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omputer vision imposes unique re- 
quirements on the representation 
and manipulation of image data 

and knowledge. At a vision system’s low- 
est level are sensors that represent an image 
with purely numeric image arrays, while at 
the highest level are semantic world mod- 
els that provide the final interpretation of 
the scene. In between are thousands of 
intermediate descriptions, many of which 
must be repeatedly accessed and processed 
during interpretation. Traditional knowl- 
edge representation methods do not pro- 
vide mechanisms to accomplish this effec- 
tively. 

In this article, we describe a representa- 
tion and management system for use at the 
intermediate (symbolic) level of vision. 
Based on database management methodol- 
ogy, the Intermediate Symbolic Represen- 
tation (ISR) mediates access to intermedi- 
ate-level vision data and forms an active 
interface to the higher-level inference 
processes that construct an image’s inter- 
pretation. The system supports important 
types of data and operations and can be 
adapted to the changing needs of ongoing 
research. Furthermore, it provides a cen- 
tralized data representation that supports 
integration of results from multiple ave- 
nues of research into the overall vision 
system. 

A vision system 

generates thousands of 

intermediate-level 

descriptions. ISR 

combines database 

management and 

knowledge 

representation methods 

to allow effective access 

to these descriptions. 

A computational 
paradigm for 
computer vision 

The goal of computer vision is to con- 
struct automatically from a digital image a 
symbolic interpretation that describes the 
environment from which the image was 

captured. This description includes the 
identity and structure of objects and their 
spatial and temporal relationships. (We 

restrict our discussion to static images 
captured from a single sensor with no 
motion information.) The need to identify 
objects implies that vision systems must 
have access to a knowledge base contain- 
ing descriptions of the objects or of gener- 
alized object classes. Consequently, a 
generally accepted paradigm for computer 
vision involves multiple levels of repre- 
sentation and abstraction, from image rep- 
resentation (purely numeric) to object or 

object-class models (highly abstracted) 
stored in the knowledge base.’ 

This paradigm underlies the Visions 
Image Understanding System, a research 
system being developed in the Computer 
Vision Laboratory at the University of 
Massachusetts at Amherst. Visions is or- 
ganized into three conceptual levels of 
visual processing: low (image level), inter- 
mediate, and high (knowledge level). At 
the low level of vision, potentially useful 
image events, such as homogeneous re- 
gions (collections of contiguous image 
data points with similar properties), edges 
and lines, 3D surface patches, and motion 
information, are extracted from the image 
data, typically without knowledge of the 
image content. 
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Figure 1. Stylized view of the three levels of representation in Visions. The left column contains representations of data a t  
each level, and the right side shows the internal representations corresponding to these data. At the low level a re  the image 
data and an image blowup (left), with the internal representation consisting of numeric arrays (right). The intermediate 
level shows a region segmentation in which regions are denoted by their boundaries (far left) and a straight-lines represen- 
tation (left); the internal representation is a symbolic token and frame representation (right). Finally, at  the high level, a 
3D wire-frame model (left) represents the image interpretation, while the internal representation takes the form of a sym- 
bolic network (right). 

The system stores descriptions of these 
events at the intermediate level as named 
and typed symbolic entities called rokens. 

Each token contains attribute-value pairs 
that describe the event (for example, the 
color and texture of a region or the length 
and contrast of a line segment). Additional 
tokens and token types are created by 
grouping, splitting, or modifying existing 
tokens. Tokens also can be constructed 
from other tokens, imposing a hierarchical 
structure on the representation. 

High-level knowledge is organized into 
object descriptions called schemas. Sche- 
mas are organized into relational networks, 
such as a part-subpart hierarchy, to facili- 
tate recognition. Each schema has an asso- 

ciated procedural component that searches 
for evidence of the object in the low- and 

intermediate-level data. Schemas are ac- 
tive entities and communicate asynchro- 
nously with each other by means of aglobal 
blackboard maintained by the schema sys- 
tem control shell. 

Figure 1 is a stylized and highly simpli- 
fied diagram of the three levels of repre- 
sentation. For more detail on Visions, as 
well as image interpretation results on 
house and road scenes, see Draper et al.’ 

A major consideration in creating an 
interpretation is the inevitable mismatch 
between idealized models and bottom-up 
data. The output of even the best low-level 
algorithms must be considerably trans- 
formed before or during the matching 
process. Much of the transformation in 
Visions occurs at the intermediate level. 
Perceptual organization algorithms split, 

merge, add, and delete intermediate-level 
tokens, as well as create more-abstract 
tokens from simpler ones. Examples of 
more-abstract tokens include line groups 
that satisfy certain geometric properties 
and aggregates of regions and lines consis- 
tent with an object or object part in the 
knowledge base. We later discuss addi- 
tional examples of aggregate tokens and 
the processes that create them. There is no 
practical limit to the variety or quantity of 
tokens based on aggregates of other to- 
kens. 

Tokens at the intermediate level are not 
isolated events. Often their most important 
properties are their relations to other to- 
kens, as in the line-grouping algorithm of 
Boldt et al.3.4 This algorithm groups short 
lines to form longer ones in a recursive 
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Table 1. Size of the intermediate symbolic representation after low-level processing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Image No. of No. of No. of No. of No. of Data size 
Regions Straight Line-Region Boundary Boundary Including 

Lines** Intersections* Lines** Line-Region Token Features 
(S hortlother) (Shortlother) Intersections* (in Mbytes) 

Road 1 187 3,9811911 1,517 1,7561206 
Road2 307 4,0621963 1,868 2,8111212 

Road 10 31 1 4,2091996 2,111 3,2461242 
Road 16 222 3,7441733 1,112 1,30511 87 
Road25 356 4,3641949 2,354 3,7301285 

Road5 427 4,019/1,051 2,736 3,7331379 

124 
75 1 
,415 
853 
775 
980 

House1 305 2,8431878 1,793 1,1741405 1,438 
House7 168 3,5221900 1,823 2,2391242 711 
House 10 165 2,6751845 1,255 9651241 836 

1.6 
2.0 
2.4 
2.1 
1.5 
2.3 

1.5 
1.6 
1.2 

* Line-region intersections and features are not calculated for short lines. 
** Short lines are less than five pixels long. 
Note: All images have a resolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 256x256 pixels. 

cycle of linking, grouping, and replace- 
ment based on endpoint distance, relative 
orientation, and lateral displacement. The 
algorithm terminates when no further line 
segments can be replaced. At each recur- 
sive level, old line tokens are retrieved by 

and manipulation of intermediate-level 
data. 

(2) It must provide a simple and intui- 
tive applications programming language 
for researchers who are programmers out 
of necessity. 

ment to determine an efficient set of lan- 
guage primitives for spatial retrieval appli- 
cations. 

What follows is a summary of signifi- 
cant intermediate-level data requirements. 
The first requirements address efficient 

spatial proximity and orientation. Since an 
image of reasonable size and complexity 
might have 10,000 or more initial line 
tokens, the spatial relations at the heart of 
this and similar algorithms must be effi- 
ciently represented. 

The amount of intermediate-level data 
involved in the interpretation of a single 
image is quite large. Table 1 lists nine 
typical images used in interpretation ex- 
periments and details the size and storage 
requirements for five types of symbolic 
image events (not including low-level 
image data). The event types are regions, 
straight lines, line-region intersections, 
lines lying along region boundaries, and 
region-boundary line intersections. The 
data in Table 1 represents only those image 
events and relationships between them that 
are extracted from the image before execu- 
tion of any intermediate-level grouping 
process or schema interpretation strategy. 

Efficiency here is more than just a mat- 
ter of convenience. The computational 
burden of vision is such that certain experi- 
ments are not currently feasible except 
with highly optimized data management. 
Consequently, the database should not 
incur overhead for features a researcher 
will not use. On the other hand, researchers 
will not use a database language that re- 
quires excessive learning or programming 
for basic functions. If the system is not in 
general use, data will not be shared, ma- 
chine-readable data output from experi- 
ments will be effectively lost, and re- 
searchers will constantly reimplement the 
same data structures and manipulation 
procedures. 

Therefore, we have designed ISR as a 
“reduced instruction set” for computer 
vision applications. ISR provides a set of 
primitive operations and representations 
that are easy to use and with which any 

support of the necessary data manipulation 
and retrieval operations. 

(1 )  Vision research requires spatial data 
types and retrieval methods not usually 
supported in standard database systems. 
An algorithm like the Boldt line extractor 
can make hundreds of thousands of spatial 
access queries on a single image. The algo- 
rithms we discuss in the sections entitled 
“Perceptual grouping” and “Spatial ac- 
cess’’ do less work in total, but the ratio of 
spatial queries to other database queries 
remains about the same. The spatial access 
functions that implement these retrievals 
must be implemented efficiently. ISR 
supplies methods for retrieving all tokens 
that intersect a given bounding rectangle 
or all tokens that intersect a region of 
arbitrary shape. This feature is the main 
focus of the ISR design; we are continuing 
to research optimal methods of spatial data 
representation and retrieval. 

intermediate-level applications can be 
built. 

Primary requirements. In designing 
ISR, we have drawn from both database 
practice and knowledge representation 

(2) Data structures should be standard- 
ized sufficiently to allow efficient sharing 
of data: 

D at abase re qui r em en t s 
for image 

Incremental saves and loads of partial 
data sets must be possible. 

interpretation 

technology, the former for efficiency and 
generality and the latter for flexibility. We 
also have based our design on the experi- 

Data must be saved in logical modules 

Loading selected records and selected 

A database system for vision research 
of reasonable size and scope. 

must satisfy two distinct requirements: 

(1) It must provide efficient access to ence of researchers in the Visions environ- fields of those records should be possible. 
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All of these requirements are fulfilled by 
database management systems (DBMSs); 
knowledge representation systems cur- 
rently do not provide much capability or 
flexibility in this area. 

(3) The researcher must be able to re- 
configure the database dynamically, add 
fields or attributes to a record, or create a 
new data set with records or attributes from 
one or more existing data sets. Every re- 
searcher is free to alter the syntax, seman- 
tics, and facts in a database; keeping these 
changes private or making them available 
to the research group should be easy and 
not require storing large quantities of re- 
dundant data. In ISR, it is simple to create 
a data set, alter its definition, or copy, load, 
or save a data set’s selection or projection. 
The system provides reasonable means of 
tracking the sources of various elements of 
a user’s individual database. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(4) Like any research tool, the database 
application language must be as powerful 
and uncomplicated as possible. It must be 
fully embedded in the host language (Lisp 
or C, in our case) and must imitate the best 
features of that language as much as pos- 
sible. To satisfy this requirement, we built 
a prototype of ISR and spent a year and a 
half analyzing information about its use, 
about spatial retrieval applications written 
or proposed for it, and about requests for 
changes or new features. We then inte- 
grated our findings into the current design. 

(5) Extendability must be built into the 
database. The design must be modular and 
open-ended, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that future developments 
are not precluded. Source code must be 
available. When a commercial DBMS is 
chosen and the databases are designed in it, 
the data requirements are expected to be 
fairly stable. In a research environment, 
however, requirements for data and data- 
base operations may change drastically. It 
is inevitable (and desirable) that new op- 
erations will be demanded. Primitive op- 
erations must be modular enough that the 
user can combine them to generate new 
functions. 

Database technology. Vision research 
demands basic facilities for storing, shar- 
ing, accessing, selecting, and sorting large 
quantities of data. But there are points 
where vision data requirements diverge 
from DBMS capabilities. We can learn a 
great deal about an ideal data management 
system for computer vision by examining 
those differences. 

The traditional DBMS environment 
demands three separate levels of human 
interaction: the database administration 

level, the applications programming level, 
and the end-user level. These interactions 
are often mediated through two or three 
different languages in the database, as well 
as different levels of privilege. In a com- 
puter-vision research environment, how- 
ever, there is often no distinction between 
these types of interaction. An individual 
researcher can create, delete, and restruc- 
ture a database, write complex experimen- 
tal applications in the database language, 
and examine the results on a graphics 
screen. Embedding these three distinct 
levels of functionality in one efficient, 
conceptually simple language represented 
a major challenge for ISR’s design. 

Knowledge representation technol- 

ogy. Current knowledge representation 
technology has some positive qualities that 
are being incorporated into new database 
re~earch .~  However, it also has a number of 
deficiencies, some of which can be reme- 
died by recourse to DBMS methods. The 
positive features are extendability, flexi- 
bility, and the capability for procedural 
attachment. We have borrowed these in the 
concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAframes (data types that can be 
redefined dynamically) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdemons (pro- 
cedures that can be executed when data 
field values are accessed). 

Unfortunately, such common database 
utilities as sorting and indexing have been 
quite rare in knowledge representation 
systems, perhaps on the presumption that 
knowledge needs a great deal of hierarchi- 
cal structure and very little linear structure. 
Vision and much other artificial intelli- 
gence research, however, requires full 
support of standard database operations 
and such standard data types as arrays, 
sets, integers, floats, and strings. 

Data storage and retrieval are an after- 
thought in many systems, making saving 
and reloading data sets a cumbersome 
operation. Data sharing is extremely diffi- 
cult because data values and data descrip- 
tions are stored as a unit. 

Also, those inference procedures built 
into knowledge representation systems are 
generally wide of the mark. In an area as 
data-intensive as computer vision, data- 
driven processing must be carefully con- 
trolled. A weak method such as forward 
chaining must be used with a great deal of 
top-down control to restrict the generative 
effect of thousands of pieces of data. Fur- 
thermore, many computational decisions 
in vision processing are made with statisti- 
cal or combinatorial optimization tech- 
niques, requiring some future extension of 
a constraint programming language to 

support the kind of mathematical inference 
required. 

We examined current database theory 
and practice to determine if an appropriate 
system already existed. Image DBMSs do 
not focus on operations essential to com- 
puter vision research, where indexing ob- 
jects to images is not a typical task, but 
finding the intersection of arbitrary sub- 
sets of pixels is very common. Although 
engineering database systems require 
similar flexibility and extendability, they 
are even less appropriate because they 
offer nothing equivalent to low-level vi- 
sion. What we required was not available: 
a system tailored to the needs of computer 
vision research and easily adaptable to 
different machines and languages. 

There are other database systems for 
computer vision, most notably Carnegie 
Mellon’s Codger6 and SRI’S Core Knowl- 
edge System.’ Codger has evolved over the 
same time period as ISR, and there are 
similarities even in nomenclature. But 
Codger is broader in scope, encompassing 
very high level representation and process 
scheduling in addition to intermediate- 
level data management. Furthermore, 
Codger appears to treat as primitives many 
functions that ISR would view as applica- 
tion programs, such as transformation of 
3D coordinates. Not all researchers work- 
ing at the intermediate level need or want 
high-level representations or operations, 
and even researchers in high-level vision 
might want a different methodology than 
the one supported. In the long run, such an 
all-encompassing approach could render 
the system cumbersome, making i t  less 
likely to be used by the researchers for 
whom it is intended. 

The Core Knowledge System is a more 
recent design that seems to be intended as 
a knowledge representation system for 3D 
world modeling at a very high level. It 
devotes much attention to semantic issues 
that are less essential at the intermediate 
level of computer vision and hence pays 
less attention to efficient spatial retrieval 
and manipulation of 2D symbolic entities. 

ISR seems to be unique as a small, effi- 
cient, and flexible DBMS focused on the 
needs of intermediate-level vision. 

The ISR data 
management system 

ISR’s design was constrained by both 
the nature of symbolic image interpreta- 
tion and the need to serve multiple re- 
searchers with varied interests. Conse- 
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Figure 2. A frame and token hierarchy, depicting a set of line tokens and a set 01 
region tokens, all extracted from the same image. Note that image features de- 

scribe a particular image event, such as the length of a line, while frame feature: 

describe a class of events, such as the average length of a line. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
quently, the system provides a small set of 
highly optimized primitive commands and 
representations that can be combined to 
meet the needs of a particular user’s re- 
search. For example, common structures 
such as line segments and regions, along 
with their associated operations, are not 
part of the system primitives, but are kept 
in optional libraries. As new token types 
and operations are found useful they can be 
placed in additional libraries. 

Tokens and features. ISR’s fundamen- 
tal object is the token, which i s  similar to a 
record in a standard DBMS. A token can 
represent an image event (such as a line or 
a homogeneous region in an image) or an 
aggregate of events (such as a group of 
parallel lines, a geometric structure, or the 
regions and lines hypothesized to belong to 
some object). The data fields of an ISR 
token, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfeatures, describe attributes 
of the referenced event. Features resemble 
frame slots in a knowledge representation 
system, in that they have attached proce- 
dures (demons) that can be activated when- 
ever a value is requested or modified or 

when a value is needed that has not yet 
been computed. ISR tokens for similar 
image events are grouped into token sets, 
which allow operations over similar data. 
For example, a token set consisting of all 
the lines for one image would allow such 
operations as displaying every line in the 
set or computing the contrast across each 
line. 

Frames. Each token set is embedded in 
a descriptor object called a frame. The 
relationship between a frame and its token 
set is similar to the class/instance relation- 
ship in object-oriented databases. Each 
token represents an event, such as a region 
extracted from an image, while the frame 
represents the class of events, in this case 
the set of all regions. 

Like tokens, frames are first-class data 
objects with features. Frames are also 
linked into hierarchies that denote rela- 
tionships between associated token sets. 
For example, two frames containing the 
lines and regions from a single image might 
both be children of the same image frame 
(see Figure 2). In addition, the frame pro- 

vides a modifiable description of its token 
set. For example, a frame feature can con- 
tain statistics on token set feature values, 
such as the mean and standard deviation of 
the length feature for a set of lines. Since 
the most natural hierarchy for one problem 
might not fit another, the user can specify 
the frame hierarchy. 

Feature data types. A token or frame 
feature can have one of the following data 
types: integer, float, string, array, pixel 
map, ISR handle, or pointer. Pixel maps 
are 2D bit-arrays that specify a set of pix- 
els. The operations defined over pixel 
maps are union, intersection, set-differ- 
ence, and a count function that returns the 
number of pixels. Pixel maps are used to 
map regions (which have no simple, ana- 
lytic form) onto images. For example, a 
pixel map acts as a mask, specifying which 
pixels are in a region and should be 
summed to calculate the region’s average 
intensity. 

Since feature storage is allocated at 
runtime as needed, the user can create a 
virtual feature whose value is computed as 
needed and never stored. This is useful for 
defining data aggregations that are con- 
structed on demand from primitive fea- 
tures. For example, assume that the end- 
points of a straight line are stored as four 
features, x,,, yo, x,, and y,. If a user program 
needs to access each endpoint as a vector, 
the user can create a virtual feature called 
endpoint. Endpoint consumes no data stor- 
age space; when accessed, it constructs a 
vector out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , ,  y,, which is returned to the 
caller. Similarly, a vector of the form xi, y l  
can be used to “set” the value of endpoint, 
in which case a storage demon breaks up 
the vector and stores each value in the 
appropriate field. Virtual features are also 
useful for implementing transparent con- 
versions between different representations 
of the same data, such as polar/rectangular 
or ego-/world-centered coordinates. 

Handles and subsets. One of our funda- 
mental requirements for ISR was that it 
express relations between tokens, espe- 
cially associative relations. ISR can ex- 
press simple pair relations through token 
features called handles. A handle is a ref- 
erence to a token or frame in the database. 
Associative relations are represented by 
token subsets, which specify some or all of 
the tokens in a token set. For example, a 
token subset can denote the set of all re- 
gions whose average intensity exceeds 50 
grey levels or all lines that are at least five 
pixels long. We can view ISR functions 
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that create and manipulate token subsets as 
a software analogue of content-address- 
able or associative memory. Token subsets 
can be 

(1) selected by numeric feature ranges 
or properties of pixel maps; 

(2) combined by basic set operations 
such as union, intersection, or set- 
difference; and 

(3) used as a guide to control function 
application. 

An example of the last case is computing 
the contrast of every line more than five 
pixels long. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA special class of token subset, 
called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsort, represents an ordering over 
the token subset's elements. Token subsets 
and sorts are both handles and can be stored 
on any token or frame feature of that type. 

ISR in use 

Classification. One of the oldest and 
most studied problems in computer vision 
is the classification of image regions by 
feature values.* Color, texture, shape, lo- 
cation, or other attributes of a region are 
used to categorize it as belonging to one of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N classes. One approach to classification 
that takes advantage of lazy evaluation is 
based on decision trees (also called regres- 
sion trees9). 

In adecision tree, every leaf node carries 
the name of a category, and every internal 
node selects a feature to be tested (see 
Figure 3). The classification procedure 
begins by making the root of the decision 
tree the current node. The procedure then 
enters a loop in which the current node 
determines which feature of the region 
should be tested, and the resulting feature 
value dictates which child node should 
become the current node. The loop is ex- 
ited when the region reaches a leaf node, at 
which time the region is assigned to the 
category on the leaf node. 

Decision trees are popular partly be- 
cause of their efficiency. Unlike a Bayes 
classifier, a decision tree only requires that 
a few of a region's features be computed, 
specifically, the features on the path from 
the root node to the eventual leaf node. To 
take advantage of this, ISR supports lazy 
evaluation. When ISR is used as the data- 
base for a decision tree, the region feature 
values need not be computed beforehand. 
Instead, the function for computing each 
feature of a region is installed as a demon. 
When classifying a region, the tree tra- 
versal algorithm asks for the value of the 
feature at the current node. The demon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3. Region classification: (a) a portion of a decision tree that classifies re- 

gions as objects on the basis; (b) the result of classifying regions based on the 

tree in (a). The original image is shown in Figure 5a. 

notices that the value has not yet been 
computed, calculates it, and returns the 
appropriate value; the value can also be 
stored in case it is requested again. In this 
way, feature demons help avoid comput- 
ing unnecessary feature values. 

Perceptual grouping. Grouping related 
tokens into aggregate structures (percep- 

tual grouping) is a common intermediate 
vision task. One strategy groups tokens by 
the transitive closure of one or more rela- 
tions. If the tokens are viewed as nodes in 
a graph and the relations as adjoining arcs, 
then this style of grouping forms the con- 
nected components of the graph. The result 
is a set of tokens that represents a new 
image event and can possess properties not 
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Figure 4. Results from rectilinear line grouping: (a) the original aerial image; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) one of the rectilinear line groups (in 

heavy lines) found by the grouping algorithm, superimposed over the complete set of intermediate-level straight lines that 

constitute the input to the algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
possessed by any of its components. 

The Rectilinear Line Grouping System’O 
is a perceptual organization system in ISR. 
The basic relations measured by the RLGS 
are whether two proximal lines are colin- 
ear, parallel, or perpendicular. For every 
line in the image, the RLGS finds the set of 
lines that are proximal and parallel to it and 
stores this information as a token subset on 
the line token. The RLGS repeats this 
process, looking for lines that are proximal 
and colinear or proximal and perpendicu- 
lar. Finally, the RLGS looks for groups of 
lines connected by one or more relations 
(colinear, colinear or perpendicular, etc.). 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 depicts such a group. The group 
can either be returned to the user as a token 
subset or be stored as a feature on a “line 
group” token. In the latter case, other fea- 
tures of the line group, such as its mini- 
mum bounding rectangle, can also be 
computed and stored. 

Spatial access. Spatial proximity is an 
important consideration in accessing im- 
age information. We often want to access 
just those tokens lying on or near a particu- 
lar point in the image. To this end, grids are 
often imposed on the 2D image, dividing it 
into rectangular cells called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbigcells. If 

lines, regions, or other image events are 
stored according to the bigcells they inter- 
sect, it becomes relatively easy to retrieve 
a token’s neighbors by accessing only 
those bigcells that lie within the radius of 
interest. 

We have implemented bigcells in ISR 
by creating a token set in which each cell of 
the grid is represented by a token. Each 
feature of the cell token represents a subset 
of objects (such as lines or regions) that 
spatially intersect that cell. We have writ- 
ten functions for storing tokens in the 
appropriate cells and for retrieval based on 
eight types of spatial relations (point-to- 
line, line-to-line, region-to-region, etc.). 

A typical use of the spatial indexing grid 
occurs during the interpretation of a road, 
which is part of a larger interpretation 
effort involving a road scene.* Figure 5a is 
a photograph of a typical road scene, and 
Figure 5b is the output of a low-level algo- 
rithm for identifying lines applied to the 
lower left quadrant of the photo image. The 
goal is to identify the boundary of a road 
line from the set of lines identified by a 
low-level line-extraction algorithm. The 
method is to construct from existing line 
segments a line-chain that satisfies the 
constraints for a centerline as represented 

in the knowledge base. 
Although the algorithm described below 

could be applied to the inital set of lines 
derived from the entire image, typically 
the interpretation process would already 
have determined a context for the center- 
line (for example, by hypothesising the 
road surface or road sides). The context 
spatially constrains the possible locations 
of the centerline and reduces the combina- 
torics of the search process. 

The line-chain algorithm starts with a 
line that is a good candidate for a boundary 
line. That line is extended by joining it end- 
to-end with other lines that meet it near its 
endpoints. The algorithm selects candi- 
dates for extension by retrieving any lines 
within a small radius of the endpoints of 
the current line-chain. Figure 5c shows 
(along with the final successful line-chain 
interpretation) the grid cells accessed dur- 
ing the search and the candidate lines re- 
trieved. Figure 5d shows the set of candi- 
dates after selecting only those within a 
small distance of the current line-chain 
endpoints. The resulting spatial structure 
will then be subject to further verification 
and validation by high-level schema strate- 
gies before being added to the evolving 
overall interpretation. 
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Figure 5. Bigcell spatial access during image interpretation: (a) the original image; (b) the set of straight-line tokens ex- 

tracted from the image; (c) the grid bigcells accessed during the search and the candidate lines retrieved; (d) those candi- 

dates within a small distance of the current line-chain endpoints. 

Grids implemented in this way do not 
have to represent regular equal divisions. 
Furthermore, a grid can partition not only 
spatial attribute values but any numeric 

attribute with a finite range. Access to 
tokens by any feature can be supported by 
dividing the feature into ranges and storing 
tokens as token sets on the corresponding 

cells. Thus we can use the same primitives 
that implement spatial access to imple- 
ment histogram-based algorithms and 
generalized Hough transforms. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAur experience with intermediate- 
level computer vision has taught 
us three lessons: 

Spatial representations, spatial access, 

A database for a research environment 

Efficiency is critical. 

ISR combines the standard access and 
retrieval mechanisms of DBMS technolo- 
gies with the notion of frames and demons 
found in knowledge representation lan- 
guages. Most importantly, ISR provides 
special spatial representations and access 
routines not traditionally found in either of 
these two fields. 

Versions of ISR have been operating in 
the Computer Vision Laboratory at the 
University of Massachusetts for over three 
years; the current version is implemented 
in Lisp and has been in use for over a year. 
In addition, a version of ISR has recently 
been embedded in a commercial system. 

Our major conclusion is that neither 
traditional DBMSs nor knowledge repre- 
sentation languages support the primitive 
spatial data structuring and access func- 
tions required at the intermediate level of 
vision. ISR adds spatial primitives to the 
capabilities of database management and 
knowledge representation systems to pro- 

vide a simple yet effective database for 
intermediate-level vision. W 

and procedural attachment are essential. 

must be easy to use and modify. 
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