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Summary 
 
Joint profiling of chromatin accessibility and gene expression from the same single 
cell/nucleus provides critical information about cell types in a tissue and cell states during a 
dynamic process. These emerging multi-omics techniques help the investigation of cell-type 
resolved gene regulatory mechanisms1–7. However, many methods are currently limited by 
low sensitivity, low throughput or complex workflow. Here, we developed in situ SHERRY after 
ATAC-seq (ISSAAC-seq), a highly sensitive and flexible single cell multi-omics method to 
interrogate chromatin accessibility and gene expression from the same single nucleus. We 
demonstrated that ISSAAC-seq is sensitive and provides high quality data with orders of 
magnitude more features than existing methods. Using the joint profiles from over 10,000 
nuclei from the mouse cerebral cortex, we uncovered major and rare cell types and cell-type 
specific regulatory elements and identified heterogeneity at the chromatin level within 
established cell types defined by gene expression. Finally, we revealed distinct dynamics and 
relationships of gene expression and chromatin accessibility during an oligodendrocyte 
maturation trajectory. 
 
Main Text 
 
Recent technological development enables detailed characterization of various modalities at 
the single cell level, such as gene expression8–13, chromatin accessibility14–20 and protein 
abundance21,22. Data from different modalities provide distinct and complementary 
information about cell types or states. Currently, most methods only assay one modality of 
the cell at a time. Though highly informative, only one molecular layer of the cell is profiled, 
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which is insufficient to provide comprehensive views of cell states or the associated 
regulatory programs23,24. Certain computational methods allow the integration of different 
molecular layers during downstream analysis. However, the performance of such integration 
is difficult to assess23,25. In addition, many integration methods are predicated on the 
assumption that data from different modalities can be projected to some shared latent space, 
which remains to be rigorously tested23,25. To circumvent these limitations, new methods 
continue to be developed for the parallel detection of different molecular layers from the 
same single cell1–7,26–31.  
 
Here we developed ISSAAC-seq, a highly sensitive and scalable method to interrogate 
chromatin accessibility and gene expression from the same single nucleus with a flexible 
workflow. The method is based on the combination of the recently developed Sequencing 
HEteRo RNA-DNA-hYbrid (SHERRY)32,33 and previously established scATAC-seq 
approaches16,19,20,34 (Fig. 1a, Supplementary Fig. 1 and 2). In ISSAAC-seq, open chromatin 
regions are tagged by the transposase Tn5 with regular Nextera adaptors that are used in a 
typical scATAC-seq experiment. Then a primer containing a partial TruSeq adaptor, a 10-bp 
unique molecular identifier (UMI) and poly-T is added for the reverse transcription in the 
nucleus7,35. Subsequently, a Tn5 homodimer loaded with one side of the Nextera sequence is 
added to mark the RNA/DNA hybrid32,33. Up to this stage, every step is performed in the 
nucleus (in situ) of a population of cells without physical separation of chromatin and RNA. 
Finally, single nuclei can be isolated for cell barcode addition and library preparation in 
different ways, such as flow cytometry (FACS) for limited cell number and droplet-based 
microfluidics for high throughput studies (Fig. 1a). After cell pooling and pre-amplification, 
the library is split into two equal portions. One portion is amplified by a Nextera primer pair 
for chromatin accessibility sequencing (ATAC-seq), and the other portion is amplified with a 
Nextera and a TruSeq primer pair for gene expression sequencing (RNA-seq) (Fig. 1a, 
Supplementary Fig. 1 and 2). 
 
To determine the appropriate experimental conditions, several exploratory experiments 
were carried out on the E14 mouse embryonic stem cell line using the FACS workflow. 
Different RNase inhibitors and open chromatin tagging (ATAC) temperatures were tested. Key 
performance metrics from the experiments showed that incubation at 30 °C during open 
chromatin tagging provided the highest RNA-seq library quality: medians of over 17,000 total 
UMIs and more than 4,000 detected genes were observed in the 30 °C condition, and only 
over 2,000 total UMIs and around 1,000 detected genes were obtained in the 37 °C condition 
(Supplementary Fig. 3a and b). In addition, the performance of the two commonly used 
RNase inhibitors was similar, with the Protector RNase inhibitor being slightly better than the 
RiboLock (Supplementary Fig. 3a and b). The ATAC libraries generated by 30 °C tagmentation 
gave comparable quality to those generated by the commonly used 37 °C tagmentation 
condition, with similar number of unique nuclear fragments, fraction of reads in peaks (FRiP) 
and mitochondrial content (Supplementary Fig. 3c-f). Having determined the reaction 
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conditions, species mixing experiments using human HEK293T and mouse NIH3T3 cells were 
performed to benchmark the method. Species assignment results were consistent between 
the two modalities (Supplementary Fig. 3g and Methods), with observed doublet rates of 4.2% 
and 8.8% for the FACS- and droplet-based workflow, respectively. 
 
Next, to evaluate the feasibility of the method and the quality of the produced data, ISSAAC-
seq was applied on several widely used cell lines using both FACS- and droplet-based 
strategies (Supplementary Fig. 4a and b). Furthermore, human peripheral blood 
mononuclear cells (PBMCs), a commonly used primary sample type, were also tested. For the 
droplet-based approach, we used the 10x Chromium Single Cell ATAC kit19 due to its wide 
availability in the community and modified some key steps to fit our workflow (see Methods). 
In both FACS- and droplet-based approaches, the ATAC-seq library insert fragments in ISSAAC-
seq exhibited canonical nucleosomal ladder patterns that are observed in typical scATAC-seq 
experiments (Supplementary Fig. 4b, c and e). Reads from the ATAC-seq library were highly 
enriched around the transcription start site (TSS) (Supplementary Fig. 4d and e). The RNA-
seq library fragments showed a unimodal distribution with a broad peak around 200 - 400 bp 
(Supplementary Fig. 4b), and a high proportion of reads from the RNA library came from 
exons (Supplementary Fig. 4f). In addition, there was significant amount of intronic reads in 
the RNA-seq library of ISSAAC-seq, which is commonly observed in single nucleus RNA-seq36. 
Visual inspection of the aggregated signals from single cells on a genome browser indicated 
ISSAAC-seq data were of high quality in different cell lines (Supplementary Fig. 5a and b). In 
K562 cells, ISSAAC-seq produced similar profiles compared to SHARE-seq, a recently 
developed open source single cell multi-omics method7, and the 10x Genomics Single Cell 
Multiome ATAC + Gene Expression kit (the 10x Multiome kit), a commercial multi-omics 
method (Fig. 1b and Supplementary Fig. 5a). When examining key performance metrics of 
ATAC and RNA libraries, we found ISSAAC-seq performed pretty well in both modalities, with 
over tens of thousands of unique nuclear reads in peaks (ATAC) and more than several 
thousand UMIs and detected genes (RNA) (Fig. 1c and d, Supplementary Fig. 4g). Within the 
same cell line or sample type, ISSAAC-seq generated data with comparable qualities to the 
commercial 10x Multiome kit, both of which had higher complexity (Fig. 1c) and sensitivity 
(Fig. 1d) than other similar methods. In addition, known cell types from PBMCs were 
successfully identified with ISSAAC-seq (Supplementary Fig. 5c). These observations 
suggested both the ATAC data and the RNA data from ISSAAC-seq were of high quality 
(Supplementary Note 1). 
 
Having confirmed the feasibility of ISSAAC-seq, we next tested if the method was able to 
identify distinct cell types of a complex tissue. To this end, nuclei from the frozen adult mouse 
cerebral cortex were isolated and subjected to the ISSAAC-seq workflow, with both FACS- and 
droplet-based strategies (Fig. 2a). Similar to the results from the cell lines, we obtained 
medians of 16,464 and 16,619 unique reads in peaks from the ISSAAC-seq ATAC data by the 
FACS- and droplet-based strategy, respectively (Fig. 2b), which is comparable to the ATAC 
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data from the 10x Multiome kit and better than all other open source methods (Fig. 2b). The 
RNA data of ISSAAC-seq were better than those of Paired-seq and SNARE-seq in terms of 
numbers of UMIs and detected genes (Fig. 2b). Compared to the results generated by the 10x 
Multiome kit and SHARE-seq, ISSAAC-seq RNA data detected similar amount of UMIs and 
genes (Fig. 2b). Then a computational pipeline was developed for exploring the cell types at 
both gene expression and chromatin accessibility layers (see Methods and Supplementary 
Fig. 6a), and a total of 10,378 nuclei were recovered and passed quality control 
(Supplementary Fig. 6b). The ISSAAC-seq RNA and ATAC data were visualized by uniform 
manifold approximation and projection (UMAP)37 on a two-dimensional space, separately (Fig. 
2c and d). Unsupervised clustering identified 23 distinct RNA clusters and 22 different ATAC 
clusters (Fig. 2c and Supplementary Fig. 7a). 
 
To figure out the cell types in the sample, we integrated the ISSAAC-seq RNA data with a 
mouse cortex scRNA-seq data set from the Allen Brain Institute38 using a label transfer 
technique39 to predict the cell type of each single cell in our data (Supplementary Fig. 8 and 
Supplementary Table 1). Furthermore, we performed differential expression tests to find out 
the marker genes of each cell cluster. By combining these two approaches, we successfully 
identified twelve types of excitatory neurons (Rbfox3+, Slc32a1-, Slc17a7+), seven types of 
inhibitory neurons (Rbfox3+, Slc32a1+, Slc17a7-), and four types of non-neurons (Rbfox3-) 
(Fig. 2c and e, Supplementary Fig. 9). Although there appeared to be some minor difference 
between the two biological replicates in the In-Scn5a and Ex-PIR Ndst4 neurons (see 
Supplementary Note 2), most cell clusters were robust and independent of batches 
(Supplementary Fig. 7a and 9). Aggregates of the ATAC-seq signals in each cluster exhibit 
clear and specific open chromatin peaks around the marker gene loci (Fig. 2f). 
 
Since each cell has matched gene expression and chromatin accessibility data, we could 
directly compare the RNA and ATAC clusters independent of integration methods. We 
labelled each cell on the ATAC UMAP space using RNA cluster label (Fig. 2d). In most cases, 
cells within the same RNA cluster also appeared in the same ATAC cluster (Fig. 2d and 
Supplementary Fig. 7b), indicating there is a general congruence between gene expression 
profile and chromatin accessibility. This is consistent with the results from recent single cell 
multi-omics studies2,4,5,7. Interestingly, we noticed that Ex-L4/5 IT neurons (RNA cluster R2) 
have three different chromatin accessibility states (ATAC clusters A2, A3 and A9), despite their 
similar gene expression profiles (Fig. 3a and Supplementary Fig. 7 a and b). If using the ATAC 
cluster labels as the guidance, we were able to detect some difference among the three ATAC 
clusters at the transcriptomic level (Supplementary Fig. 7c-e). It indicates that some 
heterogeneity at the gene expression level exists in the Ex-L4/5 IT neurons, but the difference 
is subtle and cannot be detected in the original clustering analysis with the RNA data only (Fig. 
3a). This is consistent with previous reference atlas studies which showed that Ex-L4/5 IT 
neurons contained intermediate cells and the heterogeneity was not visible by clustering at 
the transcriptomic level38,40. In the ATAC data from ISSAAC-seq, it was apparent at the 
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chromatin level that Ex-L4/5 neurons have at least three major subtypes (Fig. 3a and 
Supplementary Fig. 7 a and b). To further investigate the epigenetic differences among the 
three major ATAC clusters, cells from the same ATAC cluster were aggregated and peak calling 
was performed to identify open chromatin regions in each cluster. The top 1,000 cluster-
specific peaks sorted by fold enrichment (see Methods) were taken for further analysis. Most 
cluster-specific peaks were located in the intergenic and intronic regions (Fig. 3b). When 
compared to the histone modifications occupancy data of the same types of neurons from 
the PairedTag data26, we found the cluster-specific peaks tend to locate in the regions marked 
by H3K4me1 and H3K27ac, indicating they might be potential enhancers (Fig. 3c). In addition, 
different transcription factor family motifs, such as T-box, basic helix-loop-helix (bHLH) and 
AP1, were enriched in the three sets of cluster-specific peaks, respectively (Fig. 3d), which 
suggests members from those families are important to establish the cluster specific 
chromatin states. SCENIC41 analysis of the gene expression data returned a few transcription 
factors in those families with higher activity specifically in one of the ATAC clusters 
(Supplementary Fig. 7f). The phenomenon that cells with similar gene expression profiles 
exhibit distinct chromatin accessibility status has been reported in mouse embryonic stem 
cells42, mouse T cells43 and human cortical neurons44. The functions of the chromatin 
difference remain to be explored, but the observation suggests those cells may have distinct 
chromatin potentials7 to react differently upon stimulation. These results demonstrated the 
direct comparison of ATAC and RNA profiles from the same cell helps uncover heterogeneity 
that will otherwise missed using only one modality. 
 
The cell type annotation successfully identified two groups of cells in the oligodendrocyte 
lineage: oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes (Oligos) (Fig. 
2c). A pseudotime analysis45 was carried out on those cells to investigate the oligodendrocyte 
maturation process. Since most pseudotime inference tools are designed to work with gene 
expression data, top differentially expressed genes between OPCs and Oligos were used to 
arrange cells in a pseudotime trajectory (Fig. 3e). Known markers exhibit expected dynamics 
along the trajectory, indicating the pseudotime indeed represents the oligodendrocyte 
maturation process. For examples, expression levels of the OPC marker Pdgfra and the 
mature Oligo marker Mbp went down and up along the trajectory, respectively (Fig. 3e). Next, 
taking the advantages of our multi-omics data, we checked the gene activity score measured 
by chromatin accessibility from the same cell along the same oligodendrocyte maturation 
trajectory (Fig. 3f). Distinct patterns of gene expression and chromatin accessibility became 
prominent in this analysis. In general, changes in gene expression levels were concordant with 
dynamics of chromatin accessibility in the trajectory (Fig. 3f and g). Genes with increasing 
expression levels along the trajectory also exhibited increasing chromatin accessibility, but 
the increase at the chromatin level preceded the gene expression change in many genes, such 
as Mbp and Mog (Fig. 3f and g). This is consistent with a recent finding that chromatin become 
accessible prior to the start of the corresponding gene expression during lineage 
commitment7. Interestingly, the expression and chromatin dynamics of genes with decreasing 
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levels along the trajectory showed a different pattern. Although both gene expression and 
chromatin accessibility were getting lower, changes of chromatin accessibility were slower or 
lagging behind of gene expression (Fig. 3f and g). This observation indicated the change of 
chromatin status may lead to the silence of gene expression, while the fully close of 
promoters need longer time. These results demonstrated that ISSAAC-seq could be used to 
investigate the gene regulatory mechanisms during dynamic processes, such as cellular 
differentiation. 
 
In general, our method provides a robust and highly sensitive way of investigating gene 
expression and chromatin accessibility from the same cell. Compared to the commercial 10x 
Multiome kit, ISSAAC-seq offers data with comparable qualities at a much lower cost 
(Supplementary Note 3).  The method has a very flexible workflow that can be combined with 
either FACS or any droplet systems with a Nextera capture sequence, such as 10x Genomics19, 
Bio-Rad20 and HyDrop46. The FACS workflow is suitable for limited cell number, and the 
droplet workflow can be used for high-throughput cell profiling. The library structures 
generated by ISSAAC-seq is similar to the standard Illumina library (Supplementary Figs. 1 
and 2), which does not require custom sequencing primers or recipes. Furthermore, with the 
recent development of multi-omics methods that utilize antibody-oligo conjugates, such as 
TEA-seq28, DOGMA-seq27 and NEAT-seq47, it is possible to capture ATAC, RNA and protein 
information from the same cell. Similar design can also be applied in the ISSAAC-seq method 
to collect additional information (see Supplementary Note 4). The procedures are also 
modular, containing an in situ reaction module, a cell isolation module and a library 
construction module. The latter two modules have almost the same steps in many existing 
single cell methods. Therefore, our method serves as a valuable tool for single cell multi-omics 
profiling and can be adapted straightforwardly in many labs. 
 
Figure Legends 
 
Fig. 1 | Joint profiling of chromatin accessibility and gene expression using ISSAAC-seq. a, A 
schematic view of the ISSAAC-seq workflow. Key steps and adaptor configurations are 
outlined in the main text and Supplementary Figs. 1 & 2. b, UCSC genome browser tracks 
showed the aggregated signal of single cells (ATAC and RNA) of K562 cells from SHARE-seq, 
ISSAAC-seq and the 10x Multiome kit. ATAC-seq signals from 100 randomly selected single 
cells were shown at the bottom. c and d, Distributions of the numbers of reads in peaks (ATAC) 
and detected genes (RNA) from different methods performed in the indicated cell lines (c) or 
human PBMCs (d). Median numbers of detected genes were shown at the top of each box. 
 
Fig. 2 | Simultaneous investigation of chromatin accessibility and gene expression from the 
mouse cerebral cortex using ISSAAC-seq. a, A schematic view of the experimental design for 
the mouse cerebral cortex experiments. b, Distributions of the numbers of reads in peaks 
(ATAC), UMIs (RNA) and detected genes (RNA) from different methods performed in the 
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mouse brain samples. The medians of number of detected genes were indicated at the right 
hand side. c, UMAP projection of ISSAAC-seq RNA data coloured by the RNA clustering and 
expression values of indicated genes. d, UMAP projection of ISSAAC-seq ATAC data coloured 
by RNA clusters and cell types. e, Dotplot showing marker gene expression levels in each RNA 
cluster. f, UCSC genome browser tracks of aggregated scATAC-seq signals in each RNA cluster 
around four signature genes. 
 
Fig.3 | Joint analysis of RNA and ATAC from the same cell in the mouse cortex. a, UMAP 
projection of ISSAAC-seq RNA data (left) and ATAC data (middle and right). The RNA cluster 
R2 (Ex-L4/5 IT neurons) was highlighted by colours. All the rest cells were coloured by grey. b, 
Genomic distribution of the top 1000 cluster specific peaks and all ATAC peaks (background). 
c, Heatmap representation of the aggregated single cell ATAC-seq and PairedTag histone 
modification signals around the top 1000 cluster specific peaks in ATAC clusters A2, A3 and 
A9. d, The top de novo motifs enriched in the top 1000 cluster specific peaks of A2, A3 and 
A9. e, Pseudotime analysis of the oligodendrocyte progenitor cells (R20) and mature 
oligodendrocytes (R21). f, Heatmap representation of relative expression levels of genes that 
were differentially expressed along the pseudotime trajectory. The relative changes of 
chromatin accessibility in the same cell along the same trajectory were shown to the right. g, 
Examples of dynamic changes of gene expression and chromatin accessibility during the 
pseudotime. 
 
Supplementary Fig. 1 | Schematic view of the plate-based (FACS) ISSAAC-seq workflow and 
adaptor configurations. 
 
Supplementary Fig. 2 | Schematic view of the droplet-based ISSAAC-seq workflow and 
adaptor configurations. 
 
Supplementary Fig. 3 | Experimental tests and benchmarking of ISSAAC-seq. a and b, 
Assessment of ISSAAC-seq RNA data. Distributions of total UMIs (a) and numbers of detected 
genes (b) from indicated conditions performed on the E14 mouse embryonic stem cells. Pro, 
Protector RNase inhibitor. Ribo, RiboLock RNase inhibitors. c-e, Assessment of ISSAAC-seq 
ATAC data. Distributions of unique nuclear fragments (c), fraction of reads in peaks (FRiP) (d) 
and mitochondrial content (e) from indicated conditions performed on the E14 mouse 
embryonic stem cells. f, UCSC genome browser tracks of aggregated scATAC-seq signal from 
indicated conditions. g, Species mixing experiments of ISSAAC-seq using HEK293T and NIH3T3 
cells. 
 
Supplementary Fig. 4 | ISSAAC-seq experimental results from different cell lines and PBMCs. 
a, Examples of a typical FACS based workflow using K562 cells. FSC-A and SSC-A were used to 
select intact nuclei (P1). FSC-A and FSC-W were used to select singlets (P2). DAPI-A was used 
to select DAPI positive nuclei (P3). b, DNA electrophoresis of typical ISSAAC-seq libraries from 
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the FACS (left) and droplet (right) workflow using K562 cells. c and d, Fragment size (c) and 
Tn5 insertion frequency (d) of ATAC data using different methods in the indicated cell lines. 
e, quality metrics of the ISSAAC-seq PBMC data. f, Genomic distribution of reads from RNA 
data using different methods. g, Distributions of the numbers of UMIs using different 
methods performed in the indicated cell lines and PBMCs. 
 
Supplementary Fig. 5 | UCSC genome browser tracks of single cell aggregates from ISSAAC-
seq. a, Visual comparisons of SHARE-seq, ISSAAC-seq and the 10x Multiome kit from K562 
cells. Cell numbers are the same as in Fig. 1b. b, Visualisation of ATAC and RNA signals from 
single cell aggregates of ISSAAC-seq (FACS) in H1 (Day 3 upon mesoderm differentiation) and 
E14 (Day 4 upon EB differentiation) cells around the BRACHYURY and MIXL1 genes. c, UMAP 
projection of ISSAAC-seq PBMCs. 
 
Supplementary Fig. 6 | Computational pipeline for the data processing of droplet-based 
ISSAAC-seq. a, Flow chart of the computational pipeline to process mouse cortex data. b, Cell 
barcode qualities and the number of nuclei returned by the pipeline in each step. 
 
Supplementary Fig. 7 | ISSAAC-seq ATAC and RNA data comparison. a, UMAP projection of 
mouse cortex cells with ISSAAC-seq ATAC data coloured by ATAC clusters (left) and batches 
(right). b, Ribbon plot showed the relationship between all RNA clusters and all ATAC clusters. 
c, UMAP projection of mouse cortex cells with ISSAAC-seq RNA data, highlighted by RNA 
cluster R2 Ex-L4/5 IT neurons (left) and ATAC cluster A2, A3 and A9 (right). d, UMAP projection 
of Ex-L4/5 IT neurons (RNA cluster R2) coloured by RNA subclusters (left) and ATAC clusters. 
e, Gene ontology of the top 50 differentially expressed genes among A2, A3 and A9 clusters 
within the Ex-L4/5 IT neurons. f, SCENIC analysis of regulon (TF) activity in A2, A3, and A9 cells. 
 
Supplementary Fig. 8 | The prediction probability of each single cell based on the Allen Brain 
reference data using the label transfer function from Seurat. 
 
 Supplementary Fig. 9 | UMAP projection of ISSAAC-seq RNA data coloured by the 
expression levels of indicated genes or batches. 
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Methods 
 
Cell culture 
Cells were cultured according to standard procedures in RPMI 1640 (Gibco, cat. no. 21870076) 
for K562 and GM12878 cells or DMEM (Hyclone, cat. no. SH30243.01) for HEK293T and 
NIH3T3 cells, supplemented with 10% FBS (Hyclone, cat. no. 30160), 100 U/ml penicillin and 
100 μg/ml streptomycin sulfate (Hyclone, cat. no. SV30010). HEK293T and NIH3T3 cells were 
digested with 0.25% Trypsin (Thermo Fisher, cat. no. 25200056) for preparing single-cell 
suspension. 
 
mESC E14 cells were cultured in DMEM supplemented with 10% embryonic stem cell qualified 
FBS (Gibco, cat. no. 30044333), 1000 U/ml mLif (Millipore, cat. no. ESG1107), 0.1 mM β-
mercaptoethanol (Gibco, cat. no. 21985023), 100 U/ml penicillin and 100 μg/ml streptomycin 
sulfate on gelatin (Amresco, cat. no. 9764-100G) coated dishes. mESCs at 80% confluence 
were harvested using 0.05% Trypsin for preparing single-cell suspension. For embryoid body 
formation, 2×106 undifferentiated mESCs were seeded onto bacteriological dishes containing 
15 ml of ES medium without LIF. After 24 hours, the primary aggregates were spun down and 
transferred to new bacteriological dishes at the split ratio of 1:10 for further differentiation. 
The medium was changed every other day. 
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hESC H1 cells were cultured according to standard procedures in mTeSR1 (STEMCELL, cat. no. 
05825) on Corning Matrigel hESC-Qualified Matrix (Corning, cat. no. 354277). For mesoderm 
differentiation, hESCs were differentiated using the STEMdiff Definitive mesoderm Kit 
(STEMCELL, cat. no. 05220) according to the manufacturer’s instructions. Briefly, hESCs at 80% 
confluence were harvested using StemPro Accutase cell dissociation reagent (ThermoFisher, 
cat. no. A1110501) and reseeded in a single-cell manner on Matrigel plates. Cells were 
incubated with STEMdiff™ Mesoderm Induction Medium for indicated time with daily 
medium replacement.  
 
Mice  
Mice were maintained in laboratory animal center at Southern University of Science and 
Technology. Procedures were approved by Experimental Animal Welfare Ethics Committee, 
Southern University of Science and Technology. Normal brain cortex was collected from wild-
type C57BL/6 mice aged 8-9 weeks. 
 
Nuclei preparation from cell line 
Cells were harvested, washed once with ice-cold DPBS-0.5% BSA containing 0.2 U/μl RiboLock 
Rnase inhibitor (Thermo Fisher, cat. no. EO0382), counted and viability detected by Trypan 
blue (Thermo Fisher, cat. no.15250061). Cell viability should be above 90%. For each sample, 
1×105 cells were collected by centrifuge at 500 g, 4 °C, 5 min. The cells were resuspended in 
50 μl of ice-cold RSB-DTN-RI (10 mM Tris-HCl, pH 7.4, 10 mM sodium chloride, 3 mM 
magnesium chloride, 0.1% Tween-20 (Sigma, cat. no. 655205-250ML), 0.1% IGEPAL CA-630 
(Sigma, cat. no. I8896), 0.01% Digitonin (Promega, cat. no. G9441), 0.8 U/μl RiboLock RNase 
inhibitor) and incubated on ice for 3 min. The lysis was washed with 1 ml ice-cold RSB-T (10 
mM Tris-HCl, pH 7.4, 10 mM sodium chloride, 3 mM magnesium chloride, 0.1% Tween-20) 
and nuclei were spun down at 1000g, 4°C, 8 min. All centrifugations in sample processing 
were performed on the swing bucket centrifuge. 
 
Nuclei isolation from mouse cortex  
An adult mouse brain cortex was dissected, snap-frozen in liquid nitrogen, and stored at -
80 °C. For single nucleus isolation, frozen cortex (2-3 mm3) was placed into a pre-chilled 1 mL 
Dounce homogenizer with 1 mL of homogenization buffer (250 mM sucrose, 25 mM 
potassium chloride, 5 mM magnesium chloride, 10 mM Tris-HCl pH 8.0, 1 μM DTT, 1x Protease 
Inhibitor Cocktail (Roche, cat. no. 11697498001), 0.4U/μl RNasin (Promega, cat. no. N2111), 
and 0.1% (v/v) TritonX-100). Tissue was homogenized with 5 strokes of the loose pestle, 
followed by 10 strokes of the tight pestle. The sample was centrifuged at 100 g, 4 °C for 1 min 
to remove large debris. The supernatant was filtered through a pre-chilled 2 mL round bottom 
tube with cell-strainer cap (Falcon), and the effluent was transferred to a pre-chilled 1.5 ml 
tube, centrifuged at 1000 g, 4 °C for 3 min. The pellet was resuspended in 1 ml of ice-cold 
NIM2 buffer (250 mM sucrose, 25 mM potassium chloride, 5 mM magnesium chloride, 10 
mM Tris-HCl pH 8.0, 1 μM DTT, 1x Roche Protease Inhibitor Cocktail, and 0.4 U/μl RNasin), 
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and centrifuged at 1000 g, 4 °C for 3 min. Nuclei were then resuspended in 1 ml of ice-cold 
PBSI (1% (w/v) BSA, 1 μM DTT, and 0.4 U/μl RNasin). 
 
PBMC isolation 
PBMCs from a healthy donor were isolated using LymphoprepTM (STEMCELL, cat. no. 07801). 
Following isolation, PBMCs were subjected to RBC lysis, washing, and counting. PBMC aliquots 
were cryopreserved in 90% FBS+ 10% DMSO and stored in liquid nitrogen. For cell thawing, 
cryopreserved PBMCs were removed from liquid nitrogen storage and thawed in a 37oC water 
bath for 3–5 min until no ice was visible. Cells were then washed once with 10 ml DPBS-0.5% 
w/v BSA. Dead cells are removed using Dead Cell Removal Kit (Miltenyi Biotec, cat. no. 130-
090-101). 1x106 PBMCs were crosslinked in 1 ml freshly prepared glyoxal fixation buffer (3% 
glyoxal, 0.75% glacial acetic acid, pH 5.0) at room temperature for 7 min, washed twice with 
1 ml DPBS-0.5% w/v BSA, then hold on ice. 
 
Oligonucleotide sequences 
The sequences of oligos used in this study and the purification methods can be found in 
Supplementary Table 2. 
 
Transposome complex assembly 
To prepare the primers for ISSAAC-seq, ME_S5, ME_S7 or ME_bottom oligos was dissolved in 
annealing buffer (10 mM Tris-HCl, pH 8.0, 50 mM sodium chloride, 1 mM EDTA, pH 8.0) to a 
final concentration of 100 μM. 25 μl ME_S5 oligo (100 μM) was mixed with 25 μl ME_Bottom 
(100 μM), and annealed in a thermocycler as follows: 98 °C for 3 min, and slowly cooled to 
16 °C with a temperature ramp of −0.1 °C/s, to generate S5_adaptor (50 μM). Similarly, ME_S7 
and ME_Bottom oligos were annealed to form S7_adaptor. 
 
To prepare regular Tn5-S5/S7 transposome complex, 12 μl S5_adaptor (20 μM), 12 μl 
S7_adaptor (20 μM), 48 μl purified Tn5 (0.5 μg/μl, Fapon Biotech, cat. no. NK001), and 88 μl 
coupling buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 0.1 mM EDTA, pH 8.0, 0.1% Triton X-
100, 1 mM DTT, 50% glycerol) were mixed and incubated at room temperature for 1 h. Tn5-
S7/S7 homodimer transposome was assembled by mixing 24 μl S7_adaptor (10 μM), 48 μl 
purified Tn5 (0.5 μg/μl), and 88 μl coupling buffer. Similarly, Tn5-S5/S5 homodimer 
transposome was assembled by mixing 24 μl S5_adaptor (10 μM), 48 μl purified Tn5 (0.5 
μg/μl), and 88 μl coupling buffer. 
 
More details of the Tn5 assembly and quality assessment can be found in the protocols.io 
page: https://www.protocols.io/private/D62649C3B25011ECAC280A58A9FEAC02 
 
Chromatin tagmentation 
For Chromatin tagmentation, nuclei were resuspended in 50 μl of Tn5-S5/S7 tagmentation 
mix containing 33 mM Tris-acetate, pH 7.8, 66 mM potassium acetate, 10 mM magnesium 
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acetate, 16% dimethylformamide (DMF, Sigma, cat. no. D4551-250ML), 0.01% digitonin, 1.2 
U/μl RiboLock Rnase inhibitor (Thermo Fisher, cat.no. EO0382), 0.4 U/μl SUPERaseIn (Thermo 
Fisher, cat.no. AM2694), 0.8 U/μl RnaseOUT (Thermo Fisher, cat. no. 10777019), and 5 μl Tn5-
S5/S7 transposome complex. The tagmentation reaction was done on a thermomixer at 800 
rpm, 30 °C, 30 min. The reaction was then stopped by adding equal volume (50 μl) of 
tagmentation stop buffer (10 mM Tris-HCl pH 7.8, 20 mM EDTA, pH 8.0, 2% BSA). 
 
in situ reverse transcription 
After chromatin tagmentation, nuclei were spun down at 1000 g, 4 °C, 3 min, and washed 
twice with 200 μl of ice-cold 0.5× DPBS-0.5% BSA containing 0.2 U/μl RiboLock RNase inhibitor. 
Nuclei were resuspended in 100 μl of reverse transcription mix containing 0.5 mM dNTP, 10 
U/μl Maxima H minus reverse transcriptase (Thermo Fisher, cat.no. EP0753), 0.8 U/μl 
RiboLock Rnase inhibitor, 0.2 U/μl SUPERaseIn, 0.4 U/μl RnaseOUT, 12% PEG8000, 50 mM 
Tris-HCl, pH 8.0, 75 mM sodium chloride, 3 mM magnesium chloride, 10 mM dithiothreitol, 
and 2 μM TruseqR1_oligo_dT for the plate-based workflow or 2 μM TruseqR2_oligo_dT for 
the 10x droplet workflow. The in situ reverse transcription reaction was performed as follows: 
50°C 10 min; then 3 cycles of: 8°C 12s, 15°C 45s, 20°C 45s, 30°C 30s, 42°C 2 min, 50°C 3 min; 
followed by a final step at 50°C for 5 min. 
 
RNA/DNA hybrid tagmentation 
After reverse transcription, nuclei were spun down at 800g, 4°C, 5 min, and washed twice 
with 200 μl of ice-cold 0.5× DPBS-0.5% BSA, then resuspended in 50 μl of tagmentation mix 
containing 33 mM Tris-acetate, pH 7.8, 66 mM potassium acetate, 10 mM magnesium acetate, 
16% dimethylformamide (DMF, Sigma, cat. no. D4551-250ML), 0.01% digitonin, and 1.5 μl of 
Tn5-S7/S7 transposome for the plate-based workflow or 1.5 μl of Tn5-S5/S5 for the 10x 
droplet workflow. The tagmentation reaction was done on a thermomixer at 800 rpm, 37 °C, 
30 min. The reaction was then stopped by adding equal volume (50 μl) of tagmentation stop 
buffer (10 mM Tris-HCl pH 7.8, 20 mM EDTA, pH 8.0, 2% BSA). 
 
EXO I digestion and gap fill-in 
After RNA/DNA hybrid tagmentation, nuclei were spun down at 800 g, 4 °C, 5 min, and washed 
twice with 200 μl of ice-cold 0.5× DPBS-0.5%BSA. Then nuclei were resuspended in 50 μl of 
reaction mix containing 0.5 mM dNTP, 8 U/μl Maxima H minus reverse transcriptase, 2 U/μl 
Thermolabile Exonuclease I (NEB, cat. no. M0568), 50 mM Tris-HCl, pH 8.0, 75 mM sodium 
chloride, 3 mM magnesium chloride, and 10 mM dithiothreitol. EXO I digestion and gap fill-in 
reaction was done on a thermomixer at 800 rpm, 37 °C, 15 min.  
 
Single nuclei sorting and library pre-amplification in plate-based workflow 
After EXO I digestion and gap fill-in, nuclei were resuspended in 400 μl of 0.5× DPBS-0.5% BSA 
and transferred to a FACS tube. DAPI (Thermo Fisher, cat. no. 62248) was added at a final 
concentration of 1 μg/μl to stain the nuclei. DAPI positive single nuclei were sorted into each 
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well in a 384-well plate containing 3 µl lysis buffer (50 mM Tris-HCl, pH 8.0, 50 mM sodium 
chloride, 0.2% SDS, 10 μM N7xx primer, 10 μM Truseq_S5_short primer, 10 μM 
Nextra_S5_short primer) by FACS as previously described34. The plates were incubated at 
65 °C, 15 min in a thermocycler for cell lysis. After a brief centrifugation, 1 µl of 10% tween-
20 was added per well to quench SDS, then 4 µl of Q5 High-Fidelity 2X Master Mix (NEB, cat. 
no. M0541L) was added to each well. Pre-PCR was performed as follows: 72 °C 5 min, 98 °C 1 
min; then 10 cycles of: 98 °C 20 s, 63 °C 20 s, 72 °C 1 min; and hold at 10 °C. 
 
All pre-libraries in one 384-well plate were pooled into a 15 ml tube, and purified using Zymo 
DNA Clean & Concentrator kit (Zymo, cat. no. D4014). Excessive primers were digested by 
thermolabile EXO I, then the pre-libraries were purified using 1.2× VAHTS DNA clean beads 
(Vazyme, cat. no. N411-01) and elute in 15 μl Nuclease-free Water. 
 
GEMs generation and library pre-amplification in 10x droplet workflow 
After EXO I digestion and gap fill-in, pre-libraries in the droplet workflow were generated 
using the 10x Genomics Chromium Controller Instrument (10x Genomics, Pleasanton, CA) and 
Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 following manufacturer 
recommended protocol, but with several modifications: 1) The transposition step using 10x 
ATAC enzyme is omitted (step 1); 2) After SPRIselect, DNA were eluted in 35.5 µl of Elution 
Solution I (step 3.2); 3) In sample index PCR, custom primers were used instead of SI-PCR 
primer B and individual Single Index N Set A (step 4.1); 4) After sample index, the 100 µl 
reaction was equally divided into two parts and purified separately for RNA and ATAC pre-
libraries (step 4.2). 
 
Briefly, nuclei were washed twice with 150 μl of ice-cold 1x DNB-0.5%BSA, resuspended in 15 
µl of 1× DNB-0.5%BSA and counted. X µl of nuclei (3000~8000 cells) were mixed with 7 µl 
ATAC buffer B, and (8-X) µl of Qiagen buffer EB, to bring the total volume to 15 µl. Then, 60 
µl of master mix was mixed with 15 µl transposed nuclei, and loaded on a Chromium 
controller Single-Cell Instrument to generate single-cell Gel Bead-In-Emulsions (GEMs). After 
breaking the GEMs, the barcoded DNA was purified using MyOne beads, size selected using 
1.2x VAHTS DNA clean beads (Vazyme, cat. no. N411-01), and eluted in 35.5 µl of Elution 
Solution I. For sample index library pre-amplification, 35 µl of purified products was mixed 
with 50 µl Amp Mix, 5 µl Illumina P5 primer (10 µM), 5 µl RNA_droplet_N7xx primer (10 µM), 
and 5 µl ATAC_droplet_N7xx primer (10 µM). PCR was performed as follows: 98 °C 1 min; 7 
cycles of: 98 °C 20 s, 63 °C 20 s, 72 °C 20 s; 1 cycle of 72 °C 1 min; then hold at 10 °C. 50 µl of 
the PCR product was taken for ATAC pre-library, purified with 1.0x VAHTS DNA clean beads 
(Vazyme), then eluted in 40.5 μl nuclease-free water. The remaining 50 µl for RNA pre-library 
was purified with 0.8x VAHTS DNA clean beads, and eluted in 40.5 μl Nuclease-free water. 
 
Final library amplification. 
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For final ATAC+RNA library amplification in the plate-based workflow, 15 μl of purified pre-
library was mixed with 2.5 μl RNA_plate_S5xx primer, 2.5 μl ATAC_plate_S5xx primer, 5 μl 
Illumina P7 primer, and 25 μl Q5 High-Fidelity 2× Master Mix. PCR was performed as follows: 
98 °C 1 min; 10 cycles of: 98 °C 20 s, 63 °C 20 s, 72 °C 1 min; 1 cycle of 72 °C 5 min; then hold 
at 10 °C. Final library was purified using 1.2× VAHTS DNA cleaning beads and elute in 20 μl 
Nuclease-free Water.  
  
For final ATAC library amplification in the 10x droplet workflow, 40 μl of purified 10x ATAC 
pre-library was mixed with 50 μl Q5 High-Fidelity 2× Master Mix, 5 µl Illumina P5 primer (10 
µM), and 5 µl ATAC_droplet_N7xx primer (10 µM). PCR was performed as follows: 98 °C 1 
min; 7 cycles of: 98 °C 20 s, 63 °C 20 s, 72 °C 20 s; 1 cycle of 72 °C 1 min; then hold at 10 °C. 
Final ATAC library was purified using 1.0× VAHTS DNA cleaning beads and elute in 20 μl 
Nuclease-free Water.  
 
For final RNA library amplification in the 10x droplet workflow, 40 μl of purified 10x RNA pre-
libraries was mixed with 50 μl Q5 High-Fidelity 2X Master Mix, 5 µl Illumina P5 primer (10 µM), 
and 5 µl RNA_droplet_N7xx primer (10 µM). PCR was performed as follows: 98 °C 1 min; 7 
cycles of: 98 °C 20 s, 63 °C 20 s, 72 °C 20 s; 1 cycle of 72 °C 1 min; then hold at 10 °C. Final RNA 
library was purified using 0.8× VAHTS DNA cleaning beads and elute in 20 μl Nuclease-free 
Water. 
 
10x Multiome library preparation  
K562, NIH3T3 and E14 cell nuclei were isolated according to 10x Genomics Demonstrated 
Protocol CG000365 Rev C. Libraries were generated on 10x Chromium Single-Cell Multiome 
ATAC + Gene Expression platform following the manufacturer’s protocol CG000338 Rev E. 
 
Sequencing 
All ISSAAC-seq libraries were sequenced on Illumina NextSeq 500 and NovaSeq 6000 using 
standard protocols. For the plate-based libraries, 150 x 8 x 8 x 150 or 75 x 8 x 8 x 75 cycles 
was used. For the droplet-based libraries, 150 x 8 x 16 x 150 cycles was used. All 10x Multiome 
libraries were sequenced on Illumina NovaSeq 6000 following the recommendation from the 
10x Genomics. 
 
Sequencing Data Pre-processing 
FastQ files were generated using the bcl2fastq software (v2.20) from Illumina with the “--
create-fastq-for-index-reads” flag, which gave rise to four FastQ files per sample: Read 1, Read 
2, Index 1 (i7) and Index 2 (i5). Samples were demultiplexed using deML48. For the plate-based 
workflow ATAC-seq data, Read 1 and Read 2 FastQ files were processed using the 
Snakemake49 pipeline as described previously34, except that BWA50 was used for the 
alignment. For the plate-based workflow RNA-seq data, the combination of i7 and i5 defines 
a single cell and the first 10 bp of Read 1 were UMIs. Therefore, sequences from Index 1, Index 
2 and the first 10 bp of Read 1 were concatenated using a custom python script to generate 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.01.16.476488doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476488
http://creativecommons.org/licenses/by-nc/4.0/


 15 

a new FastQ file containing the cell barcode and UMI (CB_UMI.fastq). Then the CB_UMI.fastq 
and Read 2 files were used to make the gene expression matrix by STARsolo51. For the droplet-
based workflow of ATAC-seq data, Read 1, Read 2 and Index 2 files were processed by Cell 
Ranger ATAC v2.0.0 from 10x Genomics. For the droplet-based workflow of RNA-seq data, the 
first 10 bp of Read 2 are UMIs. Therefore, sequences from Index 2 and the first 10 bp of Read 
2 were concatenated to generate a new FastQ file containing the cell barcode and UMI 
(CB_UMI.fastsq). Then the CB_UMI.fastq and Read 1 files were used to generate the gene 
expression matrix by STARsolo51. 
 
Data quality comparisons to other methods 
The code used to perform the comparison and generate the figures can be found in the 
GitHub repository (https://github.com/dbrg77/ISSAAC-seq). Briefly, ISSAAC-seq data were 
downsampled to 50,000 read pairs per cell (ATAC) or 50,000 reads per cell (RNA). For public 
data set, fastq files or count matrices were downloaded. The ATAC-seq reads were mapped 
using chromap52 and the RNA-seq reads were analysed using STARsolo51. The resulting count 
matrices were used to generate the quality metrics, including the number of reads in peaks, 
the number UMIs and the number of detected genes. 
 
Species mixing experiment 
Briefly, 50,000 HEK293T and 50,000 NIH3T3 cells were combined and went through the 
ISSAAC-seq procedures. The resulting data were mapped to a GRCh38 and mm10 combined 
reference genome using chromap52 (ATAC) and STARsolo51 (RNA). Reads mapped to each 
genome in each cell barcode were counted. For ATAC data, we assign cell barcodes with >90% 
reads mapped to a single genome as singlets; for RNA data, we assign cell barcodes with >80% 
reads mapped to a single genome as singlets. For the joint analysis, we only treat cell barcodes 
as singlets where both modalities provide concordant results. Otherwise, they were labelled 
as doublets. The code can be found in the GitHub repository 
(https://github.com/dbrg77/ISSAAC-seq). 
 
Mouse cortex ISSAAC-seq RNA Data Analysis 
For scRNA-seq analysis, the gene expression UMI matrix was normalized in the Seurat 
package24, using the “NormalizeData” function. Principal component analysis (PCA) was used 
to reduce the dimension of the data. The first 30 PCs were used to find the cell clusters using 
a modularity-based community detection algorithm53, and the final results were visualized 
using uniform manifold approximation and projection (UMAP)37. The marker genes from each 
cluster were identified using the “FindAllMarkers” function in the Seurat package that used 
the Wilcoxon rank-sum test to find significantly different genes. The average of expression of 
selected marker genes and the proportion of expressing cells within each cluster were plotted 
using the Scanpy package54. To annotate the cell types, scRNA-seq data from a previous study 
in the mouse cortex38 was used as a reference and passed to the “FindTransferAnchors” 
function in the Seurat package. Cell types for cells produced in this study were predicted using 
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the “TransferData” function. Then marker genes from each cluster were taken into account 
to refine the automated prediction. 
 
Mouse cortex ISSAAC-seq ATAC Data Analysis 
ATAC-seq data from the two biological replicates were merged together using the “aggr” 
function from the Cell Ranger ATAC software. The combined peak cell matrix was used for 
dimensionality reduction and clustering using the Signac package55. To find out the difference 
of the chromatin status between ATAC clusters A2, A3 and A9 within the Ex-L4/5 IT neurons 
(RNA cluster R3), reads from cells that belong to RNA cluster R2 and ATAC cluster A2, RNA 
cluster R2 and ATAC cluster A3, or RNA cluster R2 and ATAC cluster A9 were aggregated, and 
peak calling was performed on the aggregated reads using MACS256. Then the top 1000 
cluster specific peaks, sorted by fold enrichment from MACS2, were taken for motif analysis 
using HOMER57 and for the comparison with the histone modifications from the PairedTag 
data. 
 
Pseudotime Analysis 
Cells from RNA cluster R20 (oligodendrocyte progenitor cells, OPC) and R21 (oligodendrocytes, 
Oligo) were taken out for pseudotime analysis. Differentially expressed genes between R20 
and R21 (q value < 0.05) were used to construct the oligodendrocyte maturation trajectory 
using Monocle245. The gene activity scores inferred from scATAC-seq data were produced 
using Signac. The dynamics of gene expression and chromatin accessibility of the differentially 
expressed genes were visualised side-by-side along the trajectory. 
 
Data availability 
 
The raw sequencing data has been deposited at ArrayExpress under the accession number E-
MTAB-11264.  
 
Code availability 
 
The code used for the data processing and analysis mentioned in the method section is 
available on the GitHub repository https://github.com/dbrg77/ISSAAC-seq. 
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c d

b

Fig. 1 | Joint profiling of chromatin accessibility and gene expression using ISSAAC-seq. a, A schematic view of
the ISSAAC-seq workflow. Key steps and adaptor configurations are outlined in the main text and Supplementary
Figs. 1 & 2. b, UCSC genome browser tracks showed the aggregated signal of single cells (ATAC and RNA) of K562
cells from SHARE-seq, ISSAAC-seq and the 10x Multiome kit. ATAC-seq signals from 100 randomly selected single
cells were shown at the bottom. c and d, Distributions of the numbers of reads in peaks (ATAC) and detected
genes (RNA) from different methods performed in the indicated cell lines (c) or human PBMCs (d). Median
numbers of detected genes were shown at the top of each box.
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Fig. 2 | Simultaneous investigation of chromatin accessibility and gene expression from the mouse cerebral
cortex using ISSAAC-seq. a, A schematic view of the experimental design for the mouse cerebral cortex
experiments. b, Distributions of the numbers of reads in peaks (ATAC), UMIs (RNA) and detected genes (RNA)
from different methods performed in the mouse brain samples. The medians of number of detected genes were
indicated at the right hand side. c, UMAP projection of ISSAAC-seq RNA data coloured by the RNA clustering and
expression values of indicated genes. d, UMAP projection of ISSAAC-seq ATAC data coloured by RNA clusters and
cell types. e, Dotplot showing marker gene expression levels in each RNA cluster. f, UCSC genome browser tracks
of aggregated scATAC-seq signals in each RNA cluster around four signature genes.
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A9. d, The top de novo motifs enriched in the top 1000 cluster specific peaks of A2, A3 and A9. e, Pseudotime
analysis of the oligodendrocyte progenitor cells (R20) and mature oligodendrocytes (R21). f, Heatmap
representation of relative expression levels of genes that were differentially expressed along the pseudotime
trajectory. The relative changes of chromatin accessibility in the same cell along the same trajectory were shown
to the right. g, Examples of dynamic changes of gene expression and chromatin accessibility during the
pseudotime.
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Supplementary Fig. 3 | Experimental tests and benchmarking of ISSAAC-seq. a and b, Assessment of ISSAAC-
seq RNA data. Distributions of total UMIs (a) and numbers of detected genes (b) from indicated conditions
performed on the E14 mouse embryonic stem cells. Pro, Protector RNase inhibitor. Ribo, RiboLock RNase
inhibitors. c-e, Assessment of ISSAAC-seq ATAC data. Distributions of unique nuclear fragments (c), fraction of
reads in peaks (FRiP) (d) and mitochondrial content (e) from indicated conditions performed on the E14 mouse
embryonic stem cells. f, UCSC genome browser tracks of aggregated scATAC-seq signal from indicated
conditions. g, Species mixing experiments of ISSAAC-seq using HEK293T and NIH3T3 cells.
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Supplementary Fig. 4 | ISSAAC-seq experimental results from different cell lines and PBMCs. a, Examples of a
typical FACS based workflow using K562 cells. FSC-A and SSC-A were used to select intact nuclei (P1). FSC-A and
FSC-W were used to select singlets (P2). DAPI-A was used to select DAPI positive nuclei (P3). b, DNA
electrophoresis of typical ISSAAC-seq libraries from the FACS (left) and droplet (right) workflow using K562 cells.
c and d, Fragment size (c) and Tn5 insertion frequency (d) of ATAC data using different methods in the indicated
cell lines. e, quality metrics of the ISSAAC-seq PBMC data. f, Genomic distribution of reads from RNA data using
different methods. g, Distributions of the numbers of UMIs using different methods performed in the indicated
cell lines and PBMCs.
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Supplementary Fig. 5 | UCSC genome browser tracks of single cell aggregates from ISSAAC-seq. a, Visual
comparisons of SHARE-seq, ISSAAC-seq and the 10x Multiome kit from K562 cells. Cell numbers are the same as
in Fig. 1b. b, Visualisation of ATAC and RNA signals from single cell aggregates of ISSAAC-seq (FACS) in H1 (Day 3
upon mesoderm differentiation) and E14 (Day 4 upon EB differentiation) cells around the BRACHYURY and
MIXL1 genes. c, UMAP projection of ISSAAC-seq PBMCs.
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Supplementary Fig. 6 | Computational pipeline for the data processing of droplet-based ISSAAC-seq. a, Flow
chart of the computational pipeline to process mouse cortex data. b, Cell barcode qualities and the number of
nuclei returned by the pipeline in each step.

Sample

# of 
nuclei 
loaded 
on the 

10x 
machine

Modality

# of nuclei 
recovered by the 

emptyDrop
algorithm

% of reads in 
cell barcodes

# of cell 
barcodes 
from both 
modality

Total nuclei

# of cell 
barcodes 

failed “dual” 
cell calling

% of reads 
from cell 
barcodes 

failed “dual” 
cell calling

mCortex 
rep1

~ 8,050
ATAC 4,627 90.3%

3,974

3974 + 6404 = 
10378

4627 - 3974 =  
653

8.3%

RNA 4,315 92.9% 4315 - 3974 =  
341

8.4%

mCortex 
rep2

~ 12,320
ATAC 7,345 84.2%

6,404

7345 - 6404 = 
941

4.3%

RNA 7,200 91.5% 7200 - 6404 =  
796

8.4%

a

b



a b

Supplementary Fig. 7 | ISSAAC-seq ATAC and RNA data comparison. a, UMAP projection of mouse cortex cells
with ISSAAC-seq ATAC data coloured by ATAC clusters (left) and batches (right). b, Ribbon plot showed the
relationship between all RNA clusters and all ATAC clusters. c, UMAP projection of mouse cortex cells with
ISSAAC-seq RNA data, highlighted by RNA cluster R2 Ex-L4/5 IT neurons (left) and ATAC cluster A2, A3 and A9
(right). d, UMAP projection of Ex-L4/5 IT neurons (RNA cluster R2) coloured by RNA subclusters (left) and ATAC
clusters. e, Gene ontology of the top 50 differentially expressed genes among A2, A3 and A9 clusters within the
Ex-L4/5 IT neurons. f, SCENIC analysis of regulon (TF) activity in A2, A3, and A9 cells.
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Supplementary Fig. 8 | The prediction probability of each single cell based on the Allen Brain
reference data using the label transfer function from Seurat.



Rep1 (n=3,974)
Rep2 (n=6,404) 

Supplementary Fig. 9 | UMAP projection of ISSAAC-seq RNA data coloured by the expression levels of
indicated genes or batches.


