
ISR: A Database for
Symbolic Processing in

C omp ut er Vi si on

John Brolio, Bruce A. Draper, J. Ross Beveridge, and Allen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Hanson

University of Massachusetts at Amherst zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
omputer vision imposes unique re-
quirements on the representation
and manipulation of image data

and knowledge. At a vision system’s low-
est level are sensors that represent an image
with purely numeric image arrays, while at
the highest level are semantic world mod-
els that provide the final interpretation of
the scene. In between are thousands of
intermediate descriptions, many of which
must be repeatedly accessed and processed
during interpretation. Traditional knowl-
edge representation methods do not pro-
vide mechanisms to accomplish this effec-
tively.

In this article, we describe a representa-
tion and management system for use at the
intermediate (symbolic) level of vision.
Based on database management methodol-
ogy, the Intermediate Symbolic Represen-
tation (ISR) mediates access to intermedi-
ate-level vision data and forms an active
interface to the higher-level inference
processes that construct an image’s inter-
pretation. The system supports important
types of data and operations and can be
adapted to the changing needs of ongoing
research. Furthermore, it provides a cen-
tralized data representation that supports
integration of results from multiple ave-
nues of research into the overall vision
system.

A vision system

generates thousands of

intermediate-level

descriptions. ISR

combines database

management and

knowledge

representation methods

to allow effective access

to these descriptions.

A computational
paradigm for
computer vision

The goal of computer vision is to con-
struct automatically from a digital image a
symbolic interpretation that describes the
environment from which the image was

captured. This description includes the
identity and structure of objects and their
spatial and temporal relationships. (We

restrict our discussion to static images
captured from a single sensor with no
motion information.) The need to identify
objects implies that vision systems must
have access to a knowledge base contain-
ing descriptions of the objects or of gener-
alized object classes. Consequently, a
generally accepted paradigm for computer
vision involves multiple levels of repre-
sentation and abstraction, from image rep-
resentation (purely numeric) to object or

object-class models (highly abstracted)
stored in the knowledge base.’

This paradigm underlies the Visions
Image Understanding System, a research
system being developed in the Computer
Vision Laboratory at the University of
Massachusetts at Amherst. Visions is or-
ganized into three conceptual levels of
visual processing: low (image level), inter-
mediate, and high (knowledge level). At
the low level of vision, potentially useful
image events, such as homogeneous re-
gions (collections of contiguous image
data points with similar properties), edges
and lines, 3D surface patches, and motion
information, are extracted from the image
data, typically without knowledge of the
image content.

22 OOl8-9162/89/1200-0022%OI.O0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1989 IEEE COMPUTER

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1 r I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I’aart-Of - I Relations

UMass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Can’pus ‘ Engineering

Wall 2 Wall1
(Front)

Window5 ; *djaecnt-to

Lampost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 Sidewalk I

Figure 1. Stylized view of the three levels of representation in Visions. The left column contains representations of data a t
each level, and the right side shows the internal representations corresponding to these data. At the low level a re the image
data and an image blowup (left), with the internal representation consisting of numeric arrays (right). The intermediate
level shows a region segmentation in which regions are denoted by their boundaries (far left) and a straight-lines represen-
tation (left); the internal representation is a symbolic token and frame representation (right). Finally, at the high level, a
3D wire-frame model (left) represents the image interpretation, while the internal representation takes the form of a sym-
bolic network (right).

The system stores descriptions of these
events at the intermediate level as named
and typed symbolic entities called rokens.

Each token contains attribute-value pairs
that describe the event (for example, the
color and texture of a region or the length
and contrast of a line segment). Additional
tokens and token types are created by
grouping, splitting, or modifying existing
tokens. Tokens also can be constructed
from other tokens, imposing a hierarchical
structure on the representation.

High-level knowledge is organized into
object descriptions called schemas. Sche-
mas are organized into relational networks,
such as a part-subpart hierarchy, to facili-
tate recognition. Each schema has an asso-

ciated procedural component that searches
for evidence of the object in the low- and

intermediate-level data. Schemas are ac-
tive entities and communicate asynchro-
nously with each other by means of aglobal
blackboard maintained by the schema sys-
tem control shell.

Figure 1 is a stylized and highly simpli-
fied diagram of the three levels of repre-
sentation. For more detail on Visions, as
well as image interpretation results on
house and road scenes, see Draper et al.’

A major consideration in creating an
interpretation is the inevitable mismatch
between idealized models and bottom-up
data. The output of even the best low-level
algorithms must be considerably trans-
formed before or during the matching
process. Much of the transformation in
Visions occurs at the intermediate level.
Perceptual organization algorithms split,

merge, add, and delete intermediate-level
tokens, as well as create more-abstract
tokens from simpler ones. Examples of
more-abstract tokens include line groups
that satisfy certain geometric properties
and aggregates of regions and lines consis-
tent with an object or object part in the
knowledge base. We later discuss addi-
tional examples of aggregate tokens and
the processes that create them. There is no
practical limit to the variety or quantity of
tokens based on aggregates of other to-
kens.

Tokens at the intermediate level are not
isolated events. Often their most important
properties are their relations to other to-
kens, as in the line-grouping algorithm of
Boldt et al.3.4 This algorithm groups short
lines to form longer ones in a recursive

December 1989 23

I

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1. Size of the intermediate symbolic representation after low-level processing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Image No. of No. of No. of No. of No. of Data size
Regions Straight Line-Region Boundary Boundary Including

Lines** Intersections* Lines** Line-Region Token Features
(S hortlother) (Shortlother) Intersections* (in Mbytes)

Road 1 187 3,9811911 1,517 1,7561206
Road2 307 4,0621963 1,868 2,8111212

Road 10 31 1 4,2091996 2,111 3,2461242
Road 16 222 3,7441733 1,112 1,30511 87
Road25 356 4,3641949 2,354 3,7301285

Road5 427 4,019/1,051 2,736 3,7331379

124
75 1
,415
853
775
980

House1 305 2,8431878 1,793 1,1741405 1,438
House7 168 3,5221900 1,823 2,2391242 711
House 10 165 2,6751845 1,255 9651241 836

1.6
2.0
2.4
2.1
1.5
2.3

1.5
1.6
1.2

* Line-region intersections and features are not calculated for short lines.
** Short lines are less than five pixels long.
Note: All images have a resolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 256x256 pixels.

cycle of linking, grouping, and replace-
ment based on endpoint distance, relative
orientation, and lateral displacement. The
algorithm terminates when no further line
segments can be replaced. At each recur-
sive level, old line tokens are retrieved by

and manipulation of intermediate-level
data.

(2) It must provide a simple and intui-
tive applications programming language
for researchers who are programmers out
of necessity.

ment to determine an efficient set of lan-
guage primitives for spatial retrieval appli-
cations.

What follows is a summary of signifi-
cant intermediate-level data requirements.
The first requirements address efficient

spatial proximity and orientation. Since an
image of reasonable size and complexity
might have 10,000 or more initial line
tokens, the spatial relations at the heart of
this and similar algorithms must be effi-
ciently represented.

The amount of intermediate-level data
involved in the interpretation of a single
image is quite large. Table 1 lists nine
typical images used in interpretation ex-
periments and details the size and storage
requirements for five types of symbolic
image events (not including low-level
image data). The event types are regions,
straight lines, line-region intersections,
lines lying along region boundaries, and
region-boundary line intersections. The
data in Table 1 represents only those image
events and relationships between them that
are extracted from the image before execu-
tion of any intermediate-level grouping
process or schema interpretation strategy.

Efficiency here is more than just a mat-
ter of convenience. The computational
burden of vision is such that certain experi-
ments are not currently feasible except
with highly optimized data management.
Consequently, the database should not
incur overhead for features a researcher
will not use. On the other hand, researchers
will not use a database language that re-
quires excessive learning or programming
for basic functions. If the system is not in
general use, data will not be shared, ma-
chine-readable data output from experi-
ments will be effectively lost, and re-
searchers will constantly reimplement the
same data structures and manipulation
procedures.

Therefore, we have designed ISR as a
“reduced instruction set” for computer
vision applications. ISR provides a set of
primitive operations and representations
that are easy to use and with which any

support of the necessary data manipulation
and retrieval operations.

(1) Vision research requires spatial data
types and retrieval methods not usually
supported in standard database systems.
An algorithm like the Boldt line extractor
can make hundreds of thousands of spatial
access queries on a single image. The algo-
rithms we discuss in the sections entitled
“Perceptual grouping” and “Spatial ac-
cess’’ do less work in total, but the ratio of
spatial queries to other database queries
remains about the same. The spatial access
functions that implement these retrievals
must be implemented efficiently. ISR
supplies methods for retrieving all tokens
that intersect a given bounding rectangle
or all tokens that intersect a region of
arbitrary shape. This feature is the main
focus of the ISR design; we are continuing
to research optimal methods of spatial data
representation and retrieval.

intermediate-level applications can be
built.

Primary requirements. In designing
ISR, we have drawn from both database
practice and knowledge representation

(2) Data structures should be standard-
ized sufficiently to allow efficient sharing
of data:

D at abase re qui r em en t s
for image

Incremental saves and loads of partial
data sets must be possible.

interpretation

technology, the former for efficiency and
generality and the latter for flexibility. We
also have based our design on the experi-

Data must be saved in logical modules

Loading selected records and selected

A database system for vision research
of reasonable size and scope.

must satisfy two distinct requirements:

(1) It must provide efficient access to ence of researchers in the Visions environ- fields of those records should be possible.

24 COMPUTER

All of these requirements are fulfilled by
database management systems (DBMSs);
knowledge representation systems cur-
rently do not provide much capability or
flexibility in this area.

(3) The researcher must be able to re-
configure the database dynamically, add
fields or attributes to a record, or create a
new data set with records or attributes from
one or more existing data sets. Every re-
searcher is free to alter the syntax, seman-
tics, and facts in a database; keeping these
changes private or making them available
to the research group should be easy and
not require storing large quantities of re-
dundant data. In ISR, it is simple to create
a data set, alter its definition, or copy, load,
or save a data set’s selection or projection.
The system provides reasonable means of
tracking the sources of various elements of
a user’s individual database. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(4) Like any research tool, the database
application language must be as powerful
and uncomplicated as possible. It must be
fully embedded in the host language (Lisp
or C, in our case) and must imitate the best
features of that language as much as pos-
sible. To satisfy this requirement, we built
a prototype of ISR and spent a year and a
half analyzing information about its use,
about spatial retrieval applications written
or proposed for it, and about requests for
changes or new features. We then inte-
grated our findings into the current design.

(5) Extendability must be built into the
database. The design must be modular and
open-ended, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that future developments
are not precluded. Source code must be
available. When a commercial DBMS is
chosen and the databases are designed in it,
the data requirements are expected to be
fairly stable. In a research environment,
however, requirements for data and data-
base operations may change drastically. It
is inevitable (and desirable) that new op-
erations will be demanded. Primitive op-
erations must be modular enough that the
user can combine them to generate new
functions.

Database technology. Vision research
demands basic facilities for storing, shar-
ing, accessing, selecting, and sorting large
quantities of data. But there are points
where vision data requirements diverge
from DBMS capabilities. We can learn a
great deal about an ideal data management
system for computer vision by examining
those differences.

The traditional DBMS environment
demands three separate levels of human
interaction: the database administration

level, the applications programming level,
and the end-user level. These interactions
are often mediated through two or three
different languages in the database, as well
as different levels of privilege. In a com-
puter-vision research environment, how-
ever, there is often no distinction between
these types of interaction. An individual
researcher can create, delete, and restruc-
ture a database, write complex experimen-
tal applications in the database language,
and examine the results on a graphics
screen. Embedding these three distinct
levels of functionality in one efficient,
conceptually simple language represented
a major challenge for ISR’s design.

Knowledge representation technol-

ogy. Current knowledge representation
technology has some positive qualities that
are being incorporated into new database
re~earch .~ However, it also has a number of
deficiencies, some of which can be reme-
died by recourse to DBMS methods. The
positive features are extendability, flexi-
bility, and the capability for procedural
attachment. We have borrowed these in the
concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAframes (data types that can be
redefined dynamically) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdemons (pro-
cedures that can be executed when data
field values are accessed).

Unfortunately, such common database
utilities as sorting and indexing have been
quite rare in knowledge representation
systems, perhaps on the presumption that
knowledge needs a great deal of hierarchi-
cal structure and very little linear structure.
Vision and much other artificial intelli-
gence research, however, requires full
support of standard database operations
and such standard data types as arrays,
sets, integers, floats, and strings.

Data storage and retrieval are an after-
thought in many systems, making saving
and reloading data sets a cumbersome
operation. Data sharing is extremely diffi-
cult because data values and data descrip-
tions are stored as a unit.

Also, those inference procedures built
into knowledge representation systems are
generally wide of the mark. In an area as
data-intensive as computer vision, data-
driven processing must be carefully con-
trolled. A weak method such as forward
chaining must be used with a great deal of
top-down control to restrict the generative
effect of thousands of pieces of data. Fur-
thermore, many computational decisions
in vision processing are made with statisti-
cal or combinatorial optimization tech-
niques, requiring some future extension of
a constraint programming language to

support the kind of mathematical inference
required.

We examined current database theory
and practice to determine if an appropriate
system already existed. Image DBMSs do
not focus on operations essential to com-
puter vision research, where indexing ob-
jects to images is not a typical task, but
finding the intersection of arbitrary sub-
sets of pixels is very common. Although
engineering database systems require
similar flexibility and extendability, they
are even less appropriate because they
offer nothing equivalent to low-level vi-
sion. What we required was not available:
a system tailored to the needs of computer
vision research and easily adaptable to
different machines and languages.

There are other database systems for
computer vision, most notably Carnegie
Mellon’s Codger6 and SRI’S Core Knowl-
edge System.’ Codger has evolved over the
same time period as ISR, and there are
similarities even in nomenclature. But
Codger is broader in scope, encompassing
very high level representation and process
scheduling in addition to intermediate-
level data management. Furthermore,
Codger appears to treat as primitives many
functions that ISR would view as applica-
tion programs, such as transformation of
3D coordinates. Not all researchers work-
ing at the intermediate level need or want
high-level representations or operations,
and even researchers in high-level vision
might want a different methodology than
the one supported. In the long run, such an
all-encompassing approach could render
the system cumbersome, making i t less
likely to be used by the researchers for
whom it is intended.

The Core Knowledge System is a more
recent design that seems to be intended as
a knowledge representation system for 3D
world modeling at a very high level. It
devotes much attention to semantic issues
that are less essential at the intermediate
level of computer vision and hence pays
less attention to efficient spatial retrieval
and manipulation of 2D symbolic entities.

ISR seems to be unique as a small, effi-
cient, and flexible DBMS focused on the
needs of intermediate-level vision.

The ISR data
management system

ISR’s design was constrained by both
the nature of symbolic image interpreta-
tion and the need to serve multiple re-
searchers with varied interests. Conse-

December 1989 25

Regions r--- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Size
Intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA156.7

Lines
Average length 8.1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq Length 24.20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. A frame and token hierarchy, depicting a set of line tokens and a set 01
region tokens, all extracted from the same image. Note that image features de-

scribe a particular image event, such as the length of a line, while frame feature:

describe a class of events, such as the average length of a line. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
quently, the system provides a small set of
highly optimized primitive commands and
representations that can be combined to
meet the needs of a particular user’s re-
search. For example, common structures
such as line segments and regions, along
with their associated operations, are not
part of the system primitives, but are kept
in optional libraries. As new token types
and operations are found useful they can be
placed in additional libraries.

Tokens and features. ISR’s fundamen-
tal object is the token, which i s similar to a
record in a standard DBMS. A token can
represent an image event (such as a line or
a homogeneous region in an image) or an
aggregate of events (such as a group of
parallel lines, a geometric structure, or the
regions and lines hypothesized to belong to
some object). The data fields of an ISR
token, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfeatures, describe attributes
of the referenced event. Features resemble
frame slots in a knowledge representation
system, in that they have attached proce-
dures (demons) that can be activated when-
ever a value is requested or modified or

when a value is needed that has not yet
been computed. ISR tokens for similar
image events are grouped into token sets,
which allow operations over similar data.
For example, a token set consisting of all
the lines for one image would allow such
operations as displaying every line in the
set or computing the contrast across each
line.

Frames. Each token set is embedded in
a descriptor object called a frame. The
relationship between a frame and its token
set is similar to the class/instance relation-
ship in object-oriented databases. Each
token represents an event, such as a region
extracted from an image, while the frame
represents the class of events, in this case
the set of all regions.

Like tokens, frames are first-class data
objects with features. Frames are also
linked into hierarchies that denote rela-
tionships between associated token sets.
For example, two frames containing the
lines and regions from a single image might
both be children of the same image frame
(see Figure 2). In addition, the frame pro-

vides a modifiable description of its token
set. For example, a frame feature can con-
tain statistics on token set feature values,
such as the mean and standard deviation of
the length feature for a set of lines. Since
the most natural hierarchy for one problem
might not fit another, the user can specify
the frame hierarchy.

Feature data types. A token or frame
feature can have one of the following data
types: integer, float, string, array, pixel
map, ISR handle, or pointer. Pixel maps
are 2D bit-arrays that specify a set of pix-
els. The operations defined over pixel
maps are union, intersection, set-differ-
ence, and a count function that returns the
number of pixels. Pixel maps are used to
map regions (which have no simple, ana-
lytic form) onto images. For example, a
pixel map acts as a mask, specifying which
pixels are in a region and should be
summed to calculate the region’s average
intensity.

Since feature storage is allocated at
runtime as needed, the user can create a
virtual feature whose value is computed as
needed and never stored. This is useful for
defining data aggregations that are con-
structed on demand from primitive fea-
tures. For example, assume that the end-
points of a straight line are stored as four
features, x,,, yo, x,, and y,. If a user program
needs to access each endpoint as a vector,
the user can create a virtual feature called
endpoint. Endpoint consumes no data stor-
age space; when accessed, it constructs a
vector out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , , y,, which is returned to the
caller. Similarly, a vector of the form xi, y l
can be used to “set” the value of endpoint,
in which case a storage demon breaks up
the vector and stores each value in the
appropriate field. Virtual features are also
useful for implementing transparent con-
versions between different representations
of the same data, such as polar/rectangular
or ego-/world-centered coordinates.

Handles and subsets. One of our funda-
mental requirements for ISR was that it
express relations between tokens, espe-
cially associative relations. ISR can ex-
press simple pair relations through token
features called handles. A handle is a ref-
erence to a token or frame in the database.
Associative relations are represented by
token subsets, which specify some or all of
the tokens in a token set. For example, a
token subset can denote the set of all re-
gions whose average intensity exceeds 50
grey levels or all lines that are at least five
pixels long. We can view ISR functions

26 COMPUTER

that create and manipulate token subsets as
a software analogue of content-address-
able or associative memory. Token subsets
can be

(1) selected by numeric feature ranges
or properties of pixel maps;

(2) combined by basic set operations
such as union, intersection, or set-
difference; and

(3) used as a guide to control function
application.

An example of the last case is computing
the contrast of every line more than five
pixels long. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA special class of token subset,
called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsort, represents an ordering over
the token subset's elements. Token subsets
and sorts are both handles and can be stored
on any token or frame feature of that type.

ISR in use

Classification. One of the oldest and
most studied problems in computer vision
is the classification of image regions by
feature values.* Color, texture, shape, lo-
cation, or other attributes of a region are
used to categorize it as belonging to one of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N classes. One approach to classification
that takes advantage of lazy evaluation is
based on decision trees (also called regres-
sion trees9).

In adecision tree, every leaf node carries
the name of a category, and every internal
node selects a feature to be tested (see
Figure 3). The classification procedure
begins by making the root of the decision
tree the current node. The procedure then
enters a loop in which the current node
determines which feature of the region
should be tested, and the resulting feature
value dictates which child node should
become the current node. The loop is ex-
ited when the region reaches a leaf node, at
which time the region is assigned to the
category on the leaf node.

Decision trees are popular partly be-
cause of their efficiency. Unlike a Bayes
classifier, a decision tree only requires that
a few of a region's features be computed,
specifically, the features on the path from
the root node to the eventual leaf node. To
take advantage of this, ISR supports lazy
evaluation. When ISR is used as the data-
base for a decision tree, the region feature
values need not be computed beforehand.
Instead, the function for computing each
feature of a region is installed as a demon.
When classifying a region, the tree tra-
versal algorithm asks for the value of the
feature at the current node. The demon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Intensity-mean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[230.1, 242.6) [242.6, 256)

I
"Sky"

. . . [0, .117) [.117, .44) i.44, 1)

I 'I, S hort-line-density "Sky"
I

"Foliage"

[0, :04) [.04,..11) [. l? , 1)

I I
"Road line" "Road"

[o, 1.18) [1.18, 999)

"Road" "Road line"
I I

(a)

f o l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi a g e E z l

r o a d 1 i n e I

Figure 3. Region classification: (a) a portion of a decision tree that classifies re-

gions as objects on the basis; (b) the result of classifying regions based on the

tree in (a). The original image is shown in Figure 5a.

notices that the value has not yet been
computed, calculates it, and returns the
appropriate value; the value can also be
stored in case it is requested again. In this
way, feature demons help avoid comput-
ing unnecessary feature values.

Perceptual grouping. Grouping related
tokens into aggregate structures (percep-

tual grouping) is a common intermediate
vision task. One strategy groups tokens by
the transitive closure of one or more rela-
tions. If the tokens are viewed as nodes in
a graph and the relations as adjoining arcs,
then this style of grouping forms the con-
nected components of the graph. The result
is a set of tokens that represents a new
image event and can possess properties not

December 1989 21

Figure 4. Results from rectilinear line grouping: (a) the original aerial image; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) one of the rectilinear line groups (in

heavy lines) found by the grouping algorithm, superimposed over the complete set of intermediate-level straight lines that

constitute the input to the algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
possessed by any of its components.

The Rectilinear Line Grouping System’O
is a perceptual organization system in ISR.
The basic relations measured by the RLGS
are whether two proximal lines are colin-
ear, parallel, or perpendicular. For every
line in the image, the RLGS finds the set of
lines that are proximal and parallel to it and
stores this information as a token subset on
the line token. The RLGS repeats this
process, looking for lines that are proximal
and colinear or proximal and perpendicu-
lar. Finally, the RLGS looks for groups of
lines connected by one or more relations
(colinear, colinear or perpendicular, etc.).
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 depicts such a group. The group
can either be returned to the user as a token
subset or be stored as a feature on a “line
group” token. In the latter case, other fea-
tures of the line group, such as its mini-
mum bounding rectangle, can also be
computed and stored.

Spatial access. Spatial proximity is an
important consideration in accessing im-
age information. We often want to access
just those tokens lying on or near a particu-
lar point in the image. To this end, grids are
often imposed on the 2D image, dividing it
into rectangular cells called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbigcells. If

lines, regions, or other image events are
stored according to the bigcells they inter-
sect, it becomes relatively easy to retrieve
a token’s neighbors by accessing only
those bigcells that lie within the radius of
interest.

We have implemented bigcells in ISR
by creating a token set in which each cell of
the grid is represented by a token. Each
feature of the cell token represents a subset
of objects (such as lines or regions) that
spatially intersect that cell. We have writ-
ten functions for storing tokens in the
appropriate cells and for retrieval based on
eight types of spatial relations (point-to-
line, line-to-line, region-to-region, etc.).

A typical use of the spatial indexing grid
occurs during the interpretation of a road,
which is part of a larger interpretation
effort involving a road scene.* Figure 5a is
a photograph of a typical road scene, and
Figure 5b is the output of a low-level algo-
rithm for identifying lines applied to the
lower left quadrant of the photo image. The
goal is to identify the boundary of a road
line from the set of lines identified by a
low-level line-extraction algorithm. The
method is to construct from existing line
segments a line-chain that satisfies the
constraints for a centerline as represented

in the knowledge base.
Although the algorithm described below

could be applied to the inital set of lines
derived from the entire image, typically
the interpretation process would already
have determined a context for the center-
line (for example, by hypothesising the
road surface or road sides). The context
spatially constrains the possible locations
of the centerline and reduces the combina-
torics of the search process.

The line-chain algorithm starts with a
line that is a good candidate for a boundary
line. That line is extended by joining it end-
to-end with other lines that meet it near its
endpoints. The algorithm selects candi-
dates for extension by retrieving any lines
within a small radius of the endpoints of
the current line-chain. Figure 5c shows
(along with the final successful line-chain
interpretation) the grid cells accessed dur-
ing the search and the candidate lines re-
trieved. Figure 5d shows the set of candi-
dates after selecting only those within a
small distance of the current line-chain
endpoints. The resulting spatial structure
will then be subject to further verification
and validation by high-level schema strate-
gies before being added to the evolving
overall interpretation.

28 COMPUTER

. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIEs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt r o n imr-?e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Canny operator-

- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I , .

I I I I
, pa t l a1 b r i d Ce l l zccesscd uhEn cA:r6ct ing l i ne cha ins

I

r

5f
\ .
./

r c - a c t i n g I inr Cha ins

Figure 5. Bigcell spatial access during image interpretation: (a) the original image; (b) the set of straight-line tokens ex-

tracted from the image; (c) the grid bigcells accessed during the search and the candidate lines retrieved; (d) those candi-

dates within a small distance of the current line-chain endpoints.

Grids implemented in this way do not
have to represent regular equal divisions.
Furthermore, a grid can partition not only
spatial attribute values but any numeric

attribute with a finite range. Access to
tokens by any feature can be supported by
dividing the feature into ranges and storing
tokens as token sets on the corresponding

cells. Thus we can use the same primitives
that implement spatial access to imple-
ment histogram-based algorithms and
generalized Hough transforms.

December 1989 29

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAur experience with intermediate-
level computer vision has taught
us three lessons:

Spatial representations, spatial access,

A database for a research environment

Efficiency is critical.

ISR combines the standard access and
retrieval mechanisms of DBMS technolo-
gies with the notion of frames and demons
found in knowledge representation lan-
guages. Most importantly, ISR provides
special spatial representations and access
routines not traditionally found in either of
these two fields.

Versions of ISR have been operating in
the Computer Vision Laboratory at the
University of Massachusetts for over three
years; the current version is implemented
in Lisp and has been in use for over a year.
In addition, a version of ISR has recently
been embedded in a commercial system.

Our major conclusion is that neither
traditional DBMSs nor knowledge repre-
sentation languages support the primitive
spatial data structuring and access func-
tions required at the intermediate level of
vision. ISR adds spatial primitives to the
capabilities of database management and
knowledge representation systems to pro-

vide a simple yet effective database for
intermediate-level vision. W

and procedural attachment are essential.

must be easy to use and modify.

Acknowledgments

We are grateful to Bob Collins for feedback
during the design of ISR, for the development
of the decision tree application, and for produc-
ing Figure 3. We also gratefully acknowledge
the help of Joey Griffith, Bob Heller, Ric South-
wick, and Jim Burrill in designing and imple-
menting various versions of ISR. In addition,
we would like to thank the many members of the
University of Massachusetts Computer Vision
Laboratory who have used ISR and given us
invaluable feedback. This research has been
supported in part by DARPA under contract
number F30602-87-C-0140 and NSF DCR-
8500332.

References

1. A. Rosenfeld, “Image Analysis: Problems,
Progress and Prospects,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPattern Recogni-
tion, Vol. 17, No. 1 , 1984, pp. 3-12. Also
appears in Readings in Computer Vision,
M.A. Fischler and 0. Firschein, eds., Mor-
gan-Kaufman, Los Altos, Calif., 1987, pp.
3-12.

2. B.A. Draper et al., “The Schema System,’’
Int’l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ . Computer Vision, Vol. 2 , 1989, pp.
209-250.

3 . M. Boldt, R. Weiss, and E. Riseman,
“Token-Based Extraction of Straight
Lines,” to be published in IEEE Systems.
Man, and Cybernetics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4. R. Weiss and M. Boldt, “Geometric Group-
ing Applied to Straight Lines,” Proc. IEEE
Conf. Computer Vision and Pattern Recog-
nition, 1986, CS Press, Los Alamitos,
Calif., Order No. 721, pp. 489-495.

5 . M.R. Stonebraker, “Object Management in
Postgres Using Procedures,” Proc. Int’l
Workshop Object-Oriented Database Sys-
tems, Sept. 1986, CS Press, Los Alamitos,
Calif., Order No. 734 (microfiche only), pp.
66-72.

6 . S.A. Shafer, A. Stentz, and C.E. Thorpe,
“An Architecture for Sensor Fusion in a
Mobile Robot,” Proc. IEEE Int’l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf.
Robotics and Automation, 1986, CS Press,
Los Alamitos, Calif., Order No. 695, pp.
2,002-2,011.

7. M.A. Fischler and R.C. Bolles, “Image
Understanding Research at SRI
International,” Proc. DARPA Image Un-
derstanding Workshop, 1989, pp. 21-31.

8. R.O. Duda and P.E. Hart, Pattern Classifi-
cation and Scene Analysis, John Wiley &
Sons, New York, 1973.

9. L. Breiman et al., Classification and Re-
gression Trees, Wadsworth, Inc., Belmont,
Calif., 1984.

10. G. Reynolds and J.R. Beveridge, “Search-
ing for Geometric Structure in Images of
Natural Scenes,” Proc. DARPA Image
Understanding Workshop, Feb. 1987, pp.
257-27 1.

John Brolio is a staff member of the Generic
Blackboard Development Group at the Univer-
sity of Massachusetts. He received his MS
degree in computer and information science
from the university in 1987 in the area of com-
putational linguistics. His other area of interest
is large-scale data and knowledge representa-
tion for AI systems.

Readers can contact the authors at the Com-
puter and Information Science Department,
Lederle Graduate Research Center, University
of Massachusetts at Amherst, Amherst, MA
01003.

Bruce A. Draper is a doctoral student in com-
puter science at the University of Massachu-
setts. His interests are in computer vision and
artificial intelligence. Draper is a student
member of IEEE and AAAI. He received his BS
degree in computer science from Yale in 1984
and his MS degree from the University of
Massachusetts in 1987.

J. Ross Beveridge is a doctoral student in
computer science at the University of Massa-
chusetts at Amherst. His interests include
computer vision, robotics, and artificial intelli-
gence. He is a student member of IEEE and
AAAI. He received his BS degree in applied
mechanics and engineering science at the Uni-
versity of California, San Diego, and his MS
degree in computer science at the University of
Massachusetts.

Allen R. Hanson is professor and associate
director of the Computer Vision Laboratory at
the University of Massachusetts. For the past 15
years, his research efforts have been in artificial
intelligence, computer vision and image under-
standing, and pattern recognition.

Hanson is coeditor of Computer Vision Sys-

tems (Academic Press, 1978) and Vision, Brain,
and Cooperative Computation (MIT Press,
1987). coauthor of Fundamentals of the Com-
puting Sciences (Prentice-Hall, 1978). and an
editorial board member of several journals. He
is a founder of Amerinex Artificial Intelligence
Corporation and VI Corporation, both located
in Amherst, Mass.

Hanson received the BS degree from Clark-
son College of Technology, Potsdam, New
York, in 1964, and the MS and PhD degrees
from Cornell University, Ithaca, New York, in
1966 and 1969, respectively, all in electrical
engineering.

30 COMPUTER

