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Abstract Yield-stress liquids are materials that are
solid below a critical applied stress and flow like mo-
bile liquids at higher stresses. Classical descriptions
of yield-stress liquids, which have been the basis for
asymptotic and computational studies for five decades,
are inadequate to describe many recent experimental
observations, and it is clear that the time dependence
of microstructure must be taken into account in the
description of many real yield-stress liquids.
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Introduction

Yield-stress liquids are broadly defined as materials
that are solid below a critical applied stress and flow
like mobile liquids at higher stresses. They are typi-
cally composed of colloidal or nanoscale constituents,
and they are prevalent in consumer products, coatings
and paints, industrial fluids, foods, mineral wastes, etc.
Understanding bubble motion in yield-stress liquids
is sometimes important, as exemplified by the need
to remove air bubbles from cement and the emission
of flammable gas bubbles from tanks of radioactive
colloidal sludge at the US Department of Energy’s
Hanford, Washington site.

The prototypical yield-stress liquid is the Bingham
fluid, for which the shear stress in a viscometric flow
with positive shear rate

.
γ is written

τ = τy + ηpγ̇ , τ ≥ τy, (1a)

γ̇ = 0, τ < τy. (1b)

τy is the yield stress and ηp is commonly known as the
plastic viscosity. The Bingham equation is linear in the
shear rate following the onset of flow, but the fluid is in
fact highly shear thinning; the viscosity, which is defined
as the ratio of the shear stress to the shear rate, is

η = τ/γ̇ = ηp + τy/γ̇ . (2)

Hence, the “plastic viscosity” is a measure of the true
viscosity only in the limit of an infinite shear rate,
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and the choice of the name is unfortunate. Common
generalizations of the Bingham fluid in shear flow are
the Herschel–Bulkley and Casson equations, given re-
spectively as

Herschel-Bulkley : τ = τy + Kγ̇ m, τ ≥ τy; (3)

Casson : τ 1/2 = τ 1/2
y + η1/2

p γ̇ 1/2, τ ≥ τy. (4)

Pressure-driven flow in a plane channel of infinite
length is the typical textbook example of the flow
of yield-stress fluids. The shear stress varies linearly
over the channel cross-section, passing through zero at
the centerplane. Hence, there must be a finite region
around the centerplane where the stress is below the
yield stress; here, the fluid cannot be deformed and
must flow with a constant velocity. The boundary of
this plug flow is defined by the distance y0 from the
centerplane at which the stress equals the yield stress. If
we perform a macroscopic force balance on a segment
of the plug of length L, where the pressure drop is
�p, it readily follows that y0 = τyL/�p. As long as y0

is smaller than the channel half-width, we must have
shear banding, in which there is a plug of undeformed
material adjacent to the centerplane and a sheared
layer between the center plug and the wall, with a
discontinuity in the velocity gradient at the interface.
We then easily obtain the full velocity and stress dis-
tribution by integrating the equation of motion with
the appropriate stress constitutive equation (Bingham,
Herschel–Bulkley, Casson) between y0 and the wall,
requiring continuity of the velocity and shear stress at
y = y0. The requirement of continuity of the tangential
velocity is a very strong statement about the material,
to which we will return subsequently; classical plasticity
permits tangential velocity discontinuities at interior
slip planes, whereas slip planes are forbidden in the
classical treatment of yield stress liquids. The analysis
of channel flow is straightforward because it is possible
to carry out an a priori computation of the location of
the boundary between yielded and unyielded material.

Non-viscometric flows

Properly invariant three-dimensional constitutive
equations for the Bingham fluid were introduced
by Oldroyd (1947) and Prager (1961). Oldroyd’s
formulation assumes that the material is a linearly
elastic solid at stresses below the yield criterion, where

the yield surface is defined by a von Mises criterion.
The full constitutive equation is then as follows:

τ =
⎡
⎣ηp + τy√

1
2 II�

⎤
⎦ �,

1
2

IIτ ≥ τ 2
y , (5a)

τ = Gγ ,
1
2

IIτ < τ 2
y . (5b)

Here, IIA ≡ A : A is the second invariant of the tensor
A, � ≡ ∇v + ∇vT is the rate of deformation tensor, and
γ is the strain tensor. Equation 5b is rarely employed
in applications; it is conventional to assume that the
modulus G is infinite, in which case there can be no
deformation; the condition in the unyielded region is
then

G → ∞ : � = 0,
1
2

IIτ < τ 2
y . (5c)

The equivalent three-dimensional generalizations of
the Herschel–Bulkley and Casson equations are
straightforward; for simplicity, we will restrict our-
selves in the discussion to the Bingham fluid, but the
important observations made in this paper general-
ize immediately to these constitutive equations. Some
yield-stress liquids appear to be viscoelastic following
yielding, and a properly invariant generalization of the
Bingham model to account for viscoelasticity was first
introduced by White (1979).

Flows of Bingham fluids are frequently characterized
by the dimensionless Bingham number, Bn = τy R/ηpV,
where R and V are a characteristic length and velocity,
respectively. τy is a characteristic stress at low deforma-
tion rates, while ηpV/R characterizes the viscous stress
at very high rates, where the yield stress is irrelevant;
hence, this dimensionless group has obvious applica-
bility only in the limits of zero or infinity. The true
viscosity scales as η ∼ ηp(1 + Bn), so a comparison of τy

to ηV/R meaningfully reflects the relative importance
of the yield stress and the stress from viscous deforma-
tion; this comparison suggests that the relevant group
for scaling is Bn/(1 + Bn) rather than Bn. It is also
important to keep in mind that this type of scaling is
the sole determinant of the flow only when there is a
single characteristic length scale.

The location of the yield surface is unknown in
general flows. It is straightforward to demonstrate from
strictly kinematical arguments that continuity of the ve-
locity and stress at the yield surface cannot be satisfied
within the context of conventional lubrication theory,
and asymptotic methods must be used with delicacy
(Lipscomb and Denn 1984); the issues are addressed in
recent work by Putz et al. (2009). Variational methods
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can be used, but these are best for bounding macro-
scopic quantities (the drag coefficient, for example) and
less satisfactory for establishing the details of velocity
and stress fields. The most common approach is to re-
move the discontinuity by regularization, which trans-
forms the computational problem into a conventional
one for a purely viscous liquid, and then to vary the
regularization parameter to try to obtain convergence
to the solution of the discontinuous problem. Three
regularizations are in common use:

Bercovier and Engelman (1980):

τ =
⎡
⎣ηp + τy√

1
2 II� + ε2

⎤
⎦ � (6a)

Two viscosity (Lipscomb and Denn 1984; Gartling and
Phan-Thien 1984):

τ = ηp

ε
�,

√
1
2

II� < ετy/ηp

τ =
⎡
⎣ηp + (1 − ε)τy√

1
2 II�

⎤
⎦ �,

√
1
2

II� ≥ ετy/ηp (6b)

Papanastasiou (1987):

τ =
⎡
⎣ηp + τy

{
1 − exp

(− 1
2 II�/ε

)}
√

1
2 II�

⎤
⎦ � (6c)

The Bingham model should be approached in all three
formulations in the limit as ε → 0. There are no uni-
versal convergence proofs, and numerical issues usually
become important in numerical solutions before ε can
become sufficiently small to establish convergence of
the stress field. Thus, whenever regularization is em-
ployed there must be a small amount of flow (apparent
creep) in what is interpreted as the unyielded region,
since ε must always be non-zero. A large number of so-
lutions can be found in Mitsoulis (2008). Convergence
of the smooth regularizations is discussed in Frigaard
and Nouar (2005). A detailed treatment of convergence
for creeping flow around a sphere that is not discussed
by Frigaard and Nouar can be found in Liu et al.
(2002). The “gold standard” for checking the validity of
calculations of flow around a sphere in a Bingham fluid
is that of Beris et al. (1985). Some new results demon-
strating convergence problems when the yield surface
is discontinuous are described in Putz et al. (2009).
Overall, the regularization methodology appears to
be satisfactory in most instances and is incorporated
into commercial CFD codes, although some authors
(e.g., Putz and Frigaard 2010) have recently employed
an augmented Lagrangian approach that allows more

Fig. 1 Creeping flow of a Bingham liquid in a channel with an
offset cylinder, Bn = 125, Re = 0 (calculation by John Singh;
reprinted from Denn 2008)

accurate determination of the unyielded regions. The
two illustrative calculations shown subsequently in this
paper employ the Bercovier–Engelman regularization.

One of the consequences of the structure of the
Bingham model and its generalizations is that, in the
creeping flow limit, a flow in a geometry with fore-
aft symmetry must exhibit fore-aft symmetry in the
streamlines. Figure 1 shows the computed flow at zero
Reynolds number for a Bingham fluid in a plane chan-
nel with a cylinder that is offset from the centerplane;
this geometry is often used to test computational al-
gorithms and constitutive equations for polymer melts.
The flow is from left to right, and Bn based on the
channel width equals 125. The shaded regions are un-
yielded. The upstream and downstream flows approach
the flow expected in an infinite channel for such a large
Bingham number, namely an unyielded plug across
most of the channel cross-section and small sheared
regions near the walls. There is no flow in the narrow
gap between the cylinder and the near wall. The shaded
“island” between the cylinder and the far wall is a con-
sequence of the no-slip condition at the solid surfaces,
which requires that there be a velocity maximum at an
interior point in the channel where the derivative goes
to zero; as long as the tensile stresses are sufficiently
small, which is expected in this gradual contraction and
expansion, the stress invariant will be below the critical
value. This is therefore a region in space where the
velocity is a constant and the von Mises criterion is
satisfied everywhere on the surface, but the plug itself
does not move; rather, fluid enters and leaves at a fixed
velocity everywhere on the surface. We might think of
this as analogous to a freezing/melting transition.

Figure 2 shows a calculation of a rising two-
dimensional bubble with zero surface tension at zero
Reynolds number and Bn = 1.38 (Singh and Denn
2008), where the free surface was determined using the
method of level sets. Because of the unyielded (shaded)
region far from the bubble, where the stress invariant
falls below the critical value, continuity of mass requires
that there be a recirculating flow within the yielded
shell, which induces a rotation. The unyielded “ears” on
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Fig. 2 Rising bubble with zero surface tension at Re = 0 and Bn
= 1.38 (Singh and Denn 2008)

the equatorial plane are expected, and, since they must
move with the bubble, they rotate and precess along
the free surface in order to maintain a fixed position
relative to the bubble, with something akin to “melting”
along the forward portion and “freezing” on the aft.
The size of the ears increases with increasing Bn, while
the outer unyielded region approaches closer to the
bubble; the two regions connect and the rise velocity
goes to zero (Bn → ∞) when τy ≥ (�ρ)gR/6, where
�ρ is the density difference and g is the gravitational
acceleration. (The 6 in the denominator is replaced
by 8.33 for a falling drop at zero Reynolds number.)
Other computational results for bubbles and drops in
Bingham liquids using regularization methods may be
found in Potapov et al. (2006) and Tsamopoulos et al.
(2008).

Measurement issues

Direct measurement of the rheological functions of a
yield-stress liquid is fraught with difficulty. Extrapola-
tion of measured shear stress data to zero shear rate in
order to obtain the yield stress is unreliable. Further-
more, wall slip often occurs; slip may be evident from
the shape of the measured rheological functions (e.g.,
Nguyen and Boger 1983), and it has been observed
directly by painting markers on the free surface in a

rotational viscometer (e.g., Kalyon 2005) and through
magnetic resonance imaging (e.g., Bertola et al. 2003;
Wassenius and Callaghan 2004). In contrast to the be-
havior of polymer melts, where slip may occur at high
deformation rates (Denn 2001, 2008), slip in yield-stress
liquids is most likely to occur at low rates. Roughened
surfaces are routinely employed to minimize slip, but
a common means to avoid slip while measuring the
shear stress is to use a rotating vane. The vane does
not provide a direct measurement of the shear stress
and requires a theoretical treatment to extract the shear
stress–shear rate relation.

Nguyen et al. (2006) reported the results of a study
of the yield stress of 50% and 60% TiO2 suspensions
carried out at six laboratories using a variety of mea-
surement techniques, as well as flow curve fitting and
extrapolation. The reported yield stresses differed by a
factor of two, both from laboratory to laboratory and
within laboratories that used multiple methods. The
overall standard deviation was 49% of the mean for
the 50% suspension and 40% of the mean for the 60%
suspension. The laboratory-to-laboratory variability is
easily explained by the fact that samples were prepared
on site, and the preparation methods differed substan-
tially, pointing to the significance of the microstructure
in determining the yield stress. The very large devia-
tions with different techniques within several laborato-
ries point to the unreliability of some methods. Three
laboratories used the vane method, and the reported
standard deviation was approximately 10% of the mean
for both concentrations.

There has been little attention given to the material
properties prior to yielding. Nguyen and Boger’s (1983)
vane measurements on “red mud”, a colloidal waste
suspension from aluminum processing, provide some
interesting insight. For a 66% suspension they found
that the vane gave a consistent value of the yield stress
(154 to 169 Pa, with a mean of 162) as long as the rota-
tional speed of the vane was below 8 RPM. At higher
speeds the measured yield stress increased with speed,
reaching a value of 351 Pa at 256 RPM. This behavior is
inconsistent with Oldroyd’s notion of a linearly elastic
solid prior to yielding (Eq. 5b), but it is suggestive of
linearly viscoelastic behavior, as mentioned by White
(1979) and discussed by Saramito (2007). Suppose we
presume, for example, that the rheology of the un-
yielded material is described by a Kelvin–Voigt solid,
for which the shear stress satisfies τ = Gγ + ηγ̇ , where
γ is the shear strain. If failure occurs at a critical yield
strain, γy, then the static value of the yield stress τy is
Gγy. In an experiment at constant shear rate we would
then have a dynamic apparent yield stress τapp,y such
that τapp,y − τy = ηγ̇ . Nguyen and Boger’s data for the
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66% red mud suspension are shown in Fig. 3, where
it appears that the behavior expected for the Kelvin–
Voigt material is roughly followed. What appears to be
Kelvin–Voigt behavior in ketchup prior to yielding was
recently reported by Benmouffok-Benbelkacem et al.
(2010).

In a provocative paper entitled “The yield stress
myth,” Barnes and Walters (1985) questioned the very
existence of the yield stress, and, in a subsequent re-
view, Barnes (1999) showed data for a number of mate-
rials that suggest that there is no yield stress, but rather
a very large Newtonian viscosity at stresses below the
apparent yield stress. Møller et al. (2009a) recently
repeated these experiments and reached a different
conclusion; their data on a 0.2% Carbopol, which is one
of the materials cited by Barnes, are shown in Fig. 4.
What appears to be a Newtonian viscosity is observed
below the apparent yield stress, but the magnitude
scales with a 0.6 power of waiting time (the exponent
varies, depending on the material), indicating that the
apparent viscosity below the apparent yield stress will
become infinite as the waiting time goes to infinity. This
is a remarkable result, since the 0.2% Carbopol used
by Møller and coworkers does not exhibit thixotropy
in a typical cyclic shearing experiment; as discussed
by Bonn and Denn (2009) and Møller et al. (2009b),
this Carbopol appears to be an unusual “ideal” yield-
stress liquid. (Note that this is not true of all Carbopols;
see Divoux et al. (2010) for an example of complex
time-dependent behavior during startup of shear in a
Carbopol system.) One conclusion appears to be that

Fig. 3 Apparent yield stress less equilibrium yield stress as de-
termined by vane measurement as a function of RPM for a 66%
red mud suspension. Calculated from data of Nguyen and Boger
(1983)

Fig. 4 Apparent viscosity of 0.2% Carbopol for different waiting
times (Møller et al. 2009a)

the yield stress is a material property that separates
the mobile liquid from the solid at equilibrium. Sev-
eral questions also immediately arise: First, what is
the meaning of an infinite viscosity? A fluid with an
infinite viscosity is not a solid; a fluid requires velocity
continuity in the bulk, while a solid can accommodate
slip planes, as in classical plasticity. Second, what is the
physical origin of the plateau in the apparent viscosity
below τy, and what is the origin of its time dependence?

Shear-dependent structure

The inclined plane method is one of the techniques
employed to measure a yield stress. In this method the
material is placed on a horizontal plane that is then
slowly inclined until the gravitational stress overcomes
the yield stress at a critical angle of inclination and
the material flows. As the film thins, the gravitational
stress drops below the yield value and the flow stops.
Figure 5 shows the results of an inclined plane exper-
iment of a 4% suspension of bentonite clay in water
(Coussot et al. 2002a). The dashed line in Fig. 5b is
the expected length of the material sample on the
plane as a function of time for a liquid satisfying a
constitutive equation like Eq. 5, whereas the actual
data show the length increasing steadily with time, as
demonstrated in the accompanying photos (Fig. 5a).
This runaway behavior is characteristic of an avalanche,
as often seen with snow or mud. The likely explanation
is straightforward: bentonite suspensions are known
to be thixotropic; i.e., ascending and descending stress
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Fig. 5 a Avalanche flow of a 4% bentonite suspension in water
over an inclined plane covered with sandpaper. The pictures are
taken at the critical angle for which the suspension just starts

to flow. b Distance traveled as a function of time (symbols)
compared to the prediction for an ideal yield-stress fluid (dashed
line) (Coussot et al. 2002a)

curves with a cyclic shear rate are different. There
must therefore be a stress-dependent microstructure.
The equilibrium structure determines an equilibrium
yield stress. As the flow begins, the structure breaks
down; the new structure will have a smaller yield stress
and more mobility. This is a positive feedback system,
and it may run away. In fact, in a creep experiment
carried out below a critical stress the structure of 4%
bentonite builds up and flow stops (aging); above the
critical stress the structure equilibrates at a new value
and steady flow occurs (shear rejuvenation) (Coussot
et al. 2002b).

Figure 6 shows a direct observation of the effect of
stress-dependent structure in a colloidal gel. Here, the
gel is made up of 1.3 μm fluorescent PMMA particles
and 3 × 107 Mw polystyrene in a mixture of decalin

and cyclohexyl bromide. At rest (A), the gel exhibits a
percolated structure and exhibits a yield stress of about
5 Pa. Just after flow (B), the gel has broken up into
individual flocs and there is no measurable yield stress.

Predictive ability of classical models

There is a dearth of quantitative comparisons between
the predictions of classical models like Eq. 5 and ex-
periments on yield-stress liquids in non-trivial geome-
tries, but two recent publications using particle imag-
ing velocimetry to obtain detailed velocity data for
yield-stress fluids moving past single spheres at very
low Reynolds numbers are instructive. Both groups
found fore-aft symmetry for Newtonian fluids, as

Fig. 6 A colloidal gel a at
rest, with a percolated
structure and a yield stress of
∼5 Pa, and b just after flow,
with individual flocs and no
measurable yield stress (Bonn
group; from Bonn and Denn
2009)
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expected, but both observed large deviations from
fore-aft symmetry with the yield-stress liquids. Gueslin
et al. (2006) studied a Laponite clay suspension, which
is a thixotropic material (Abou et al. 2003); the settling
velocity depended on the aging time, which in turn
depended on the stress. (Aluminum and brass spheres,
with buoyant forces differing by a factor of four, were
used.) Putz et al. (2008) used a 0.08% Carbopol so-
lution, which, unlike most observations on Carbopol,
appeared to exhibit a degree of shear hysteresis. A
constitutive description in the form of Eq. 5, or any
generalization without a time dependence resulting
from structural change, cannot describe these observa-
tions even qualitatively. (Topkavi et al. (2009) reported
velocity profiles for the flow of a Carbopol gel past
a stationary cylinder in which they, too, observed a
deviation from fore-aft symmetry, but they provided no
data with a Newtonian fluid for comparison.)

There are two other important experimental
observations that are inconsistent with the classical
rheological models. Shear banding is required for
Bingham-like fluids when there is a stress gradient and
the stress falls below the critical value in some region of
the flow field; shear banding cannot occur in a uniform
stress field, however. Magnetic resonance imaging
studies of a bentonite clay suspension in a cone-and-
plate instrument, where the shear stress should be
uniform, do show shear bands above a critical shear
rate (Møller et al. 2008). Finally, visual observation of
the free surface of a 0.48% Laponite clay suspension
in a parallel plate rheometer during transient stress
development at a constant rate shows the onset of
shear localization at the midplane, reminiscent of a slip
plane in a solid, apparently indicating that the material
yielded only locally (Pignon et al. 1996).

Requirements for simulation

Any model intended to simulate the behavior of yield-
stress fluids like those discussed here must be able to
describe the following phenomena:

• Thixotropy
• Avalanche behavior
• Loss of fore-aft symmetry in flow
• Shear banding without a stress gradient
• Shear localization

Clearly, microstructure must be incorporated into the
rheological description. If we wish to pursue a contin-
uum approach then we need to introduce a variable
that characterizes the microstructure. The simplest way
to do this is to introduce a scalar structural parameter

that is a measure of the connectivity of the structure,
in much the same way that transient network models
have been used for entangled polymers (e.g., Mewis
and Denn 1983). Typically, the parameter, which we
will denote λ, varies between zero and unity, where
unity corresponds to the equilibrium structure and zero
to complete structural breakdown. (Some investiga-
tors prefer to permit 0 ≤ λ ≤ ∞.) If the structure is
anisotropic then we would require a structural tensor.

The kinetic equation for the structural variable re-
quires expressions for the rates of buildup and break-
down. The rate of breakdown in models of structured
fluids is typically taken to depend on the magnitude
of the deformation rate in the form λγ̇ a; the buildup
rate is typically taken to depend on the distance from
equilibrium and, in some cases, on the rate of defor-
mation, in the form (1 − λ)γ̇ b . The parameters a and b
are typically taken to have integer values. If the rate of
buildup is driven only by the distance from equilibrium
then b would be expected to be zero, as is usually done
in polymer network theories. For a simple shear flow
we would then have a kinetic equation of the form

dλ

dt
= k1(1 − λ)γ̇ b − k2λγ̇ a. (7)

For a general flow we would replace the time derivative
d/dt by the substantial derivative D/Dt and the shear

rate γ̇ by
√

1
2 II

�
. There is a steady-state structure in a

steady shear flow:

λss =
[

1 + k2

k1
γ̇ a−b

]−1

. (8)

Clearly, a > b to ensure the correct limits λ → 1, 0
as γ̇ → 0, ∞. (Equations of this type for the struc-
tural variable do not appear to admit the possibility
of avalanches.) Many such models of structured liquids
have been proposed, and they are reviewed in papers by
Mujumdar et al. (2002) and Mewis and Wagner (2009);
interestingly, the condition a > b is violated by some
of these models. Some models include two mechanisms
for structure buildup, a Brownian term that depends
only on (1 − λ) and a shear-dependent term. Pinder
(1964) and Coussot et al. (2002b) assume a constant
rate of buildup, which permits λ to become infinite; the
latter formulation does admit avalanches.

In a conventional network model, like rubber elastic-
ity, the modulus is proportional to the connectivity, so
we would have G = λGo, where Go is the equilibrium
modulus. For a fractal structure the form would be
G = λnGo, n > 1. It is likely that the yield stress would
have the same dependence on λ as the modulus. The
dependence of the dissipative parameters on λ would
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more than likely be taken initially to be a power law;
in fact, most of the models reviewed by Mewis and
Wagner take the plastic viscosity to be proportional to
λ. A minimal generalization of Eq. 5 would then be of
the form

τ =
⎡
⎣ηp + τy√

1
2 II�

⎤
⎦ �,

1
2

IIτ ≥ τ 2
y , (9a)

τ = Gγ ,
1
2

IIτ < τ 2
y . (9b)

∂λ

∂t
+ v.∇λ = k1(1 − λ)

(
1
2

II�

)b/2

− k2λ

(
1
2

II�

)a/2

(9c)

G = λnGo, τy = λnτyo, ηp = λk ηpo. (9d, e, f)

Perhaps, based on Fig. 4, the yield criterion should be
strain-based:

1/2 IIγ < or > γ 2
y , (10a)

and the constitutive equation of the unyielded material
should be

τ = Gγ + η�, 1/2 IIγ < γ 2
y . (10b)

Incorporation of the structural variable into the con-
ventional Bingham formulation, with G → ∞, does not
introduce new conceptual issues, whereas any attempt
to include the viscoelastic deformation of the unyielded
region appears to be incompatible with conventional
regularization approaches. Viscoelasticity after yielding
can be accommodated by extending the structural pa-
rameter format or using a memory functional approach
like that of White (1979), who proposed incorporating
thixotropy through a memory-dependent yield stress
(see also Suetsugu and White 1984). Separately, the is-
sue of continuity of the velocity under all circumstances
is a major unresolved conceptual issue.

Concluding remarks

Many yield-stress liquids do not correspond to the clas-
sical description, which fails to take stress-dependent
structure into account. Modification of the classical reg-
ularized continuum description to incorporate a struc-
tural variable is conceptually straightforward as long as

one does not seek to include the deformation of the un-
yielded material, but it appears that new solution tech-
niques would be required if one wished to incorporate
a strain-based yield criterion and possible viscoelas-
tic behavior of the unyielded solid. The elementary
structure formulation described here does not appear
to be able to describe avalanche behavior, and one
of the most challenging unresolved issues is whether
tangential velocity continuity is always appropriate in
a yield-stress liquid.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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