
Ispike: A Post-link Optimizer for the Intel R�Itanium R�Architecture

Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, Geoff Lowney
Massachusetts Microprocessor Design Center

Intel Corporation
fchi-keung.luk, robert.muth, harish.patil, robert.s.cohn, geoff.lowneyg@intel.com

Abstract
Ispike is a post-link optimizer developed for the

Intel R�Itanium Processor Family (IPF) processors. The
IPF architecture poses both opportunities and challenges to
post-link optimizations. IPF offers a rich set of performance
counters to collect detailed profile information at a low cost,
which is essential to post-link optimization being practical.
At the same time, the predication and bundling features on
IPF make post-link code transformation more challenging
than on other architectures. In Ispike, we have implemented
optimizations like code layout, instruction prefetching, data
layout, and data prefetching that exploit the IPF advan-
tages, and strategies that cope with the IPF-specific chal-
lenges. Using SPEC CINT2000 as benchmarks, we show
that Ispike improves performance by as much as 40% on the
Itanium R�2 processor, with average improvement of 8.5%
and 9.9% over executables generated by the Intel R�Electron
compiler and by the Gcc compiler, respectively. We also
demonstrate that statistical profiles collected via IPF per-
formance counters and complete profiles collected via in-
strumentation produce equal performance benefit, but the
profiling overhead is significantly lower for performance
counters.

1. Introduction
Post-link optimization [3, 10, 18, 21, 25] is a technique to

improve the performance of a program after it is compiled
and linked. Directly operating on the executable has several
advantages. First, it can see the entire program and per-
form optimizations across procedures that may be in differ-
ent source modules. Second, it is relatively easy to use pro-
file feedback since the same executable is being profiled and
optimized. In contrast, mapping profile information back
to the source code is more challenging due to the compiler
transformations that have been done in between the source
code and the executable. Third, it is applicable even when
the program source is unavailable, which may be the case in
some commercial or legacy codes. These advantages make
post-link time optimization appealing, particularly in a pro-
duction environment.

This paper is about post-link optimization on the
Intel R�Itanium Processor Family (IPF) processors, under the
Linux operating system (abbreviated as IPF/Linux). The
IPF architecture provides a number of features that facilitate

post-link optimization. In particular, its fine-grain perfor-
mance monitoring can identify performance bottlenecks at
the instruction level, and software can apply optimizations
precisely to remove these bottlenecks. Moreover, the rich
set of events that can be monitored on IPF enable detailed
performance analysis. However, IPF also poses challenges
to post-link optimizations. Specifically, predication makes
post-link code transformation in general and branch inver-
sion in particular a challenging task on IPF.

We have developed a post-link optimization tool called
Ispike for IPF/Linux. Besides standard optimizations, it
implements a number of key optimizations targeting mem-
ory latency, including code layout, instruction prefetching,
data layout, and data prefetching. They are driven by the
branch profiles, I-cache miss profiles, and D-cache miss
profiles collected via the IPF performance counters. We ap-
ply these optimizations to IPF/Linux executables generated
by the Intel R�Electron [6] and the Gcc compilers. For SPEC
CINT2000, these optimizations improve performance from
2% to 40% on the Itanium R�2 processor, with average im-
provement of 8.5% and 9.9% over Electron and Gcc, re-
spectively. We also demonstrate that statistical profiles col-
lected with IPF performance counters provide the same per-
formance benefit as complete profiles collected with instru-
mentation.

The rest of this paper is organized as follows. First, we
describe our profiling infrastructure in Section 2. Next, we
discuss Ispike optimizations in Section 3. We then describe
our solutions to a number of IPF implementation issues in
Section 4. We report our experimental results in Section 5.
Finally, we relate Ispike to other work in Section 6, and
conclude in Section 7.

2. Profiling Infrastructure
In this section, we first introduce the IPF performance

monitoring unit. We then describe a Linux tool called pfmon
which we use to collect data from the performance counters.
Finally, we discuss the profiling support inside Ispike itself.

2.1 IPF Performance Monitoring

A design philosophy of the IPF architecture is that soft-
ware plays a major role in optimizing program performance.
Many software optimizations require information about the
program’s run-time behavior. To provide this information,

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



Name What is captured Detailed information recorded

Branch Trace Buffer (BTB) Last 4 to 8 branches Branch’s PC, branch target’s PC, mispredict status

Instruction Event Last I-cache miss Instruction PC, miss latency in cycles
Address Register (I-EAR) Last I-TLB miss Instruction PC, which level serviced the miss:

L2 I-TLB, VHPT, or software

Data Event Last D-cache miss Instruction PC, data address, miss latency in cycles
Address Register (D-EAR) Last D-TLB miss Instruction PC, data address, which level serived the miss:

L2 D-TLB, VHPT, or software

Table 1. IPF hardware structures for instruction-level profiling. For I-EAR and D-EAR, we can monitor either cache misses or TLB
misses, but not both at the same time.

IPF includes performance monitoring hardware [11] that
supports two complementary usage models: workload char-
acterization and instruction-level profiling. Workload char-
acterization is measuring the performance characteristics of
the workload under study. Two types of information are
of particular interest: how often an event occurs, and how
the cycles are spent (so called cycle accounting). For event
counting, the Itanium R�2 processor provides four 48-bit per-
formance counters and over 100 events that can be moni-
tored with these counters. For cycle accounting, IPF pro-
vides a way to break down the total cycles into various cat-
egories of stalls and flushes. We will explain these cate-
gories when we do the cycle breakdown for our results in
Section 5.2.2. As for instruction-level profiling, the hard-
ware attributes events like branches, cache and TLB misses
to individual instructions so that software can know ex-
actly where to optimize in the program. IPF implements
three hardware structures for this purpose: Branch Trace
Buffer (BTB), Instruction Event Address Register (I-EAR),
and Data Event Address Register (D-EAR); they are de-
scribed in Table 1. By performing statistical sampling on
these structures, precise instruction-level profiling can be
done at a low cost.

2.2 Perfmon and Pfmon

The IPF/Linux kernel provides an interface for control-
ling the performance monitoring hardware: the perfmon
API [16]. A tool called pfmon [16] utilizes the perfmon API
to do event counting, cycle accounting, and instruction-level
profiling. We have enhanced pfmon in several ways to make
it more suitable for profile-guided optimization. First, we
incorporate a sample-aggregation mechanism into pfmon.
This avoids dumping out raw samples in the middle of the
profiling session and hence reduces the profiling overhead.
Second, we extend the per-task mode in pfmon to moni-
tor all processes forked by the task, instead of just the ini-
tial process. Third, we add a module that detects strides in
load-miss addresses using the D-EAR. More details of this
are given in Section 3.4.

(a) Code-layout viewer

(b) Load-latency comparator

PF RANKS             ADDRESSES          TOTAL LATENCIES %CHANGE

P 1    36  400000000524f3c0 4000000000006930  258390  101767  -61%

. 2     1  40000000054d8d20 4000000000005820  231550  229170 -1%

. 3     2  40000000050e0ac0 400000000003d3c0  191961  193046      +1%

P 4    52  4000000005e1c991 4000000000000950  186571   91211 -52%

. 5     3  4000000005537f10 40000000000022a0  179148  172017 -4%

P 6    34  40000000050d0ac1 4000000000021501  173962  105670 -39%

. 7     4  4000000005e1c990 4000000000000940  163366  161318 -1% 

P 8     5  4000000005674620 4000000000000c90  161451  154355 -4%

. 9     6  40000000050bec50 4000000000003f70  153348  152023 -1%

P   10     7  4000000005062c20 4000000000014520  152819  151749 -1%

Before After

Figure 1. Two profile-analysis tools in Ispike.

2.3 Ispike Profiling Support

Ispike accepts six types of profiles: I-cache misses, I-
TLB misses, D-cache misses, D-TLB misses, load-miss
strides, and branches. Processing the first five profile types
is relatively simple as we mainly need to attach the miss
count to the corresponding instruction. Processing branch
profiles is more complicated. Since we sample only taken
branches (including direct and indirect, branches and calls)
in the branch trace buffer (BTB), Ispike derives the counts
of fall-through edges based on Kirchoff’s laws (i.e. flow in
equals flow out at each basic block).

Besides processing profiles, Ispike also provides numer-
ous tools for analyzing profiles and their impact on opti-
mizations. Two of them are illustrated in Figure 1. The
code-layout viewer visualizes the execution frequency of in-
structions in an image at cache line granularity: frequently
executed lines have a darker color. It allows for a quick
visual validation of the effectiveness of the code-layout op-
timization. The load-latency comparator compares the la-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Basic-block chaining (b) Routine splitting (c) Routine placement

A

CB

D

FE

G

CFG
chain 1:

B

chain 2:

chain 3:

F

A C D E G

Before After

foo() foo_hot()

foo_cold()

AfterBefore

A()

B()

C()

D()

B()

D()

A()

C()

Figure 2. Three steps of our code-layout algorithm.

tency of loads before and after an image has been processed
by Ispike, assuming that load latency profiles for both im-
ages are collected. Since the position of a load in an im-
age will change because of optimizations, Ispike must track
loads while processing an image. Combined with prefetch-
ing reports produced by Ispike, the comparator becomes a
powerful tool to evaluate the effectiveness of data prefetch-
ing. The snapshot above shows the top 10 loads in the origi-
nal image. A load that Ispike prefetched is marked with the
letter ‘P’. By looking at the %change in the load latency,
we can tell whether a prefetching scheme is beneficial for a
particular load.

3. Ispike Optimizations
The main goal of Ispike optimizations is to cope with

memory latency, a major performance bottleneck on mod-
ern machines. There are two general approaches. The first
is to reduce latency by improving locality. The second ap-
proach is to tolerate latency by prefetching. To improve
locality, Ispike rearranges the layout of both code and data
based on profiles. It also prefetches both code and data.
The details of these optimizations are given in the rest of
this section.

3.1 Code Layout

Our profile-driven code-layout optimization is inspired
by Pettis and Hansen’s algorithm [19]. It has three aims: (i)
increasing I-cache performance by improving locality, in-
creasing cache line utilization, and eliminating cache con-
flicts, (ii) reducing number of control flow changes, and (iii)
reducing the number of active code pages and thereby in-
creasing the I-TLB hit rate. This optimization is particularly
important for programs with large instruction footprints.

Our algorithm consists of three steps, which we explain
using the examples in Figure 2. The first step, basic-block
chaining, tries to put basic blocks in sequence if there is a
frequently executed control flow edge between them. For
each routine, we sort the edges in the routine’s flow graph
in descending order of their execution counts. Some ad-
justments are made to the execution counts before the sort-
ing to bias the algorithm when basic blocks have only a

single successor or predecessor. We then walk down the
sorted edge list in a greedy fashion chaining basic blocks to-
gether if they are the head and tail of their respective chains
and those chains are different. For the flow graph shown
in Figure 2(a), assuming that the shaded path is hot, then
three chains will be formed. The second step, routine split-
ting, sorts the resulting chains by the maximum edge count
within each chain. We compare this count against a thresh-
old to determine whether a chain is hot or cold. Hot chains
and cold chains are then placed in two separate regions, as
shown in Figure 2(b). The third step, routine placement, ar-
ranges the regions resulting from the previous step by their
density, which is defined as the average instruction execu-
tion frequency of each routine. Putting hot routines close
together reduces their chance of conflicting with each other
in the I-cache and reduces the number of code pages. This
step is illustrated in Figure 2(c).

3.2 Instruction Prefetching

Even with code layout, there are still some I-cache
misses that are not covered. They typically happen at
call and branch targets that are far away. To cope
with these misses, researchers have proposed using in-
struction prefetching [14]. IPF provides two software-
controlled mechanisms for prefetching instructions [11],
namely streaming prefetching and hint prefetching.

Streaming prefetching initiates hardware prefetching of
sequential cache lines at the targets of dynamically pre-
dicted taken branches. To invoke streaming prefetching
upon a particular branch, we use the instruction br.many
target. Sequential lines are prefetched starting at
target plus 64 or 128 bytes (depending on the alignment
of target). Ispike decides whether to use streaming
prefetching for a branch by estimating the size of the span
starting at the branch’s target. A span runs from the target
to the first statically predicted taken branch (including un-
conditional branch). Streaming prefetching is used if the
span’s size is at least 128 bytes. This makes sure that we
will prefetch only instructions that are going to be used at
the branch’s target.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



180

ld A
100

ld C
80

ld B
70 30

ld D
60 20

A
C
B
D

Frequency-based

A
B
C
D

Temporal-based
T F

T F T F

Figure 3. Frequency-based vs. temporal-based data layout. The execution count of each load is shown above the top-left corner of
the block that contains the load.

Hint prefetching allows software to prefetch a par-
ticular instruction line. A hint prefetch is either
a brp.few target or brp.many target. A
brp.few prefetches one cache line at target, whereas
a brp.many prefetches two cache lines. Hint prefetching
is intended to be used together with streaming prefetching
such that the first one or two lines of a branch’s target are
prefetched via a hint prefetch, while the rest is via a stream-
ing prefetch. In order to fully hide the latency of an I-cache
miss that hits in the L2, the hint prefetch should precede
the branch by at least 9 fetch cycles. To find out which in-
struction lines need to be prefetched, we collect the I-miss
profile using the I-EAR. For each hot instruction line T , we
put brp.few T in the predecessor basic blocks of T in the
flow graph of the whole program that satisfy the following
two criteria: (i) the predecessor block P must be at least 18
instructions (9 cycles� 2, assuming an IPC of 2) ahead of T
on an execution path between P and T , which may be in the
same or different routines, and (ii) P must have at least one
nop (no operation) slot where we can place the brp. This
avoids any code size increase due to the additional brps.
We keep inserting brps for T at the predecessors that sat-
isfy both criteria until 95% of T ’s miss latency would be
covered. This coverage estimation is based on path proba-
bilities, which are derived from the edge counts.

One practical issue in using an I-miss profile to drive
prefetching is that the code-layout optimization will change
the I-cache behavior. Therefore, if we want to apply instruc-
tion prefetching after code layout, we need to recollect the
I-miss profile of the program with code layout and then in-
sert prefetches. This requires profiling and applying Ispike
twice.

3.3 Data Layout

Similar to code layout, Ispike also rearranges data for
better locality. However, reordering data is much more chal-
lenging in terms of preserving program correctness. Thus,
we limit our scope to reordering statically allocated data,
which we call global. Our global data reordering algorithm
is based on the one recently proposed by Haber et al. [9].
The major difference is that their execution profiles are col-
lected via instrumentation, while ours are collected via per-
formance counters. Following is a brief description of this

algorithm.
Global data is defined in the data sections of the im-

age, including global variables, constants, switch-statement
target addresses, or function addresses. On IPF/Linux,
global data references are typically made through the spe-
cial register gp. For each global data symbol v, we ag-
gregate the execution frequencies of the instructions that
access it. This aggregated value, denoted by H�x�, rep-
resents the hotness of x. Since data symbols are of dif-
ferent sizes, we normalize their hotness against their sizes:
NH�x� � H�x��sizeof�x�. In other words, NH�x� mea-
sures the hotness per byte of x. Based on NH , we have two
algorithms to reorder global data. The first one is to simply
sort symbols in descending order of NH . We call this a
frequency-based algorithm. The second one is a temporal-
based algorithm, which packs together symbols that are ac-
cessed close to each other in time during execution. Fig-
ure 3 illustrates the different data layouts resulting from
these two algorithms. The figure shows a flow graph corre-
sponding to two levels of if-then-else, which contain loads
of four global variables A to D. Assume the same size for
the four variables. The frequency-based algorithm results in
the data layout: A, C, B, D. In contrast, the temporal-based
algorithm results in the data layout: A, B, C, D. The tempo-
ral layout is a better one in this example because A and B
are on a disjoint path from C and D.

The temporal-based algorithm requires building a data
connectivity graph (DCG). A node in the DCG corresponds
to a global data symbol. Two symbols, say x and y, are
connected by an (undirected) edge in the DCG if a refer-
ence to y immediately follows a reference to x on some
path during program execution, and vice versa. The weight
of the edge �x� y� is the total frequency of the x-followed-
by-y instances and the y-followed-by-x instances. Once the
DCG is built, we lay the global data out by traversing the
DCG, starting with symbol that has the largest NH . For
each symbol x visited, we place x at the current address in
the global data area and increase this address by sizeof�x�.
Then we select the next symbol to visit to be one of those
that are connected to x in the DCG, which have not been
visited so far. To ensure that symbols placed together are
of comparable hotness, we add a criteria that the new sym-
bol selected must have a NH �� NH�x� � Threshold,

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Two-phase sampling of the D-EAR

Time

Skipping phases (1 sample per 100 misses)

Inspection phases (1 sample per miss)

(b) Using GCD to discover strides
from miss addresses

Time
A1 A2 A3

A2-A1=5*48=240 A3-A2=7*48=336

GCD(A2-A1, A3-A2 )=GCD(240,336)=48
GCD(A3-A2, A4-A3 )=GCD(336,144)=48

A4

A4-A3=3*48=144

A1, A2, A3, A4 are four consecutive miss addresses of a load. 
The load has a stride of 48 bytes.

Figure 4. Stride profiling with the D-EAR.

where Threshold is a parameter between 0 and 1, and is
chosen as 0.3 in our experiments. If there are multiple sym-
bols connected to x that satisfy this criteria, we select the
one that has the largest edge weight to visit next. However,
if there is no such symbol, we will pick the symbol that has
the largest NH among those that have not been visited, re-
gardless of their connectivity to x. We repeat this process
until all symbols in the DCG are visited.

In applying both frequency-based and temporal-based
data layout to various applications, we find that the
temporal-based algorithm consistently outperforms the
frequency-based one. Therefore, we will present only the
temporal-based results later in Section 5.

3.4 Data Prefetching

Ispike implements stride-based prefetching, targeting
address strides that are not statically detectable by the com-
piler and thus need to be determined through stride pro-
filing. Wu [26] performs stride profiling while the pro-
gram is running and dynamically decides whether prefetch-
ing should be performed for a particular load based on the
profiling results. To minimize the impact of stride profil-
ing overhead on the overall performance, his scheme tends
to be conservative in choosing which loads to profile and
hence may miss some prefetching opportunities. In con-
trast, Luk et al. [15] perform stride profiling in a separate
profiling pass. This allows Luk et al. to profile more loads
than Wu. However, their profiling overhead is large (a 15x
slowdown on average for SPEC CINT2000) because their
profiling is based on instrumentation.

We have developed a stride profiling scheme [13] that
can profile most of the loads that we would consider for
prefetching at a relatively low cost (5% profiling overhead

(a) Before the optimization

addl r3=2648,gp;;/*r3 will get the address of the 
GOT entry */

ld8  r72=[r3];; /* r72 will get the address of the 
global variable */

ld4  r60=[r72] /* r64 will get the content of the 
variable */

(b) After the optimization

Deadaddl r3=2648,gp;

addl r72=4884,gp;; /* r72 will get the address of
the variable */

ld4  r60=[r72]

Figure 5. GOT-access optimization.

on average for SPEC CINT2000). We use the D-EAR per-
formance counter to capture load events that miss in the D-
cache. To achieve low profiling overhead, we sample the
D-EAR in two phases with different sampling rates, as il-
lustrated in Figure 4(a). The skipping phase uses a lower
sampling rate: one sample per 100 misses. When enough
samples have been collected, we switch to the inspection
phase which uses a much higher sampling rate: one sample
per miss. Stride detection is done in the inspection phase as
follows. Each D-EAR sample provides three pieces of in-
formation about the miss: � pc� daddr� lat �, where pc is
the PC of the load captured in the miss event, daddr is the
data address loaded, and lat is the miss latency in CPU cy-
cles. For each load, we look at four consecutive misses and
compute the deltas in the data addresses between each con-
secutive pair (�i � daddri�� � daddri, where i � ����).
Standard stride detection checks whether �� � �� � ��.
However, since our data addresses are miss addresses in-
stead of reference addresses, we are uncertain about the
number of strides actually included in each �i. Fortunately,
we are certain that if a stride S does exist, all these deltas
should be some multiple of S. Therefore, we can discover
S by computing the greatest common denominator (GCD)
of these deltas. If GCD������� � GCD�������, then
this GCD is the stride or a small multiple of it. Figure 4(b)
illustrates this process.

Once the stride S of a load is found, Ispike inserts an
instruction lfetch R immediately after the load, where
lfetch is the data-prefetch instruction on IPF. R is a regis-
ter assigned a value equal to the load’s current data address
plus the product S � d. We discuss how we allocate this
register specifically on IPF in Section 4.4. The parameter d
is the prefetching distance, which is either a user-specified
constant or determined by some compiler heuristics [17]. If
there are multiple strides detected for a load, we prefetch
the most frequent two of them.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Call shadow (b) Solution

add r5,r5,4
(p3)br.call foo

bundle_1:

br elsewhere

bundle_2:

st [r8]=r7

foo(): ld r7=[r5]

br.ret

call if p3 is true
nop
br.call foo

trampoline: nop

nop
nop

br bundle_2

add r5,r5,4
(p3)br trampoline

bundle_1: nop

nop
bundle_new: nop

br elsewhere

bundle_2:

st [r8]=r7

foo(): ld r7=[r5]

br.ret

Figure 6. Handling call shadows.

3.5 Other Optimizations

In addition to the four memory-oriented optimizations
mentioned above, Ispike also includes numerous optimiza-
tions that improve performance by reducing the number
of instructions executed. These include inlining, dead-
code elimination, branch forwarding, store-load forward-
ing, and GOT-access optimization. Among these optimiza-
tions, GOT-access optimization has the biggest performance
impact on our benchmarks, and thus we explain it in more
detail.

On IPF/Linux (and the run-time models for many other
architectures), accesses to global variables often occur in-
directly via the Global Offset Table(GOT) and a special re-
served register gp, the global pointer which usually points
somewhere into the middle of the GOT. Figure 5(a) gives a
typical code idiom for reading a global variable. The op-
timization performed by Ispike will replace the code idiom
with the one from Figure 5(b). Here we assume that the ad-
dress of the variable accessed is equal to gp�����. To pre-
serve correctness Ispike must ensure that the corresponding
GOT entry cannot be changed (or preempted) by the dy-
namic loader and that the variable is close enough to the
gp that the offset in the addl instruction will not overflow.
The first condition is trivially satisfied for static images; for
shared images Ispike consults relocations and symbols. The
second condition is also easily verified by Ispike as the im-
age is fully linked and all addresses are known.

It is worth noting that Ispike is in a unique position to
perform this kind of optimization. The compiler alone can-
not perform this transformation as it cannot make guaran-
tees about preemption and offset ranges. A smart linker
together with some cooperation from the compiler could
probably substitute the code idiom but would not be able
to eliminate the first (dead) instruction.

Applying the data-layout optimization from Section 3.3
can facilitate this GOT-access optimization since hot global
variables can be grouped together in a smaller range of ad-
dresses close to the gp. A similar optimization opportunity
was also observed by Haber et al. [9] in their data-layout
work.

4. IPF Implementation Issues
In this section, we address some of the architecture-

specific issues we encountered implementing Ispike opti-
mizations on IPF.

4.1 Call Shadow

On IPF, instructions are grouped into bundles, each of
which typically contains three instructions. The targets of
all control transfers, including calls and returns, are aligned
at bundle boundaries. An instruction i is under a call
shadow if it follows a predicated call instruction in the same
bundle b. If the call is not taken, i will be executed; how-
ever if the call is taken, control will be returned to the bun-
dle immediately following b after the call, and thus i will
be skipped. For instance, the instruction br elsewhere
in Figure 6(a) is under a call shadow. The presence of call
shadows poses a challenge to post-link time optimization:
if we add or delete instructions without special care, the
instructions under call shadows could be pushed to the fol-
lowing bundles and so will be executed even after return-
ing from the predicated calls, violating the original seman-
tics. To solve this problem in existing binaries, we adopt
the transformation proposed by Ramasamy and Hundt [20],
which uses trampolines to eliminate call shadows before ap-
plying any optimizations. Figure 6(b) illustrates this trans-
formation. To avoid this problem in future binaries, we have
also worked with the Intel compiler team to make the tool
chain free of call shadows.

4.2 Branch Inversion

As part of code layout, branch inversion is needed to
convert the targets of frequently taken branches to fall-
throughs. On IPF, the direction of a branch is determined
by the value of its predicate register. To invert a branch,
we need the complement of its predicate. Ispike finds the
instruction that defines the branch’s predicate, which is typ-
ically a compare instruction (cmp). If the complement is al-
ready computed by the compare and saved in another pred-
icate register pc, then we can use pc to invert the branch
provided that pc is not redefined between the compare and

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Original (b) Branch inverted by (c) Branch not inverted, but
computing the complement locality still improved

cmp.eq p1,p0=r6,r7
…

(p1)br Label_B

Label_A:

Label_B:

1%

99%

cmp.eq p1,p2=r6,r7
…

(p2)br Label_A

Label_B:

Label_A:

99%

1%

cmp.eq p1,p0=r6,r7
…

(p1)br Label_B

Label_B:

Label_A:

99%
br Label_A

1%

Figure 7. Branch inversion techniques.

the branch. This approach is also taken by Gillies et al. in
their study [7]. Unfortunately, there are many compare in-
structions that either do not compute the complement or do
not store it in another predicate register. One such case is
shown in Figure 7(a), where the cmp instruction has pred-
icate register p0 as the complement, which cannot be used
for branch inversion because p0 is hardwired to 1. In that
case, Ispike uses liveness analysis [8] to find a free predicate
register for holding the complement for branch inversion,
as shown in Figure 7(b). With this technique, the num-
ber of dynamic inverted branches out of the total number
of dynamic branches that we want to invert is dramatically
improved from 9.3% to 75.0% on average for the SPEC
CINT2000 binaries compiled by the Electron compiler. For
the remaining cases where we cannot find any free predi-
cate register or the compare instruction does not compute a
complement�, although we cannot invert the branch, we can
still move the branch’s target closer to the branch by adding
a new branch and switching the locations of the fall-through
block and the branch target. This approach is shown in Fig-
ure 7(c). Even when Ispike cannot invert a branch, we can
still increase I-cache locality at the expense of an uncondi-
tional branch.

4.3 Maintaining Unwind Information

Stack unwinding is the process of tracing back through
a stack of activation records for a process. Stack unwind-
ing is required in run-time systems for handling exceptions.
To unwind from a point in the program execution, a pro-
gram needs to specify rules for restoring registers. In ad-
dition, the C++ language places additional requirements on

�An additional problem is that comparisons with a NaT input are not
invertible (A NaT is a value that indicates a speculative operation has oc-
curred with a deferred exception). We avoid this problem by an agreement
with the compiler to not generate conditional branches that are controlled
by a comparison with a NaT input. The following scheduling rules accom-
plish this: (i) branches are kept in their original order, and (ii) speculation
check instructions are placed in their home block. These rules ensure that
the check for speculative exceptions occurs before the branch and the com-
parison will be re-evaluated with non-NaT inputs.

unwinding. C++ defines try, catch, and throw as con-
structs for exception handling. To support these language
features, the IPF ABI [22] permits a personality routine to
specify how to handle an exception, and permits control
to be transferred to landing pads implementing the various
catch clauses.

For IPF, the unwind information is provided using a
specially designed language of unwind records [5]. IPF
compilers/assemblers partition each procedure’s instruc-
tions into a set of a unwind regions such that instructions
in a given region share the same unwind records.

For each procedure, Ispike reads and interprets the un-
wind records for each region, and attaches the decoded un-
wind information to the procedure’s internal representation.
Ispike represents the implicit control flow to landing pads
with special edges in the flow graph; it maintains this infor-
mation during optimization by updating these edges. Ispike
follows two rules when optimizing routines with unwind in-
formation: (i) it never deletes instructions with unwind at-
tributes and (ii) it never moves instructions across unwind
regions of different types. When Ispike splits routines, it
generates new unwind information for the cold part by sum-
marizing the unwind state at the point of routine split.

4.4 Finding Registers for Prefetch Addresses

One major issue in implementing post-link stride
prefetching on IPF is the need for an extra register to hold
the prefetch address. This is not an issue for architec-
tures that have the base-plus-offset addressing mode in their
prefetch instructions (e.g., prefetch 32[R]), because
the prefetch address can be generated by adding a new offset
to the base register of the load being prefetched. However,
the prefetch instruction on IPF (lfetch) does not have an
offset field and hence the whole prefetch address has to be
explicitly computed and stored in a register. Our problem is
how to get this register at the post-link level, where register
allocation has already been done.

We have three solutions to this problem. First, we per-
form liveness analysis to find free registers at the points

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Ecc -O3 baseline

1
0

1
.3

9
0

.3 9
5

.6

8
5

.6

9
9

.0

9
7

.6

5
9

.6

9
5

.0

9
4

.8

9
6

.4

9
0

.0

1
0

2
.7

9
1

.5

0

20

40

60

80

100

120

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n

N
o

rm
a

li
z
e

d
 E

x
e

c
. 
T

im
e

 (
%

)
(b) Gcc -O3 baseline

1
0

2
.2

8
0

.9

9
5

.8

9
0

.9

9
3

.4

9
0

.4

5
9

.4

8
9

.0 9
4

.0 1
0

4
.9

9
0

.9 9
9

.4

9
0

.1

0

20

40

60

80

100

120

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n

N
o

rm
a
li
z
e
d

 E
x
e
c
. 
T

im
e
 (

%
)

Figure 8. Performance improvement of Ispike optimizations on SPEC CINT2000 binaries compiled by (a) Ecc and (b) Gcc.

where we want to prefetch. If no free register is found,
we attempt our second method–allocating an additional reg-
ister on the register stack [12] provided by the IPF hard-
ware. Typically, a procedure allocates its own frame on
the register stack by executing an alloc instruction as one
of the first instructions in the procedure. Ispike allocates
additional registers for prefetching by increasing the frame
size of alloc, up to the maximum size of the register stack
frame (96 registers). If there is no alloc or there are multi-
ple alloc’s in the procedure or the original frame size has
already reached the maximum, we cannot use this method
and must turn to our final method. On IPF, both load and
prefetch instructions have a base-update-immediate form,
where an given immediate value is added to the base regis-
ter after the memory access. Our last resort is to increment
the load’s base register by the prefetch offset, and then per-
form a prefetch with the same base register but a decrement
of the same prefetch offset. Hence, the base register’s value
is restored after the prefetch. This approach works as long
as the load’s base register is different from the destination
register and the prefetch offset can fit in the 9-bit immedi-
ate field. If all three solutions fail, we do not prefetch that
particular load.

4.5 Code Scheduling

High-quality code scheduling is important for perfor-
mance on IPF. The scheduling rules are complicated and
often quite subtle [4]. Also, the IPF instruction set encodes
three instructions per bundle. To avoid the complexities of
maintaining the original schedule and bundling throughout
all the phases of Ispike, we reschedule all code. This makes
the other optimizations simpler, and permits our intermedi-
ate representation to ignore bundling issues.

A compiler typically has more knowledge about the
memory aliasing issues than Ispike, and it can use this
knowledge when scheduling. The Ispike scheduler lever-
ages the compiler’s knowledge by favoring the original code
order. The result is a scheduler that both maintains the per-
formance of the original image and integrates the changes
made by our optimizer with little or no overhead.

5. Experimental Results
We now report the performance impact of Ispike opti-

mizations on the Itanium R�2 processor. We first describe our
experimental setup. Then we discuss the results of Ispike
optimizations that are driven by performance-counter pro-
files. Finally, we compare statistical profiles collected via
performance counters against complete profiles collected
via instrumentation in terms of their profiling times and re-
sulting performance impact.

5.1 Framework

The test bed of our experiments was a HP Everest server
with four 1GHz Itanium R�2 processors and 16GB memory.
Each processor has three levels of on-chip caches: 16KB
L1I/16KB L1D, 256KB L2, and 3MB L3. Only one pro-
cessor was used throughout our experiments. Our system
runs Red Hat Enterprise Linux AS with the 2.4.18 kernel.
We used SPEC CINT2000 as our benchmarks. The train-
ing data sets were used to generate profiles, while the ref-
erence data sets were used for performance measurement.
Each benchmark was run to completion five times, and the
median execution time was reported. We applied Ispike op-
timizations to non-shared binaries generated by two differ-
ent compilers: the Intel R�Electron compiler (Ecc) version
8.0 Beta, and the GNU C compiler (Gcc) version 3.2. For
both compilers, we used the O3 optimization level which
performs aggressive optimizations without interprocedural
analysis and using profiles.

5.2 Results with Performance-counter Profiles

We used our modified pfmon to collect the performance-
counter profiles needed to drive Ispike optimizations. We
ran each baseline once to simultaneously collect three types
of profiles: branch traces (the BTB counter), load misses,
and strides (both use the D-EAR). Since the goal of the ex-
periment in this section is to maximize performance, we use
relatively high sampling rates: one BTB sample per 10,000
branches, one D-EAR sample per 100 load misses, and for
stride profiling, one sample per 100 misses in the skipping
phase and one sample per miss in the inspection phase. The

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



10
0

10
1

10
0

90

10
0

96 10
0

86

10
0

99 10
0

98 10
0

60

10
0

95 10
0

95 10
0

96 10
0

90

10
0

10
3

0

20

40

60

80

100

120

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

ba
se

lin
e

op
tim

iz
ed

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e 

(%
) Busy Front-end L1D-access Load-to-use Br-mispredict Other

Figure 9. Cycle breakdown into various stall and flush reasons for the Ecc baseline and its optimized version.

total profiling overhead with these sampling rates is 58%
on average. Later in Section 5.3, we will show that reduc-
ing these sampling rates by 10 times will lower the average
profiling overhead to only 3%, at the expense of 1.7% less
performance gain.

Figure 8 shows the results of applying Ispike optimiza-
tions to the Ecc-generated and Gcc-generated baselines.
Code layout, streaming instruction prefetching, data layout,
data prefetching, and the other optimizations discussed in
Section 3.5 are all applied at the same time. As we mention
in Section 3.2, hint instruction prefetching requires an extra
profiling/optimizing pass. Nevertheless, we found that hint
prefetching does not bring additional benefit in these pro-
grams. Therefore, we do not include it in Figure 8 to avoid
the extra pass.

5.2.1 Overall Performance

Execution time is reduced by as much as 40%, with an
average improvement of 8.5% in the Ecc baseline and of
9.9% in the Gcc baseline. Larger speedups are observed
in the Gcc baseline since it is less optimized than the Ecc
baseline. Nine out of 12 benchmarks (crafty, eon, gap,
gcc, gzip, mcf, parser, perlbmk, and vortex) are
sped up in both baselines. The slowdowns observed in the
three benchmarks (combining both baselines) have differ-
ent reasons: for bzip2 and twolf, Ispike’s instruction
scheduler generates less optimized code than the compiler’s
scheduler; for vpr, the new data layout is somehow worse
than the original. Overall, Ispike optimizations achieve sig-
nificant speedups in both baselines.

5.2.2 How were the Cycles Spent?

To get insight into how our optimizations affect execu-
tion time, we used the cycle-accounting mechanism avail-
able on IPF to break down execution time into various stall
and flush reasons. The breakdown for the Ecc case (i.e.
Figure 8(a)) is shown in Figure 9 (the breakdown for the
Gcc case is omitted due to space limitation). Each bench-
mark has two bars: one for the baseline version and one for
the optimized version. Each bar represents the execution

time normalized to the baseline case and is broken down
into six categories. Busy is the cycles where the proces-
sor’s backend is not stalled. That is, the processor retires at
least one instruction in each of these cycles. The remain-
ing five categories are all stall or flush cycles. Front-end is
the stall cycles due to the lack of instructions delivered from
the processor’s front-end, usually because of I-cache misses
and I-TLB misses. L1D-access is the stall cycles in access-
ing the D-cache due to various reasons such as a store in
conflict with a returning fill. However, this does not include
the stalled cycles experienced by the consumers of loads.
Instead, these cycles are separately counted under Load-
to-use. Br-mispredict are the cycles where the pipeline is
flushed due to branch mispredictions and interrupts. All re-
maining stall cycles are lumped together as Other.

Figure 9 demonstrates that our various optimizations do
help different components of the execution time. Our I-
cache optimizations (code layout and prefetching) reduce
Front-end stalls in all benchmarks except vpr. Our D-
cache optimizations (data layout and prefetching) reduce
Load-to-use stalls in eight benchmarks, most dramatically
in mcf due to stride prefetching. Our other optimizations,
in particular the GOT-access optimization, also reduce the
Busy component by executing fewer instructions.

5.2.3 Contributions of Individual Optimizations

Having seen the combined improvement of Ispike op-
timizations, we now investigate the contributions of indi-
vidual optimizations. Figure 10 shows the results for the
Ecc baseline (Gcc baseline results are again omitted due
to space limitation). In Figure 10(a), we first apply code
layout and then incrementally add streaming prefetching
and hint prefetching. Code layout alone improves eon,
gap, and vortex by over 4%. Streaming prefetching
helps a little, most noticeably in perlbmk. However, hint
prefetching does not yield additional benefits. Instruction
prefetching does not produce much gain in these bench-
marks because only a small amount of time is spent on
front-end stalls, especially after code layout, as evidenced
in Figure 9. Nevertheless, we do observe larger speedups

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) I-cache optimizations

1
0
1
.7

1
0
0
.7

9
5
.3

9
5
.1

1
0
0
.6

9
7
.5

1
0
0
.3

1
0
1
.3

9
8
.3

1
0
1
.1

9
5
.0

1
0
0
.7

9
8
.9

1
0
1
.7

1
0
0
.3

9
5
.0

9
5
.0

1
0
0
.5

9
7
.5

1
0
0
.5

1
0
1
.2

9
7
.3

1
0
1
.3

9
4
.8

1
0
0
.5

9
8
.8

1
0
2
.1

9
9
.7

9
5
.8

9
5
.4

1
0
0
.6

9
7
.6

9
8
.3

1
0
1
.0

9
7
.9

1
0
3
.1

9
4
.4 1
0
2
.2

9
9
.0

0

20

40

60

80

100

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geo.

Mean

N
o

rm
a

li
z
e

d
E

x
e

c
.

T
im

e
(%

)
Code layout only

Code layout + streaming prefetching

Code layout + streaming prefetching + hint prefetching

(b) D-cache optimizations (c) Other optimizations

9
9

9
7 9
9

9
9

9
9

9
7 1
0
0

1
0
0

9
9

9
8 1
0
0

1
0
2

9
91
0
2

1
0
3

9
9

9
1

1
0
2

9
9

5
9

9
6 1

0
2

1
0
1

1
0
2

1
0
0

9
5

0

20

40

60

80

100

120

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n

N
o

rm
a

li
z
e

d
E

x
e

c
.

T
im

e
(%

)

Data layout only Data prefetching only
101

96 98 96
102

97
101 100 100 102

93
100 99

0

20

40

60

80

100

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n
N

o
rm

a
li

z
e

d
 E

x
e

c
. 

T
im

e
 (

%
)

Figure 10. Performance impact of individual Ispike optimizations on the Ecc baseline.

with instruction prefetching in a commercial database ap-
plication which has a much bigger code footprint than our
benchmarks. In Figure 10(b), the performance of data lay-
out and data prefetching is shown separately. Except for
vpr, the performance with data layout is either improved
or unchanged. It is because this optimization has no in-
struction overhead. In contrast, data prefetching requires
additional instructions for computing the prefetch addresses
and for the prefetches themselves. As a result, while we en-
joy substantial speedups in gap, mcf, and parser with
data prefetching, we also suffer slowdowns in a few bench-
marks. Finally, we show the improvements due to other
optimizations alone in Figure 10(c). Among all other opti-
mizations, the GOT-access optimization is the one that pro-
vides the biggest improvement. The gains in crafty and
vortex largely come from this optimization. For these
two benchmarks, we also note that the combined perfor-
mance improvement is bigger than the sum of the improve-
ments from individual optimizations. This is because the
data-layout optimization creates more opportunities for the
GOT-access optimization.

5.3 Profiling Overhead vs. Performance Impact

One practical consideration of profile-guided optimiza-
tions is the cost and accuracy tradeoff in profile collection.
In general, more accurate profiles come at the cost of longer
profiling time. In this section, we vary the profiling over-
head to two extremes and measure their resulting perfor-

mance. At one extreme, we use low sampling rates in pf-
mon. At the other extreme, instead of using performance-
counter profiles, we use a dynamic instrumentation tool on
IPF called Pin [2] to collect profiles that are functionally
equivalent to pfmon profiles. Complete instrumentation-
based profiles are the most accurate though the cost of col-
lecting them is typically much higher.

Figure 11 shows the overhead and performance improve-
ment of several profiling schemes. Figure 11(a) includes
the run-time overhead of three statistical profiling schemes
based on performance counters, with different sampling
rates. The notation used is: BTB=1/b means one BTB sam-
ple per b branches; D-EAR=1/d means one D-EAR sam-
ple per d load misses; Stride=�1/s,1/i�means one D-EAR
sample per s load misses in the skipping phase and one sam-
ple per i misses in the inspection phase. The first bar is the
default sampling rates that we have been using so far. When
we reduce the BTB sampling rate by 10 times in the second
bar, the average profiling overhead is down to 23%. And
when we also reduce both the D-EAR and stride sampling
rates by 10 times in the third bar, the profiling overhead be-
comes only 3% on average. Figure 11(b) is the overhead
of complete instrumentation-based profiling. We separately
collect three types of profiles: edge profiles, load-latency
profiles, and stride profiles. So, the total overhead of col-
lecting all three profile types is at least as much as the max-
imum of collecting any of them. Finally, Figure 11(c) shows
the performance improvements achieved with these various

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



(a) Performance-counter profiling overhead (b) Instrumentation profiling overhead

1
5

8
1

2
3

1
0

3

0

50

100

150

200

250

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n

N
o

rm
a

li
z
e

d
P

ro
fi

li
n

g
T

im
e

(%
)

Default: BTB=1/10K, D-EAR=1/100, Stride=<1/100, 1/1>

BTB=1/100K, D-EAR=1/100, Stride=<1/100, 1/1>

BTB=1/100K, D-EAR=1/1000, Stride=<1/1000, 1/1>

1
1

9
1

5
7

6
1

5
4

9
4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

G
eo

. M
ea

n

N
o

rm
a

li
z
e

d
P

ro
fi

li
n

g
T

im
e

(%
)

Edge profiling only
Load-latency profiling only
Stride profiling only

(c) Performance improvement

1
0

2
.0

9
0

.0

9
5

.5

8
6

.3 9
8

.7

9
6

.7

6
2

.0

9
3

.2

9
6

.9

9
8

.8

8
7

.8 1
0

2
.1

9
1

.81
0

1
.3

9
0

.3

9
5

.6

8
5

.6 9
9

.0

9
7

.6

5
9

.6

9
5

.0

9
4

.8

9
6

.4

9
0

.0 1
0

2
.7

9
1

.51
0

2
.3

9
1

.0

9
6

.7

8
5

.8 1
0

0
.2

9
6

.7

5
9

.8

9
4

.6

9
6

.5

9
9

.3

9
0

.8 1
0

3
.7

9
2

.31
0

2
.2

8
9

.7

9
6

.6

9
5

.8

1
0

0
.2

9
6

.7

5
9

.2

9
9

.5

9
6

.0

9
9

.8

8
8

.5 1
0

4
.2

9
3

.2

0

20

40

60

80

100

120

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Geo.

MeanN
o

rm
a

li
z
e

d
E

x
e

c
.

T
im

e
(%

)

Optimized with instrumentation profile

Optimized with perfmonance-counter profile (default: BTB=1/10K, D-EAR=1/100, Stride=<1/100, 1/1>)

Optimized with perfmonance-counter profile (BTB=1/100K, D-EAR=1/100, Stride=<1/100, 1/1>)

Optimized with perfmonance-counter profile (BTB=1/100K, D-EAR=1/1000, Stride=<1/1000, 1/1>)

Figure 11. Overhead and performance improvement of various profiling schemes.

profiling schemes.

The profiling overhead with performance counters is two
orders of magnitude less than that with Pin’s dynamic in-
strumentation. Nevertheless, it should be noted that the
current focus of Pin is on providing general instrumenta-
tion; little effort has been spent on minimizing profiling
overhead. Thus, instrumentation profiling overhead will
be reduced in the future. The really good news we learn
from Figure 11 is that we do not need to sacrifice much
performance for fast profiling. As Figure 11(c) shows, us-
ing instrumentation profiles to optimize does not provide
additional performance over our default scheme that uses
performance-counter profiles. In fact, performance-counter
profiles result in a noticeably higher performance than in-
strumentation profiles in mcf. The reason is that stride
profiling via D-EAR captures strides between misses, while
stride profiling via instrumentation captures strides between
references. It turns out that miss strides are better candidates
for prefetching than reference strides. When we lower the
BTB sampling rate from our default to the third bar in Fig-
ure 11(c), we suffer a 0.8% performance drop while the pro-
filing overhead is significantly reduced from 58% to 23%.
And when we also lower the D-EAR sampling rate by 10
times to the fourth bar where the profiling overhead is only
3%, although we observe substantial performance drops in

gap and parser (because a number of strides become
undetected), the average performance improvement is still
within 1.4% of that with instrumentation profiles. Overall,
performance-counter profiles produce as good speedups as
instrumentation profiles, but incur substantially less over-
head.

6. Related Work
Vulcan [24] and ILTO [23] are two other Itanium post-

link optimizers. Both of them focus on code-layout op-
timizations and use instrumentation profiles. In contrast,
Ispike provides a wider range of optimizations (code layout
and prefetching, data layout and prefetching, and the opti-
mizations in Section 3.5) and uses hardware-counter pro-
files. Therefore, Ispike can exploit more optimization op-
portunities with a smaller profiling overhead. Post-link op-
timizers developed for other architectures include FDPR for
the IBM R�Power R� [10], Etch [21] for the Intel R�Pentium R�,
and Alto [18] and Spike [3] both for the Compaq Alpha.

Most studies on profile-guided optimizations are based
on instrumentation profiles. Optimizers that use hardware-
counter profiles include Morph [27] and Spike [3]. To col-
lect profiles, Morph implements its own Morph Monitor,
while Spike uses DCPI [1]. Both the Morph Monitor and
DCPI were specially designed for continuous profiling, and

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



thus their profiling overhead is remarkably low (less than
0.3% for Morph and 1-3% for DCPI). In contrast, pfmon
is a general profiling tool and is not designed for continu-
ous profiling. Yet, we show that our profiling overhead can
be as low as 3%. In addition, we quantitatively compare
instrumentation profiles and performance-counter profiles,
and demonstrate that one can have both low profiling over-
head and good speedups with performance counters.

7. Conclusions
In developing Ispike, a post-link optimizer for the

Intel R�Itanium R�, we have faced new opportunities and
challenges. We have addressed Itanium-specific imple-
mentation issues including call shadows, branch inver-
sion, unwinding, getting free registers, and code schedul-
ing. We have exploited the fine-grain performance monitor-
ing on Itanium R�to drive important optimizations including
code layout, instruction prefetching, data layout, and data
prefetching. We show that these optimizations contribute
significant performance improvement to SPEC CINT2000:
an average of 8.5% over the Intel R�Electron compiler and
9.9% over the GNU Gcc compiler on the Itanium R�2 pro-
cessor. We also demonstrate that these speedups obtained
with performance-counter profiles are essentially the same
as those obtained with instrumentation profiles, and that the
profiling overhead can be as low as 3% while the speedups
are still substantial. Finally, we believe that the techniques
we developed are not limited to static optimization, but are
also applicable to dynamic optimization.

8. Acknowledgments
The Ispike scheduler was originally developed by Allan

Knies and his team, including Kevin Rudd who helped us to
use the scheduler. The streaming prefetching algorithm was
proposed by Vish Viswanathan. We thank Stephane Eranian
for supporting pfmon and Mark Charney for his detailed
review of this paper.

References
[1] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. Leung,

R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihi. Con-
tinuous profiling: Where have all the cycles gone. In Proceedings of the 16th
Symposium on Operating System Principles, October 1997.

[2] R. Cohn. Pin User Manual. http://systems.cs.colorado.edu/Pin, Nov 2003.

[3] R. Cohn, D. Goodwin, and P. G. Lowney. Optimizing Alpha executables on
Windows NT with Spike. Digital Technical Journal, 9(4):3–20, 1997.

[4] J.-F. Collard and D. Lavery. Optimizations to prevent cache penalties for the
intel itanium 2 processor. In Proceedings of the 2003 International Conference
on Code Generation and Optimization, March 2003.

[5] Intel Corporation. Intel Itanium Software Conventions & Runtime Architecture
Guide. http://developer.intel.com/design/itanium/family/, May 2001.

[6] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and D. Sehr.
An overview of the intel ia-64 compiler. Intel Technology Journal, 4 th
quarter:1–15, 1999.

[7] D. Gillies, R. Chaiken, R. Sree, and D. Connors. Ia64 binary-level branch
reversal. Technical Report MSR-TR-2003-85, Microsoft Research, 2003.

[8] David W. Goodwin. Interprocedural dataflow analysis in an executable opti-
mizer. In Proceedings of the ACM SIGPLAN 97 Conference on Programming
Language Design and Implementation, pages 122–133, 1997.

[9] G. Haber, M. Klausner, V. Eisenberg, B. Mendelson, and M. Gurevich. Opti-
mization opportunities created by global data reordering. In Proceedings of the
2003 International Conference on Code Generation and Optimization, March
2003.

[10] E. A. Henis, G. Haber, M. Klausner, and A. Warshavsky. Feedback based post-
link optimization for large subsystems. In Proceedings of the 2nd Workshop on
Feedback Directed Optimization, pages 13–20, November 1999.

[11] Intel Corporation. Intel Itanium 2 Processor Reference Manual for Software
Development and Optimization, May 2002.

[12] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual Vol.
1: Application Architecture, Oct. 2002.

[13] C-K Luk and P. G. Lowney. Patent application for Methods and Apparatus for
Stride Profiling: A Software Application. Intel Corporation, 2003.

[14] C.-K. Luk and T. C. Mowry. Cooperative prefetching: Compiler and hardware
support for effective instruction prefetching in modern processors. In Proceed-
ings of the 31st Annual ACM/IEEE International Symposium on Microarchitec-
ture, pages 182–193, December 1998.

[15] C-K Luk, R. Muth, H. Patil, P. G. Lowney, R. Cohn, and R. Weiss. Profile-
guided post-link stride prefetching. In Proceedings of 2002 International Con-
ference on Supercomputing, pages 167–178, June 2002.

[16] D. Mosberger and S. Eranian. IA-64 Linux Kernel Design and Implementation,
chapter 9.3: Kernel Support for Performance Monitoring. Hewlett-Packard
Company, 2002.

[17] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. In Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 62–73, October 1992.

[18] R. Muth, S. Debray, S. Watterson, and K. DeBosschere. Alto: A link-time op-
timizer for the Compaq Alpha. Software: Practice and Experience, 21(1):67–
101, 2001.

[19] K. Pettis and R. Hansen. Profile guided code positioning. In Proceedings
of the ACM SIGPLAN 90 Conference on Programming Language Design and
Implementation, pages 16–27, June 1990.

[20] V. Ramasamy and R. Hundt. Dynamic binary instrumentation on IA-64. In
Proceedings of the First EPIC Workshop, Dec. 2001.

[21] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and optimization of win32/intel executables using
Etch. In Proceedings of the USENIX Windows NT Workshop, pages 1–7, August
1997.

[22] A. Samuel. C++ ABI
for Itanium: Exception Handling. http://www.codesourcery.com/cxx-abi/abi-
eh.html.

[23] N. Snavely, S. Debray, and G. Andrews. Predicate analysis and if-conversion in
an itanium link-time optimizer. In Proceedings of the Second EPIC Workshop,
2002.

[24] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a
distributed environment. Technical Report MSR-TR-2001-50, Microsoft Re-
search, April 2001.

[25] A. Srivastava and D. W. Wall. A practical system for intermodule code opti-
mization. Journal of Programming Languages, 1(1):1–18, March 1993.

[26] Y. Wu. Efficient discovery of regular stride patterns in irregular programs and its
use in compiler prefetching. In Proceedings of the ACM SIGPLAN 02 Confer-
ence on Programming Language Design and Implementation, pages 210–221,
2002.

[27] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith. System support for
automatic profiling and optimization. In Proceedings of the 16th Symposium
on Operating System Principles, October 1997.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 


