
Issues in Structural Health Monitoring Employing Smart 
Sensors 

 

T. Nagayama1, S. H. Sim1, Y. Miyamori2, and B. F. Spencer, Jr.3 

 

ABSTRACT 

Smart sensors densely distributed over structures can provide rich information for 

structural monitoring using their onboard wireless communication and computational 

capabilities. However, issues such as time synchronization error, data loss, and dealing 

with large amounts of harvested data have limited the implementation of full-fledged 

systems. Limited network resources (e.g., battery power, storage space, bandwidth, etc.) 

make these issues quite challenging. This paper first investigates the effects of time 

synchronization error and data loss, aiming to clarify requirements on synchronization 

accuracy and communication reliability in SHM applications. Coordinated computing is 

then examined as a way to manage large amounts of data. 
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1. INTRODUCTION 

The investment of the United States in civil infrastructure is estimated to be $20 trillion. 

Annual costs amount to between 8-15% of the GDP for most industrialized countries 
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(U.S. Census 2004; Jensen 2003). This investment is likely to increase; for example, the 

U.S. Department of Transportation (2003) has reported that the capital investment to 

preserve highways and bridges increased 45.7% from $23.2 billion in 1997 to $33.6 

billion in 2000. Indeed, much attention has been focused in recent years on the declining 

state of the aging infrastructure in the U.S. These concerns apply not only to civil 

engineering structures, such as the nation's bridges, highways, and buildings, but also to 

other types of structures, such as the aging fleet of aircraft currently in use by domestic 

and foreign airlines. The ability to continuously monitor the integrity of civil 

infrastructures in real-time offers the opportunity to reduce maintenance and inspection 

costs, while providing for increased safety to the public. Furthermore, after natural 

disasters, it is imperative that emergency facilities and evacuation routes, including 

bridges and highways, be assessed for safety. Addressing all of these issues is the 

objective of structural health monitoring (SHM). 

To efficaciously investigate damage, a dense array of sensors is required for 

large civil engineering structures. (Spencer et al. 2004, Gao 2005). Dense measurement 

is expected to provide detailed information on civil infrastructure, which typically 

consists of a large number of components and has many degrees of freedom. Monitoring 

the Tsing Ma Bridge and Kap Shui Mun Bridge in Hong Kong, which uses 326 channels 

of sensors and produces about 65 MB of data every hour, is an attempt toward in-depth 

monitoring (Wong 2004). Expensive installation of traditional monitoring systems, 

however, has limited significantly wider spread implementation (Lynch and Loh 2006, 

Farrar 2001, and Celebi 2002). Smart sensors with wireless communication capability 

are reported to reduce installation effort to a great extent (Lynch et al. 2005) and help to 

realize a dense array of sensors. 



Though networks of densely deployed smart sensors have the potential to 

improve SHM dramatically, limited resources on smart sensors preclude direct 

application of traditional monitoring strategies on smart sensor networks. Time 

synchronization among smart sensors is not as accurate as for a wired system. Data 

transfer between sensor nodes is less reliable than in a wired system due to data loss. 

Transferring all data to a central station using wireless communication is not practical or 

scalable, especially in a system employing a dense array of smart sensors. Moreover, 

battery power often imposes practical limits on these functionalities. Although many 

researchers have reported difficulties in data transfer rates and reliability, as well as time 

synchronization (Casciati et al. 2003, Elson et al. 2002, Kottapalli et al. 2003, Mechitov 

et al 2003, Mosalam 2003, Kurata et al. 2004 Wang et al. 2005), the effects on SHM and 

ways to address these issues have not been studied in depth. Careful investigation can 

provide insight into how to accommodate these difficulties from a SHM perspective.  

This paper studies issues associated with SHM applications employing smart 

sensor networks. Several issues critical to realizing a SHM system using smart sensors 

are first described. Among them, the effects of time synchronization error and data loss 

are investigated from a SHM perspective. Coordinated computing is examined as a way 

to manage large amounts of data. Numerical simulation and experimental testing 

validate the derivation and proposals.



2. SHM EMPLOYING SMART SENSORS 

Smart sensors with computational and communication capabilities have been employed 

for SHM research. Some of the first efforts in developing smart sensors for application 

to civil engineering structures were presented by Straser and Kiremidjian (1996, 1998) 

and Kiremidjian et al. (1997). Since these initial efforts, numerous researchers have 

developed smart sensing platforms (Lynch and Loh 2005). With respect to functionality, 

most of early attempts simply replaced wired communication with RF links. Together 

with introduction of battery power at the sensor nodes, RF communication eliminated 

the need for cabling. Such measurement systems with wireless communication links, 

however, encounter many difficulties, e.g., slow and unreliable communication, 

inaccurate time synchronization among sensor nodes, insufficient sensing capabilities, 

and limited power. While smart sensor’s computational capability potentially offers new 

opportunities for SHM, these issues need to be carefully examined before a functional 

SHM system can be realized. 

Among the issues is lossy RF communication, which can severely impair a 

SHM system. Structural analysis generally assumes data acquired at specified time 

interval is available with certain accuracy. While measurement noise and quantization 

errors are usually considered primary sources of errors, data loss has not been 

considered as an error source in traditional SHM systems because all the data is reliably 

transferred in a wired system. This assumption does not apply to wireless systems; 

many researchers have reported data loss during wireless communication (Casciati et al. 

2003, Mosalam 2003, Kurata et al. 2004). Mechitov et al. (2003) addressed this 

communication reliability problem by utilizing acknowledgement messages. However, 
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reliable communication is stated to be slow due to associated header information and 

acknowledgement messages, using more resources of a system. Studies of the data loss 

effect on structural analysis are needed to assess the use of more expensive reliable 

communication versus simple lossy communication. 

Time synchronization error in a smart sensor network is another source of 

inaccuracy in SHM applications. Each sensor node has its own clock. By 

communicating with surrounding nodes, smart sensors can assess relative difference 

among their local clocks. Well-known algorithms include Reference Broadcast 

Synchronization (Elson et al. 2002), Flooding Time Synchronization Protocol (Maroti et 

al. 2004), and Timing-sync Protocol for Sensor Networks (Ganeriwal et al. 2003). Time 

synchronization is, however, not as accurate as for a wired networked system. Also, the 

local clock of a smart sensor can have large drift in time and need to synchronize with 

each other repeatedly to maintain certain synchronization accuracy. Time 

synchronization error problems have been reported both in laboratory and in full-scale 

bridge monitoring applications using smart sensors (Lynch et al. 2005). Requirements 

on synchronization accuracy need to be investigated from a SHM perspective. 

Data aggregation is especially problematic for SHM applications which 

typically require large amounts of data. For example, 2-byte data samples collected at 

100 Hz generate 12 KB of data every minute. While the CC1000, one of RF chips 

adapted in several early smart sensor platforms, supports 38.4kbps data rate, the actual 

rate at which measurement data is transferred is much slower because of packet 

collision, packet headers, etc. Acknowledgement messages associated with reliable 

communication reduce data transfer speeds even more. A centralized data collection 
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system, which simply replaces the wired links of a traditional SHM system with RF 

links, therefore, cannot handle the massive amounts of data acquired concurrently at 

hundreds of sensor nodes (see Fig. 1).  

Several researchers have attempted to address the data aggregation problem. 

Tiered networks (Govindan et al. 2005) help centrally collect a large amount of data 

using several powerful master nodes together with smart sensor end nodes, though the 

usage is limited to applications in which use of powerful master nodes is viable; cost to 

install master nodes and the number of required master nodes are factors in determining 

its practicality. Another approach to address this data aggregation problem is 

independent data processing as shown in Fig. 2. Each smart sensor independently 

measures and processes data, typically using same pattern recognition, without sharing 

information among the neighboring nodes (Sohn et al. 2002, Lynch et al. 2005, Nitta et 

al. 2005). Because only the processed data is sent back to the base station, 

communication requirements are relatively small. However, from a SHM perspective, 

this approach can not utilize available spatial information from neighboring nodes (e.g. 

mode shapes). The inability of this approach to incorporate spatial information limits its 

effectiveness in SHM applications. Data aggregation utilizing distributed computing 

(Gao 2005, Nagayama et al. 2006) has the potential to achieve effective SHM 

employing smart sensors. Application specific knowledge is utilized to efficiently 

aggregate information in a distributed and coordinated manner (see Figure 3). Though 

this concept has been proposed, only partial implementation of this concept has been 

reported so far (Nagayama et al 2006). Implementation of the concept is expected to 

demonstrate a way to address the data aggregation problem in SHM applications. 
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Fig. 3 Coordinated computing strategy 

3. EFFECT OF TIME SYNCHRONIZATION ERROR ON SHM 

Time synchronization error in a smart sensor network can cause inaccuracy in SHM 

applications. Time synchronization is a middleware service common to smart sensor 

applications and has been widely investigated. Each smart sensor has its own local clock, 

which is not synchronized initially with other sensor nodes. By communicating with 

surrounding nodes, smart sensors can assess relative difference among their local clocks. 

For example, Mica2 motes employing TPSN are reported to synchronize with each 

other to an accuracy of 50μsec; different algorithms and hardware resources may result 

in different precision. Whereas time synchronization protocols have been intensively 

studied, requirements on synchronization from an application perspective are lacking. In 

many SHM applications, commonly used quantities include cross spectral density 
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(CSD), power spectral density (PSD), correlation function, and modal parameters. The 

effects of synchronization error on these estimates are discussed in this section. 

3.1. Modeling of time synchronization error 

Consider a signal from a smart sensor in local clock coordinate ( )x t  can be written 

using a signal in the reference clock, or the global clock ( )x t  as 

 ( )( )( ) 1 jx t x t tα= + −  Eq. (1) 

where tj is the initial time synchronization error and α is the clock drift rate. In the 

frequency domain, this relationship is expressed as 

 11( )
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where ( )X ω  and ( )X ω  are the Fourier transform of ( )x t  and ( )x t , respectively. 

Clock drift is oftentimes small. In the following derivation α is assumed to be zero. 

3.2. Impact of time synchronization error in input-output identification 

Change in the estimation of modal parameters due to the poorly synchronized input and 

output can be identified by looking into the transfer function. If the m-th input and n-th 
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where = – . From nmt in
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nt Eq. (3), the magnitude of transfer function remains 
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unchanged while its phase is shifted by . When modal parameters are estimated 

from this transfer function, the natural frequency, damping ratio, and magnitude of the 

mode shape remain unchanged; only the phase of mode shapes is affected by the time 

synchronization error. The phase shift 

nmt

kφ  of the k-th mode is estimated as follows, 

2k k nmf tφ π=  Eq. (4) 

where kf  is the natural frequency of the k-th mode. 

3.3. Impact of time synchronization error in output-only identification 

The effect of time synchronization errors on modal parameters such as the natural 

frequency, damping ratio, and mode shape are examined for the case when only output 

measurement is available. When the excitation can be assumed to be broadband and the 

structural response stationary, the correlation function between the output measurements 

can be used to determine modal parameters by virtue of the Natural Excitation 

Technique (NExT) (James et al. 1992). Investigating the correlation function, change in 

modal parameters due to the time synchronization inaccuracy can be identified.  

For completeness, NExT is briefly reviewed here. Consider the equation of 

motion in Eq. (5) under the assumption that the random responses are stationary. 

 ( ) ( ) ( )( )Mx t Kx t f tCx t+ + =  Eq. (5) 

where M , , and  are the n x n mass, damping, and stiffness matrices, 

respectively; 

C

(

K

)x t  is a n x 1 displacement vector; ( )f t  is a m x 1 force vector; ( )x t  

and ( )x t  are the velocity and the acceleration vector. By multiplying displacement at 

reference sensor and taking expected value, Eq. (5) is transformed as follows. 
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  Eq. (6) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ref ref

ref ref

ME x t x t CE x t x t

KE x t x t E f t x t

τ τ

τ τ

⎡ ⎤ ⎡ ⎤+ + +⎣ ⎦ ⎣
⎡ ⎤ ⎡+ + = +⎣ ⎦ ⎣

⎦
⎤⎦

Because the input force and response at the reference sensor location are uncorrelated 

for 0τ ≥ , the right hand side is zero. The expectation between the two signals is the 

correlation function. Therefore, by denoting [ ]( ) ( )E x t y tτ+  as the correlation function 

( )xyR τ , Eq. (6) is rewritten as 

 ( ) ( ) ( ) 0,   0.
ref ref refxx xx xxMR CR KRτ τ τ τ+ + = >  Eq. (7) 

When  and ( )A t ( )B t  are weakly stationary processes, the following relation holds 

(Bendat and Piersol 2000). 

 ( ) ( )ABABR Rτ τ=  Eq. (8) 

A similar relation holds for higher derivatives.  

 ( )
( )( ) ( )m
m

ABA B
R Rτ τ=  Eq. (9) 

where the superscript, m, denotes the m-th derivative. Consequently, Eq. (7) can be 

rewritten as  

 ( ) ( ) ( ) 0, 0.
ref ref refxx xx xxMR CR KRτ τ τ τ  + + = >  Eq. (10) 

Thus, the correlation function for the stationary responses is shown to satisfy the 

equation of motion for free vibration. This fact can be directly used for modal analysis 

such as Eigensystem Realization Algorithm (ERA) (Juang and Pappa 1985). 

Time synchronization errors enter into correlation function estimation. 

Consider a cross correlation function ( )
i refx xR τ  between a response ( )ix t  at location i 
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and the reference signal ( )refx t . The sensor node at location i has a time 

synchronization error of 
ixt  relative to the reference node. The correlation function, 

( )
i refx xR τ , under the synchronization error, can be written as 

 ( ) ( ) ( ) ( )
i i ref ii refx x i x ref x x xR t E x t t x t R t tτ⎡ ⎤= − + = −⎣ ⎦  Eq. (11) 

If 
ixt  is positive, the correlation function for the interval (0, 

ixt ) does not have the 

same characteristics as the succeeding signal. In a structural analysis context, this 

portion has negative damping; therefore, the beginning portion of the signal needs to be 

removed. When 
ixt  is unknown, a segment corresponding to the maximum possible 

time synchronization error, , is truncated from the correlation function.  
maxxt
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The correlation functions, each having independent time synchronization errors, 

do not satisfy the equation of motion, Eq. (10). The correlation functions after the 

truncation, however, can be decomposed into modal components as follows 
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1i i i i
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= − + −
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ih j

a

where ' ' ( )
refx xR τ  is the correlation function matrix on the interval ( )max

,xt ∞ , ijφ  is j-th 
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element of i-th mode shape, hi and ωi are i-th modal damping ratio and modal natural 

frequency, respectively, and ai is a factor accounting for the relative contribution of the 

i-th mode in the correlation function matrix. Modal analysis techniques such as ERA 

can be used to identify these modal parameters. As Eq. (12) shows, the natural 

frequencies and damping ratios remain the same. The observed mode shapes '  are 

different from the original mode shapes; changes in mode shape amplitude are 

negligible due to small hi and 

Φ

ixt , while phase shift can be meaningful. Mode shape 

phases can indicate structural damage and are important modal characteristics from a 

SHM perspective (Nagayama et al. 2005). Time synchronization error of 1ms results in 

about 3.6 degree phase delay of a mode at 10 Hz, while the same time synchronization 

error causes 36 degree phase delay at 100 Hz. The phase delay tolerance depends on the 

applications. When change in phase is investigated as in Nagayama et al. (2005), even 

3.6 degree phase delay is considered to obscure the detail. The requirements on the time 

synchronization for modal analysis need to be assessed mainly from the viewpoint of 

mode shape phases. 

3.4. Numerical simulation in 2 DOF model 

To confirm the analytical investigation in the previous section, a numerical simulation is 

conducted using the 2 DOF model shown in Fig. 4. In this example, the natural 

frequencies and damping ratios of the model are listed in Table 2. Two independent 

band limited white noise inputs are imposed on the nodes, and accelerations of the 

lumped masses are simulated with the sampling time of 1 msec. 50 sample time 

histories are obtained for different input excitations and each time history is 81.91 

seconds long. Several cases of time synchronization errors ( τΔ =1, 3, 5, 10, 25, 50, 100 

 12



msec) are considered for the simulated acceleration data of the 2nd nodal point.  

B.L.W.N

y1  

y2  

k1 

k2 

m1

m2

 
Fig. 4 Analytical model

Table 1 2DOF model 

Mass (kg) m1 1 
m2 2 

Stiffness (N/m) k1 200 
k2 400 

 
Table 2 Natural frequency and damping ratio 

Mode Natural frequency (Hz) Damping ratio 
1st 1.261 0.01 
2nd 4.018 0.01 

 

Input-output and output-only identification methods are applied to estimate the 

mode shapes of the system. The transfer functions calculated from the unsynchronized 

input force and output accelerations are used to obtain the operational mode shapes. 

Eq. (3) is used to get the transfer functions analytically for comparison. In addition, 

NExT/ERA is used to estimate the mode shapes by using only output accelerations. 

Since the natural frequency and damping ratio are invariant under the time 

synchronization error, only changes in the mode shapes are considered.  

The calculated mode shapes are shown in Fig. 5 and Fig. 6 with respect to the 

time synchronization errors. The left figures represent the ratio between the mode shape 

amplitudes of the two nodes, and right figures are the phase delay between the two 

 13



nodes. As expected, phase delay significantly changes as the time synchronization error 

increase while the amplitude ratio change is relatively small. For example, nodes 1 and 

2 are almost in phase at 0.1 sec synchronization error in Fig. 6; however, the amplitude 

ratio is not changed when the input and output are used, or is increased by 2.4% when 

only output is used. Note that the higher modes are more sensitive to the 

synchronization error because the phase delay depends on the natural frequency. As 

shown in Fig. 5 and Fig. 6, the amplitude ratios of the output-only case are affected by 

the synchronization error, though it is small, which implies the methods using output 

only are more susceptible to the synchronization error.  

The impact of the time synchronization error on the identification of the 2DOF 

model indicates that the synchronization error distorts significantly the phase 

information of the estimated modes. However, smart sensors equipped with appropriate 

hardware and time synchronization protocol have been reported to be synchronized 

within several milliseconds without significant waste of resources in a system; this level 

of the synchronization error may be acceptable in many SHM applications.  
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Fig. 5 Comparison between analytical and simulation results in the 1st mode 
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Fig. 6 Comparison between analytical and simulation results in the 2nd mode 

4. EFFECT OF DATA LOSS ON SHM 

Wireless sensor networks do not necessarily offer reliable data acquisition, which has 

been assumed in traditional wired SHM systems. Without proper compensation, lost 

packets can significantly distort the transmitted signals resulting in inaccurate estimates 

of the modal parameters and false indication of damage status. Reliable communication

and proper com . 

ocols can be designed to send acknowledgment 

pensation of lost information are necessary for sound SHM systems

Smart sensors communication prot

messages after receiving data and request to send the lost packets again to have reliable 

communication. However it is desirable to have simple data transmission without 

acknowledgement and retransmission when acceptable, because reliably transferring a 

large amount of vibration measurement data can be challenging. Data transfer allowing 

data loss is therefore advantageous to save power and avoid network congestion. 

In this section, the effect of data loss on PSD estimates is formulated and 

compared with that of observation noise. Strategies for compensation of the lost data are 

discussed and their effects on estimation of the PSD, coherence function, and natural 

frequency are investigated using numerical simulation.  
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4.1. Compensation approaches 

Data loss during wireless communication causes significant errors in subsequent 

calculati

ss results in empty space in the 

pensate for the lost data is interpolation using data 

points around the lost data. “Hold” and “cubic spline” are two major interpolation 

methods to consider. In the hold method, the previous data is simply used for the lost 

data. The cubic spline method employs the cubic spline fitting to interpolate the lost 

data. These two interpolation methods will be considered in an example of SHM 

procedure and their performance compared.  

centrated in short time duration. Another 

method, distributed data packing, in which data in a packet are distributed over the 

whole data set, is shown in Fig. 7-(b). These two kinds of packets are considered in this 

section. 

ons unless appropriately addressed. Measured vibration data in a packet is used 

to reconstruct a time history on a receiver node. Time stamps or time indeces in a 

received packet correctly specify where in the reconstructed time history the vibration 

data in the received packet needs to be expanded. Data lo

reconstructed signal. A way to com

As well as interpolation methods, the method to construct data packets is 

considered to have an impact on the subsequent analyses. Since lost information due to 

packet loss is determined by how packets are constructed, different packetizing methods 

may result in different accuracy of estimated modal parameters. A simple method of 

constructing packets, named group packet, is to pack data sequentially, as shown in Fig. 

7-(a). When a packet is lost, data loss is con
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(a) Group packet data (b) Distributed packet data 

Fig. 7 Data packet ( : number of data, : number of data in a packet) 

 

4.2. Effect of data loss on PSD and CSD 

In this section, PSD of a signal with the distributed packet data loss is investigated to 

obtain an expression of data loss in terms of equivalent observation noise. The PSD is 

from the measured data, which is widely 

t and output information. Investigation of 

N pn

used in calculating the transfer function 

employed in modal analysis using the inpu

data loss on PSD estimation will give an insight into its effect on a SHM systems.  

Consider a discrete time sequence ( 1, 2, , )ny n N= . ny  is assumed as a 

stationary random process. For simplicity, the hold method is used to compensate for the 

lost data. A total of DN  randomly selected data points are assumed to be lost. Subscript 

n  ( 1, 2, , Di N= ) corresponds to the lost points. The reconstructed signal in the discrete i

time dom

 

ain can be expressed as 

1

D

i

N

n i n n n n
i

y  ( 1, 2, , )n y A y p n Nδ= + = + =∑  Eq. (13) 

re  is 

−
=

whe the difference between niA y  and the interpolated value (i.e., 

1i n ni i
A y y−= − ), and nδ  is the delta functio n is discrete time sequence representing n. p

difference between ny  and y . The discrete-time Fourier transform (DFT) of y  is 
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given by 
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0
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nd
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The cross spectral density (CSD) between y  a  np  can be obtained as  
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1 1

2 ( )1 1 exp
D

n

NN

 i

Np y k k n i
n i

j k n nS E P Y E t y A
T T

π
= =

⎡ ⎤− −⎡ ⎤⎡ ⎤= = Δ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦
 Eq. (17) ∑∑

By taking the expectation of n iy A  first,  

( )( ) ( )( )( )

( )( ) ( )( )
1 1

1

( 1)l N

2 ( )1 exp

21 1 exp

2exp 1

D

n

NN
i

p y i i
n i

N
D

D
yy

j k n ntS R n n t R n n t
N N

lN j klt R l t R l t
N N

N j k S
N N

π

π

π

= =

−

− −Δ

N =− −

⎡ ⎤= − + Δ − − Δ ⎢ ⎥⎣ ⎦
⎛ ⎞ −⎡ ⎤≅ Δ + Δ − Δ −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤≅ −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑∑

∑  Eq. (18) 

where ( )R t  is the autocorrelation function of ny . Using Eq. (16) and assuming that 

) is negligible due to the assum on that the lost points are sparse,  i jA⎡ ⎤⎣ ⎦  (E A i j≠ pti
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where is the time step. From Eq. (15), Eq. (18), and Eq. (19), the error in the PSD 

estimation defined by 

tΔ  

yy yy yy⎣ ⎦

 

S S Sε ⎡ ⎤ = −  is   

( )2 22cos 1 (S Sε ⎡ ⎤ ≅ − ) (0) ( )D D
yy yy k

N t Nk f R R t
N N N

π Δ ⋅⎛ ⎞⎛ ⎞ + − Δ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
 Eq. (20) 

he first term in the right side of Eq. (20) is proportional to and much smT aller than yyS  

yyS  due to DN N . However, the second term is constant over frequency. This term 

ge com yyS  at zeros of a system; indeed, yyS  is extremely small a

 In con

can be lar pared to t 

zeros of a system. The overall shape of the PSD is therefore mainly determined by the 

second term.  

trast to the PSD, the CSD is less susceptible to either data loss or 

measurement noise. Since correlation between the data loss terms np  

 as

oss terms between the signal and data 

of two different 

signals is small, the cross spectrum of the two data loss can be sumed zero (i.e., 

). Thus, CSD is only affected by the cr

loss, which do not significantly blur zeros of the system. The output-only modal 

analysis utilizes CSD mostly and a limited number of PSD at reference points; the 

input-output modal analysis requires PSD to obtain each transfer function. The 

output-only modal analysis is therefore expected to outperform the methods using both 

of input and output with respect to data loss.   

1 2
0p pS =
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Comparison of the second term with the error in the PSD estimation induced by 

the observation noise reveals the data loss level in terms of the noise level. Consider the 

white noise with the standard deviation nσ . The PSD of the noise is constant in the 

frequency domain and represented as 2
n tσ ⋅Δ . An equation to relate the observation 

noise level with the data loss level in Eq. (19) can be written as follows. 

( ) 22 Dt N R (0) ( ) nR t t
N

σΔ ⋅
− Δ = ⋅Δ  Eq. (21) 

Let the RMS noise level and the data loss level be  and dρnρ , respectively.  

 
# of lost data

# of data

n
n

σ

y

n

ρ

ρ

=

=

Eq. (22) 

here 

σ
 

is the standard deviation of nyw yσ  .  Eq. (21) 

 

is then simplified as 

2

( )1
d

2
(0)

n

R t⎛ ⎞Δ
−⎜ ⎟R

ρρ =

⎝ ⎠

 Eq. (23) 

ata loss is shown to have similar effect on PSD as

derived analytically here, Eq. (23) is expected to hold for subsequent analyses, i.e., 

to investigate the effects of data 

loss on the procedure of the SHM. The selected model is a 53DOF statically determinate 

D  observation noise. Though not 

modal analysis and damage detection. This conjecture, as well as the effect of 

packetizing, is investigated with numerical simulation. 

4.3. Example 

A computer simulation is conducted for a truss model 
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structure as shown in Fig. 8. Each element has a Young’s modulus of 200GPa and 

cross-sectional area of 112.2m2. The truss is vertically excited at node 6 with the 

band-limited white noise, and the vertical accelerations of the bottom nodes (node 2~14) 

are measured. After data is acquired at the sampling frequency of 380 Hz, a certain 

percentage of packets are randomly dropped to simulate data loss. Two ways of data 

loss, group and distributed packet data, are applied to the simulated acceleration of the 

planar truss model. In this simulation, the size of packet is selected to be 8. The lost 

points are selected randomly, and the hold and cubic spline methods are used to 

interpolate lost data. ERA is employed in modal analysis. Each simulation is repeated 

100 times and averaged. The simulation results are shown in Fig. 11 and Fig. 12.  

 

Fig. 8 Planar truss model 

To verify Eq. (23), the outcome is compared to that of the computer simulation 

including observation noise (but without data loss). A band-limited white noise is added

to each of the observed signals pecified as a percentage of the 

RMS of

 

. The RMS noise level is s

 physical response. Data loss level of 0.38% is estimated from Eq. (23) to have 

similar effects on power spectral density as observation noise of 5%. Fig. 9 shows both 

of data loss and noise result in the same effect on the PSD and coherence function.  
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Fig. 9 Data loss effect on power spectral density and coherence at node 10 
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Fig. 10 Data loss effect on cross spectral density between node 8 and 10 

The loss of data reduces the coherence function except at the system's poles (see Fig. 9). 

Because of the random nature of data loss occurrence and the excitation, the coherence 

function varies from simulation to simulation. In FFT calculations, twenty averages are 

used. The coherence function's deviation from unity depends on the input and output, 

between which the function is calculated. All the investigated coherence function plots, 

however, support 10 % noise addition affects the coherence function in a similar way as 

the loss of 0.5~ 2.5 % data does, which agrees with what Eq. (23) suggests for PSD. 

The zeros of the estimated CSDs of accelerations at node 8 and 10 remain clear 
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with either data loss or measurement noise (See Fig. 10). Although there is some 

difference at the zeros, both data loss and measurement noise do not distort the CSD 

significantly as compared to the PSD plot in Fig. 9. Randomness of data loss and noise 

makes , resulting in an accurate estimation of the CSD. Note that the two 

CSDs with data loss and measurement noise are close to each other, which implies 

1 2
0p pS =

Eq. (23) still hold for CSD estimation and modal analysis using output only. 

Fig. 11 and Fig. 12 illustrate the errors in the estimated natural frequencies 

under the various levels of data loss. The errors are calculated with respect to the 

estimated natural frequencies without any data loss. These figures reveal the cubic 

spline method does not give a significant benefit in spite of the additional computation 

required. When the hold method is used, both of the group and distributed packets 

provide a similar level of accuracy overall. However, the effect of these two packetizing 

methods on the damage detection algorithm employed in a SHM system should be 

investigated before selecting one of them. In addition, the modal analysis methods using 

only output information are found more robust against both of data loss and noise by 

comparing Fig. 11 and Fig. 12. The mean and standard deviation of the error are 

significantly reduced in Fig. 12, which agrees with the small errors in estimation of 

CSD with data loss and noise. 

The relationship between noise and data loss, Eq. (23), can be verified to hold 

for modal analysis in Fig. 11 and Fig. 12. The distributed packet and hold method are 

assumed when Eq. (23) is obtained in the previous section. The estimated natural 

frequencies from the distributed packet and hold methods exhibit close error mean and 

standard deviation to those of the noise case in Fig. 11 and Fig. 12. The mean error 
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in Fig. 12 are difficult to distinguish; however, if zoomed in, they are close. 

Particularly Fig. 12 indicates that Eq. (23) works for the methods using output only as 

expected from CSD estimation.  

In this example, the effect of data loss on the SHM system is discussed. The 

PSD estimates from the simulated data validate Eq. (23), the relationship between data 

loss and observation noise level. Even though not verified analytically, Eq. (23) appears 

to hold for other function estimates and the subsequent analysis results, such as CSD, 

coherence, and the natural frequency estimation. The hold method with either group or 

distributed packet is recommended in a SHM system allowing small amounts of data 

loss.  
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Fig. 11 Errors of estimated natural frequencies when input and output are used 
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Fig. 12 Errors of estimated natural frequencies when only output is used 

5. COORDINATED COMPUTING 

The amount of data involved in SHM applications normally exceeds practical 

communication capabilities of smart sensor networks if all the measurement data needs 

to be collected centrally; data aggregation has been an important issue to be addressed 

before a SHM system employing smart sensors is realized. One approach to overcome 

this data aggregation problem has been an independent data processing strategy. This 

approach, however, cannot fully exploit information available in the sensor network. 

Distribution of data processing and coordination among smart sensors play central roles 

in addressing many smart sensor implementation issues, including data aggregation. 

This section will demonstrate that distribution and coordination can be well planned so 

that the data aggregation problem is addressed without sacrificing structural analysis 

performance. Two examples of distributed computing based on SHM analyses are 

provided to illustrate the approach. 

5.1. Distributed implementation of correlation function estimation 

Correlation function estimation is oftentimes the beginning step of output-only SHM of 
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civil infrastructure and usually involves a large amount of measurement data (Gao 

2005). Cross-correlation estimation needs data from two sensor nodes. Measured data 

needs to be transmitted from one node to the other before the processing takes place. 

Associated data communication can be prohibitively large without careful consideration 

for implementation. Distribution of data processing and coordination among smart 

sensors are addressed herein to incorporate application specific knowledge into data 

aggregation. 

Correlation functions are, in practice, estimated from finite length records. 

Power and cross spectral density (PSD/CSD) functions are estimated first through the 

following relation (Bendat and Piersol 2000):  

 *

1

1( ) ( ) ( )
dn

xy i i
id

G X
n T

Yω ω ω
=

= ∑  Eq. (24) 

where ( )xyG ω  is CSD estimation between two stationary Gaussian random process, 

( )x t  and ( )y t . ( )X ω  and ( )Y ω  are the Fourier transform of ( )x t  and ( )y t ; the * 

denotes the complex conjugate. T is time length of sample records, ( )ix t  and ( )iy t . 

When , the estimate has a large random error. The random error is reduced by 

computing an ensemble of the estimates from  different or partially overlapped 

records. The normalized RMS error 

1dn =

dn

( )xyGε ω⎡ ⎤⎣ ⎦  of the spectral density function 

estimation is given as  

 1( )xy
xy d

G
n

ε ω
γ

⎡ ⎤ =⎣ ⎦  Eq. (25) 

xyγ  is the coherence function between ( )x t  and ( )y t , indicating the degree of 
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linearity between them. Through the averaging process, the estimation error is reduced. 

Averaging of 10-20 times is common practice. The estimated spectral densities are then 

converted to correlation functions by inverse Fourier transform. 

An implementation of correlation function estimation for a small community of 

sensors in a centralized data collection scheme is shown in Fig. 13. where node 1 works 

as a reference sensor. Assuming sn  nodes, including the reference node, are measuring 

structural response, each node acquires data and sends to the reference node. The 

reference node calculates the spectral density as in Eq. (24). This procedure is repeated 

 times and averaged. After averaging, the inverse FFT is taken to calculate the 

correlation function. All the calculation takes place at the reference nodes. When the 

spectral density is estimated from discrete time history records of length , data to be 

transmitted through the radio is 

dn

N

( 1)d sN n n× × − . 
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Fig. 13 Centralized NExT implementation 

In the next scheme, data flow for correlation function estimation is examined and data 

transfer is reorganized to take advantage of computational capability on each smart 

sensor node. After the first measurement, the reference node broadcasts the time record 

to all the nodes. On receiving the record, each node calculates the spectral density 

between its own data and the received record. This spectral density estimate is locally 

stored. The nodes repeat this procedure  times. After each measurement, the stored dn
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value is updated by taking a weighted average between the stored value and the current 

estimate. In this way, Eq. (24) is calculated on each node. Finally the inverse FFT is 

applied to the spectral density estimate locally. The resultant correlation function is sent 

back to the reference node. Because the subsequent modal analysis such as ERA uses, at 

most, half of the correlation function data length, 2N  data is sent back to the 

reference node from each node. The total data to be transmitted in this scheme is, 

therefore, 2 ( 1)dN n N n× + × −s  (see Fig. 14).  
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Fig. 14 Distributed NExT implementation 

As the number of nodes increases, the advantage of the second scheme, in 

terms of communication requirements, becomes significant. The second approach 

requires data transfer of , while the first one needs to transmit to the 

reference sensor node data of the size of 

(( d sO N n n⋅ + ))

( )d sO N n n⋅ ⋅ . The distributed implementation 

leverages knowledge regarding the application to reduce communication requirements 

as well as to utilize CPU and memory in a smart sensor network efficiently. 

The data communication analysis above assumes that all the nodes are in 

single-hop range of the reference node. This assumption is not necessarily the case for a 

general SHM application. However, Gao (2005) proposed a Distributed Computing 

Strategy (DCS) for SHM which support this idea. Neighboring smart sensors in a 
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single-hop communication range make local sensor communities and perform SHM in 

the communities. In such applications, the assumption of nodes being in single hop 

range of a reference node is reasonable. 

5.2. Distributed Computing Strategy (DCS) 

The DCS for SHM proposed by Gao (2005) is suitable for implementation on networks 

of densely distributed smart sensors. The conceptual hierarchical organization of the 

DCS approach is shown in Fig. 15. In contrast to traditional SHM algorithms which 

require all the measured information to be transferred to a central station, the measured 

information is aggregated locally by a selected sensor within the sensor group, termed 

the manager sensor, and only limited information is sent back to the central station to 

provide the condition of the structure. Small numbers of smart sensors are grouped to 

form different communities so that all sensors in a community are located in the range 

of single hop. Although each sensor in Fig. 15 is included in only one community, in the 

DCS approach smart sensors can be contained in multiple communities. Each manager 

sensor collects necessary information and implements the damage detection algorithm 

for its community. Adjacent manager sensors interact with each other to exchange 

information. In Fig. 15, manager sensors in communities 1, 2, and 3 interact with each 

other while community 4 does only with community 3. Once information is aggregated, 

the manager sensors determine information to be sent back to the central station. The 

manager sensor of the community in which damage has not occurred transmits only an 

“OK” signal to the central station. If damage has occurred, the manager sensor of the 

community needs to send damage information such as damage location, which is 

reflected by the solid line in Fig. 15. Thus, the DCS approach requires only limited 
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information need to be transferred between sensors throughout the entire sensor network. 

This approach will significantly reduce the communication traffic in the sensor network.  

Gao (2005) shows that NExT (James et al. 1992), Eigensystem Realization 

Algorithm (Juang and Pappa 1985), and Damage Locating Vector method (Bernal 2002) 

can be utilized as structural analysis techniques to materialize this DCS concept. These 

structural analyses are applied in each sensor community. The manager sensors 

communicate with each other to assess mode shapes’ normalization constants and to 

make redundant judgment about damaged element; most of data processing and 

communication takes place inside each sensor community. Coordination among smart 

sensors employing DCS, which has yet to be implemented, is expected to realize a SHM 

system using densely installed smart sensors.  

2 3 41Community
Smart Sensors

manager 
sensors

Central 
Station

 

Fig. 15 Sketch of hierarchical organization 

5.3. Implementation on smart sensors 

In this section, distributed computing is implemented on a network of smart sensors. 

The distributed implementation of correlation function estimation is incorporated into 

DCS; correlation function estimation in DCS is conducted in the distributed manner. 

Then ERA is applied at a manager sensor to estimate modal parameters. The rest of 
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DCS, i.e, DLV and communication between manager sensors, is currently being 

implemented. SHM performance is examined in terms of accuracy of signal processing, 

while data aggregation performance is assessed from reduction in communication 

requirements during correlation function estimation.   

The smart sensor platform used in this demonstration is Imote2. Imote2 has 

Intel Xscale processor and 256KB of RAM. Radio components has data rate of 250 

Kbps. 256KB of RAM on Imote2 allows implementation of correlation function 

estimation from a large amount of data and ERA involving large Hankel and system 

matrices. An open source operating system, TinyOS, is utilized to program Imote2s. The 

hardware is appropriate for data processing intensive applications such as SHM  

To understand the performance of the algorithms, the coordinated computing 

implemented on Imote2 is demonstrated using a numerical truss model shown in Fig. 8. 

Vertical acceleration responses under random input are measured at nodes 5 to 13 and 

injected into a network of nine Imote2s. The Imote2 corresponding to node 5 works as 

the reference sensor. This node broadcast its own data to the other node and collect 

correlation function estimate. Once all the correlation function estimates are collected, 

this reference node applies ERA to obtain natural frequencies, damping ratios and mode 

shapes. The length, , of the injected data is 2048 and the number of FFT points is 

512, resulting in 7 times averaging with 50 % overlap. The sampling rate is 500 Hz.  

N

The acceleration response data and correlation function estimates are stored 

and transferred in 16-bit integer data type, considering that accelerometer’s resolution 

can be reasonably assumed to be around 12-bit. In this way, memory space and 

bandwidth are efficiently utilized, though cast double precision data is used during 
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NExT and ERA. 

Although a certain amount of data loss is shown to be acceptable in the 

previous section, reliable communication is used in this demonstration. In this way, 

outputs of this coordinated computing, i.e., correlation function estimates, natural 

frequencies, damping ratios, and mode shapes, are compared with those calculated on a 

PC without mixing with the effect of data loss. 

Correlation functions are first estimated on the Imote2s and reported back to 

the reference node. Fig. 16 shows the estimated correlation function between node 5 and 

node 6. This estimate matches the corresponding correlation function estimated on a PC 

assuming associated quantization error. Because the difference between these two 

signals is smaller than 10-13, only the estimate on a Imote2 is shown on Fig. 16.  

Correlation function estimates collected at the reference sensor node are then 

analyzed with ERA. TABLE 3 summarizes the identified modal parameters. Natural 

frequencies and damping ratios are compared with those determined on a PC. Modal 

assurance criteria (cite a reference) are utilized to compare mode shapes. All of the 

identified parameters are consistent with calculation on a PC. Together with the 

correlation function estimates, this result demonstrates that this coordinated computing 

approach can perform SHM analysis accurately. 
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Fig. 16 A correlation function estimate 

Table 3 Results of modal analysis performed on Imote2 
Mode 1 2 3 4

Natural Frequency (Hz) 27.21 97.23 127.36 176.14
Error(ratio) -2.13E-13 3.26E-13 -3.20E-13 1.71E-13

Damping ratio (%) 4.09 10.35 5.32 0.43
Error (ratio) -2.93E-14 1.08E-13 -1.31E-13 1.02E-14

Modal Assurance Criteria 
of mode shapes - 1

0 -2.22E-16 -2.22E-16 0

 

Data transferred in a network is reduced as explained in 6.1. In this example, 

data transmission is reduced by a factor of 5, as compared to centralized NExT 

implementation. This reduction factor can be larger depending on the number of sensors 

and the associated averaging. This reduction shows the advantage of distributed 

correlation function estimation.  

Further consideration is necessary to accurately assess the efficacy of the 

distributed implementation. Power consumption of smart sensor networks is not simply 

proportional to the amount of data transmitted. Acknowledgement messages and 

synchronization messages are also involved. The radio listening mode consumes power 

even when no data is received.  However, the size of the measured data is usually 

much larger than the size of the other messages to be sent and should be considered the 
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primary factor in determining power consumption. Small data transfer requirements will 

lead to small power consumption. 

6. CONCLUSION 

Although smart sensor usage in SHM applications is promising, full-fledged SHM 

systems employing smart sensors have not yet been realized. Critical issues such as time 

synchronization error, data loss, and a large amount of data have been described and 

investigated. 

Time synchronization error was formulated and its effects on SHM applications 

investigated. Input-output identification and output-only identification were reviewed 

with time synchronization error taken into account. Mode shape phase was shown to be 

sensitive to time synchronization error. The impact is not negligible when the ratio of 

time synchronization error to a natural frequency of a system is large. However, time 

synchronization accuracy reasonably available for smart sensors and low natural 

frequencies of a large structure oftentimes result in small impact on modal analysis. 

Data loss was investigated with respect to the performance of the modal 

parameter estimation. An expression was derived relating the amount of data loss to an 

equivalent measurement noise. Two types of packet arrangement were considered and 

shown to have a similar level of accuracy in most cases. Data loss is found to introduce 

error into the modal analysis, which also affects the subsequent analysis. Because of the 

averaging associated with the PSD and the CSD estimation, a certain amount of data 

loss can be accommodated. Particularly, the CSD estimation is found to be robust 

against both of data loss and observation noise, allowing the output-only identification 

to be better than the one using input and output. 
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Coordinated computing is shown to be an effective approach for SHM 

applications, especially for data aggregation. Two examples of coordinated computing 

supported by structural analysis are shown. Implementation on Imote2s demonstrates 

the efficacy of this approach.  
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