,

ŶT F = 8π�̂ − 4π

r3

∫ r

0
x3ε′(x)dx . (32)

Herrera mentioned that the complexity factor ŶT F demon-
strates the influence of local anisotropy of pressure and den-
sity inhomogeneity on the Tolman mass (mT ), or how the
Tolman mass is affected by the two parameters listed in ŶT F .
To show the effect of ŶT F on the Tolman mT , we formulate
Eq. (17) in terms of complexity factor as follows:

mT = MT

( r

R

)2 + r3
∫ R

r

e(ν+λ)/2

x
YT Fdx . (33)

Here, the total Tolman mass of the fluid sphere of radius
R is denoted by MT (see the Ref. [54] for more details
about the complexity). Recently, Casadio and his collabora-
tors discussed the complexity factor in the context of MGD
approach, and they found that the complexity factor satisfies
the additive property. The complexity factor for gravitation-
ally decoupled systems given by Eq. (32) can be presented
as,

ŶT F = 8π � − 4π

r3

∫ r

0
x3ρ′(x)dx

+8π β �� − 4π β

r3

∫ r

0
x3

[
�0

0(x)
]′
dx, (34)
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Fig. 1 The flow chart shows the systematic approach adopted for gen-
erating the solution in the context of MGD

The above Eq. (34) can be now written as,

ŶT F = YT F + Y�
T F . (35)

which is the sum of two existing complexity factors induced
by the sources Ti j and �i j . Then, YT F will represent the
complexity factor for the system (22)–(24), whereas Y�

T F
describes the complexity factor for (28)–(30).

4 New gravitationally decoupled solutions by MGD
approach

In this section, we are going to discuss in particular two sce-
narios,

(A) the solution for gravitationally decoupled system (5)–
(8) generated by isotropization technique and corre-
sponding complexity factor,

(B) some new minimally deformed solutions for the sys-
tem (5)–(8) generated by two systems having the same
complexity factor.

4.1 Solution generated by isotropization technique

In this section, we will use Casadio et al. [60] systematic tech-
nique to isotropize the decoupled system (7)–(9) under the

MGD scenario. As a result of introducing the source �i j , we
may transform an anisotropic system (22)–(24) with � 	= 0
provided by Ti j into an isotropic system (7)–(11) generated
by T̂i j with �̂ = 0. This transformation can be managed by
setting the decoupling parameter β = 0 and β = 1, which
represent the anisotropic system (22)–(24) and isotropic sys-
tem (7)–(9), respectively. Then the isotropization is done by
setting β = 1, for which �̂ = 0 gives,

� = −�� 
⇒ � = −(�1
1 − �2

2). (36)

Now we obtain the following non-linear differential equation
by substituting of Eqs. (29) and (30) into Eq. (36) as

f ′(2+ξ ′r) − f (4+2ξ ′r−2ξ ′′r2−ξ ′2r2)+4r2 � = 0.

(37)

As we know that in general the solution of the θ -sector in
the gravitational decoupling is reliant on the solution of the
first system. Therefore, as a result, we must solve the first
system initially. In order to solve the first system, we employ
the Karmarkar condition that represents an embedding Class
I solution which can be derived from the Riemann curvature
tensor Rμνγ δ . In this connection, Eisenhart proposed a sig-
nificant and vital criterion for the embedding Class-I solution
[62], which states that if there exists a second-order symmet-
ric tensor bi j = b ji for which symmetric tensor bμν satisfies
the following conditions:

i. Gauss’s equation

Rμνγ δ = ε
(
bμαbνβ − bμβbνα

)
, (38)

ii. Codazzi’s equation

∇αbμν − ∇νbμα = 0, (39)

where ε = ±1 whenever the normal to the manifold is space-
like (+1) or time-like (−1). The Karmarkar condition is
derived by using Eqs. (38) and (39) through some mathe-
matical computation as

R1212R3030 + R1220R1330

R1010R2323
= 1, (40)

Here, R2323 	= 0. Then, considering the spherically sym-
metric spacetime (25), the Eq. (40) results in the following
differential equation,

2ξ ′′

ξ ′ + ξ ′ = −μ′

μ (1 − μ)
, (41)

with μ 	= 1. After integration of Eq. (41), we get

ξ(r) = 2 ln

[
B (1 + A

∫ √
(1 − μ)/μ dr)

]
or

μ(r) =
(

1 + K eξ

4
ξ ′2

)
. (42)
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The Class I condition (42) provides the relation between two
metric potentials, which can be solved if either of the poten-
tials is known. Therefore, we assume a well-behaved metric
potential ξ = 2Ar2 + ln B to solve the Class I condition
(42), where A and B are constants. By substituting the said
metric potential in condition (42) and integrating, we obtain
the following Class I solution which describes a spacetime

ds2 = −(1 + D Ar2 e2Ar2
)dr2 − r2d�2

2 + Be2Ar2
dt2.

(43)

The constant parameters A, B, and D will be determined
by using the boundary conditions. Using ξ and μ from the
above Class I spacetime, the system (22)–(24) provides the
energy density and pressure’s expressions for the energy–
momentum tensor Ti j as,

pr = −
A

(
−4 + De2Ar2

)

1 + ADe2Ar2r2
, (44)

pt =
A

(
4 − De2Ar2 + 4Ar2

)

(
1 + ADe2Ar2r2

)2 , (45)

ρ =
ADe2Ar2

(
3 + A

(
4 + De2Ar2

)
r2

)

(
1 + ADe2Ar2r2

)2 . (46)

Using the Eqs. (44)–(46) into Eq. (36) and integrating, we
find the deformation function f (r) as

f (r) = e−2Ar2
r2

(
F − 2A ExpIntegralEi[1 + 2Ar2]

e

+ ADe4Ar2

(1 + A De2Ar2r2)

)
(47)

where, F is a constant of integration. Furthermore, the suit-
able boundary conditions for the solution (44)–(46) are deter-
mined by the well-known Israel-Darmois junction condi-
tions. These conditions are called the continuity of first
and second fundamental across the boundary of the star,
respectively. In order to invoke the junction conditions we
must smoothly match the interior Class I spacetime (43)
with exterior vacuum spacetime described by the exterior
Schwarzschild solution. The matching yields the vanishing
of radial pressure at the surface r = R and fixes the arbi-
trary constants in the solution. The explicit form of above
matching conditions can be written as,

1 − 2Ms

R
= eξ(R), (48)

1 − 2Ms

R
= μ(R), (49)

pr (R) = 0, (50)

where mGR(R) = Ms represents the total mass of the object
with radius R for the Class I spacetime (43) described by

Fig. 2 The behavior of the deformation function versus radial coordi-
nate r/R for the solution 4.1 corresponding to the case �̂ = 0

source Ti j . The conditions (48)–(50) determine the constants
A, B, and D as

A = − Ms

2(Ms − R)R2 , (51)

B = −4M2
s + 5Ms R − R2

(2Ms − R)R
, (52)

D = 4e
Ms

2Ms−R . (53)

Now the minimally deformed Class I solution for the sys-
tem (7)–(9) can be given by the following spacetime,

ds2 = − (1 + D Ar2 e2Ar2
)

1 + β (1 + D Ar2 e2Ar2
) f (r)

dr2 − r2d�2
2

+Be2Ar2
dt2. (54)

whose matter variables such as the effective pressures and
energy density are given,

Pr (r, β) = β �1(r)(4 Ar2 + 1) − A(De2Ar2 − 4)

1 + ADe2Ar2r2
(55)

P⊥(r, β)

= β
[
�2(r) + 2A�2(r)r2 + 8Ar2�1(r)

(
1 + Ar2

)]

2

+
A

(
4 − De2Ar2 + 4Ar2

)

(
1 + ADe2Ar2r2

)2 , (56)

ε(r, β) = AD[3 + A(4 + De2Ar2
)r2]

e−2Ar2 (
1 + ADe2Ar2r2

)2

−β[�1(r) + �2(r)].
(57)

where, the functions �1(r) and �2(r) are mentioned in the
Appendix. However, the effective anisotropy �̂ is calculated
as,

�̂ = A2(1 − β)(De2Ar2 − 2)2 r2

(
1 + ADe2Ar2r2

)2 (58)
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where m(R) = M is the total mass of the minimally
deformed Class I compact object of radius R generated by
the solution (54)–(58). From the above Eq. (58), it can be
clearly observed that �̂ becomes zero at β = 1, which rep-
resents the system (5)–(8) to be an anisotropic system. On
the other hand, the matching conditions (48)–(50) for new
solution (54)–(58),

e−λ(R) = 1

(1 + D Ar2 e2Ar2
)

+ β f (R) = 1 − 2M

R
, (59)

eν(R) = Be2AR2 = 1 − 2M

R
, (60)

Pr (R) = 0, (61)

determine the constant B, total mass M , and integration con-
stant F as

B = ln

[
1

1 + ADe2AR2 R2
+ β f (R)

]
− 2AR2, (62)

M = Ms − β R

2
f (R), (63)

F = 1

β e (4AR2 + 1) (ADR2e2AR2 + 1)

[
A
{

2β(4AR2

+1)(ADR2e2AR2 + 1)ExpIntegralEi[2AR2 + 1]
−

(
4 + De2AR2

e2AR2+1
(

4AβR2 + β − 1
) )}]

.

(64)

Furthermore, we will discuss the complexity factor for the
above minimally deformed Class I solution (54)–(58) in the
next section.

4.1.1 Complexity factor generated by minimally deformed
Class I solution (54)–(58):

As mentioned earlier, the complexity factor of the systems
(7)–(9) for energy-momentum tensor T̂i j is

ŶT F = 8π �̂ − 4π

r3

∫ r

0
x3ε′(x)dx, (65)

Since the solution (54)–(57) for system (5)–(9) is determined
by taking �̂ = 0, then the Eq. (65) gives

ŶT F = −4π

r3

∫ r

0
x3ε′(x)dx, (66)

Inserting of Eq. (5) into Eq. (66) gives

ŶT F = 1

r2 − e−λ

r2 − λ′ e−λ

2r
, (67)

and then we find the complexity factor ŶT F by using the
solution(54) as,

ŶT F

= Ae−1−2Ar2
r2

(
1 + 2Ar2

) (
1 + ADe2Ar2r2

)2

[
− e

{
ADe4Ar2

(2

−De2Ar2
)
(

1 + 2Ar2
)

+ β
(

2F(1 + ADe2Ar2
r2)2(1

+2Ar2) + Ae2Ar2[
4 + 2De2Ar2

(
−1 + 2Ar2

)
+ D2(1

×e4Ar2
(

1 + 2Ar2 + 4A2r4
) ])}

+ 4Aβ(1 + 2Ar2)(1

+ADe2Ar2
r2)2 ExpIntegralEi[1 + 2Ar2]

]
. (68)

4.2 New Class I anisotropic solution generated via MGD
approach for two systems with same complexity factor

In this section, we will investigate a new Class I anisotropic
solution via MGD approach for which the two systems
have same complexity factor. This can be done by assuming
ŶT F = YT F which means the complexity factor YT F related
to energy-momentum tensor Ti j does not change after the
gravitational decoupling. This condition gives Y�

T F = 0 and
can be expanded as

�� = 1

2r3

∫ r

0
x3 [

�0
0(x)

]′
dx, (69)

where we can write the right side integral of above Eq. (69)
by using Eq. (27) as,

∫ r

0
x3

[
�0

0(x)
]′
dx = r3

4π

(
f

r2 − f ′

2r

)
. (70)

Then using the Eqs. (69) and (70) together with Eqs. (28)–
(30), we get

f ′(4r + ξ ′r2) + f (2ξ ′′r2 + ξ ′2r2 − 8 − 2ξ ′r) = 0. (71)

We observe here that the solution of equation (71) again
depends on the solution of the seed spacetime (43) described
by the metric functions ξ and μ. Therefore, we again use
the same Class I spacetime geometry (38) for solving this
differential equation (71),

eξ(r) = Be2Ar2
, and μ(r) = 1

1 + D Ar2 e2Ar2 . (72)

and corresponding complexity factor the YT F generated by
the above Class I solution (72) is determined by using the
definition (32) as,

YT F =
2A2

(
2 − 3De2Ar2 + D2e4Ar2

)
r2

(
1 + ADe2Ar2r2

)2 , (73)
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Fig. 3 The behavior of radial
pressure (Pr × 104)-top left,
tangential pressures
(P⊥ × 104)-top right, energy
density (ε × 104)-bottom left
and anisotropy
(�̂ × 104)-bottom right versus
radial coordinate r/R for
different coupling constant β

with compactness factor
Ms
R = 0.25. The above figures

are plotted for the solution 4.1
corresponding to the case �̂ = 0

By plugging the spacetime geometry (72) into the Eq. (70),
we find the deformation function f (r) as,

f (r) = Fe−2Ar2
r2

(
1 + Ar2

)
, (74)

where F is a constant of integration with dimension length−2

and this deformation function f (r) gives condition ŶT F =
YT F for which Y�

T F = 0. However, the new version of Class
I metric functions can be read as,

e−λ(r) = 1

1 + D Ar2 e2Ar2 + β F r2

e2Ar2

(
1 + Ar2

)
, (75)

eν(r) = B e2Ar2
. (76)

The above solution (75)–(76) gives the effective pressures
and energy density,

Pr (r, β, F) = β F

e2Ar2

(
1 + Ar2

) (
1 + 4Ar2

)

− A (De2Ar2 − 4)

1 + ADe2Ar2r2
, (77)

P⊥(r, β, F)

=
A

(
4 − De2Ar2+4Ar2

)

(
1+ADe2Ar2r2

)2 + β F

e2Ar2

(
1 + 6Ar2

+ 6A2r4), (78)

ε(r, β, F) =
AD

(
3 + A

(
4 + De2Ar2

)
r2

)

e−2Ar2 (
1 + ADe2Ar2r2

)2

+ β F,

e2Ar2

(
4A2r4 − 3 − Ar2), (79)

Fig. 4 The behavior of the complexity factor (ŶT F ×104) versus radial
coordinate r/R for different coupling constant β with compactness fac-
tor Ms

R = 0.25. This complexity figure is plotted for the minimally
deformed Class I solution 4.1

and effective anisotropy �̂ = P⊥ − Pr is

�̂(r, β, F) =
A

(
4 − De2Ar2 + 4Ar2

)

(
1 + ADe2Ar2r2

)2 + β F

e2Ar2 Ar
2

×(1 + 2Ar2) +
A

(
−4 + De2Ar2

)

1 + ADe2Ar2r2
. (80)

We would like to comment here that the gravitational
potentials (75) and (76) and matter variables described by
Eqs. (77)–(80) represent a new version of Class I anisotropic
solutions (43) corresponding to the Einstein field equations
(7)–(9), whose complexity factor ŶT F is the same as the com-
plexity factor YT F given by Eq. (73). On the other hand,
applying the matching conditions (48)–(50) for the new solu-
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Fig. 5 The behavior of the deformation function versus radial coordi-
nate r/R for the solution 4.2 corresponding to the case ŶT F = YT F

tion (74)–(80) determines the modified form of the constant
parameters D and B, and M as,

D = e−2AR2 [
4A2βFR4 + 5AβFR2 + 4Ae2AR2 + βF

]

A
[
e2AR2 − βFR2

(
4A2R4 + 5AR2 + 1

)] , (81)

B = ln

[
1

1 + D AR2 e2AR2 + β F R2

e2AR2

(
1 + AR2

)]
− 2AR2, (82)

M = Ms − β F R3

2 e2AR2

(
1 + AR2

)
. (83)

where Ms = R
2 (1 − μ) and therefore under new constant

D −→ DβF (mentioned by Eq. 81), the complexity factor
ŶT F will become ,

ŶT F =
2A2

(
2 − 3DβF e2Ar2 + D2

βFe
4Ar2

)
r2

(
1 + ADβF e2Ar2r2

)2 (84)

Here, we can see the effect of the β on the complexity factor
due to the modified constant value of D but the total com-
plexity factor will be same.

5 Some physical properties of the solutions

In this section, we present a physical analysis of the solutions
obtained in Sect. 4 based on the trends of the plots in order
to test their viability:

For solution 4.1: Figure 2 shows that the deformation func-
tion f (r) is positive for 0 < r < R but it is zero at the
center as well as the boundary of the star. This implies that
the total mass M of the stellar object for the gravitationally
decoupled solution remains the same as Ms even after intro-
ducing the MGD. In this situation, the gravitational mass is
distributed only inside the stellar object. In Fig. 3, we show
the trend for radial and tangential pressures, energy density,
and anisotropy for the MGD Class I solution within the stellar
object. It is observed that Pr , P⊥, and ε are decreasing mono-
tonically towards the surface for all values of β = 0, 0.3, 0.7,
and 1. The central pressures and surface density are increas-
ing when β increases while central density has the opposite
behavior. The anisotropy is increasing away from the cen-
ter when β = 0, 0.3, 0.7 but it vanishes throughout the
model for β = 1 (green curve). The vanishing of effec-
tive anisotropy throughout the model represents a Class I
isotropic solution corresponding to matter distribution T̂i j
i.e. Pr = P⊥ for all r ∈ [0, R] which is clearly observed
by the green curves in the top panel of this figure. More-

Fig. 6 The behavior of radial
pressure (Pr × 104)-top left,
tangential pressures
(P⊥ × 104)-top right, energy
density (ε × 104)-bottom left
and anisotropy
(�̂ × 104)-bottom right versus
radial coordinate r/R for
different coupling constant β

with compactness factor
Ms
R = 0.25 with F = 0.0002.

The above figures are plotted for
the anisotropic solution 4.2
corresponding to the case
ŶT F = YT F
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Fig. 7 The behavior complexity factor ŶT F versus radial coordi-
nate r/R for different decoupling constant β with compactness factor
Ms
R = 0.25 and F = 0.0005. The above complexity figure is plotted

for solution 4.2 corresponding to the case ŶT F = YT F

over, the variation of the complexity factor for this solution
is mentioned in Fig. 4 for different values of β. It is observed
that the complexity factor is increasing towards the bound-
ary but its value decreases as the decoupling constant β is
increased. This implies that the impact of complexity is less
in the context of MGD.

For solution 4.2:Here, the situation is different than solution
4.1. As we can see in Fig. 5 that the deformation function is
increasing and non-negative throughout the model as well
as attaining a non-zero value at the boundary. In this case,
the total mass (M) of the gravitationally decoupled object
will be less than the total mass Ms of the object in pure
GR due to positive β. However, the effective pressures and
density for this solution show the same behavior as shown in
solution 4.1 which is decreasing throughout the stellar object,
but the magnitude values of pressure and density show totally
opposite behavior as compared to solution 4.1. Moreover, the
effective anisotropy (�̂) is monotonically increasing from
center to boundary for all β which implies the anisotropic
force acting in outward direction and value of �̂ increases
when β moves from 0 to 1 (see Fig. 6). Furthermore, we also
check the behavior of complexity factors for this solution
4.2 which is increasing within the objects (Fig. 7). It is also
observed that the values of the complexity factor increases
when β increase which shows an opposite trend as obtained
in solution 4.1.

6 Concluding remarks

In the present work, we have investigated a new isotropic
Class I solution in the framework of gravitational decoupling
through using a minimal geometric deformation approach.
To do this, we use the isotropy condition for determining
the deformation function f (r) under which the gravitation-
ally decoupled system becomes isotropic. The viability of the

obtained isotropic Class I solution has been tested through
the variations of physical quantities such as pressure, den-
sity and anisotropy within the stellar object. All the physical
quantities of the solution satisfy the conditions for a well-
behaved stellar model. Therefore, we can say that the MGD
approach has equipped us with a novel method to gener-
ate new physically viable Class I isotropic solutions. On the
other hand, we use another alternative approach [60], which
are the two systems with same complexity factors, in order
to find the deformation function f (r). This is also one of the
effective approaches to find a new well-behaved solution or
generalized previous known solutions in the context of gravi-
tational decoupling. The idea of complexity was well studied
by Herrera and co-workers within the framework of dissipa-
tive, radiating collapse. They showed that a spherically sym-
metric, shear-free star undergoing dissipative collapse while
radiating energy in the form of a radial heat flux could mimic
shear-like effects arising from pressure anisotropy, density
inhomogeneity and heat flow [63–65]. Furthermore, Herrera
[66] demonstrated that the isotropy condition is unstable, ie.,
a self-gravitating body with isotropic pressure (radial and tan-
gential stresses equal at each interior point) in quasi-static
equilibrium will evolve into an anisotropic distribution as
collapse proceeds. There have been numerous studies on the
dissipative collapse of radiating stars starting off from an
initial static configuration [67] but these models lacked any
mechanism which could explain the onset of any instabilities
driving them away from hydrostatic equilibrium. The models
that we presented here could describe the onset of dissipative
collapse arising from the anisotropisation of the radial and
tangential stresses within the initial static configuration or
the isotropisation of the pressure when the collapse leads to
a final static star in hydrostatic equilibrium [68,69].
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Appendix

�1(r) = e−2Ar2

×
(
F−2AExpIntegralEi

[
1 + 2Ar2

]

e
+ ADe4Ar2

(1+A De2Ar2r2)

)
,

�2(r) = − 2e−1−2Ar2

(1 + 2Ar2)(1 + ADe2Ar2r2)2

×
[
e
{
F

(
1 + ADe2Ar2

r2
)2 (

−1 + 4A2r4
)

+Ae2Ar2
(

4Ar2 + 4A3D2e4Ar2
r6

+De2Ar2
(
−1 − 4Ar2 + 4A2r4

) )}

−2A
(

1 + ADe2Ar2
r2

)2

×
(
−1 + 4A2r4

)
ExpIntegralEi

[
1 + 2Ar2

] ]
.
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