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ABSTRACT 

This paper first introduces the concepts of mobile operators and mobile sequence, with which it redefines the rate of 
particle swarm optimization algorithm and the formula of position updating. Combining this discrete PSO algorithm 
with neighbors, the paper puts forward Hybrd Particle Swarm Optimization Algorithm, whose effectiveness is verified 
at the end of this paper. 
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1. Introduction 

The Particle Swarm Optimization algorithm [1] presented 
by psychologists Kennedy and Dr. Eberhart in 1995 is a 
new intelligent optimization algorithm which imitated 
the behaviors of birds. Compared with others, the PSO 
has shown its advantages. The PSO is intuitive and easy 
to realize and has high efficiency in complement. Nowa-
days, the PSO is widely used in many fields, such as 
functions optimization, training of neutral network, Fu- 
zzy system control and so on. 

Traveling salesman problem (TSP) is a typical combi- 
natorial optimization problem, which may be described 
as follows. Given n cities and the distances between 
every two cities, which is the shortest path for travelling 
all the cities only once? 

At first, PSO algorithm as an efficient method is 
mainly used to solve some continuous optimization pro- 
blems. However, with the development of PSO algorithm, 
some experts and scholars began to think how to solve 
the discrete optimization problems, such as, Kennedy [2] 
proposed a discrete PSO algorithm used to solve binary 
problems in the year of 1997 and he proposed a dynamic 
probabilistic PSO in 2005 [3]. In addition, some scholars 
presented the discrete PSO algorithm for solving TSP 
problem. Clerc [4] re-explained the velocity and position 
equation through replacement sequence, and Huang [5] 
proposed swapping sequence. Others combined cross- 
over and mutation of genetic algorithm with PSO algo- 
rithm [6], Zeng and Cui presented a new unified model 
of PSO [7] which can be used in solving combinatorial 

optimization problem. This paper proposed mobile op-
erators and mobile sequence for solving TSP problem. 
The arrangement of this paper is as follows. In Section 2, 
mobile operators and mobile sequence were defined. In 
Section 3, the velocity and position equation of PSO 
were re-explained and PSO algorithm was improved base 
on simulated annealing algorithm. In Section 4, TSP 
examples were used to evaluate the improved PSO algo- 
rithm, and the conclusions are given in Section 5. 

2. Mobile Operators and Mobile Sequence 

Definition 1. Assuming the solution space of TSP with n 
nodes be  , , ,1 2 Ns n n n  n E, i , and the mobile 
operator sv(i,k) means the node ni of s moving k steps 
 k N . If k is greater than zero, node ni moves back-
ward, on the contrary, it moves forward, and it keeps 
unmovable if k equals to zero. The formula  s ,s i k    
is a new solution after processing by the mobile operator 
sv(i,k). And the symbol plus is given a new meaning. 
Because the result of solving TSP is an h-cycle, and 
 1 2 N  and , , ,n n n 2 3 1 1, , , , ,N Nn n n n n  are the same 
solution actually.   

If k is greater than zero, node ni moves k steps anti-
clockwise, otherwise it moves |k| steps clockwise. 

Example 1. Assuming there are five nodes in TSP, 
and s equals to (1, 2, 3, 4, 5), the mobile operator is 
sv(1,2), and s’ can be presented as follows: 

       1, 2 1,2,3,4,5 1,2 2,3,1, 4,5s s sv       

If the mobile operator is sv(3,3), thus  
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    3,3 1,2,3,4,5 3,3s s sv       1,3, 2, 4,5

 1 2, , , lv sv sv

, , ,

 

Definition 2. Mobile sequence is the ordered sequence 
of one or more mobile operators, and it can be expressed 
as follows:  

v s  

where 1 2 lsv sv sv



v

 , , ,

 are mobile operators, and the or-
der of each operators has the rigorous significance. 

A mobile sequence is running on a TSP’s solution 
which means all operators of the mobile sequence are 
running on the solution one by one. 

Definition 3. Various mobile sequences running on 
one solution could bring same solution, all mobile se-
quences set with the same running result is called mobile 
sequences’ equivalent set. 

Definition 4. More than one mobile sequence can be 
combined into a new sequence,  is defined as the 
combining operator of two mobile sequences. 

Definition 5. Assuming a mobile sequence , which 
is made up of n mobile operators, equals to  

1 2 nsv sv sv , the length of this mobile sequence v  
is defined as n, i.e. the number of mobile operators. If 
v  is one, v  is called unit mobile sequence. 

Definition 6. Let  be a real coefficient on the in-
terval (0,1) and v be a mobile sequence and it equals to 

p

, n 1 2, ,sv sv  sv p v

v rand p

,  is defined by 

 1,0
p v

sv

  
 rand p





p v v p

 2 gk ikr p x 

1 1ik i kx x v  

 1i kv 

 1i kx
p

 

where rand is a random number between 0 and 1. It 
means,  equals to  on probability . 

3. IPSO—Improved PSO Algorithm 

Now, we can rewrite the iterative formula of PSO algo-
rithm as follows: 

   11 ik ik iki kv w v r p x         (1) 

 i k                             (2) 

where 
 := velocity of particle i at time step k + 1, 



ik  := best previous position of particle i, found so far, 
at time step k, 

 := position of particle i at time step k + 1, 

gk  := best neighbor’s previous best position, at time 
step k , 

p

1 2, ,w r r
,r r

 := social/cognitive confidence coefficients, 
and  are random numbers between 0 and 1. 1 2

As the PSO algorithm is easily trapped into local op-
timum in dealing with continuous problems, this paper 
applies the hybrid algorithm based on PSO to solve the 
TSP to avoid the same trouble. In each iteration, the PSO 

algorithm is running firstly, then produces l new posi-
tions in gk ’s neighborhoods by using the simulated 
annealing (SA) algorithm, compares the fitness of l posi-
tions’ and 

p

gk ’s, chooses the best position as p gk  and 
assigns the new position of 

p

gk  to a particle as the first 
particle which is randomly selected. If the same solution 
is got in m times of iterations, the velocity of all particles 
must be re-initialized. 

p

p

The specific process of the improved algorithm is 
shown as follows: 

1. Initialize the position and velocity of particle swarm, 
define velocity of each particle as the mobile sequence, 
and calculate ,ik gk

2. Update particles’ velocity and position according to 
Formulas (1) and (2) shown before; 

p

p

; 

1) Calculate the difference between ik  and ikx , and 
assign the result to A. A represent a mobile sequence 
which runs on ikx  and obtain . Then calculate ikp

1r A  and renew A with the result; 
2) Calculate the difference between gk  and ikp x , 

and assign the result to B. B represent a mobile sequence 
which runs on ikx  and obtain gkp

2r B
. Then calculate 

  and renew B with the result; 
3) Calculate ikW v  and plus with A and B, then re-

new particle’s velocity with the result; 
4) Update particle’s position according to Formula (2); 
3. Renew ,ikp gk

4. Generate  new locations randomly in the neigh- 
borhoods of 

p
l

; 

gk , compare the fitness of the new loca- 
tions with 

p

gkp . Renew gkp  and assign it to the first 
particle; 

5. Determine whether the algorithm has found the 
same optimal value after m times’ iteration, if the answer 
is yes, re-initialize all particle’s velocity. 

6. Determine whether the stop condition is met. If it’s 
met, end the loop, otherwise, go to Step 2. 

4. Experiments 

The weight of inertia of PSO is linear, which can be ex-
pressed as follows: 

max min
max

max

w w
w w k

iter


  

maxw

minw
iter
k

 

where 
 := Initial weight 
 := final weight 

max

 := the current number of iterations 
 := the maximum number of iterations 

TSP with 14 nodes [4,8] is used to examine the effec-
tiveness of the improved algorithm. Parameters setting: 
n-the number of particles is 40, the maximum times of 
iteration is 1000. The length of all particles’ velocity is 
initialized to 1 randomly, and the value of m is 10 as well 
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as l. Weight initialization: max , min . All 
feasible solution sequence begins from the first node. We 
executed the algorithm randomly for 30 times, the results 
of the experiments are analyzed in the Table 1. 

0.w  9 0.4w 

 ,

The maximum search space of the improved PSO al-
gorithm is 50,000.The search space of [8] is 200000 and 
is 4 times of ours, which shows that our approach is more 
effective. And in all the 30 runs our approach has con-
sistently found the optimal solution, which presents our 
algorithm convergence rate is 100 percent. 

Swapping sequence so i j

in
 is proposed in refer-

ences 4, which means exchanging  with jn
 , ,

 in the 
solution sequence 1 2 , Ns n n n . Now, compare 
swapping sequence so  with mobile sequence sv

B s

   ,6 , 5,6so

. If A 
is (1 2 3 4 5 6 7), and B is (1 3 4 5 6 2 7), then 

equals to A, 2,v 4

    2,6 , 3,6 , 4B so so so  

equals to A. Normally, unit mobile sequence  ,sv i k

  1,

 is 
equivalent to swapping sequence 

   , , 1, , ,so i i k so i i k so i    k i k  

k i k

 

of length k when  is greater than zero and   is 
not greater than N. On the contrary, if  is greater 
than N, it can be converted into a swapping sequence 

i k

 , sv i 1i k 
 ,

k  of length . Furthermore, unit 
swapping sequence 

N 



so i

 1, 1j i j   

 ,

j  (if j is greater than i) can 
be converted into a mobile sequence 

  , ,sv i j i sv  

of length two, if j equals to I + 1, it can be converted into 
the unit mobile sequence sv i j i . All of these imply 
that all problems the swapping sequence solved can be 
solved by mobile sequence, too. According to the length 
of exchange, mobile sequence has the advantage on 
swapping sequence. Moreover, if we take the definition 

 
Table 1. Results of TSP (14 nodes). 

Solution space (14-1)!/2 = 3,113,510,400 

Number of particles in 
the swarm 

40 

Average number of iteration 130 

Minimum number of iteration 13 

Maximum number of iteration 753 

Convergence rate 100% 

Average size of search space 130 × 40 + 130 × 10 = 6500 

Average search  
space/Solution space 

2.08768e-06 

Best solution of the algorithm 1-2-14-3-4-5-6-12-7-13-8-11-9-10 

Length 30.8785 

of swapping sequence into consideration, it has no iden-
tical operator, which means there is no unit swapping 
sequence A so Aso  can support the equation:   . 
However, the mobile sequence can overcome the short-
coming of swapping sequence with the equation 

 1,0A sv A   is satisfied in all solution sequence. 
Therefore mobile sequence is more effective than swap-
ping sequence. 

For further verification of performance of improved 
algorithm, we apply the improved algorithm to solving 
Bays 29 [9] and Oliver 30 [10]. The data come from 
TSPLIB, the weight decreases from 0.9 to 0.4 during the 
iteration and the maximum times of iteration is 1500, and 
other parameters are as same as TSP with 14 nodes. All 
experiments independently run 30 times and the results 
are shown in Table 2 and the best solutions of the two 
plans are shown in Figures 1 and 2. 

From Table 2, it is obvious that the improved algo- 
rithm gets a high convergence rate either in Bays 29 or in 
 

Table 2. Results of experiments Bays 29 and Oliver 30. 

Problem Bays 29 Oliver 30 

The swarm size 40 40 

Iteration step 1500 1500 

Opt 9074.1 423.9045 

Best result 9074.1 423.9045 

Average value 9123.316 429.7901 

Search space 1500 × 40 + 1500 × 10 = 75,000 75,000 

Solution space 28!/2 29!/2 

Search 
space/solution 
space 

1.22996e − 25 
4.24124e − 

27 

Convergence rate 17/30 19/30 

 

 

Figure 1. The best solution of experiment BAYS 29 with our 
algorithm. 
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Oliver 30, though the search space versus solution space 
is small (1.22996e−25, 4.24124e−27). It demonstrates 
that the improved algorithm has the advantages of small 
searching area and high convergence rate in solving the 
small TSP problems, and it is efficient. 

problems. Through experiments in this paper, we can 
draw conclusions: 

1) Using PSO algorithm with mobile operators and 
mobile sequence is an effective new way to solve TSP. 

2) The improved algorithm has the advantages in small 
searching area and high convergence rate in solving the 
small TSP problems. 

For comparison, three other artificial algorithms in-
cluding basic SA, basic GA and Basic Ant Colony Algo-
rithm are used to solve the same TSP problem. All four 
algorithms are run 20 times for Oliver30, the results are 
shown in Table 3. 
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