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ABSTRACT

We consider the problem of comparing the gene
expression levels of cells grown under two different
conditions using cDNA microarray data. We use a
quality index, computed from duplicate spots on the
same slide, to filter out outlying spots, poor quality
genes and problematical slides. We also perform
calibration experiments to show that normalization
between fluorescent labels is needed and that the
normalization is slide dependent and non-linear. A
rank invariant method is suggested to select non-
differentially expressed genes and to construct
normalization curves in comparative experiments.
After normalization the residuals from the calibration
data are used to provide prior information on vari-
ance components in the analysis of comparative
experiments. Based on a hierarchical model that
incorporates several levels of variations, a method
for assessing the significance of gene effects in
comparative experiments is presented. The analysis
is demonstrated via two groups of experiments with
125 and 4129 genes, respectively, in Escherichia coli
grown in glucose and acetate.

INTRODUCTION

Although cDNA microarrays have been used for global moni-
toring of gene expression in many areas of biomedical research
(1), methods for analysis of the resulting data are only begin-
ning to be addressed systematically (2–7). We have performed
a series of calibration and comparative experiments to address
several important issues in data analysis and study design of
microarray experiments. In each calibration experiment we
purified total RNA from Escherichia coli cells and divided the
sample into two aliquots for labeling by Cy3 and Cy5. The two
separately labeled samples were then pooled and subdivided
into hybridization solutions for hybridization to multiple

slides. In the first group of experiments each slide had 125
E.coli genes multiply spotted (4 spots/gene) on it, while in the
second each slide had 4129 genes singly spotted. The first and
second groups of experiments will be called the 125 and 4129
gene projects, respectively, hereafter. Several levels of replica-
tion are embedded in the design of these calibration experi-
ments and the resulting data provide information on the
relative importance of variations due to spots, labels and slides.
Based on this information, we formulate an approach to the
analysis of comparative experiments where the samples to be
compared are differentially labeled. The main components are
as follows. (i) Detect and filter out poor quality genes on a slide
using measurements from multiple spots. This procedure is not
applicable in singly spotted designs. (ii) Perform slide-
dependent non-linear normalization of the log ratios of the two
channels. (iii) Apply hierarchical model-based analysis to the
normalized log ratio scale, where assessment of the signifi-
cance of gene effects are aided by statistical information
obtained from calibration experiments, if they are available.
Details of the experiments are given below and the analysis
methodology is developed, justified and illustrated. A discus-
sion of other important issues, such as why a two label design
is useful and whether gene–label interaction is an important
consideration, is also provided.

MATERIALS AND METHODS

Preparation of the DNA array

In the 125 gene project, to ensure uniform quality and quantity
of the DNA probes, we constructed a gene library consisting of
125 genes each cloned into pBluescript II KS+ (Stratagene, La
Jolla, CA) as previously reported (8,9). These genes are
involved in various aspects of E.coli physiology, including
glycolysis, the TCA cycle, the pentose phosphate pathway,
fermentation pathways, the heat shock response, major
biosynthetic pathways and the respiratory system. The gene
probes used in microarray construction were obtained by
PCR amplifying the inserted genes using pBluescript II KS+-
specific primers (Genosys, The Woodlands, TX),
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5′-GGCCGCTCTAGAACTAGTGGAT-3′ and 5′-CTCGAGG-
TCGACGGTATCGATA-3′. PCR products were precipitated
with ethanol and redissolved in 15 µl of 350 mM sodium
bicarbonate/carbonate buffer, pH 9.0. Each gene was spotted
four times on a slide to analyze the reliability and variability. In
the 4129 gene project we performed the PCR reactions using
Genosys E.coli ORFmers (the entire genome of E.coli) and an
Eppendorf MasterTaq kit (Westbury, NY). Among 4290
primers, 161 failed to make products or proper sized products.
The 4129 PCR products, representing 96% of the predicted
open reading frames (10), were precipitated with propanol twice
and then dissolved in 10 µl of 350 mM sodium bicarbonate/
carbonate buffer, pH 9.0. They were arrayed with single
spotting on each slide. All resulting slides with DNA probes
underwent post-processing according to the protocol suggested
by Eisen and Brown (11).

RNA purification and labeling

Escherichia coli strain MC4100 [F– araD139 (argF-lac) U169
rpsL150 relA1 flb5301 deoC1 ptsF25 rbsR] was cultured in
shake flasks using M9 minimal medium (12) containing either
0.5% glucose or acetate as carbon source supplemented with
125 mg/l (w/v) arginine. When the optical density of the cell
reached 0.4–0.6 at 550 nm total RNA was purified from 1 × 109

cells using the RNeasy Midi kit from Qiagen (Valencia, CA).
The resulting RNA solution was incubated at 37°C with 100 U
DNase (Gibco BRL, Rockville, MD) and 40 U RNasin RNase
inhibitor (Promega, Madison, WI) for 30 min, extracted with
phenol/chloroform and then precipitated with ethanol. After
dissolution in 10–20 µl of RNase-free water, 30 µg total RNA
was labeled with either Cy3 or Cy5 during reverse transcrip-
tion. The reverse transcription cocktail included 200 U Super-
script RNase H– reverse transcriptase (Gibco BRL), E.coli
gene-specific C-terminal primers (Genosys), 0.5 mM dATP,
dTTP and dGTP, 0.2 mM dCTP and 0.1 mM Cy3- or Cy5-
labeled dCTP (Amersharm Pharmacia, Piscataway, NJ). After
reverse transcription the RNA was degraded by adding 5 µl of
1 N NaOH and incubating at 65°C for 40 min. The resulting
cDNA, labeled with either Cy3 or Cy5, was diluted with 60 µl
of TE buffer, pH 8.0, and then mixed together. The labeled
cDNA mixture was then concentrated to 1–2 µl using Micron-
50 (Millipore, Bedford, MA).

Hybridization and scanning

The concentrated Cy3- and Cy5-labeled cDNA was resus-
pended in 10 µl of hybridization solution, consist of 50%
formamide, 3× SSC, 1% SDS, 5× Denhardt’s solution, 0.1 mg/ml
salmon sperm DNA and 0.05 mg/ml yeast total RNA. Hybridiza-
tion solution without 5× Denhardt’s solution was also used for
comparison. The labeled cDNA was denaturated at 95°C for
3 min then quickly chilled on ice. The cDNA was then placed
on the slide and covered by a coverslip. The slide was assem-
bled with a hybridization chamber (Corning, Charlotte, NC)
and hybridized for 14–20 h at 42°C. The hybridized slide was
washed in 2× SSC, 0.1% SDS for 5 min at room temperature
and then 0.2× SSC for 5 min prior to scanning.

After drying the hybridized slides were scanned with an
Affymetrix 418 scanner (Santa Clara, CA) and the scanned
images analyzed with the software program Imagene
(Biodiscovery, Santa Monica, CA). The median intensities of

spot areas were calculated and imported into the program
S-Plus (MathSoft, Cambridge, MA).

Description of experiments

We performed four calibration experiments and two compara-
tive experiments in the 125 gene project, two calibration and
two comparative ones in the 4129 gene project. Calibration
experiments used the same mRNA pool divided into two
aliquots and labeled separately with two different dyes in order
to investigate variations in this technology. Some calibration
experiments used genes from E.coli grown in acetate, while the
others used E.coli grown in glucose. The comparative experi-
ments labeled mRNA from E.coli grown in acetate with Cy3
and mRNA from E.coli grown in glucose with Cy5. Different
slides in the same experiment were hybridized with the same
pool of labeled cDNA and different experiments in the same
project redid the whole experiment with the same pool of
mRNA.

We will use C, R and S to denote the calibration experiment,
comparative (real) experiment and slide, respectively, and
suffix numbers to indicate the sequence in the two projects. For
example, C3S2 indicates slide 2 in the third calibration experi-
ment and R1S2 slide 2 in the first comparative experiment.
Some slides did not use Denhardt’s solution during hybridiza-
tion while others did. Detailed information concerning experi-
mental design is listed in Table 1.

RESULTS AND DISCUSSION

Outline of analysis procedure

The steps of the proposed analysis are herein briefly described.
The motivation and justification of each step will be given in
subsequent sub-sections. To analyze a calibration experiment:
(i) compute a quality measure for each gene and perform
quality filtering; (ii) denote Mpgse = log(Cy5pgse/Cy3pgse) and
Apgse = [log(Cy5pgse) + log(Cy3pgse)]/2 (base 10) of each spot on
the slide where gene g = 1, 2, … , G, spot p = 1, 2, … , P, slide
s = 1, 2, … , S and experiment e = 1, 2, … , E. Fit a (slide-
specific) normalization curve = (A) (3); (iii) compute the
normalized log ratios (base 10) pgse = Mpgse – pgse. Average
the log ratios from the multiple spots of the genes to obtain the
estimated gene effect gse = meanp( pgse).

To analyze comparative experiments we also first performed
quality filtering. Then we used a ‘rank invariant’ method
(below and Supplementary Material) to select a subset of genes
to be used as the basis for constructing the normalization
curves in step 2. After normalization we assessed the signifi-
cance of expression of each gene from the normalized log
ratios in comparative experiments using a hierarchical linear
model. The log ratios obtained in the analysis of calibration
experiments were used to construct prior distributions of the
between-slide and between-experiment variance components
in this model (below and Supplementary Material).

Quality filtering using multiple spots

Multiple spotting of target DNA on a slide provides a means to
assess the quality of data for a gene on that slide (6). Suppose
that each gene is spotted p times on the slide (p = 4 in our 125
gene project). For each spot the ratio of Cy3 and Cy5 intensi-
ties was first calculated as m = Cy5/Cy3. We denote by CV the

M̂ f̂
M̃ M̂

M̃ M̃
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coefficient of variation (i.e. standard deviation divided by the
mean) of the set of ratios m1, m2, … , mp on the multiple spots.
The quality of data on the expression level of each gene is
inversely related to its CV. Figure 1 shows the CV versus mean
intensity (average of Cy3 and Cy5 signals) on slides in the 125
gene project.

In Figure 1 we mark all genes having CV values larger than
a threshold as poor quality data by a windowing procedure. For
each gene we construct a windowing subset by selecting 50
genes whose mean intensities are closest to this gene. If the CV
of this gene is within the top 10% among genes in its
windowing subset then we regard the data on this gene as
unreliable. The curves in Figure 1 show the thresholds used to
filter unreliable data. Data from both calibration and compara-
tive experiments in the 125 gene project were filtered using
this approach. Following the convention of Dudoit et al. (3),
we drew a so-called M–A plot for the initial investigation
where M = log(Cy5/Cy3) represents the log ratio of the
two dyes and A = [log(Cy5) + log(Cy3)]/2 is the average
logarithmic intensity. The plot is actually a 45° rotation and

rescaling of the log intensity plot of Cy5 and Cy3. M–A plots
of the remaining data for two slides after quality filtering are
shown in Figure 2.

When a gene failed to pass this quality filter we attempted on
occasion to salvage information by eliminating the most
outlying spot and then recomputed the CV of the intensity
ratios of the remaining spots associated with this gene. For
example, the intensity ratio of spot 1 in Figure 3 is more than
23 SD from the mean of intensity ratios of the remaining three
spots. After removing spot 1 the CV for this gene dropped to 1/10
of its original value. Thus spot 1 is likely to be a contaminated
spot, but the remaining spots are still reliable and can be used
in subsequent analyses. If, on the other hand, deleting any of
the extreme spots does not lead to a significant reduction
in CV, then most of the spots of this gene may have been
contaminated and we will have to remove this gene from
further analysis.

Besides screening genes with unreliable data, the CV values
can also be used to compare the quality of different slides and
different experiments. For example, in analyzing the first two
calibration experiments and the comparative experiment in the
125 gene project we found that C2S1–C2S4 are of much
poorer quality as compared to R1S1–R1S2, R2S1–R2S2 and
C1S1–C1S2 (Fig. 1). Since Denhardt’s solution was used in

Table 1. Experimental design of the two projects

Slides in the experiment Samples in Cy3 Samples in Cy5 Denhardt’s solution

125 gene project Calibration C1S1–C1S2 Acetate Acetate All slides

C2S1–C2S4 Glucose Glucose None

C3S1–C3S2 Glucose Glucose C3S1

C4S1–C4S3 Glucose Glucose C4S1–C4S2

Comparative R1S1–R1S2 Acetate Glucose All slides

R2S1∼R2S2 Acetate Glucose All slides

4129 gene project Calibration C1S1–C1S2 Acetate Acetate All slides

C2S1–C2S2 Glucose Glucose All slides

Comparative R1S1–R1S2 Acetate Glucose All slides

R2S1–R2S2 Acetate Glucose All slides

Figure 1. Quality index (CV) versus average intensity (Cy5i + Cy3i)/2 in the
125 gene project. The curve indicates the 10th upper percentile in the moving
window containing the 50 nearest genes. Genes with a quality index (CV)
larger than this curve will be filtered out. Only slides C1S2 and C2S1 are
shown here. Genes with a low CV have high agreement in duplicate spots,
hence representing high experiment quality. Thus slide C1S2 shows higher
quality than slide C2S1.

Figure 2. M–A plot for the 125 gene project where M represents the log ratio
of two dyes and A the averaged logarithmic intensity. Only slides C1S1 and
R1S1 are shown here.
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both the comparative experiments and in the first but not
second calibration experiment, we suspect that this might be an
explanation. To verify this we performed third and fourth
calibrations. It turned out that slides C3S1 and C4S1–C4S2
(with Denhardt’s solution) were of better quality compared to
slides C3S2 and C4S3 (without Denhardt’s solution) in the
same experiments. This confirms that using Denhardt’s solu-
tion can greatly improve experiment quality. Thus multiple
spotting can provide useful information on data quality. It
allows us to perform quality filtering, i.e. removal of outlying
spots and unreliable genes and identification of problematical
slides.

Calibration experiment and systematic effects

Calibration experiment. We performed calibration experi-
ments in which the same sample was labeled with both fluores-
cent dyes. We divided the same pool of RNA, which was
extracted from the same E.coli culture, into two aliquots. The
two aliquots were separately reverse transcribed in the pres-
ence of either Cy3–dCTP or Cy5–dCTP. The two separately
labeled cDNA solutions were hybridized to the same slide. The
calibration experiment provides a control to investigate
possible systematic effects, such as slide effects, dye effects
and gene–label interactions, in this technology. The informa-
tion on non-systematic variation after normalization in calibra-
tion experiments can be used to infer the expression level in
comparative experiments (see below).

Slide effect. Different slides introduce variations in both
hybridization and imaging. Factors that affect hybridization
include the amount of probe DNA immobilized on the slide
during array fabrication, the amount of labeled cDNA added to
the slide and the local environment in each hybridization
chamber. During imaging the background noise on the slide
and the local curvature of the surface may affect the scanner
reading. Confocal scanners are particularly sensitive to focus.

The effect of all these factors on intensity measurement is
defined as the slide effect. To evaluate the significance of the
slide effect we can examine hybridization of a single labeled
cDNA pool to different slides. We compared the scattering of
logarithmic Cy3 measurements in C1S1 versus C1S2 and
the scattering of logarithmic Cy3 versus Cy5 in C1S1. The
scattering was more severe across different slides as compared
to that across the two dyes. This finding supports the common
practice of using a two label design in microarray experiments.

The within-slide variation, which is not a focus of this paper,
can also be large. Examples include areas of contamination,
high background or uneven cDNA hybridized on the slide
surface. In experiments using multiple pins to immobilize
probe DNA the pin-to-pin variation can be notable. We used a
single pin in the 125 gene project and four pins in the 4129
gene project. The pin-to-pin variation appears to be negligible
in our experiments. Analyses concerning notable pin-to-pin
variation experiments are comprehensively discussed in
Dudoit et al. (3).

Label effect and normalization in calibration. The most
commonly used fluorescent dyes, Cy3 and Cy5, are relatively
unstable. In addition, these dyes may differentially influence
incorporation efficiencies during labeling, have different
quantum efficiencies and are detected by the scanner with
different efficiencies. The effect of these factors on intensity
measurements is defined as the label effect, which is accounted
for by the normalization curve in our proposed analysis.

To study the label effect we drew M–A plots in calibration
experiments. Because the two cDNA solutions were from the
same pool of RNA in calibration, the scanner reading from the
Cy3 channel should be identical to that from the Cy5 channel
if label effects are negligible. In this ideal case the M–A plot
should scatter around the line M = 0. Figure 4 shows the M–A
plots after quality filtering for C1S1–C1S2 and C4S1–C4S2
for the 125 gene project. It shows that normalization is needed
to account for the label effect. Another notable feature is that
the normalization is slide dependent. When the same batches
of labeled cDNA were hybridized to a different slide, the M–A
data showed a different correlation pattern (Fig. 4, crosses
versus open circles). It suggests that there is no universal
normalization curve.

Our normalization procedures basically followed Dudoit et
al. (3). First we fitted = (A) to each slide in the calibration
experiment. Fitting can be done by the built-in Lowess func-
tion in S-Plus (13). Then the normalized log ratio is computed
by = M – . Note that this normalization procedure is non-
linear. The need for non-linear normalization is also noted in
Affymetrix oligonucleodtide microarray analysis (14). The
normalized log ratio can also be expressed as log(KA × Cy5/
Cy3), which shows the multiplicative nature of the intensity-
specific scaling factor. A variation of this normalization proce-
dure when applied to comparative experiments is discussed
below.

Gene–label interaction. The use of two labels may also intro-
duce gene–label interactions. For example, Cy3–dCTP may be
preferentially incorporated into a specific sequence, relative to
Cy5–dCTP. If such an interaction exists certain genes will
always show higher intensity in one of the channels, even under
non-differential expression conditions and after normalization. In

Figure 3. Cy5 intensity versus Cy3 intensity of the aceE gene on slide C2S2
for the 125 gene project. Spot 1 is a contaminated spot.

M̂ f̂

M̃ M̂

M̃
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such a case the normalized log ratios on different slides in the
calibration experiment will be correlated and these correlations
can be used to detect gene–label interactions. Table 2 shows
that except for C1S1–C1S2 in the 125 gene project the
residuals are poorly correlated between different slides in both
the 125 and 4129 gene projects. Theoretically some degree of
gene–label interaction may exist. However, this interaction
appears to be insignificant in magnitude compared to other
sources of variation in the present experiment.

Normalization procedure in comparative experiments

In a comparative microarray experiment two differentially
expressed mRNA pools are separately labeled with Cy3 or Cy5
and co-hybridized to the same slide. As discussed above, the
label normalization function is non-linear and slide dependent.
To perform label normalization in a comparative experiment
we have to identify a sufficient number of non-differentially
expressed genes on each slide and use them to construct a
normalization curve.

One solution to this problem is to apply predetermined
‘housekeeping’ genes, which are biologically assumed to be
non-differentially expressed genes in the experiments. Note
that if the number of predetermined housekeeping genes is
small or their intensities do not cover a range of different inten-
sity levels this approach may not provide a good fit for non-
linear normalization curves. Also, the expression levels of
housekeeping genes can exhibit natural variability. Here we
use a rank invariant selection (15) to achieve this goal. The
ranks of Cy3 and Cy5 intensities of each gene on the slide are
separately computed. For a given gene if the ranks of Cy3 and
Cy5 intensities differ by less than a threshold value d and the
rank of the averaged intensity is not among the highest l ranks
or lowest l ranks this gene is classified as a non-differentially
expressed gene. A threshold value of 5 for both d and l was
used in the 125 gene project. In the 4129 gene project the larger
number of genes allowed us to use a more sophisticated itera-
tive selection scheme (15). In each iteration the threshold for
rank difference was determined by the number of selected
genes (i.e. genes that had been selected in the last stage) multi-
plied by a predetermined percentage p. The threshold for rank
averaged intensity l is only applied in the first iteration. The
iteration stops when the remaining set of genes does not
decrease after selection. We use p = 0.02 and l = 25 for the
4129 gene project. Figure S1 in Supplementary Material shows
the selection results using the non-iterative and iterative rank
invariant methods with different p. It indicates that the iteration
procedure helps to select more conserved sets of genes.

This method is based on the assumption that if a gene is up-
regulated its intensity rank in one channel, say Cy5, should be
significantly higher than the rank in the other, and vice versa.
This method may fail in some extreme cases where a majority
of the genes are up-regulated (or down-regulated) to the

Figure 4. M–A plot of two slides in the same calibration experiment. The upper
plot shows different patterns of M–A plot on slides C1S1 (open circles) and
C1S2 (crosses) for the 125 gene project. The lower M–A plot for calibration 4
shows the same situation. Thus the normalization curve is slide dependent and
should be estimated and applied within the same slide.

Table 2. Correlation of log ratios of paired slides in calibration experiments

A high correlation shows the possibility of gene–label interactions. Except for C1S1 and C1S2 in the 125 gene project, the gene–label interactions are
not significant.

125 gene project 4129 gene project

C1S1 C1S2 C3S1 C4S1 C4S2 C1S1 C1S2 C2S1 C2S2

C1S1 1.00 0.84 0.12 0.31 –0.13 1.00 0.21 0.20 0.12

C1S2 0.84 1.00 0.07 0.37 –0.17 0.21 1.00 0.17 0.13

C2S1 0.20 0.17 1.00 0.31

C2S2 0.12 0.13 0.31 1.00

C3S1 0.12 0.07 1.00 0.17 –0.21

C4S1 0.31 0.37 0.17 1.00 0.36

C4S2 –0.13 –0.17 –0.21 0.36 1.00
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same extent. However, if there are a large number of non-
differentially expressed genes, as in the case of most cDNA
microarray experiments, this method will work well.

After selecting non-differentially expressed genes and fitting
a normalization curve (using the Lowess procedure in S-Plus;
13) in the 4129 gene project we extrapolated the normalization
curve to normalize genes with extremely high or low intensi-
ties. The extrapolation is based on the 50 genes with the
highest and lowest average log intensity ranks in the selected
set of non-differentially expressed genes. Detailed illustrations
of iterative selection and curve extrapolation are provided in
Supplementary Material. Figure 5 shows the extrapolated
Lowess curve for M–A plots in comparative experiments for
the 4129 gene project.

Hierarchical model and assessment of gene expression

Since the quality filtering step in the 125 gene experiment
identified slides C2S1–C2S4, C3S2 and C4S3 as having poor
quality, we used only C1S1–C1S2, C3S1 and C4S1–C4S2 for
further analysis.

We used a Bayesian approach to incorporate prior know-
ledge generated from calibration experiments into the statis-
tical analysis. The prior knowledge is used to construct prior
distributions of unobserved parameters. The posterior distribu-
tion of the desired parameters is then computed to represent the
combined information on the parameters from the observed
data and prior distribution.

Figure 6 presents the distributions of the normalized log
ratios (pooled across all genes) on slides in the calibration
experiments for the 125 gene project. The distributions are
centered and normal-like and the distributions are very
consistent across slides in different experiments. In particular,
the distribution is condition independent. Although slides
C1S1–C1S2 used one condition (E.coli grown in acetate) and
slides C3S1 and C4S1–C4S2 used another (E.coli grown in
glucose), the corresponding gene effect distributions were
similar. Thus we will incorporate this prior knowledge in the
statistical analysis.

We developed the following hierarchical linear model to
assess the gene expression level. Denote by ygse the normalized
log ratios of gene g, slide s and comparative experiment e. We

recognize that ygse is affected by the slide effect and uncontrol-
lable variation between the different bacterial cultures used in
different experiments. For each experiment (culture) ygse is a
sampling from a normal distribution of the slide effect within
the same culture. Thus ygse ∼ N(µge,τg

2), where µge is the mean
among different slides within this culture and τg

2 is the vari-
ance in the slide effect distribution for gene g. Furthermore, the
within-experiment mean, µge, is in turn a sampling from a
normal distribution of culture variation. Thus µge ∼ N(θg,σg

2),
where θg measures the true log-fold change for gene g and σg

2

is the variance between bacterial cultures. Note that only ygse
are observed data while τg

2, σg
2 and θg are unobserved para-

meters. Under this model θg is the unknown parameter of
interest and the derived posterior distribution of θg is
used to assess the expression level of gene g. If gene g is non-
differentially expressed then θg is distributed around 0.
Intuitively, to declare a gene differentially expressed means
that ygse deviate from 0 in the same direction and that the
deviations are large compared to the magnitude of the posterior
distribution of τg

2 and σg
2.

We give details of the construction of prior distributions of
τg

2 and σg
2 and the statistical test of homogeneity of τg

2 in
Supplementary Material. A variation of this method when cali-
bration experiments are not available is also discussed. Since
the posterior distributions of the parameters do not have a
closed form solution, a Markov chain Monte Carlo method
(MCMC) (16) was used to simulate the desired posterior distri-
butions.

Figure 5. Normalization curve for M–A plots in comparative experiments for
the 4129 gene project. The darker points are genes of the rank invariant set
selected in an iterative manner. (P = 0.02)

Figure 6. QQ plots and histograms of normalized log ratios in calibration
experiments for the 125 gene project. There are ∼100 genes on each slide after
quality filtering. The distributions of normalized log ratios are centered, nor-
mal-like and consistent across slides. Thus the distributions will provide good
prior information for comparative experiments.
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Figure 7 shows the 95% posterior interval of θg (i.e. intervals
containing 95% of the probability in the posterior distribution
of θg) on common genes (Table 3) in both the 125 and 4129
gene projects. We note that genes with stronger agreement of
normalized log ratios across the two replicated comparative
experiments have shorter intervals, as expected. The 4129 gene
project generally has larger intervals than the 125 gene project,
perhaps because the former is single spotted and lacks a quality
filtering step.

The results of the two projects show general agreement.
According to the 95% posterior interval, among 119 common
genes in the two projects there were 35 up-regulated and 30
down-regulated genes in the 125 gene project and 23 up-regu-
lated and 19 down-regulated genes in the 4129 gene project.
Among them there were 17 up-regulated and 17 down-regu-
lated genes that agreed in both projects. The average sizes of
the 95% intervals of normalized log ratios were 0.27 and 0.43,
respectively, in the 125 and 4129 gene projects, which corre-
spond to 0.73- to 1.4- and 0.61- to 1.6-fold changes, respec-
tively. In the few genes that disagreed strongly between the
two projects we found that most of them are grouped in certain
pathways, such as metE, metB, aroL, aroG and aroF. This
suggests that these strong disagreements may reflect real
biological variation between the cultures used in the two
different projects. We have not discussed how to account for

multiple comparisons, i.e. selecting apparently differentially
expressed genes from the large number of genes in the
genome. Methods to account for multiple comparisons have
been reviewed in Dudoit et al. (3).

Biological significance

The results of the comparative experiments in the 125 and
4129 gene projects are largely consistent with previous data
(8), despite the different experimental and analytical methods
used. In general the transcription pattern is consistent with the
direction of metabolic flux. In acetate medium, glucose trans-
port (ptsHI, ptsG and crr) and glycolytic genes (pfkA, fba,
gapA, pgk and pykF) are down-regulated compared to the cells
grown in the glucose minimal medium. Genes encoding
subunits of pyruvate dehydrogenase (aceEF) are also signifi-
cantly down-regulated in acetate. These results are consistent
with the fact that gluose transporters, glycolysis and pyruvate
dehydrogenase are not required for growth in acetate. On the
other hand, genes in the TCA cycle (gltA, icdA, sdhA, sucD,
mdh, fumA and fumC) and glyoxylate bypass (aceAK) are
significantly up-regulated, again consistent with the need for
cells grown in acetate. One of the acetate utlization genes, acs
(encoding acetyl-CoA synthetase), is highly up-regulated,
while the other, ackA (encoding acetate kinase), is down-
regulated. This result suggests that acs may be the main acetate

Table 3. Gene numbers and gene names in the 125 gene project

1 fbp 26 lpdA 51 fruR 76 aspC 101 aroH

2 pfkB 27 aceE 52 crp 77 aspA 102 aroG

3 pfkA 28 pdhR 53 cyaA 78 cysK 103 aroF

4 pgi 29 edd 54 aceA 79 avtA 104 tyrB

5 glk 30 tktB 55 frdA 80 rpoN 105 ispA

6 crr 31 tktA, 56 mdh 81 asnA 106 idi

7 ptsG 32 talB 57 htpG 82 metE 107 dxr

8 ptsHI 33 gltA 58 mopA 83 metB 108 dxs

9 pykA 34 adhE 59 grpE 84 leuA 109 ubiX

10 pykF 35 acs 60 dnaJ 85 lysC 110 ubiH

11 eno 36 ackA 61 dnaK 86 dapB 111 ubiA

12 gpmA 37 pta 62 atpA 87 ilvG 112 fadB

13 pgk 38 ldhA 63 pntA 88 hisG 113 glpD

14 gapA 39 fdhF 64 himA 89 trpE 114 glpA

15 tpiA 40 pflD 65 rpoS 90 ilvC 115 ndh

16 fba 41 fumB 66 rpoH 91 thrA 116 nuoA

17 rpe 42 fumC 67 rpoE 92 serA 117 hypB

18 rpiB 43 fumA 68 rpoD 93 argF 118 hycB

19 rpiA 44 sdhC 69 dsbA 94 glnA 119 ups

20 gnd 45 sucA 70 lepB 95 proB 120 ispB

21 zwf 46 icdA 71 secA 96 asnB 121 narH

22 pps 47 acnB 72 lon 97 fabA 122 cydA

23 pckA 48 acnA 73 glyA 98 pyrB 123 cyoA

24 ppc 49 arcA 74 gltD 99 purF 124 fdnH

25 pflB, 50 fnr 75 gdhA 100 aroL 125 poxB
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utilization enzyme when E.coli is growing in acetate as the sole
carbon source. The gluconeogenic genes (pckA, pps and fbp)
are all significantly up-regulated. The pck and fbp genes are
known to be required for E.coli growth in acetate. However, a
pps null mutant was shown to grow normally in acetate (17). It
is possible that pps and malic enzyme form an additional
pathway for gluconeogenic flux when cells are grown in
acetate. Although the above metabolic genes are apparently
expressed according to the needs of the cell in a particular
medium, the underlying molecular mechanisms are not
completely understood. Some unknown genes, such as b1725,
b1518, b0598 and b1516, are highly up-regulated in acetate,
while others, such as b0905, b2973, b3279 and b1903, are
down-regulated. These data might give clues to the functions
of these genes.

Some experimental design issues

Reverse labeling and calibration experiment. In a reverse
labeling design (5,18) each of the two samples (say A and B) to
be compared is divided into two aliquots and labeled with two
different dyes (say Cy3 and Cy5) in separate steps. Two
hybridization experiments are then performed. In the first
hybridization solution sample A is labeled with Cy3 and
sample B is labeled with Cy5. In the second hybridization solu-
tion the labeling is reversed. We can use our calibration experi-
ments to assess the usefulness of reverse labeling by regarding
the results of the two slides in a calibration experiment, say
C1S1 and C1S2, as arising from the two hybridizations of a
reverse labeling experiment. This is valid since in this case all
four labeling reactions were performed on aliquots derived

from the same sample. Thus the calibration experiment is a
special case of reverse labeling when the comparative samples
A and B are identical. Figure 8A and B gives a scatter plot of
the difference log(Cy5) – log(Cy3) versus the average
[log(Cy3) + log(Cy5)]/2. The systematic trends that are
evident in these plots are due to the inadequacy of linear
normalization (see above). As a result, if an ordinary design
were used then low expression genes in the Cy5-labeled
comparative sample are likely to be incorrectly identified as
being down-regulated. However, this problem is greatly allevi-
ated by the reverse labeling design. The estimated gene effect
log(Cy5) – log(Cy3) from these two slides (Fig. 8C) clusters
tightly around the 0 line and shows no systematic trend, just as
it should when the two comparative samples are identical.
Thus in this example reverse labeling offers useful protection
against the non-linearity of label normalization without the
need to explicitly model the non-linearity. The analysis in
Supplementary Material shows that such protection is not
guaranteed but that partial protection can be expected under
the condition that the non-linearity contributions of each gene
have the same sign on both slides. Another potential benefit of
reverse labeling is cancellation of the gene–label interaction
(see above). A gene–label interaction can also be handled
through explicit modeling, but this is not pursued here since in
our experiments such a gene–label interaction is not significant
compared to the other sources of variation.

Figure 7. The orange and green rectangles show the 95% posterior interval for
the underlying expression level θg (see text) for the 125 and 4129 gene projects
(green, 125 gene project; orange, 4129 gene project). Rectangles of gene 54
(aceA) are below –1.0 and do not appear on the graph.

Figure 8. M–A plot for the 125 gene project. There is an increasing trend in
both the first and second plots. When applying reverse labeling design the
trend is largely cancelled.
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Note that the reverse labeling design has the advantage of
simple computation. However, when we want to perform a
series of experiments, such as taking samples at different time
points, the design will be more cumbersome. Performing non-
linear normalization and explicit modeling of the gene–label
interaction is a useful alternative.

Multiple spotting versus multiple slides. Multiple spots and
multiple slides are replications to help us assess variations due
to spots and slides. Since normalization is slide dependent,
multiple slides information cannot be used to assess experi-
mental quality before normalization. Thus the normalization
procedure itself is vulnerable to contamination by poor quality
spots. On the other hand, multiple spots within the same slide
provide useful information for filtering out contaminated spots,
poor quality genes or problematical slides in each experiment (see
above). We also tried to apply a similar quality filtering proce-
dure to normalized log ratios in singly spotted replicate arrays.
This is less effective because the between-slide variation is
typically much larger than between-spot variation, thus
reducing the power for detection of outliers. In practical micro-
array applications it may be desirable to monitor as many
genes as possible at the beginning and singly spotted arrays are
more effective at this stage. However, after narrowing down
the number of target genes one may be interested in using a
custom array to investigate these genes further. The use of
multiple spotting should be considered in the design of these
arrays.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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