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Abstract: With an extensive growth in user demand for high throughput, large capacity, and low

latency, the ongoing deployment of Fifth-Generation (5G) systems is continuously exposing the

inherent limitations of the system, as compared with its original premises. Such limitations are

encouraging researchers worldwide to focus on next-generation 6G wireless systems, which are

expected to address the constraints. To meet the above demands, future radio network architecture

should be effectively designed to utilize its maximum radio spectrum capacity. It must simultaneously

utilize various new techniques and technologies, such as Carrier Aggregation (CA), Cognitive Radio

(CR), and small cell-based Heterogeneous Networks (HetNet), high-spectrum access (mmWave),

and Massive Multiple-Input-Multiple-Output (M-MIMO), to achieve the desired results. However,

the concurrent operations of these techniques in current 5G cellular networks create several spectrum

management issues; thus, a comprehensive overview of these emerging technologies is presented in

detail in this study. Then, the problems involved in the concurrent operations of various technologies

for the spectrum management of the current 5G network are highlighted. The study aims to provide

a detailed review of cooperative communication among all the techniques and potential problems

associated with the spectrum management that has been addressed with the possible solutions

proposed by the latest researches. Future research challenges are also discussed to highlight the

necessary steps that can help achieve the desired objectives for designing 6G wireless networks.

Keywords: 6G; spectrum management; 5G; Carrier Aggregation (CA); Cognitive Radio (CR); small

cell; high-spectrum access; mmWave; M-MIMO

1. Introduction

Given the exponential increase in high-definition multimedia applications, the simultaneous

communication among various connected devices with new features, and the massive user demand
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for data, the mobile data traffic must be boosted by 1000× [1]. Records show that the amount of data

managed by wireless systems has increased from under 3 exabytes in 2010 to over 190 exabytes in

2020; therefore, if a data request is carried with the same speed, the demand for data is expected

to grow by more than 500 exabytes by 2025 and beyond [2]. This expected leap of high mobile

data demand and other machine-type communication services makes it necessary to ponder on

the requirements for future 6G networks [3]. Spectral efficiency, energy efficiency, high bandwidth,

and low power consumption are regarded as a critical challenge and should be considered before

designing 6G networks [4,5]. To substantiate future data necessities and support a diverse set of

devices, New Radio (NR) 6G networks are predicted to meet these demands with competently

managed spectrum resources [6]. According to researchers, NR is a combination of various radio

access technologies that help supply expected data with low latency, high-spectrum efficiency, and low

power consumption [7]. It is broadly classified as low-power small cells utilizing the millimeter-wave

(mmWave) spectrum, considering effective use of an unlicensed spectrum of Wi-Fi in a 5 GHz band

and the implementation of Massive Multiple-Input-Multiple-Output (M-MIMO) technology instead

of the conventional 2 × 2 MIMO system [8]. The utilization of high-spectrum access, i.e., mmWave

frequency band [9], Cognitive Radio (CR) [10], M-MIMO [11], Cooperative Networks (CNs) using

Relay Nodes (RNs) [12], Coordinated Multipoint Operation (CoMP) [13], Wireless Sensor Networks

(WSN) [14], Mobile Ad Hoc Networks (MANETs) [15,16], Device-to-Device (D2D) communication [17],

Internet of Things (IoT) [18,19], Ethernet Passive Optical Networks (EPON) [20], Heterogeneous

Networks (HetNet) [21], and cellular cloud computing, including big data [22], are some of the

current approaches that can be modified to deliver the 6G requisites. Moreover, the use of various

power optimizations [23,24], handover processes [25], interference cancellation [26], data security

management [27], routing protocols [28], and scheduling algorithms [29] with optimal enhancement

can also deliver ultimate results. New approaches, such as satellite communication at the mmWave

spectrum [30], Artificial Intelligence (AI)-based micro Base Stations (BSs) [31], machine learning-based

communication [32,33], blockchain [34], and human-centric communication [35], are some promising

ideas for designing 6G networks.

Furthermore, in 6G radio access technologies, Spectrum Sharing (SS) and Radio Resource

Management (RRM) are a critical part of the design of a future network [36]. Looking after and using the

spectrum resources wisely are important when moving toward a new frequency spectrum, specifically

in the mmWave frequency band [37]. The demand for a new spectrum has increased tremendously

as the number of users and diverse electronic communication devices expands exponentially [38].

On this basis, the available spectrum has minimal resources and cannot deliver the 1000× expansion in

users and devices with high data requirements [39]. Additionally, the technologies and techniques that

followed Long-Term Evolution (LTE), LTE-Advanced (LTE-A), and its predecessors cannot provide

prosperous results for future wireless communication [40]. Therefore, new spectrum resources and

advanced technologies must be determined to address the upcoming high data requirement for low

latency and extend the services to another decade and even more [41]. Nevertheless, the simultaneous

operation of new technologies in a cellular network structure results in many management issues [42].

Standardization organizations, research institutions, and governments of various countries focus on 5G

spectrum strategies and their effective usage [43]. The International Telecommunication Union (ITU),

European Telecommunications Standards Institute (ETSI), and Federal Communications Commission

(FCC) are the respective standardization organizations in the telecommunications industry that focus

on designing new mobile communication technologies [44,45].

Future cellular communication networks are considered ultra-dense; thus, a robust and frugal

network must be designed to accommodate numerous users with fairness in high throughput and

perform spectrum management systematically [46,47]. To enhance the spectral efficiency of cellular

networks, an ultra-dense small cell design can help achieve the objectives of future 6G cellular

networks [48]. Concurrent operations of macro-cells and low-power small cells, such as picocells,

femtocells, and RNs with wired and wireless backhaul links, are known as HetNet [49]. Adding the
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structure of many small cells conveys two positive outcomes: (1) it reduces the load on a BS

where numerous users compete to access the resources, and (2) it helps use the frequency spectrum

efficiently [47]. Thus, this method substantially improves the throughput for each user and provides

fairness among the users. However, ultra-dense small cell systems face some serious challenges, such as

interference, which is a major issue in HetNet deployment [50]. In addition, supporting mobility in

small cells leads to the increasing cost of installation, maintenance, and backhaul structure [51].

While researching on the MIMO technology for 6G goals, M-MIMO undoubtedly supports power

utilization and spectrum management efficiencies [52,53]. Conventional MIMO is equipped with two

to four antennas, whereas M-MIMO can use tens and hundreds of antennas for the simultaneous

transmission and reception of multiple signals over the same channel [54]. This method greatly boosts

the network capacity and accommodates the maximum number of users and devices on the same

frequency band, thereby reducing the usage of spectra. To maximize M-MIMO properties effectively,

a technique called beamforming can be used to deliver the desired results [55,56]. The use of CR,

which plays a vital role in spectrum management, is another novel idea. CR is an intelligent wireless

network technology that can automatically detect available channels in a cellular spectrum. It can be

implemented with the M-MIMO system to enable communication and execute simultaneously, besides

improvised cellular operational performance [57]. M-MIMO is efficiently handy for networks to which

many users connect (i.e., IoT) [58,59].

Another feature of current 5G communication is access to the mmWave spectrum [60]. However,

previously, it was considered unsuitable for cellular communication because of its propagation

characteristics, inability to travel over long distances due to its short wavelength, and penetration losses

due to objects and large structures and adverse atmospheric conditions [61]. However, the densification

of small cell networks and the parallel operation of innovative methods make the use of the

mmWave frequency band possible [62]. Even though most of the spectrum is unused in this region,

the Third-Generation Partnership Project (3GPP) already mentioned in its release 15 and 16 that it is

not harmful to utilize for wireless communication [63,64]. The 3GPP defines an NR 5G spectrum with

two different sets of frequency bands. The first is frequency range 1 (<6 GHz), where the frequency

using this region for 5G is approximately 3.5 GHz, and the maximum channel bandwidth available is

100 MHz [65]. As stated by the FCC, most of the spectrum used in this range is for 4G and its progenitor

technologies [66]. By contrast, frequency range 2 (>24 GHz, i.e., mmWave frequency band) is where

the maximum channel bandwidth is defined to be as low as 50 MHz to a maximum of 400 MHz [67].

The goal of 6G is to meet the needs of the information society ten years later (2030~); thus,

the 6G vision must address the needs that 5G cannot meet and the need for further up-gradation [68].

6G must be developed in response to the increasingly distributed Radio Access Network (RAN) and

the desire to maximize the Terahertz (THz) spectrum for increasing capacity and reducing latency [69].

The 6G wireless system must have the following key factors: enhanced Mobile Broadband (eMBB),

Ultra-Reliable Low Latency Communications (URLLC), massive Machine-Type Communication

(mMTC), AI-integrated communication, tactile internet, low backhaul, and access network congestion

and enhanced data security [70–73]. In summary, the future 6G is a set of technologies that can deliver

the optimum results in terms of throughput, network capacity, spectral efficiency, energy efficiency,

lower power consumption, and latency, ensuring fairness among all the users, especially the cell-edge

users [74].

2. Contribution

The future 6G network is expected to deliver high data rates to each user to run high-definition

applications, which are facing various challenges with the current 5G network. Typically, the 6G

network supports a diverse range of applications and services, including enhanced indoor coverage,

large capacity for outdoor public spaces, improved spectral efficiency, and low power consumption [75].

To support essential user applications and increase the efficiency of communications among

interconnected devices with low latency and high throughput, primary technologies are expected to
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achieve the goals of 6G [76,77]. This study aims to describe the techniques involved in current 5G

network design and their issues, in accordance with spectrum management for designing future 6G

networks. The five major topics covered in this study are Carrier Aggregation (CA), CR, small cell,

high-spectrum access, and M-MIMO (Figure 1). The main concept of each of the involved approaches

and their potential results in current 5G is also presented. Furthermore, research issues are discussed

in this study.

Carrier Aggregation: The current 5G network is compatible with its predecessor’s technologies,

including Carrier Aggregation (CA). CA was first introduced in 4G LTE, and it is now implemented

in the current 5G system. The core objective of CA is to utilize the spectrum resources of a cellular

network effectively.

Cognitive Radio: Another promising technology for the current 5G system is CR. It is an adaptive

and advanced radio network technique that can automatically discover available channels in a wireless

cellular spectrum.

Small Cell: To support numerous users of up to almost 100 times more than that of the

previous network, small cells with Full-Duplex (FD) communication are introduced to resolve the

spectrum issues.

High-spectrum Access: Accessing high-spectrum assets is inevitable due to the scarcity of

available spectrum resources. A new high-spectrum space, i.e., mmWave frequency bands, ranges

from 24 GHz to 300 GHz.

M-MIMO: It allows the simultaneous transmission and reception of more than one signal over

the same channel. Standard MIMO comprises two to four antennas, whereas the M-MIMO network

contains several antennas for transmitting and receiving data. No preset figure is required, but in

M-MIMO, we can implement 10 s and even 100 s of antennas for transmitting and receiving data over

a common channel.

 
 

Resource 
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Figure 1. Spectrum management issues.
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3. Spectrum Management Issues

This section addresses the overview, challenges arises, and recent studies available in the literature

related to spectrum management for the designing of the future wireless network.

3.1. A. Carrier Aggregation

One of the ways to achieve the extensive bandwidth required for the next-generation 6G network

is through the CA technique [78]. For the current 5G network, CA or channel bonding (between the

licensed and unlicensed carriers) is considered an efficient technique, although it can be used further by

effectively handling the frequency resources for designing 6G networks [79]. CA can be implemented

in three different methods, which can be identified based on the patterns in which the Component

Carriers (CCs) are arranged (Figure 2) [80]. These methods include (a) intra-band contiguous in which

a wide contiguous bandwidth of more than 20 MHz is utilized, as in LTE-A [81,82]. Because of the

frequency allocation strategies as it is today, this may be a less likely scenario but can function in some

situations, as a 3.5 GHz frequency band allocates in broadband [83]. The next method is (b) intraband

noncontiguous in which the CCs work in the same spectrum as that of contiguous; this method can

be used and aggregated for data transmission while adjacent resources are unavailable [84]. The last

method is (c) interband noncontiguous in which communications are performed by simultaneously

using two or more different operating frequency spectra, such as 800 MHz and 2 GHz bands [85].

In this manner, various wireless transmission attributes of varying frequency channels can be used

to improve the robustness of mobility [86]. In the context of the physical layer, contiguous CA can

be easily implemented without much modification to the LTE-A physical layer design [87]. To attain

contingency in CA and support previous generation compatibility, i.e., LTE-A UE unit, a single Fast

Fourier transform (FFT) module and a single Radio Frequency (RF) unit can be utilized [88]. In most

cases, for both non-contiguous CA bands, multiple FFT and RF chains are mandatory. From the

perspective of management and resource allocation, contiguous CA is also applicable [89]. Different

CCs usually experience various Doppler shifts and path loss propagation characteristics that greatly

affect network performance [90]. Several studies have been performed in CA, which helps maximize

the use of the spectrum. Some of the recent studies that focus on four important areas, i.e., resource

sharing, energy efficiency, capacity improvement, and transmission performance, are discussed below.

 
 

 

Figure 2. Carrier Aggregation types.

3.1.1. Resource Sharing

The authors in [91] have discussed the RRM shortcomings of the currently utilized CA technique.

The issues persist with the CC selection and Resource Block (RB) allocation of selected CCs, as mentioned

in 4G standards. Nevertheless, a method is developed on the basis of the head of line delay and delay
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threshold, which enhances the overall data rate and Quality of Service (QoS) of the user, with low

computational complexity. However, no significant outcome is observed in user fairness. In [92],

researchers suggest fewer studies that have been undertaken on the findings of several performance

parameters on the packet scheduling algorithm in the CC system. Therefore, a newer and orderly

scheduling algorithm of packets is considered for multiple CC systems on fair criteria equivalence

for downlink propagation. The technique supports real and non-real-time traffic with good energy

efficiency and better utilization of spectrum resources. However, the performance results of the

designed algorithm based on overall system throughput, fairness, and mean delay largely improve in

comparison with those algorithms of independent CC without aggregated. The resource allocation

and joint optimization of CC selection are observed in the current 5G CA system in the study [93],

and the researchers have delivered a greedy-based algorithm method to resolve the issue. Therefore,

the proposed technique helps improve performance by comparing existing schemes and computational

complexity at an acceptable level. In another study [94], authors have worked on an enhanced method

of CC selection algorithm to overcome the issues of the existing CC selection scheme. An innovative

channel quality and traffic load algorithm approach are used in each CC. The simulation output shows

that downlink performance is vastly improved as a newly designed CC selection approach provides

high throughput and good QoS to all user equipment. However, the method still suffers from power

equality when the number of users in a cell is high.

3.1.2. Energy Efficiency

The authors in [95] have highly focused on the energy efficiency of a system alongside capacity

and coverage fairness for users. This study has analyzed the outage capacity of a system and proposed

a relaying scheme on energy-efficient methods to maximize the capacity, coverage, and fairness of

CA-based networks. This relaying method also enhances low-frequency CCs for greater capacity

fairness among all users in a cell. Conversely, an advanced and efficient algorithm is still in

demand for user mobility. Another energy-efficient multi-stream Carrier Aggregation for HetNet

is proposed in [96]. It utilizes a Bisection Method for Energy Minimization (BIMEM) algorithm to

minimize energy consumption and capacity maximization by analyzing the problem as multi-objective

optimization. The results have proved that the trade-off curve between energy minimization and

capacity maximization delivers a large amount of energy savings by reducing the network capacity.

3.1.3. Capacity Improvement

The authors in [97] have focused on the issue of network capacity maximization in the CA.

The approach is based on the joint cell association and user scheduling; in this approach, the user can

connect BSs by using multiple carrier bands. This technique helps solve convex optimization issues,

but it suffers from high computational complexity when the number of users in the cell is high. Another

study on increasing radio resource efficiency has focused on adaptive CA with differentiated cloud

services [98]. It proposes a cross-layer scheduling approach based on three mechanisms: (1) Markov

Decision Process-Based Cost Reward Packet Selection (MDP-PS), (2) Adaptive Packet Scheduling

(APS), and (3) Adaptive Component Carrier Scheduling (ACCS). The simulation results have proved

that the suggested method delivers improved results for capacity, network reward, and packet failure

rate; however, authors have suggested that an analytical method for C-RAN (Cloud/Centralized Radio

Access Network) and energy-efficient CR techniques are needed for future cellular networks.

3.1.4. Transmission Performance

Another study [99] has proposed a novel design of the receiver for CA LTE-A and NR for the

current 5G network. It has implemented the cascade-shutoff low-noise transconductance amplifier

method. Consequently, the proposed generic receiver structure supports inter-band and intra-band

CA with various CA scenarios, and the single-gm receiver design provides good linearity, especially

for out-of-band blockers; however, it is limited to Single-Input-Multiple-Output scenarios. The authors
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in [100] have proposed a latency-efficient Code-Division Multiplexing (CDM) CA approach, which is

based on the least-squares approximation. This approach helps mitigate the Peak-To-Average Power

Ratio (PAPR) for the scenario of 5G NR Mobile Fronthaul (MFH). The results show that the approach

can reduce the number of iteration and latency with efficient transmission performance.

Below is Table 1, which summarizes the techniques, advantages, and limitations of the

above-discussed studies.

Table 1. Summary of the related work for Carrier Aggregation (CA).

Approach Methodology/Technique Advantages Limitation/Future Work References

Resource sharing

Component Carrier (CC)
selection based on the head of
the line delay and
threshold delay

Increase network
throughput and reduce
computational
complexity

No improvement in
fairness index

[91]

Design an efficient packet
scheduling algorithm based
on proportional fairness to use
in multiple CC’s systems

Support both real and
non-real-time traffic

Inefficient when packet
traffic is fluctuating

[92]

Joint optimization technique
based on a greedy-based
algorithm for CC selection

Computational
complexity
is decreased

Low fairness index for
cell-edge users

[93]

Traffic and channel-driven CC
selection by considering
channel quality and
traffic load

Better performance as
compared to least-load
and max channel
quality indicator
(CQI) algorithm

Low fairness index when
a high number of users
in a cell

[94]

Energy efficiency

Relaying scheme to improve
the coverage, fairness, and
capacity for CA-based system

Work for both
intra-and
inter-band CA

More advance algorithm
is needed for the
mobility of users

[95]

The Bisection Method for
Energy Minimization
(BIMEM) algorithm is used to
minimize the energy
consumption and capacity
maximization

Reducing network
capacity and improves
massive energy saving

Interference effect due to
multiple BSs on the
same layer

[96]

Capacity
improvement

User scheduling and
combined cell association,
where the user can connect
BSs by using multiple
carrier bands

Convex optimization
solutions to enhance
the network capacity

Computational
complexity increases for
high users

[97]

Cross-layer scheduling
approach based on three
mechanisms: (1) Markov
Decision Process-Based Cost
Reward Packet Selection
(MDP-PS), (2) Adaptive Packet
Scheduling (APS), and (3)
Adaptive Component Carrier
Scheduling (ACC)

Better results for
capacity, network
reward, and packet
failure rate

An analytical method is
needed for centralized
radio access network
(C-RAN) and
energy-efficient
cognitive radio (CR)

[98]

Transmission
performance

Receiver design architecture
based on cascade-shutoff
Low-Noise Transconductance
Amplifier (LNTA)

Support both
inter-band and
intra-band

Limited to
Single-Input-Multiple-Output
(SIMO) scenario only

[99]

A latency-efficient
Code-Division Multiplexing
(CDM) CA approach based on
least-squares approximation

Reduce the number of
iteration and latency

Limited transmission
distance of maximum
10 km

[100]

3.2. Cognitive Radio

One of the prominent strategies to attain a high level of spectrum resource optimization required

for the current 5G is through a flexible sharing and allocation of available spectrum resources through

flexible and opportunistic usage [101]. The existing spectrum regulatory policies do not encourage
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flexible frequency utilization and opportunistic spectrum access in the cellular systems. Recently,

the FCC has committed to the implementation of the shared utilization of the 3550–3650 MHz

bands [102]. CR, based on a software-defined radio, offers the opportunity for flexible spectrum access

in wireless systems [103]. It is also regarded as one of the key players of the current 5G cellular

network. CR work is classified into three main sections, namely, spectrum management, intelligence

management, and interference management [104]. Spectrum management determines and manages

various spectrum issues for primary and secondary users [105–107]. Intelligence management is built

on an efficient cognitive engine that uses a diverse range of synthetic intelligence methods (e.g., genetic

algorithm and rule-based systems) and neural networks to manage the network resources [108,109].

Interference management focuses on the implementation aspect of the CR, which involves various

characteristics of the radio channels (such as resource allocation for the users), in addition to link quality

and channel awareness, which highly depend on the precise selection of transmission power [110].

Small cells have low transmission power; thus, the coverage areas under such small cells can

apply CR for efficient resource optimization and high data rate services [111]. To utilize the CR

paradigm in the most efficient way for higher throughput, spectrum sensing is a fundamental element

in it. Moreover, its methodology is close to the spectrum opportunity definition [112]. Spectrum

sensing can be presented in three different scenarios, namely, (a) local spectrum sensing by the small

cell BS; (b) centralized cooperating spectrum sensing, where users are activated by the small cell

BS, apply spectrum sensing, and deliver the outcomes to the small cell BS that serves, performs as

a central unit; (c) distributed cooperating spectrum sensing, where users are activated by the small

cell BS, apply spectrum sensing, and report the consequences to the closest neighbors, as shown in

Figure 3. A considerable portion of radio spectrum resources is largely underutilized in most cases

and has necessitated the adoption of CR to maximize resource usage [113]. In [114], the authors have

suggested that the concept of spectrum allocation through SS is used mainly for optimal spectrum

usage, especially for small cells. Given that spectrum allotment is under the governance and control

of regional regulatory authorities and policies, the prospective newly licensed bands in each region

probably lie in the range of 3–10 GHz, whereas the 95–150 GHz bands can be obtained through the SS

mechanism facilitated by opportunistic utilization [115]. Several types of research have been conducted

on spectrum management issues related to spectrum sensing, throughput enhancement, spectrum

allocation, channel estimation and optimization, and cluster formation. A few of the latest studies are

discussed in further subsections.

3.2.1. Spectrum Sensing

Another spectrum sensing approach has been presented for real-time configuration [116]. The idea

is to utilize the Filter Bank Multicarrier (FBMC) approach, which is based on the adjustment by using

the non-linear fractional program and stationery Karush–Kuhn–Tucker (KKT) condition. It helps

achieve the efficient utilization of network resources that can be used for IoT applications. The authors

have suggested that in the future, various bio-inspired optimization techniques can be used for efficient

CR integration. Another method to minimize interference and enhance sensing accuracy is discussed

in [117]. It is a group-based multichannel synchronized spectrum sensing approach that is based on the

Dynamic Multi-Channel Slot Allocation (DMCSA) algorithm. The idea is to introduce a special entity,

i.e., a spectrum agent that is used to execute only spectrum sensing and report to the fusion center.

The extracted results have proved that the proposed technique could deliver optimal performance in

terms of throughput, detection probability, delay, and sensing overhead.
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Figure 3. Cognitive Radio (CR)-based spectrum sensing.

3.2.2. Throughput Enhancement

In [118], the authors have investigated equilibrium strategic behavior for two classes of users,

i.e., Primary User (PU) and Secondary User (SU) based on three information cases, namely, no queue

length information, partial queue length information, and full queue length information for CR

systems. An efficient approach using theoretical and numerical analyses is derived to enhance PU

and SU performance. The study has concluded that with minimum sojourn time, improved QoS and

throughput can be achieved, but the increase in service rate does not necessarily improve the data rate

of the CR network. Therefore, a more robust and precise algorithm is required. In the account of future

work, the designed model can be further extended to trilateral work among the PU, SU, and manager of

the CR system. A detailed study on the congested routes for PUs in the CR network is performed [119].

The undercover routing protocol technique is introduced with a joint venture of three-layer routings

and beamforming methods. The proposed protocol is evaluated via NS2 simulations, and the results

show that it enhances the goodput to up to 250% in comparison with other routing protocols with

lower overhead. For future recommendations, a technique to improve group construction time remains

a challenge.

3.2.3. Spectrum Allocation

In [120], the authors have worked on expanding the utilization of the available spectrum

by dynamically assigning channels to SUs, and this problem is considered a spectrum allocation

problem. A method called Chaotic Biogeography-Based Optimization (CBBO) evolutionary algorithm

is derived. The results show that CBBO is a generally suitable optimizer for solving combinational

optimization problems. Therefore, the technique enhances or at least maintains the performance of

the other algorithms in the CR network. In the future, one can work on the same model that can use

QoS parameters for nonlinear migration models and on the application of BBO in next-generation

technologies. A study [121] has suggested to resolving the issue of spectrum management requirements

and heterogeneity for the CR users. The study has provided an innovative Channel Management

Framework (CMF) for CR sensor networks. The framework is strongly constructed on Opportunity

Scheduler (OSR), Opportunity Detector (ODR), and Opportunity Ranker (ORR) to tackle the

shortcomings of CR sensor network-aided IoT. Consequently, the proposed CMF scheme surpasses all
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current methods with respect to blocking and detection probability, collision probability, and idle time

probability, and throughput. In the future, a system that uses a single optimization problem to execute

ORR and ODR can be designed.

3.2.4. Channel Estimation and Optimization

The limiting factor that has been left as a challenge is designed as a multilayer complex algorithm

for the more agile cluster. In [122], a channel status evaluation parameter, i.e., Signal-to-Noise Ratio

(SNR), is observed. The research is conducted by implementing the Second- and Fourth-Order Moment

technique based on Kalman filter theory. The simulation proves that in the range of SNR (0–15 dB),

the estimation and prediction methods exhibit low error rates with a high prediction error of up

to 0.14 dB. Therefore, this method is viable and can be utilized to estimate the channel quality of

the CR system. The authors in [123] have presented an energy-efficient resource allocation for the

CR-enabled 5G network and proposed an alternative optimization framework to optimize the variables

of subcarrier assignment and power allocation. It has adopted a heuristic subcarrier assignment and

a convex approximation technique. The results are estimated to achieve efficient energy efficiency

in comparison with the conventional resource allocation scheme. However, the proposed approach

is based on some impractical assumptions, such as a single user in one cell, a single antenna for

transmitter and receiver, and well-synchronized PUs and SUs.

3.2.5. Cluster Formation

The authors in [124] have proposed a weight-based cluster formation scheme to overcome the

clustering issues caused by node mobility and dynamic channel availability in the CR network.

Furthermore, they have compared their designed protocol with competing protocols in the CR network.

Subsequently, the developed algorithm produces better results than conventional protocols, especially

in adverse conditions. Another cluster-based scheduling approach is proposed in [125]. The authors

have proposed two scheduling approaches, i.e., Frame Intra Cluster Multichannel Scheduling algorithm

denoted Frame-ICMS and the Slot Intra Cluster Multichannel Scheduling algorithm denoted Slot-ICMS.

The performance is evaluated in terms of accurate and bad PU activity. It enables spatial reuse with

noninterfering users, reduces delays, and saves energy.

The above-discussed researches have been summarized in Table 2.

Table 2. Summary of the related work for CR.

Approach Methodology/Technique Advantages Limitation/Future Work References

Spectrum sensing

A new Filter Bank Multicarrier
(FBMC) approach based on
the adjustment by using the
non-linear fractional program
and stationery KKT condition

Efficient utilization of
network resources for
real-time Internet of
Things (IoT)
applications

Bio-inspired techniques
for more efficient
optimization approach

[116]

A group-based multi-channel
synchronized spectrum
sensing approach based on
Dynamic Multi-Channel Slot
Allocation (DMCSA)
algorithm

Optimal performance
in terms of throughput,
detection probability,
delay, and sensing
overhead

Limited to a smaller
number of users

[117]

Throughput
enhancement

It derives an optimal service
rate for increasing the
performance of primary and
secondary users

Better Quality of
Service (QoS) and
throughput
performance with
minimum sojourn time

Queue length factor is
not considered

[118]

The undercover routing
protocol, which consists of
collaborative beamforming
technique based on layer
three routing

Gain increased up to
250% as compared to
conventional protocols

Group construction time
needs to be improved

[119]
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Table 2. Cont.

Approach Methodology/Technique Advantages Limitation/Future Work References

Spectrum
allocation

The Chaotic
Biogeography-Based
Optimization (CBBO)
algorithm to solve
combinational
optimization problems

CBBO performance is
higher as compared to
other traditional
algorithms

Non-linear migration
model can be used
in future

[120]

Channel Management
Framework (CMF) is
introduced which is based on
opportunity detector,
scheduler, and ranker

Improvement in a
collision, blocking,
detection, and
idle-time probability

Mobility factor is not
considered in
this scenario

[121]

Channel estimation
and optimization

The Second- And
Fourth-Order Moments
(M2M4) method is introduced
to calculate real-time Signal to
Noise Ratio (SNR) value

Gives accurate and
reliable channel state
information

The prediction error is
high as 0.14 dB

[122]

An alternative optimization
framework to enhance the
variables of subcarrier
assignment and
power allocation

Better energy efficiency
as compared to the
conventional resource
allocation scheme

Limited to one user per
cell only

[123]

Cluster formation

Localized clustering technique,
which shares weight to
neighboring nodes to solve the
mobility issue

Improves stability,
scalability, and efficient
spectrum management
with low
overhead delay

Multi-layer complex
algorithm

[124]

The cluster-based scheduling
approach is proposed, namely,
Frame- Intra Cluster
Multichannel Scheduling
algorithm (ICMS) and
Slot-ICMS.

Enable spatial reuse
along with
non-interfering users

The overhead
delay increases

[125]

3.3. Small Cell

The current 5G networks have been characterized by a combination of small cell networks,

also known as HetNet, due to mmWave integration (Figure 4) [126,127]. A straightforward but

exceedingly realistic way to maximize the network capacity is by reducing the cell sizes using the

concept of network densification [128]. For instance, during the 1 G era of cellular systems in the

early 80s, the cell sizes used were basically in the order of hundreds of square km [129]. From 1 G

up to the present time, the cell sizes have been progressively decreasing and have recently been

reduced to approximately 1 km for the outdoor and 100 m for the indoor scenario [130]. Nevertheless,

cell reduction has several benefits, including high chances of frequency reuse across a given geographic

area, resulting in a significant decrease in resource contention among users at each BS [131].

Several new techniques, including the utilization of RN, D2D, and IoT, also come to in design

due to the small cell deployment network [126]. However, the small cells based on HetNet also suffer

from several challenges due to the necessity of deploying additional BSs in a small geographical area.

Consequently, it suffers from the limitation of energy-efficient power sources. In this regard, many BSs

are operated entirely on various renewable energy sources, such as solar energy [132]. For example,

the main issue that has caused a drawback to the use of small cells in HetNet is the interferences among

the pico, macro, micro, and femtocells [133]. Given that the users are in the coverage of more than one

cell, the interference causes many severe issues to achieve optimum results [134]. The interference

can be of any type, such as intercell, intracell, BS to RN, and D2D interference. Many researchers are

recently focusing on new approaches to mitigate this issue [135].
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Figure 4. Small cell-based Heterogeneous Networks (HetNet).

Small cell networks face several other challenges, such as requiring additional frequency bands

to facilitate each cell user [136]. The capacity of the cell depends on the number of active users and

requires high bandwidths to achieve high throughput [137]. Moreover, fairness among cell-edge and

cell-center users is also a big challenge [138]. The use of 5G small cells is based on the mmWave

frequency band; these high-frequency signals are keen to degrade for several reasons, such as reflection,

refraction, and diffraction. These factors are due to trees, buildings, or even the moving people in the

coverage area, especially in urban environments [126]. The cost of the small cell network is also a

big challenge that requires considerable attention; thus, the end-user should not be affected by this

issue [139]. The backhaul connectivity of the small cell-based HetNet is essential in reducing the

delay in transmission and in preventing the signal loss during the handover process performed by a

user when it moves from one small cell to another [140]. Various major areas require considerable

attention, such as interference avoidance, throughput improvement, coverage planning, and capacity

enhancement. Several studies have been conducted to address these issues; some of the approaches

are discussed in the succeeding subsections.

3.3.1. Interference Avoidance

The authors in [141] have presented a massive SS approach for in-building small cells. They have

proposed a nonorthogonal interference-free SS approach to form 3D clusters and less distance among

co-channel small cells. The results have demonstrated that the average spectral efficiency is substantially

improved with the increase in the number of buildings, whereas energy efficiency is decreased with the

increase in the number of buildings. Overall, the results have proved that the suggested nonorthogonal

scheme is much better than the orthogonal spectrum for the Licensed Shared Access (LSA) and Licensed

Assisted Access (LAA) methods in terms of sharing the 60 GHz unlicensed spectrum. Another work

in [142] focuses on designing small cell size networks that broadly check the issues of spectrum

management. In particular, the researchers have focused on Wi-Fi and 4G wireless communication

systems that share the unlicensed spectrum. They have introduced a novel network structure for

both to utilize the unlicensed spectrum in the same proximity. They have also presented an Almost
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Blank Subframe (ABS) scheme to minimize interferences and proposed an interference avoidance

scheme to cancel out the effect of types of interferences encountered by both technologies in a network.

Consequently, the suggested architecture effectively contributes to cost reduction and interference

avoidance; however, the transmission range is limited.

3.3.2. Throughput Improvement

The researchers in [143] have accomplished the task of delivering high QoS to each user by

presenting a cache-enabled small cell network. In this scenario, optimal memory size is obtained in

closed form for a provided density of a small BS. Hence, the outcomes indicate that equipping the

optimal size of memory can minimize the capacity of backhaul and increases the throughput efficiency.

Another RRM scheme is discussed in [144] for enhancing the performance of a small cell network.

The idea is to propose a cooperative game radio resource-sharing scheme to improve the results for

user throughput; moreover, spectral efficiency is better than that in the no-game scenario. The author

has suggested that scaling up the environment for larger small cell networks requires additional

distributed learning approaches that can be applied for efficient coalition formation.

3.3.3. Coverage Planning

The authors in [145] have discussed two critical tasks of mmWave small cell network, i.e., coverage

and spectral efficiency. To evaluate the performance of spectrum resources, two techniques pursued

are frequency reuse-1 and frequency reuse-3. Similarly, an interference mitigation scheme is introduced

to validate the performance of both scenarios. The researchers have also added points on how small

cell radius inserts affect Multiuser MIMO (MU-MIMO) mode performance. Therefore, maximum

throughput achieves almost 2.5×when three additional channels operate within a small radius of up to

50 m. However, ultra-dense small cells are profoundly interfered with by intercell interferences; thus,

an additional investigation is required on small cells. The author in [146] has focused on the issue

of coverage holes (i.e., a location where a user does not receive an optimal signal level) in a macro

to small cell two-layer network. To validate this shortage, an energy-efficient coverage approach is

designed for implementation in a respective network. In conclusion, quality coverage, power usage,

and average transmission rate are observed by utilizing the proposed algorithm for comparison with

conventional methods. Regardless, a concrete algorithm that can extend to more than two-layer

networks is required. A density-aware, energy-efficient, and spectrum-efficient sleep scheduling

technique is presented in [147]. The solution is based on BS density adaptation and cell-zooming

algorithms. The idea is to prevent a coverage hole and increase network throughput along with

reducing Signal-to-Interference-plus-Noise Ratio (SINR) for cell-edge users. The results help improve

throughput, energy, and spectral efficiency.

3.3.4. Capacity Enhancement

In [148], the authors focus on budgeted cell planning issues in the small cell network. Their results

show high-spectral efficiency and capacity improvement for isolated mmWave MU-MIMO small

cell users. Besides, a relay node can be introduced to enhance the coverage area in a small cell

network. In [149], the authors have provided information for small cell networks, which focus on data

offloading among users. They have furnished an innovative file cloud service mechanism to offload

mobile user data when the demand for overall users increases. It can help share any kind of files and

information from the users associated with the nearby small cell. To this end, mobile users conserve

network capacity for high mobile data traffic. However, a delay is inevitable if the file size is extensive.

Another research [150] has highlighted the issue of self-organizing small cell-based HetNet because

its deployment suffers from challenges, such as backhauling, capacity provision, and dynamics in

spatiotemporally fluctuating traffic load. To solve this issue, they set a mathematical model of an

Artificial Immune System (AIS) that has the power to activate and deactivate the small cells as per

the demand of traffic. Consequently, the recommended scheme helps deliver high throughput for
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cell-edge users and enhances BS activation speed. By contrast, if intercell interference is high, the cell

activation and deactivation speed are also high.

Table 3 summarizes the above-discussed works for increasing the performance of small size cells.

Table 3. Summary of the related work for the small cell-based network.

Approach Methodology/Technique Advantages Limitation/Future Work References

Interference
avoidance

A non-orthogonal
interference-free Spectrum
Sharing (SS) approach to form
3D clusters and less distance
among co-channel small cells

Better results as
compared to the
orthogonal spectrum
for both Licensed
Shared Access (LSA)
and Licensed Assisted
Access (LAA) method

The results for larger
small cell size need to be
investigated for the
validity of the
proposed approach

[141]

It utilizes an Almost Blank
Subframe (ABS) scheme to
analyze the operation effect
between various small cells

Proposed network
architecture delivers
cost-effective and
interference
avoidance results

Limited transmission
range

[142]

Throughput
improvement

Optimal memory size is
calculated based on the user’s
requesting probability

The optimal size
memory delivers better
throughput
performance

It reduces the
backhaul capacity

[143]

A cooperative game
theory-based RRM scheme for
small cell network

Results for user
throughput and
spectral efficiency are
better as compared to
no game scenario

Distributed learning
approach can be applied
for more efficient
coalition formation

[144]

Coverage planning

Spectral efficiency and
capacity improvement
technique for isolated
mmWave MU-MIMO small
cell users

High throughput is
achieved when each
cell sector operates in
three channels

Advanced interference
mitigation techniques
are required

[145]

Mitigating the coverage hole
issue for a two-layer
small network

Better coverage, power
usage, and
transmission rate

A more efficient
algorithm is required to
support
higher-layer network

[146]

Scheduling technique based
on BS density adaptation
algorithm and a
cell-zooming algorithm

Better coverage,
throughput, and
spectral efficiency

Can enhance work for
the mobility of BS

[147]

Capacity
enhancement

To enhance the number of
traffic demand nodes based on
power limited, bandwidth,
and traffic requirement

Higher network
capacity with low
deployment cost

Relay node can be added
to enhance the
coverage area

[148]

The file cloud service is used
to offload the mobile user data
when the user’s data
demand increases

Higher accessibility
increases the
coverage area

Delay increases with the
greater file size

[149]

Design of a self-organizing
Artificial Immune System
(AIS) approach that activates
and deactivates small cells
concerning the traffic load

Helps to increase the
coverage and cell-edge
user’s throughput

Activation and
deactivation process is
affected by interference

[150]

3.4. High-Spectrum Access

The channel characteristics of wireless communications mainly depend on several factors,

namely, the radio spectrum used, the air-interface design type, and the network architecture [151].

Existing cellular networks, such as 4G, are operated in frequency bands under 6 GHz because of

the favorable channel propagation characteristics available in those frequency bands for cellular

communications [152]. However, most of the frequency spectra below 3 GHz are nearly used up,

efforts to acquire new operating frequency bands for future terrestrial mobile communications have
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been intensified, and the primary focus has been shifted on the frequency spectrum in the mmWave

bands [153]. One of the few potential solutions to address the envisaged issue of a capacity explosion

in the next-generation radio network is by utilizing the massively untapped frequency resources. It can

be divided into three different frequency ranges, i.e., (1) below 6 GHz (sub-6 GHz), (2) NR mmWave

(24–100 GHz), and (3) above 100 GHz (100–300 GHz) (as shown in Figure 5) [154,155].

 
 

5G NR 

Beyond 5G 4G                    5G NR mmWave 

Figure 5. High-spectrum access (mmWave).

3.4.1. Below 6 GHz (Sub-6 GHz)

The current 5G network is compatible with its predecessor’s technologies, and the 4G spectrum

sub-6 GHz can be easily applied for 5G communication [156]. The management and effective utilization

of the current spectrum help avoid the unnecessary usage of mmWave frequency bands. For frequency

bands under 6 GHz, the communication band between 3.5 and 4.2 GHz is cleared for use with 5G,

and it can offer up to 300 MHz of bandwidth [157]. This novel idea would have some of the following

benefits: (1) The sub-6 GHz band can be used in the Line of Sight (LOS) and Non-Line of Sight (NLOS),

(2) co-channel interferences between mmWave and small cells are negligible, and (3) the channel

state information feedback rate for backhaul connection is smaller than that of 5G NR BS for user

equipment fading links because of high mobility [158]. The transmission between macro BS and small

cell BS would be a bottleneck due to high user capacity and interference-effect. Therefore, one of the

prominent solutions to overcome the issue is to use sub-6 GHz for backhaul communication [159].

The sub-6 GHz band is also advisable to be used by users near macro BS for uplink and downlink

transmission. Another author in [160] has focused on the effective implementation of the sub-6 GHz

for 5G HetNet for wireless backhauling.

3.4.2. NR mmWave (24–100 GHz)

For high frequencies, such as 28 GHz, 850 MHz of bandwidth is available; for 39 GHz, two available

bands offer 1.6 and 1.4 GHz bandwidths. For 73 GHz, 2 GHz of contiguous bandwidth, which is the

widest one of the proposed frequency spectrum, is available for communication [161–163]. The FCC

has defined several frequency ranges to be considered as potential candidates; for example, for the

frequency range of 24 GHz, the 24.25–24.45 and 25.05–25.25 GHz ranges are the candidate bands.

Similarly, for the 28–32 GHz range, the 27.5–28.35, 29.1–29.25, and 31–31.3 GHz ranges are considered.

Similarly, for 39 GHz, 38.6–40, for 37/42 GHz: 37–38.6 and 42–42.5, for 60 GHz: 57–64 and 64–71, and for

70/80 GHz: 71–76 and 81–86 GHz frequency ranges have been selected [164]. Massive research on the

propagation characteristics, implementation, and spectrum, as well as resource management techniques

of mmWave band at 28, 38, 60, and 73 GHz, has been conducted in the last decade. Standard bodies,

such as 3GPP and 5G channel model, have suggested various channel models below the frequency of

100 GHz (e.g., CI, FI, CIF, and others). Furthermore, by using the data collected by standardization

authorities, various firms have performed 5G field trials. For example, a data rate of 1.2 Gbps is

achieved by a mobile user in a 400 MHz channel bandwidth at a 28 GHz frequency band, with a latency

of 9–12 ms at 150 m far from the cell location of AT&T [165]. A comprehensive study is conducted,

and the authors have explicitly mentioned that the mmWave spectrum is suitable for short-range

communication and the well-suited propagation model for LOS to receive the desired results [166].

However, in some cases, where LOS propagation is not achievable, NLOS can use the conditions.

The path loss and small- and large-scale fading must be addressed to comprehend the propagation
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characteristics of indoor and outdoor locations for wireless communication channels. A study [167]

has obtained remarkable results for NLOS mmWave environment by using passive reflectors. Another

study [168] is performed for an NLOS indoor localization system by proposing an RF-ECHO method

that attains high accuracy in long-distance indoor NLOS environments. The method presents a unique

time-of-flight estimation technique to minimize the NLOS constraints. Moreover, it is worth mentioning

that these frequency ranges are also suitable to consider as a wireless backhaul link [169]. The major

motivation for using these mmWave frequency bands is the possibility of achieving the multi-gigabit

wireless communication links. The frequency bands, such as 73 and 76 GHz, are also considered as the

viable solution for wireless backhaul links [170,171]. Several studies show the prominent results for

71–76 GHz and 81–86 GHz frequency bands by utilizing them as a backhaul link [172,173]. Besides, the

standardization organizations, e.g., ITU, have allocated 81–86 GHz frequency band for high capacity

wireless backhaul links [174].

3.4.3. Above 100 GHz (100–300 GHz)

The availability of large bandwidths at the mmWave band and Terahertz frequencies (frequencies

above 100 GHz) creates the possibility of replacing the end-to-end wire links of indoor and outdoor

mobile networks with a wireless system [175]. Currently, the New York University team is considering

allotting frequency bands above 100 GHz for licensed and unlicensed wireless communications

systems [176]. Considering the fact that only approximately 1177 MHz of the international mobile

telecommunications spectrum is currently being utilized, we can anticipate nearly 3–10× increase

in spectrum allocation over the next ten years [177]. The 60 GHz spectrum (between 110 GHz and

170 GHz) has the potential to be utilized in wireless fixed backhaul links, cellular and vehicular

communication, radar, and health monitoring networks. In addition, various frequency spectra are

degraded by different atmospheric absorptions. According to the current agreement on spectrum

resources in the 60 GHz frequency band, the 120, 183, and 325 GHz bands are expected to be applied to

provide optimum results for short-distance communication. The reason is that an increase in distance

of a couple of meters for large channel bandwidths in this range would be attenuated quickly [178].

With the present need to satisfy user requirements, these frequency ranges are not going to be used

in the current 5G plan; however, they have the potential to deliver high data rates and the ability to

support high user demand for future 5G networks and beyond.

The authors in [179] have reported that the Software-Defined Air-Interface (SDAI) design

significantly improves usage efficiency and widens the horizon of spectrum accessibility. The SDAI

design is proposed as a design framework for air interface; it involves controller and configurable

elements, such as signal processing, coding, and modulation. It can support frequency bands below

and above 6 GHz and can utilize the spectrum efficiently to provide full-spectrum service. Moreover,

several other features, such as IoT connections, ultralow latency, high data rate, energy efficiency,

coverage, and capacity, should be addressed by SDAI. The spectrum accessibility is increased with

the help of other fundamental techniques, such as low-density parity-check codes, turbo codes,

MIMO, Orthogonal Frequency-Division Multiplexing (OFDM), and other rated techniques [180–182].

Moreover, recent advances in link-level technology in terms of antenna innovations, coupled with the

evolving system-level network architecture, are all expected to boost spectrum utilization efficiency in

future 6G networks; such advances include the emerging M-MIMO and distributed antenna systems.

Besides, MIMO antennas facilitate cooperation among different types of network terminals by allowing

opportunistic access [183,184]. The utilization of a high band spectrum, such as the mmWave band,

is being considered to be the most promising frequency spectrum to fulfill the bandwidth requirements

for the next-generation cellular systems [185]. However, the use of the mmWave spectrum leads to

disparate fading and signal penetration losses and scattering issues [186]. These problems can be

minimized comfortably if the channel properties have been identified earlier before transmitting the

signal [187,188]. The uncertain behavior of the wireless communication channel has forced many
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researchers to explore different propagation models so that the path loss could be predicted before

implementing the methodology in a real-world scenario [189].

The next subsections discuss some recent studies on the high mmWave spectrum band for outdoor

and indoor environments.

3.4.4. Outdoor Investigation

In [190], the authors have demonstrated a 26 GHz mmWave propagation measurement model

for outdoor parking spaces in areas, such as Kuala Lumpur, Malaysia. The research is conducted by

implementing a technique of Close-In Free Space (CI) and Floating Intercept (FI) path loss models.

Besides, the directional horn and omni antennas are used for Tx (Transmitter) and Rx (Receiver),

respectively. They have concluded that the CI model outperforms the FI model. However, a more

robust model is required for a moving car scenario. The architects in [191] have focused on the

capability of the channel at the mmWave frequency band of 15 GHz by using MIMO technology

in outdoor rural and urban environments. Moreover, the Okumura Hata model for rural regions

and the microcell path propagation model in urban areas are used as a path loss model to validate

the performance. Results have suggested that it is a viable option for future networks because it

provides a substantial amount of throughput due to diversified MIMO systems in this frequency

band. A study [192] has figured out the free space propagation path loss model for LOS and NLOS

environments. It has developed a CI and FI propagation model at various frequency ranges. As a result,

the probabilistic path loss model can deliver high bandwidth data rates in mmWave frequency bands,

where CI and FI cases show an almost equal output. For a more effective approach, we can apply

advanced path loss models, such as Alpha-Beta-Gamma (ABG) and Close-In Frequency Weighting

(CIF). The scholars in [193] have analyzed the channel characteristics of the mmWave frequency

bands at 28 and 73 GHz and compared the output within the operation of the LTE-A frequency band

at 2.14 GHz. They have implemented the ABG model and evaluated results in terms of average

user throughput and spectral efficiency average cell throughput for various user capacity. Therefore,

the results have proved that the mmWave frequency band has a higher overall network performance

compared with the 2.14 GHz frequency band of LTE-A. Nonetheless, the interference effect, such as

intercell interference, is higher in mmWave, especially for the cell-edge users, due to the signals coming

from the adjacent sector of the same cell; cochannel interference also occurs due to the usage of the

same frequency in the adjacent. The effect of interference will be analyzed for the multiple-cell scenario

for LOS and NLOS environments, thus requiring an efficient methodology to overcome this problem

before being implemented in a real-world scenario.

In [194], outdoor propagation parameters are observed with various antenna deployment scenarios

at 32 GHz frequency band for LOS and NLOS environments. FI and CI free space path loss models are

observed for the outdoor environment. The results have proved that the CI model is more effective

than the FI path loss model for NLOS measurement, and cross-polarization increases slower than

co-polarization under LOS conditions. Nevertheless, FI shows better performance for the NLOS

environment in the horn-horn and horn-omni antenna deployment. For future work, 26, 28, and 38 GHz

bands will be inspected under the same environmental conditions. In [195], the investigators have

discussed the joint contribution of channel models at 28, 38, 60, and 73 GHz and mmWave propagation

measurements at four particular scenarios, such as BS-mobile, BS-BS, peer-peer, and V2V. They have

applied wideband sliding correlator channel sounder with horn-horn antenna configuration for the

outdoor environment. The results have achieved high values of path loss exponent (PLE), whereas a

more scrupulous antenna setting is required.

3.4.5. Indoor Investigation

The author of [196] has presented single- and multifrequency path loss models to identify the

channel behavior at mmWave frequency bands, i.e., 28 and 73 GHz, in three typical indoor office

layouts. All the measurements are conducted by using a 400 mega chips-per-second broadband
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sliding correlator channel sounder. It has 800 MHz null-to-null RF bandwidth for 48 Tx–Rx location

combinations. Additionally, co-and cross-polarized antenna configurations with LOS and NLOS

environments are observed with antenna distance ranging between 3.9 and 45.9 m. Thus, a CI free

space path loss model is implemented for single- and multifrequency systems because it provides

simplicity and higher network performance without damaging accuracy in comparison with other

path loss models, such as FI and ABG. However, the frequency band at 73 GHz is affected by scattering

and other penetration losses due to a small wavelength.

In [197], researchers have discussed error performance using different antenna polarization at a

60 GHz frequency band for the LOS environment. It is based on implementing an improvised IEEE

802.15.3c channel model to incorporate with polarization effects and extend it to calculate the error

performance of mmWave communication systems that use circular polarization. The result has shown

system performance in terms of ray experience and Bit Error Rate (BER) in comparison with linear

polarization. The circular polarization in the LOS environment minimizes the multipath effect and,

therefore, delivers high performance, specifically when the network operates at high throughput.

In [198], the authors have presented mmWave propagation measurement at 28 and 73 GHz for an indoor

office environment by using a correlator channel sounder and highly directional horn antennas. RMS

delays spread with directional and omnidirectional path loss models; the figures show LOS and NLOS

environments for co- and cross-polarized antenna configurations. The authors have concluded that the

presented channel models can be utilized for mmWave wireless networks in an indoor environment for

current 5G communication. However, an accurate and more vigorous antenna alignment is required

for the LOS environment. The features of indoor propagation channel at four mmWave frequencies

28, 39, 60, and 73 GHz are investigated in [199]; propagation signal qualities measured based on

building materials are also presented. To validate the behavior of these frequency bands, reliable

ray-tracing software is implemented for LOS and NLOS conditions. Results have revealed that as the

frequency increases, the received power and delay spread decreases. By contrast, a more robust power

optimization method is in demand.

Table 4 shows a summary of the above-discussed latest work for high-spectrum access.

Table 4. Summary of the related work for high-spectrum access.

Issues/Approach Methodology/Technique Advantages Limitation/Future Work References

Outdoor
investigation

Channel characterization
performed at 26 GHz for
tropical outdoor parking
environment by utilizing
Close-In Free Space (CI) and
Floating Intercept (FI) path
loss model

The CI model
performance is higher
than the FI model

More efficient model is
needed for mobile users

[190]

MIMO channel
characterization at 15 GHz for
the outdoor scenario by using
Okumura Hata and
microcell model

Suggested 15 GHz
band has high data,
which is suitable for
future network

Limited bandwidth [191]

Propagation characteristics for
28 and 73 GHz for the outdoor
environment by using CI and
FI propagation model

Higher frequency
spectrum delivers
more data rate

More accurate path loss
model, such as Close-In
Frequency Weighting
(CIF) and
Alpha-Beta-Gamma
(ABG), can be used

[192]

Propagation characteristics
comparisons of 28 and 73 GHz
for the outdoor scenario using
the ABG path loss model

Better throughput and
spectrum efficiency

Signal degrades when
interference increases

[193]
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Table 4. Cont.

Issues/Approach Methodology/Technique Advantages Limitation/Future Work References

Path loss based on directional
and omnidirectional antennas
for 32 GHz for both Line of
Sight (LOS) and Non-Line of
Sight (NLOS)
outdoor environment

CI model results are
suitable than the FI
model for
NLOS scenario

A high directional
antenna is needed

[194]

Channel characteristics for 28,
38, 60, and 73 GHz outdoor
scenarios using a wideband
sliding correlator channel
sounder with the horn-to horn
antenna configuration

Accurate values of
path loss exponent
(PLE) is achieved

Precise horn antenna
alignment is needed

[195]

Indoor
investigation

Channel behavior in an indoor
environment for 28 and
73 GHz using the CI model

Offer simplicity and
better network
performance

73 GHz signal suffers
from more
scattering issue

[196]

Polarization effect estimation
for indoor LOS environment
at 60 GHz using
ray-tracing simulation

Performance error is
identified

Can enhance the
throughput with 73 GHz

[197]

Indoor office environment
investigation at 28 and 73 GHz
using horn and
omnidirectional antenna in co-
and cross-polarization
antenna settings for both LOS
and NLOS environment

Calculate delay spread
values and determine
the factor of time delay

Precise alignment is
required for
LOS scenario

[198]

Indoor effect of material’s
conductivity and permittivity
at 28, 39, 60, and 73 GHz for
LOS and NLOS using 3D
ray-tracing wireless
insite software

Amount of received
power and delay
spread decreases along
with the frequency

More efficient power
optimization scheme
is needed

[199]

3.5. M-MIMO

M-MIMO technology has been utilized to maximize system capacity and bitrate since the evolution

of LTE-A frameworks [200,201]. However, critical work has been conducted in the previous years to

help the potential addition of this arrangement of strategies to current 5G networks [202,203]. Different

techniques, such as beamforming, Spatial Division Multiple Access (SDMA), and spatial multiplexing,

have been utilized in M-MIMO [204–206]. It straightforwardly enhances system throughput and

bandwidth efficiency [207]. In contrast to the existing conventional MIMO antenna systems, M-MIMO

offers more spectrum and higher power utilization efficiency for the future cellular networks by using

the massive array gains provided by the low-complex transmission framework [208]. It is also expected

to provide flexibility to avoid interference with the adaptive beamforming technique [209,210].

It is noticed that the performance of MIMO is different for sub-6 GHz and mmWave frequency

band. Despite conceptual similarities, the way in which MIMO can be utilized in these bands is

fundamentally different due to their transmission behaviors and hardware characteristics. The major

differences in M-MIMO design for sub-6 GHz and mmWave frequencies concern to the propagation

mechanisms, transceiver design, and signal processing algorithms [211]. However, the data rate

in mmWave frequency band is achieved to be high of around 10 Gbps for a single user, whereas,

in sub-6 GHz, around 100 Mbps of data rate can be achieved when using 40 MHz of bandwidth [212].

The use of MIMO in sub-6 GHz has several advantages over the mmWave frequency band. Like,

the beamforming in sub-6 GHz delivers power-savings and better coverage; however, in mmWave,

it is not suitable for low data rate application as it increases the power overhead, especially for IoT

and mMTC application [213]. Besides, applications where the requirement of URLLC is necessary,

sub-6 GHz M-MIMO improves the network reliability, whereas mmWave M-MIMO faces propagation

unreliability due to blockage [214].
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In order to create communication, two different spectrum utilization techniques can be used,

i.e., Time Division Duplex (TDD) and Frequency Division Duplex (FDD). For the mmWave spectrum,

M-MIMO is expected to deliver better results in the TDD mode rather than in FDD mode; for sub-6

GHz, FDD provides remarkable results [215,216]. In the FDD communication mode, the uplink

and downlink transmissions usually occur in the same channel simultaneously, thus suppressing

a great deal of the spectrum gain, as shown in Figure 6 [217,218]. The FDD is designed for paired

uplink/downlink spectrum channel access, which requires two dedicated channels with constant

spacing between them. It involves high channel training overhead [219], resulting in linear growth of

the channel budget based on the number of the transmit antenna elements. This drawback makes the

FDD mode unattractive for M-MIMO system deployment [220]. Meanwhile, the TDD takes advantage

of channel reciprocity because the number of transmit antennas used has no direct influence over

the channel overhead [221]. In the TDD mode, the aggregation of unlicensed spectrum for downlink

and uplink serves the same purpose as in a typical LTE-A TDD CA, which offers the advantage of

flexible coordination of resources between the uplink and downlink [222]. Therefore, the M-MIMO

system is expected to function in the TDD mode for maximum spectral efficiency for the current 5G

networks [223]. Furthermore, when TDD is operated in the 4.5–5 GHz spectrum for radars running

service, the transmission must be coordinated through the dynamic frequency selection and transmit

power control mechanisms [224,225]. M-MIMO has been considered one of the likely ways to enhance

spectrum efficiency [226].

Various issues, such as minimizing BER, spectrum sensing, receiver design, and channel modeling,

must be addressed for the design of M-MIMO systems. Several studies have been conducted to explore

these areas; a few of them are discussed in the next subsections.

 
 

 

Figure 6. FDD (Frequency Division Duplex) vs. TDD (Time Division Duplex).

3.5.1. Minimizing BER

As the future radio 6G demands an extensive array of antenna deployment due to numerous

users and its data requirements, a technology that fulfills its desire is M-MIMO. M-MIMO has 20×

more antennas than a conventional MIMO system, and traditional methods are complex and inefficient

to support the M-MIMO system. In [227], the authors have contributed to the new design of signal

detection at BS by the antenna. For this reason, they have suggested a computationally less complex

approximate message passing algorithm for the discovery of the M-MIMO system by using MATLAB

simulations. Hence, the results are astoundingly amazing as a suggested technique provides a smart

and efficient tradeoff between computational complexity and BER performance; moreover, it is less

complex for the detection of M-MIMO systems. Furthermore, it can be stretched to large M-MIMO

systems with many antennas and users. A study [228] has compared M-MIMO and conventional MIMO



Electronics 2020, 9, 1416 21 of 39

based on channel parameters. To estimate the channel parameters for traditional and M-MIMO systems,

a training-based and blind channel estimation technique is provided and matches the performance of

both the systems. Therefore, by implementing the proposed method, M-MIMO delivers a much better

BER count than 2 × 2 MIMO systems. However, a more agile algorithm is required to simplify the

complexities of M-MIMO more.

3.5.2. Spectrum Sensing

The authors in [229] have designed a unique compressed sensing framework that differentiates

LOS from NLOS signal paths and leads to better performance in comparison with existing approaches.

Even though it increases the localization accuracy and minimizes the execution time, a high

computational complexity algorithm is found. In [230], the researchers have discussed the importance

of throughput and spectral efficiency for higher user services and system performance. The technique

called Matched Filter Precoding (MFP) improves the system performance and cell-edge user’s

throughput in a cooperative M-MIMO network because of an increase in antenna numbers at a BS.

Additionally, MFP helps reduce intercell interference among users by using asymptotical orthogonality.

Overall, the cooperative M-MIMO mitigates the intercell interference and pilot contamination using

many antennas at a BS. However, for a pilot signaling, more comprehensive and refined channel

information is required to explore the extensive research work.

3.5.3. Receivers Design

As for the M-MIMO system, Huawei and NTT Docomo have conducted massive field trials to

evaluate the feasibility of M-MIMO for MU-MIMO schemes for future wireless communication [231].

They have modeled three types of MIMO precoding schemes, such as linear precoding: Eigen

Zero-Forcing (EZF), nonlinear precoding: Tomlinson Harashima Precoding (THP), and hybrid

precoding. By implementing the methodology, the results have proved that the hybrid scheme

brings positive outcomes due to its litheness on selecting EZP and THP to take benefits of both schemes

in a practical scenario. The authors in [232] have presented an uplink spectrum efficiency approach for

the M-MIMO system. The TDD realization is used based on the Zero-Forcing (ZF) and Maximum Ratio

Combining (MRC) schemes. The results have shown that spectral efficiency is significantly improved,

and the design condition is dependent on the number of antennas at the BS and pilot reuse factor.

3.5.4. Channel Modeling

In [233], the authors have investigated M-MIMO performance in a real propagation channel

environment. The channel measurements take on 2.6 GHz with virtual Uniform Linear Array (ULA)

and Uniform Cylindrical Array (UCA) in the presence of 128 antenna ports. However, the investigations

are held on the Rayleigh channels with theoretical channels and based on measurement data. The

channel behavior in three propagation scenarios is discussed, and the results are evaluated. Therefore,

the outcomes are achieved for both arrays defined, as the performance is close to that of i.i.d.

(independent and identically distributed) Rayleigh fading channels. A study [234] has derived an

attainable aggregate rate for time selective channel model for M-MIMO systems. The authors have

proved that a major difference is obtained in the sum rate between block fading and time selective

models. Moreover, results have shown that for constant amplitude pilots, the asymptotic SINR

performance is limited by the effect of interference from the time-selective channel. Additionally, they

have suggested that in a block fading, the optimal training is not appropriate for a time-selective channel

with ample antenna systems in the BS. However, given numerous antennas and multiuser systems,

the signal deteriorates due to interferences, and a constructive and sharp interference cancellation

scheme should be investigated. The authors in [235] have discussed the serious concern of pilot

contamination in multicell M-MIMO systems under correlated channels. The output is received

through simulation via MATLAB, pointing out that if channels are correlated, the performance of

M-MIMO degrades massively. They have added that when the channel correlation coefficient is lesser
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than the threshold value, the performance of M-MIMO increases with an increase in the number of

antennas. In contrast, for the large channel correlation coefficient, the performance gets better slowly

and steadily by increasing the number of BS antennas. The authors in [236] have proposed a scheduling

algorithm for the M-MIMO downlink system along with a ZF beamforming approach. The idea is

to utilize a channel mean gain and to select a user to achieve maximum sum rate. The results are

achieved in terms of error performance, sum rate, throughput, and fairness; however, the authors have

suggested that the proposed algorithm must be tested on a realistic model for multiantenna users.

Below is Table 5, which summarizes the techniques, advantages, and limitations of the

above-discussed studies.

Table 5. Summary of the related work for M-MIMO.

Issues/Approach Methodology/Technique Advantages
Limitations/future

Work
References

Minimizing Better
Bit Error Rate (BER)

MATLAB simulations of
approximate message passing
algorithm for uplink detection

Efficient and less
complicated uplink
detection and the
excellent tradeoff
between complexity
and performance

Can be extended to large
M-MIMO systems with a
vast number of antenna
and users

[227]

Training-based blind channel
estimation techniques

BER count Complex algorithm [228]

Spectrum Sensing

Direct localization algorithm,
which is based on the location
to source for narrowband
multipath

Decreases execution
time and enhances the
spectrum accuracy

Higher computational
complexity

[229]

Performance analysis of
spectral efficiency and BS
antennas using match filter
pre-coding techniques

Improves throughput
and spectral efficiency

More channel
information is needed
for the pilot signal

[230]

Receiver design

Multi-user MIMO precoding
schemes, i.e., Eigen Zero
Forcing (EZF),
Tomlinson-Harashima
Precoding (THP), for different
UE deployment scenarios

Flexibility in a practical
system design

Limited to LOS
environment only

[231]

TDD realization based on Zero
Forcing (ZF) and Maximum
Ratio Combining (MRC)
schemes for uplink
M-MIMO system

Spectral efficiency has
a significant
improvement, and the
design condition is
dependent on the
number of antennas on
the BS and pilot
reuse factor

Limited to a smaller
number of antennas

[232]

Channel modeling

Real measurement has been
performed at 2.6 GHz by using
the virtual Uniform Linear
Array (ULA) and Uniform
Cylindrical Array (UCA)

Better performance
close to that in i.i.d.
Rayleigh channels

More transmission
factors, such as
propagation delay,
should be included
in future

[233]

Utilizes first-order
Gauss–Markov Rayleigh
fading channel model in
time-selective channels

Optimum results in the
achieved
aggregate-rate

Interference effect is
not considered

[234]

It has designed an M-MIMO
correlated channel by using
MATLAB simulations to solve
pilot contamination issue

Achieves better
performance by
increasing more
antennas at Base
Station (BS)

Correlated channels
reduce the overall
performance

[235]

A scheduling algorithm based
on the downlink M-MIMO
system along with Zero
Forcing (ZF)
beamforming approach

Better results in terms
of error performance,
sum rate, throughput,
and fairness

Need to test on the more
realistic model and for
multi-antenna users

[236]
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4. Future Research Challenges

For future research directions, we present some of the challenges in current 5G networks that

need optimum solutions for designing 6G networks. The future research challenges for the studied

topics are summarized as follows:

4.1. Carrier Aggregation

An optimal SS framework to allocate multiple resources efficiently among users is crucial for our

future SS systems [237]. Multiple CCs across the available spectrum can be utilized to create a wider

bandwidth channel to increase the network data throughput and overall capacity [238]. Moreover,

an application-aware resource allocation scheme is needed for the users of HetNet to achieve fragmented

spectrum allocations and aggregate licensed and unlicensed carrier spectra [239]. A Clear Channel

Assessment (CCA) may be performed in response to the uplink grant to determine the availability

of an unlicensed spectrum [240]. Moreover, the Licensed Assisted Access (LAA) method is the latest

approach presented by 3GPP that can exploit high-spectrum bandwidth to address the limitation of

the current 5G network [241]. Various Machine Learning (ML)-based resource allocation techniques

can also be applied. For instance, a deep learning method can be used to overcome the resource

allocation management of BS by performing fractional spectrum access proactively and selecting the

channel dynamically [242]. Lack of dynamic control of wireless network resources leads to unbalanced

spectrum loads and introduces capacity bottleneck. Therefore, a solution similar to extended Dynamic

Spectrum Access (eDSA) is needed to provide quality load balancing in available spectrum bands, traffic

allocation, and capacity enhancement through the aggregation of current resources [243]. Moreover,

some AI-based solutions for resource management must be proposed; for example, Evolutionary

Programming (EP) algorithm [244].

4.2. Cognitive Radio

CR for spectrum utilization offers the opportunity for flexible spectrum access in the current

wireless systems [245]. Spectrum sensing involves the classification of a part of the spectrum or a

frequency band as either “occupied” or “unoccupied” [246]. Several types of CR-based schemes are

presented recently (e.g., matched filter, energy, and cyclostationary feature detection) [247]. When more

accurate information about the primary user is needed, then the best-matched filter is required

to perform optimal detection [248]. The cyclostationary approach can also be utilized by using

cyclostationary elements of the available spectrum [249]. Moreover, the implementation of cooperative

sensing must be performed in a distributed manner; that is, SUs receive information from the neighbors

and make a choice on an individual basis [250]. Another way to use the free spectrum efficiently is the

utilization of the dynamic genetic algorithm for PUs and SUs [251]. A new promising approach is

to utilize ML techniques with CR to improve the spectral and energy efficiency of the network [252].

The handover between the PUs and SUs during resource sharing is a critical task that needs some

dynamic handover schemes to achieve high QoS [253]. Moreover, various AI-based approaches are

required for effective resource management in CR networks [254]. Although this requires different

optimization parameters for different environments, real-time processing can be achieved by combining

CR with AI into the Multi-Agent System (MAS), and real-time processing can be achieved [255].

4.3. Small Cell

As the use of a high-frequency band in the current 5G network increases, the utilization of small

cell deployment is a mandatory approach to serve a higher number of subscribers [256]. However,

the existing spectrum allocation algorithms are insufficient to deliver optimum spectrum allocation

efficiency in the small cell network [257]. Therefore, an efficient algorithm, such as K-Nearest Neighbor

(KNN) learning algorithm, can be used to classify all the small cells according to their geographic

locations and interference radius; thus, the spectrum allocation efficiency can be improved [258].
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Additionally, for a limited backhaul capacity network, some efficient spectrum allocation solution is

required to provide significant performance improvement in throughput enhancement, delay reduction,

and energy savings for small-cell networks [259]. The switching between small cells and Wi-Fi remains

a challenging task that is being explored in the latest 3GPP releases [260]. Furthermore, in small

cell-based HetNet, which consists of multilayers with a shared spectrum, a dynamic spectrum and

multicell logarithmic resource allocation algorithm are required [261]. The utilization of various new

approaches, such as block-aware power allocation, efficient relay selection, and cooperative caching

algorithms, must also be developed to deliver the optimum results for the current 5G network [262,263].

The BS in HetNet is experiencing a seamless switching between different technologies, such as Wi-Fi

and cellular. This continuous switching makes the network suffer from negative parameters, such as

intercell interference, SNR, fading, and downstream power. Hence, an optimal solution for resource

and power allocation using a feed-forward neural network approach can be implemented for the

stability of the network [264]. Similarly, traffic offloading is a critical issue in multitier HetNet;

therefore, an autonomous traffic offloading technique based on machine learning is required to reduce

transmission delay [265]. Moreover, an efficient design for some new AI-based clustering approach can

manage the resource framework while enhancing the efficiency and throughput of the small cell [266].

To improve coverage, AI-based optimization approaches are required, especially for software-defined

networking controllers [267].

4.4. High-Spectrum Access

The modeling, as well as the measure of high-spectrum channels, play a vital role in guiding toward

the complete knowledge of how this spectrum differs from the currently used spectrum [268]. Limited

coverage is another big issue for the mmWave spectrum; therefore, detailed stochastic geometric

coverage analysis studies with the realistic channel and antenna radiation models are required [269,270].

Moreover, the use of passive reflectors of different shapes and sizes can help enhance the received

power, thus improving signal coverage in the NLOS region [271]. Besides, NLOS is assumed to be

more important for a lower 6 GHz band rather than in mmWave communication links. On the contrary,

high propagation losses and high absorption in mmWave makes the LOS inevitable [272]. However,

only a few research studies have focused on designing the channel models for the NLOS scenario to

deliver sufficient results [273,274]. Although existing channel models provide some insights into the

propagation characteristics of mmWave in cellular environments, further research is needed to capture

the shades of the propagation and fade in the mmWave scenario [275]. The utilization of clustering in

narrow-beam antenna [276] and accurate estimation of departure and arrival angles, as well as the

time-of-arrival for each observed radio propagation path, can be used to enhance the overall network

performance [277]. Various new frequency spectra, such as 60 and 73 GHz bands, can be studied for

various propagation environments and compared with the existing frequency band below 6 GHz.

Different multifrequency propagation path loss models (in particular, ABG, which is CIF) can be

investigated for the evaluation of future high-frequency mmWave networks [278]. Furthermore, some

new self-organizing techniques based on ML are required to provide clustering and efficient spectrum

allocation for the mmWave system [279]. Moreover, the beam selection for the uplink scenario requires

an efficient ML mechanism to deliver a high directional beamforming effect [280]. The AI-based

framework can also be used to optimize high-spectrum mmWave compressed sensing for high-speed

5G/6G image transmission [281].

4.5. M-MIMO

In mmWave frequency bands, the blockage and path loss phenomena are considerably high.

Nonetheless, it can be (partially) surmounted by keeping the structure of antenna array on the

basic physical size as it is used in lower frequencies; this can be accomplished by M-MIMO [282].

However, M-MIMO technologies are constructed, implemented, and utilized differently [283].

The main requirements regarding stability, flexibility, and coverage must be investigated for different
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frequency bands, antenna geometries, and propagation environments [284]. Besides, various current

precoding schemes have high-computational complexity and fail to maximize spatial information [224].

Conventional digital beamforming involves the complexity of large antenna arrays in addition to the

increased cost of the system, whereas analog beamforming can handle only a single data signal at a

time. Therefore, various low-cost and less complex hybrid precoding methods are required to model

efficient transmitters and testbeds to mitigate jamming for MIMO-based mmWave systems [285–289].

This goal can be achieved by designing architecture with a combination of analog and digital processing

that can be utilized to enable beamforming and spatial multiplexing with minimum complexity

in achieving optimal performance [290,291]. An ML algorithm can be utilized to predict various

channel characteristics and create a beamforming M-MIMO dataset framework [292,293]. The AI-and

M-MIMO-based systems can deliver good QoS performance for high altitude users [294]. Nonetheless,

the explainable AI-controlled based architecture would be useful for several current limitations while

performing resource allocation, energy optimization, and minimizing interferences [295].

5. Conclusions

The next-generation 6G wireless network is expected to support essential user applications

and increase the efficiency of communication with low latency and high throughput. Advanced SS

schemes should be formulated to acquire the full potential of the spectrum for the current 5G network.

Undoubtedly, spectrum management plays a critical role in achieving this goal; however, many issues

arise while designing such future networks. Therefore, this study provides a comprehensive review

to describe the technologies involved in the current 5G network design and the issues that occur

while performing resource sharing. The five major topics covered in this study are CA, CR, small cell

networks, high-spectrum access, and M-MIMO. Several main concepts of each of the approaches with

its recent related researches, including the methodologies, advantages, and limitations, are discussed.

This study concludes that from the perspective of design and measurement of future 6G networks,

the requirement to use different techniques concurrently in the current 5G network could enhance the

overall spectral efficiency. We also believe that the future research challenges presented in this study

can provide a new perspective for researchers to mitigate spectrum management issues in the design

of 6G wireless networks.
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