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Abstract: This paper investigates the characteristics of a clinical dataset using a combination of feature selection and classification
methods to handle missing values and understand the underlying statistical characteristics of a typical clinical dataset. Typically, when
a large clinical dataset is presented, it consists of challenges such as missing values, high dimensionality, and unbalanced classes. These
pose an inherent problem when implementing feature selection and classification algorithms. With most clinical datasets, an initial
exploration of the dataset is carried out, and those attributes with more than a certain percentage of missing values are eliminated from
the dataset. Later, with the help of missing value imputation, feature selection and classification algorithms, prognostic and diagnostic
models are developed. This paper has two main conclusions: 1) Despite the nature of clinical datasets, and their large size, methods
for missing value imputation do not affect the final performance. What is crucial is that the dataset is an accurate representation of
the clinical problem and those methods of imputing missing values are not critical for developing classifiers and prognostic/diagnostic
models. 2) Supervised learning has proven to be more suitable for mining clinical data than unsupervised methods. It is also shown
that non-parametric classifiers such as decision trees give better results when compared to parametric classifiers such as radial basis
function networks (RBFNs).
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1 Introduction

Recently data mining has become an evolving area in in-
formation technology. Hundreds of novel mining algorithms
and new applications in medicine have been proposed to
play a role in improving the quality of healthcare systems.
Data mining ties many technical areas, including machine
learning, human-computer interaction, databases and sta-
tistical analysis. Clinical datasets pose a unique challenge
for data mining algorithms and frameworks. These chal-
lenges are due to missing values, high dimensionality, unbal-
anced classes, and various systematic and human errors[1].
Data mining aims to automatically extract knowledge from
large scale data. However, information and knowledge
mined from the large quantity must be meaningful enough
to lead to some advantages. As a result, effective planning
of medical care and treatment of patients with heart failure
has proved to be elusive.

With the advent of electronic health (patient) records
(EHR/EPR)[2, 3], large amounts of clinical data have
started to become available. However, good, robust, and
accurate models for diagnosing and predicting the surviv-
ability of patients are not extensively available. Clinical
datasets are often extremely complex due to the fact that
there are large numbers of variables, and a great deal of
missing data and non-normally distributed data. In addi-
tion, given the large number of data mining techniques, it
can be difficult to decide which technique is required in or-
der to get the correct results from a given dataset. This
often means that if the underlying characteristics of the
dataset change, the technique must also be changed.

The goal of data mining in health care systems is to assist
clinicians in improving the quality of prognosis and diagno-
sis, and to generate timelines for the medical problem. The
target problem was extracted from the dataset using a va-
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riety of data mining processes, which were also used to pre-
dict mortality and survival time of patients with heart fail-
ure. Machine learning techniques, such as supervised and
unsupervised methods, were applied to compare the perfor-
mance of prediction in clinical dataset. This paper looks
into a large clinical dataset with a view to understand the
underlying properties and the compromises necessary in the
selection of methods for data mining. Thus this paper aims
not only to explore and select suitable techniques to handle
but also to analyse clinical datasets. The clinical dataset
to be used is a large heart failure dataset (LIFELAB)[4, 5].
Over the years, a large number of results have been pre-
sented, specifically dealing with the issue of feature selec-
tion and the development of models for heart failure us-
ing data mining techniques[6−28]. A generic process applied
here is: 1) missing values imputation, 2) feature selection,
3) classification and 4) clustering. There are a large number
of techniques available for feature selection[29−31] . Three
of these are selected: t-test[32], entropy ranking[33, 34], and
nonlinear gain analysis (NLGA)[35]. All feature selection
methods, indeed dimension reduction techniques, use a fea-
ture importance measure capability to select the most rele-
vant features, therefore reducing the dimensionality of the
problem. The rationale for this selection is that the three
techniques use different properties of the data to select sig-
nificant features or variables (Here, features and variables
are interchangeably used). The t-test method utilizes data
distribution as a key property for selecting variables. The
entropy method not only uses the distribution, but also in-
cludes a measure of data density, and develops a measure
for the degree of order in the data. NLGA considers higher
weight variables to be more significant based on the artifi-
cial neural net input gain measurement approximation (AN-
NIGMA). ANNIGMA[35] uses neural networks for training
large volumes of data and considers higher weight varia-
bles to be subset of significant features. The results indi-
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cate non-parametric that classifiers, such as decision trees,
show a better result when compared to parametric classi-
fiers such as radial basis function networks (RBFN), mul-
tilayer perceptron (MLP), and k-means (because these as-
sume that clinical data is normally distributed).

The paper is structured as follows: Section 2 provides
some definitions, which are then used later in the paper.
Section 3 describes a clinical dataset which has the typical
characteristics of many clinical datasets. This section also
outlines the embedded characteristics of the dataset, which
will prove useful in the analysis of the results. In Section 4,
several techniques for data mining are outlined. The cat-
egory of techniques is dependent on the stage of the data
mining process. Therefore, initially methods for imputing
missing values are discussed, before moving on to feature se-
lection and classification algorithms. Section 5 analyses the
results in the context of the characteristics of the dataset,
evaluating and validating the problems associated with the
data by establishing a relationship between the complexi-
ties, the set of selected features, and the data distribution.
The set of appropriate features are those with the high-
est classification. Section 6 discusses the results in relation
and in comparison to previously established findings in lit-
erature. Finally, in Section 7 we draw some concluding
remarks, summarize the analysed results and specify the
further steps of the research as future works.

2 Preliminaries

Let Xi ∈ X ⊆ Rn; i = 1, · · · , n be the clinical dataset,
where n is the number of patient records, and m is the
number of attributes (variables). Let xij ∈ R, i = 1, · · · , n

and j = 1, · · · , m, be the i-th and j-th entry of the dataset
under consideration. xij is defined as the value of the i-th

variable for the j-th patient.
Issues associated with the dataset include high dimen-

sionality, incomplete or missing values, and diverse clinical
features and their magnitudes. However, many of the fea-
tures present are irrelevant and redundant. The problem is
determining a mapping from the high dimensional space to
a lower dimensional space, i.e.:

v : χ −→ χ; χ ∈ Rk; k ≪ n (1)

For feature selection, the requirement is that X—since
the main interest is to retain the labels associated with the
variables. On the other hand, this is not required for feature
extraction, since it employs latent variables. (See Fig. 1)

Definition 1. Subset of selected features (vari-
ables/attributes) is selected by dimensionality reduction
techniques, the result is the matrix X̄n×b̄.

X̄(n×b̄) ⊂ X̄(n×b) (2)

where b ≫ b̄, b is the number of the original features, b̄

is the number of the selected features, X̄(n×b) is the data
matrix that presents the significant features.

The process of reducing the dimension is essentially one
of determining a projection, from the higher dimensional
space to a lower dimensional one. Since most projection
mappings employ local projections, it is imperative that
the matrix Adata should not contain missing elements. As
such, it is important to define missing data before designing
an appropriate imputation method.

Adata =

⎡

⎢

⎢

⎣

x11 · · · xi1

...
. . .

...

x1j · · · xij

⎤

⎥

⎥

⎦

(3)

Fig. 1 Data distribution of variables in clinical dataset
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Definition 2. Nullity values are defined as missing val-
ues, where values are absent or not recorded for a given
attribute. The data matrix x is constructed by xij , where
xij is null.

nullity = {xij ∈ X : xij ∈ ∅} (4)

Find the numbers of missing value for each column (vari-
able) [N1, N2, N3, · · · , Nm].

[N1, N2, N3, · · · , Nm] = countm
j=1(nullity(X)1,··· ,n,j) (5)

(the nullity location of the dataset). The dataset

χ̄(n×b) = findn
(i=1)(nullity(χ(n×b))) (6)

χ̄(n×b) =

{

1, missing value

0, non missing value

where χ̄ is the data matrix shows the location of missing
value.

The incomplete, erroneous and noisy data are corrected
by imputation. The dataset Ψ(n×m) is the matrix of clinical
dataset consists of n records of patient and m variables of
attributes. Let xij ∈ R, i = 1, · · · , n and j = 1, · · · , m, be
the i-th and j-th entry of the dataset under consideration.
xij is defined as the record for each patient.

3 Mining issues in clinical dataset

This study focuses on a heart failure dataset consisting
of continuous data, which contains diverse clinical features
and numerous subsets, as well as both longitudinal and hori-
zontal data across several generations. The dataset also im-
portantly presents the incidence, prevalence and persistence
of heart failure. High-risk patients with heart failure were
targeted for evaluation and treatment in a cost-effective
manner[26, 36]. The dataset in this paper is a large cardiolog-
ical database called LIFELAB: A prospective cohort study
consisting of 463 variables which are both continuous and
categorical, and 2032 patients who were recruited from a
community-based outpatient clinic based in the University
of Hull Medical Centre, UK. Variables with missing val-
ues greater than 20% were excluded to minimize problems
during the data mining process. As a result, the number
of variables and patients were substantially reduced to 60
variables and 1051 patients. This indicates that the data
consisted of multiple missing values that either needed re-
placement or elimination to allow appropriate analysis and
algorithmic implementation. The challenges and complexi-
ties in large clinical datasets are discussed in the following
outlined topics.

3.1 Incomplete, erroneous and noisy data

There is a wealth of clinical and health records gener-
ated every day and kept in storage. This raw clinical data
is usually incomplete, containing missing values due to dif-
ferent systematic ways through which the real world data
is collected by healthcare practitioners. Clinical datasets
almost inevitably contain missing values and misclassified
values. Methods of data imputation[37, 38] and missing value

replacement are employed to cope with these issues. In-
consistent data can also exist, e.g., when data collection is
done improperly or mistakes are made in data entry; the
data may also contain error and noise. Commonly, outliers
due to entry errors are also found and these were manually
inspected to remove irrelevant variables.

3.2 Diverse clinical features and their

scales

There are approximately 400 features in the dataset,
comprised of many scales of measurement. Some variables
consist of integer and decimal values and some scales have
a wide range while some have a small range. Normalisation
will be applied to solve these problems so that the data
elements are within the same scale and manageable for se-
quential data mining processes.

3.3 Large dimensionality

Large dimensionality is indicated by too many features.
Feature selection efficiently copes with this issue. The tech-
nique selects meaningful features which can be used in pre-
dictive modelling.

The data exploration reveals that the data distribution
affects the mining process, including feature selection, clas-
sification and clustering analysis. Fig. 1 shows an example
of the distribution of variables in the clinical dataset. In
theory, the data should be normally distributed. However,
it can be seen that this is not the case. It can be seen
from Tables 2 and 3 that imputing missing values showed
no significant changes and, as a result, the transformation
procedure was unable to improve the precision.

4 Data mining processes in heart fail-

ure dataset

The mining process that is implemented in this paper
can be represented as a four-stage process. The stages are
1) missing values imputation, 2) dimension reduction us-
ing feature selection techniques, 3) classification/clustering,
and 4) evaluation. In this section, each of these four stages
is discussed and the methods are outlined. The data mining
framework for handling complexities is outlined in Fig. 2.

4.1 Missing value imputation

Data pre-processing is undoubtedly the first step in any
form of data analysis and mining of data if the right results
are to be obtained[36, 37]. At this stage, any redundant data,
irrelevant variables and variables with more than 30% miss-
ing data are manually removed[38, 39].

Most datasets encountered contain missing values. De-
pending on their robustness, machine learning schemes
have the ability to handle such datasets. The impu-
tation methods used in this paper are mean imputa-
tion, expectation-maximization (EM) algorithm, k-nearest
neighbour (k-NN) imputation, and artificial neural network
(ANN) imputation[40]. After the application of each of the
imputation methods, the data was normalized in order to
ensure that all the variables were within the same range
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so that both data integrity and high performance could be
obtained during the mining process.

Fig. 2 The framework for handling complexities in clinical

dataset

4.1.1 Mean imputation

A popular method is to use the mean of the data for
imputation. Here missing data for a given feature (at-
tribute/variable) is replaced using the mean of all known
values of that attribute. However, mean imputation makes
only a trivial change in the correlation coefficient and there
is no change in the regression coefficient[40, 41].

4.1.2 Expectation-maximization (EM) imputation

Expectation-maximization uses other variables of the
dataset to impute a value (expectation) and then checks
whether that is the value most likely (maximization) to oc-

cur. Here the covariance matrix is estimated, and values to
be imputed are generated using this covariance data. This
method preserves the relationship with other variables, and
is important where factor analysis or regression analysis is
applied. As result, EM imputation is one of the most ac-
curate methods of imputation. However, this is a reason-
able approach only if the percentage of missing data is very
small[42].

4.1.3 kkk-nearest neighbour imputation

Often, in large data sets it is possible to find two
or more records which are similar, but one of them
has a particular attribute missing. It is perfectly feasible
to use the value from the closest record in similarity to
replace the missing value. k-NN imputes missing data
by applying this nearest-neighbour strategy[40].
Missing values of a variable are imputed by considering
a number of records that are most similar to the instance
of interest. In order to determine the similarity of records,
a distance function (e.g., Euclidean distance) can be used
as a measure.

4.1.4 Artificial neural imputation

ANN is an interconnected assembly of nodes (or
neurons)[43, 44] where information or relationships are stored
in the interconnections between them in the form of weights.
In order to obtain these weights, the ANN has to learn or
be trained using a training dataset. This approach can be
seen as an extension of the EM approach, where instead of
covariance, a nonlinear mapping is obtained to determine
the missing values.

Table 1 The statistic of variables before and after missing
value handling by different methods

Variable Statistic
Missing value imputation

Original EM k-NN Mean ANN

Missing (%) 4.19

Glucose
Mean 0.088 0.088 0.088 0.088 0.089

SD 0.060 0.059 0.059 0.059 0.060

#Data 886 925 924 929 933

Missing (%) 0.95

Haemoglobin
Mean 0.577 0.577 0.457 0.577 0.577

SD 0.131 0.131 0.107 0.131 0.131

#Data 709 716 745 719 715

Missing (%) 20.74

MCV
Mean 0.795 0.795 0.811 0.795 0.788

SD 0.066 0.061 0.068 0.059 0.063

#Data 706 892 830 900 897

Missing (%) 13.51

lron
Mean 0.262 0.329 0.258 0.262 0.327

SD 0.127 0.112 0.119 0.118 0.105

#Data 671 759 786 751 759

Missing (%) 7.04

Vitamin B12
Mean 0.094 0.094 0.094 0.094 0.093

SD 0.062 0.060 0.060 0.060 0.068

#Data 863 925 927 929 955

Missing (%) 8.75

Red cell folate
Mean 0.229 0.231 0.229 0.229 0.073

SD 0.141 0.137 0.135 0.135 0.046

#Data 767 840 840 842 937
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These methods were used to impute missing values in the
dataset described in Section 3. Table 1 shows some of the
variables with approximately 1% to 20% missing values and
the results obtained by imputing the missing values. The
results shown in Table 1 compare the statistical proper-
ties of the data with no imputation and after imputation.
It can be seen that with some methods the values of the
standard deviation (σ) and mean (µ) have changed. In Ta-
ble 2, #data indicates the number of data points within
the normal distribution range, i.e., data points within the
range of [µ − σ, µ + σ]. It can be seen that missing value
imputation methods (EM, k-NN, Mean and ANN) show
an increase in the number of data points under the dis-

tribution curve. In addition, the table show the effect of
imputation methods on the same variable. For example
Tables 1 and 2 shows that the imputation method based
on k-NN produces the better results for Haemoglobin and
Iron, whilst the ANN based method shows the most accu-
rate results for Glucose, vitamin B12 and red cell folate,
and that mean imputation is suitable for mean corpuscu-
lar volume (MCV). Each of these methods has a specific
way of imputing the missing value, and the primary na-
ture of the distribution is either retained by the imputation
method or is fundamentally changed. Indeed, this can be
seen from Table 2, where the distributions before and after
imputation are shown.

4.2 Feature selection

Feature selection, also known as subset selection, is a
process that selects the most relevant attributes (features).
This process not only determines the most relevant features,
it also reduces the dimensionality of the problem (Fig. 3).
Thus reducing the complexity and processing time, while at
the same time improving performance. In general, a feature
selection algorithm is often composed of three components:
a performance function, a search algorithm and an eval-
uation function. The performance function provides the
optimal subsets appropriate for classification. The search
algorithm performs the search of an appropriate subset of
features. The evaluation function inputs a feature subset
and outputs a numeric evaluation.

Feature selection has been successfully applied to
the following datasets: lymphoma, gene expression,
cancer[31, 33, 45]. Poolsawad et al.[39] state that feature
selection consistently increases accuracy, reduces feature set
size, and provides better accuracy for classification. Fur-
ther, Liu et al.[34] also state that feature selection plays an
important role in classification, and is effective in enhanc-

ing learning efficiently, increases productive accuracy, and
reduces complexity of learning results. In addition, learning
is efficiently achieved with just relevant and non-redundant
features.

Fig. 3 The dimensionality reduction from a high dimension to

a small dimension

There are two general forms of feature selection pro-
cedures: 1) a wrapper model and 2) A filter model[46].
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The wrapper model uses the predictive accuracy of a pre-
determined learning algorithm to determine the goodness
of the selected subsets. The learning algorithm is run with
various subsets of features, and the learner that performs
the best is chosen. In contrast, the filter model presents
the data with the chosen subset of features to a learn-
ing algorithm. It separates feature selection from classifier
learning and selects feature subsets that are independent of
any learning algorithm[14, 47]. In comparison to the wrapper
model, the filter model is computationally efficient. How-
ever, the filter model is known to perform much worse than
the wrapper model. A key aspect which needs to be consid-
ered when selecting a subset of features is the metrics used
for determining the relevance or redundancy of a particu-
lar feature. An optimal subset of features should contain a
set of robust and relevant features along with a set of weak
features[46]. This allows for the selection of features with a
positive Z-score[47]. It is possible to obtain different selec-
tion of subsets of features depending on the criterion used.
Thus the subset obtained using a statistical correlation cri-
terion would be different from when mutual information is
used.
4.2.1 Nonlinear gain analysis

Nonlinear gain analysis (NLGA), also known as artificial
neural net input gain measurement approximation (AN-
NIGMA), is a feature ranking procedure[34]. In this ap-
proach, a neural network is repeatedly trained. And after
each training operation, a set of variables is eliminated
based on their effectiveness and significance in predicting
the required class or outcome. In the first step, all the fea-
tures are used as inputs and the network is trained. Once
the network has been trained, an ANNIGMA score is de-
termined as

LGik = Σj |wij × wjk| (7)

ANNIGMAik =
LGik

max(LGik)
× 100 (8)

where i, j, k are the input, hidden, and output layer nodes
indicated, respectively. LGik is the local gain of all the
other inputs, while wij and wjk are the weights between
the layers.

Features associated with low ANNIGMA scores are
eliminated and another network is trained. This is carried
out till such a point that the network performance starts
to degrade. The NLGA is a wrapper model and appropri-
ate for handling large datasets with a high dimension. This
approach can reduce the dimensions while also maintaining
the required accuracy. However, due to its high computa-
tional requirements, its application to extremely large data
sets is limited.
4.2.2 ttt-test

Student′s t-test approach uses statistical tools to assess
whether the means of two classes that are statistically dif-
ferent from each other by calculating a ratio between the
difference of means and the variability of two classes. This
method has been found to be efficient in a variety of applica-
tion domains, for example in: 1) genotype research[31, 33, 47],
where the problem is one of evaluating differential expres-
sions of genes from two experimental conditions, and 2) the
ranking of features for mass spectrometry[48−50] and mi-
croarray data[47, 51, 52]. The use of t-test is limited to two

class challenges. For multi-class problems, the procedure
requires the computing of a t-statistic value (following the
equations in [32, 33, 47]) for each feature corresponding to
each class by evaluating the difference between the mean of
one class and all the other classes, where the difference is
standardized by within-class standard deviation as

t(xi) =
(ȳ1(xi) − ȳ2(xi))

√

(

s2
1(xi)

n1
+

s2
2(xi)

n2

)

(9)

where t(x) is the t-statistics value for the number of fea-
tures; and ȳ1, ȳ2 are means of classes 1 and 2, while s2

1, s
2
2

are the within-class standard deviations of classes 1 and 2,
n1 and n2 are the numbers of all the samples in classes 1
and 2, respectively.

4.2.3 Entropy ranking

While the NLGA approach selects features purely based
on their contribution to the final result, and the t-test ap-
proach utilizes statistical properties to determine the re-
quired features, entropy based approaches not only take
into account the statistical properties of the features, but
also the compactness and density of the data. Entropy is
a measure of the information conveyed by the probability
distribution function of a particular variable/feature. Us-
ing this entropy, Fayyad[32] suggests a cut-off point selection
procedure by using class entropy of subset. In general, if we
are given a probability, P (·), then the information conveyed
by this distribution, also called the entropy of P , is as

Ent(S) = −

k
∑

i=1

P (Ci, S)log(P (Ci, S)) (10)

Ent(S) = −
k

∑

i=1

Ci

S
log

Ci

S
(11)

where Ent(S) measures the amount of information required
to specify the classes in a set of attributes S, and P (Ci, S)
is the proportion of examples in S consisting of class C in
the i-th feature. The entropy values are sorted in an as-
cending order and consider those features with the lowest
entropy values.

Table 3 shows the features selected using the ANN im-
putation and NLGA feature selection technique. The re-
sult compares the selected features in both outcomes —
mortality (dead/alive) and mortality time frame, and it
indicates that the variables highlighted appeared in both
outcomes. This signifies that both applied techniques are
capable of locating significant variables in the dataset.

4.3 Classifiers

The classifier algorithms employed in this paper are mul-
tilayer perceptron (back-propagation), J48 (decision tree)
and radial-basis function (RBF) network. These classifica-
tion techniques were implemented in Waikaito environment
for knowledge acquisition (WEKA)[53].
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Table 3 The selected features using ANN imputation and NLGA

No.
Outcome

Mortality (dead/alive) Mortality time frame

1 Potassium Sodium

2 Chloride Bicarbonate

3 Urea Urea

4 Creatinine Creatinine

5 Calcium MR-proANP

6 Phosphate CT-proAVP

7 Bilirubin Haemoglobin

8 Alkaline phosphatase White cell count

9 ALT Platelets

10 Total protein Total protein

11 Albumin Bilirubin

12 Triglycerides Alkaline phosphatase

13 Haemoglobin Adj calcium

14 Iron Phosphate

15 Vitamin B12 Cholesterol

16 Ferritin Uric acid

17 TSH CT-proET1

18 MR-proANP Red cell folate

19 CT-proET1 Ferritin

20 CT-proAVP NT-proBNP

4.3.1 Multilayer perceptron (back-propagation)

Multilayer perceptrons (MLP) are feedforward neural
networks, and are used for learning classification or un-
known nonlinear functions[54]. In multilayer perceptron (see
Fig. 4), there is an input layer with a node; each node repre-
sents an independent variable. There may be one or more
intermediate hidden layers, and each node in the output
layer corresponds to a different class of the target vari-
able. In this paper, a feed-forward network consisting of
input units, hidden neurons and one output neuron is opti-
mized to classify the outcome. The number of input units
is the same as the number of input attributes of the se-
lected variables and the number of hidden neurons is half
the number of input attributes. All weights are randomly
initialized to a number close to zero and then updated by
the back-propagation algorithm. The back-propagation al-
gorithm contains two phases: forward phase and backward
phase. In the forward phase, we compute the output val-
ues of each layer unit using the weights on the arcs. In the
backward phase, the weights on the arcs are updated by
a gradient descent method to minimize the squared error
between the network values and the target values.

The architecture of multilayer perceptron showing the
output y, which is a vector with n components determined
on the terms of m components of an input vector; x and l

components of the hidden layer. The mathematical repre-
sentation is expressed as

yi(x) =
l

∑

j=1

[

vijg

(

m
∑

k=1

wijxk + bwj

)

+ bvi

]

,

i = 1, · · · , n (12)

where vij and wij are synaptic weights, xk is the k-th ele-
ment of the input vector, g(·) is an activation function, and

b is the bias which has the effect of increasing or decreas-
ing the net input of the activation function depending on
whether it is positive or negative, respectively.

Fig. 4 A multilayer perceptron structure

In general, MLPs use a supervised training paradigm
for determining the weights and to learn the classification
problem. MLP learns how to transform input data into
a desired response, so they are widely used for pattern
classification[55, 56]. In terms of training itself, there are
other training paradigms available for these networks, here
back-propagation is used for illustration.

4.3.2 J48 (decision tree)

A decision tree partitions the input feature of a dataset
into regions, where each assigned label is a value or an ac-
tion to characterize its data points (Fig. 5). In this paper, a
decision tree C4.5 algorithm is generated for classification.
The algorithm identifies attributes that discriminates vari-
ous instances clearly, when a set of items (training set) are
encountered. This is performed using a standard equation
of information gain. Among the possible values of this fea-
ture, if there is any value with no ambiguity, that is, for
which the data instances falling within its category have
the same value for the target variable, then that branch is
terminated and the obtained target value is assigned to it.

4.3.3 Radial basis function network

Radial basis function network (RBFN) is an artificial
neural network model that uses RBF as an activation func-
tion. Fig. 6 presents the architecture of RBFN. It is com-
posed of three layers: an input layer, a hidden layer and
an output layer. Each hidden unit implements a radial ac-
tivation function (a non-linear transfer function) and each
output unit implements a weighted sum of hidden unit out-
puts.

The output of the i-th neuron in the output layer of the
RBF network is determined as

yi(x) =
M
∑

j=1

wijϕ(||x − cj ||), i = 1, · · · , m (13)

where ϕ(·) is the basis function which is described using
x − cj , cj is the centre vector for hidden neuron j, wij is
the weight between the node j of the hidden layer and the
node i of the output layer, and m is the number of nodes
in the output layer. The norm is typically taken to be the
Euclidean distance and the basis function is taken to be
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Fig. 5 Decision tree for predicting the survival months

Gaussian:

ϕ(||x − cj ||) = e

{

||x−cj ||2

2σ2
j

}

(14)

where ϕ(·) is the width parameter of the j-th hidden unit
in the hidden layer.

Fig. 6 A radial basis function network architecture

4.3.4 Support vector machines and random forests

Support vector machines (SVMs)[57] are supervised
learning models. SVM′s are essentially a non-probabilistic
binary linear classifier and is a model which uses a represen-
tation of the key example points which are mapped so that
separate categories are divided by a gap that is as wide as
possible. New data points are then mapped into the same
space and a prediction is made depending on which side of
the divide they fall.

The learning in an SVM is the construction of a hyper-
plane which is used for classification. An ideal or an opti-
mal hyperplane can be defined as a linear decision function
which provides the maximal margin between the vectors of
the two classes (see Fig. 7). The support vectors define the
margin of largest separation between the two classes. SVMs
are a popular classification tool as they have excellent gen-
eralization properties. However, the training is slow and the
algorithms are numerically complex[58]. This paper uses the
SVM algorithm called sequential minimal optimization or
SMO[58, 59].

Fig. 7 A separable problem in a 2-dimensional space[57]

Random forests, as the name suggests, is a collection of
trees: decision trees, in this case. Algorithms for classifi-
cation using a random forests approach was developed by
Breiman[60]. Here a combination of tree predictors are used,
such that each tree depends on the values of a random vec-
tor sampled independently and with the same distribution
for all trees in the forest. The input class of the random
forest for a given input is the mode of the classes predicted
by individual trees.

4.4 Clustering

Clustering is a popular multivariate statistical technique
embodied in many processes such as data mining, im-
age processing, pattern recognition and classification[61] .
The unsupervised method partitions inherent patterns
into clusters, based on the order of similarity, thus
discovering the structure of a given data. Data points
in the same cluster are classified as similar between
one another while those in different clusters are diss-
imilar. In this paper, we have applied two clustering
algorithms known as k-means and hierarchical clu-
stering.

Two major issues should be considered in practice: 1)
deciding on the number of clusters to use for each
clustering algorithm, and 2) defining the categorical
attributes[61, 62]. In this study, the number of clusters
will be fixed for both algorithms to ensure a fair and
consistent analysis, and different categorical attribute are
present in the dataset, each representing a different clin-
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ical testing. It is important to bear in mind that defin-
ing categorical attributes can be a difficult task in cluster
analysis[63]. For this reason, the following clustering algo-
rithms are implemented to achieve the best possible clus-
tering outcome based on their respective function.

4.4.1 kkk-means clustering

k-means clustering is a partition algorithm that orga-
nizes the number of objects into k partitions (k � n).
Where each partition corresponds to a cluster, k and n

represents the number of objects. The method assumes
that k is fixed[64, 65] and the means in k-means signifies
an aggregation of clusters which is usually referred
as centroids, as depicted in Fig. 8, denoted as “+”.
The centroid based technique ensures objects within
the same cluster are similar, and that dissimilar
objects are assigned to different clusters. However, this
is dependent on the distance between the object
and the cluster mean —a new mean must be calculated
for each cluster. The process is repeated until a
criterion known as the “square-error criterion” is initiated
as[66]

E =

k
∑

i=1,p∈Ci

∑

|p − mi|
2 (15)

where E is the sum of the square error for all objects (n)
present in the datasets, p and mi are multidimensional this
is jointly represented as Ci, p represents a given object and
the point in space, while mi is the mean of clusters. As
a result, the distance between each object to each cluster
centre (centroid) marked as “+” is squared and summed.
The criterion is an essential part of the k-means process
because it compacts and effectively separates the resulting
k clusters simultaneously.

Fig. 8 Four clusters of the dataset are illustrated

Fig. 9 illustrates k number of clusters in this case,
two clusters (A and B). Each object indicated by the
bold black dots is distributed to a cluster based on the
nearest cluster centre. This is further demonstrated
by the dashed circles in A. Based on these objects
in the cluster, the mean and distributions are
recalculated and redistributed based on the nearest cluster
centre and this forms the faded oval shapes shown in
cluster B.

Fig. 9 A schematic clustering of a set of objects based on the

k-means method. The mean or centroid of each cluster are rep-

resented by “+”

The structure is characterized by subsets Sk ⊂ I and
M -dimensional centroids Ck = (ckv), k = 1, · · · , k. Subsets
Sk forms a partition S = {S1, · · · , Sk} with a set of cen-
troids c = {c1, · · · , ck}

[44, 67]. Where the M -dimensional
centroid vectors (Ck) are cluster centroid that updates the
Sk cluster list based on the “minimum distance rule”. The
rule classes entities to their nearest centroids, this is specif-
ically achieved by computing the distances of each entity
i.e., I ∈ I , to all centroids and then assigned to the nearest
centroid.

Sridhar and Sowndarya[68] have shown k-means to pro-
duce reliable clustering results, as it is computationally
easy and memory efficient. There are two types of k-
means explained by Napoleon and Lakshmi[69], namely en-
hanced and bisecting k-means. However, neither are further
discussed in this study. Moreover, studies conducted by
Steinbach et al.[63] found bisecting k-means to be
a better algorithm compared to the standard k-means.
Fig. 10 shows three clusters of two distinctive dead and alive
classes, alive patients which are represented by the triangu-
lated symbol and the dead patients are represented by the
black circles, alive 1 (right) cluster are patients predicted as
alive with a few projected towards the dead groups. While
Fig. 8 illustrates four clusters grouped into two classes of
dead and alive, with dead 1 (left) cluster represented as
dead patients.

Fig. 10 k-means clustering indicating three clusters of the data

4.4.2 Hierarchical clustering

Hierarchical clustering is employed in this study to reveal
similarities between the data attributes. The method par-
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titions the data into a division of clusters and points during
each stage of the process and then the clusters are com-
bined in a different layer and thus building up a hierarchy
of clusters, that resembles a tree diagram. This is presented
through the use of a dendrogram.

Hierarchical clustering is generally classified as either ag-
glomerative or divisive. The agglomerative method also
known as the “bottom up” approach begins with each ob-
servation in their individual cluster and then sequentially
merges into groups of larger clusters[44, 70]. The clusters
are formed according to the minimum Euclidean distance
(also known as a nearest neighbour clustering algorithm)
between two objects from different clusters and their simi-
larity are measured based on the closest pair of data points
belonging to the different clusters. In contrast, the divisive
approach is considered as the “top down” approach—the
reverse of agglomerative hierarchical clustering—which be-
gins with all the observations in one cluster and then divides
into smaller clusters repeatedly until each observation is as-
signed to a cluster (Fig. 11). The clusters are divided based
on the maximum Euclidean distance principle that consid-
ers the closest neighbouring objects in the cluster.

Fig. 11 Agglomerative and divisive hierarchical clustering on

data objects (A, B, C, D, E)

Fig. 12 demonstrates the relationship and similarities be-
tween the variables; and a vertical axis is used to illus-
trate the similarity scale between clusters. As indicated by
the dendrogram, urea and creatinine are the most similar
followed by MR-proANP and CT-proET1. This signifies
a clear relationship between the variables and correlation
values shown in Table 4 which further supports their rela-
tion and similarity. Urea and creatinine are linked to CT-
proAVP, ferritin while uric acid and red cell folate are also
merged together to form one cluster with a similarity scale
of approximately 50.

Table 4 Indicates correlation comparison

Test variables Correlation Similarity levels

Creatinine and Urea 0.8 90.7

MR-proANP and CT-proET1 0.6 79.9

Fig. 12 Dendrogram used in hierarchical clustering to illustrate

similarities

4.5 Performance evaluation measures

Performance measures are efficiency to evaluate the per-
formance of classification. Many classifiers based on the
performance measures are compared. Thus, we carefully
used the measures to evaluate the performance, which are
defined as

“Precision” =
TP

(TP + FP )
(16)

“Recall” =
TP

(TP + FN)
(17)

where TP is the number of true positives, FP is the number
of the false positives, TN is the number of true negatives,
and FN is the number of false negatives, respectively. Pre-
cision is a function of the correct classified examples (true
positives) and the misclassified examples (false positives).
Recall is a function of true positives and false negatives.
Fig. 13 classifies the relationship between precision and re-
call values in the dead and alive categories.

Fig. 13 A relationship between precision and recall values of

classification

5 Experimental results

The experiments aim to assess the performance between
supervised and unsupervised method for mining large clini-
cal datasets by using different feature selection and missing
value imputation methods. The dataset that used in the
experiments is normalised to a range between 0 and 1. In
most numerical procedures, such normalization is carried
out in order to prevent some attributes with large numeric
ranges dominating those with small numeric ranges.

The procedure that used in the experiments follows the
framework proposed in Table 5. In all experiments, the data
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is to be classified into two: mortality (dead or alive) and
survival (6, 12, 18, 24, 36, or more than 36 months) (see
Table 6). The dataset that is used in these experiments
required the data mining process to analyse the data char-
acteristics. The performance of classification (precision and
recall) is used to evaluate the performance after applying
the different methods for imputing the missing values and
for selecting features.

It can be seen that the following combination produced
the better results using the features shown in Table 4: 1)
classification done by the decision tree (Fig. 14). 2) impu-
tation carried out using a neural network and 3) an NLGA
for selecting feature.

It can be seen in Tables 1 and 2 that all the imputation
techniques, even though imputing different values, resulted
in similar classification results (Tables 5 and 6). However,

Table 5 The classification results from different missing value replacement methods and feature selection (FS) techniques by dead
and alive classes

FS CSPA
Missing values imputation method

EM algorithm k-NN imputation Mean imputation ANN imputation

Class Dead Alive Dead Alive Dead Alive Dead Alive

MLP
Precision 81.9 81.8 76.1 82.1 81.6 81.4 77.8 82.8

Recall 58.9 93.4 61.2 90.3 57.8 93.4 62.6 91

DT
Precision 87.7 89.8 95.9 90.3 93.1 92.3 96.2 93.1

Recall 78.8 94.4 79 98.3 84.1 96.8 85.6 98.3

RBFN
Precision 100 96.81 99.7 96.94 100 96.81 100 96.81

t-test
Recall 93.48 100 93.77 99.86 93.48 100 93.48 100

k-Means
Precision 61.54 76.86 63.35 77.27 61.51 77.11 63.08 77.07

Recall 49.86 84.24 50.42 85.24 50.71 83.95 49.86 85.24

SVM
Precision 68.5 73 68.9 72.9 68.7 73 68.7 73

Recall 32.6 92.4 32 92.7 32.3 92.6 32.3 92.6

Random forest
Precision 57.2 78.4 55.4 77.5 47.9 73.1 55.1 76.8

Recall 57.2 78.4 55.5 77.4 45.3 75.1 53.5 77.9

MLP
Precision 72.5 78.6 70.5 78.8 71.1 77.9 71.3 79.3

Recall 51.6 90.1 52.7 88.8 49.6 89.8 54.1 89

DT
Precision 93.2 89.4 86.5 88.5 87.3 91 91.6 91.8

Recall 77.3 97.1 75.9 94 81.6 94 83 96.1

RBFN
Precision 99.7 97.48 100 98.31 99.7 97.76 99.7 97.76

Entropy
Recall 94.9 99.86 96.6 100 95.47 99.86 95.47 99.86

k-Means
Precision 62.59 76.84 65.24 75.43 62.59 76.84 66.38 75.86

Recall 49.29 85.10 43.06 88.40 49.29 85.10 44.19 88.68

SVM
Precision 69.6 72.9 71 73.2 70.4 73 70.8 72.8

Recall 31.7 93 32.6 93.3 31.7 93.3 30.9 93.6

Random forest
Precision 57.9 78.4 57.1 78.3 47.4 72.7 55.4 76.6

Recall 56.9 79.1 56.9 78.4 43.9 75.4 52.4 78.7

MLP
Precision 77.5 80.3 77.2 80.7 74.6 79.9 76.5 77.3

Recall 55.5 91.8 56.7 91.5 55 90.5 46.2 92.8

DT
Precision 93.1 92.6 79.9 88.5 79.2 84.9 98 87.2

Recall 84.7 96.8 76.8 90.3 68 91 71.1 99.3

RBFN
Precision 100 97.08 100 97.08 100 97.76 99.7 97.35

NLGA
Recall 94.05 100 94.05 100 95.47 100 94.62 99.86

k-Means
Precision 47.80 74.70 58.33 76.86 58.52 76.89 54.90 77.38

Recall 52.41 71.06 51.56 81.38 51.56 81.52 55.52 76.93

SVM
Precision 73.2 71.7 71 72.9 68.8 71.9 68 72

Recall 25.5 95.3 31.2 93.6 27.5 93.7 28.3 93.3

Random forest
Precision 55.2 76.2 53.5 76.5 54.8 78.1 57.3 77.6

Recall 51.3 78.9 53.5 76.5 58.1 75.8 54.7 79.4
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Table 6 The classification results from different type of missing value imputation methods and feature selection techniques on
mortality time frame outcome

Missing values imputation method

EM algorithm k-NN imputation

Class (months) 6 12 18 24 36 >36 6 12 18 24 36 >36

MLP Precision 76.5 61.9 83.3 42.6 34.6 49.6 73.6 59.7 55.6 44.2 70 49.1

Recall 43.8 34.7 1.85 32.8 42.4 86.2 59.6 53.3 18.5 31.1 21.2 89.5

DT Precision 87.2 84 85.1 90.6 77.6 91.6 88.4 86.3 86.7 79.7 79.7 92.2

t-test
Recall 84.3 90.7 74.1 78.7 89.4 92.8 85.4 92 72.2 83.6 83.3 92.8

RBFN Precision 50.7 37.3 52.2 35.3 29.4 40.1 41.6 36 48.5 28 31.7 46

Recall 42.7 25.3 22.2 9.8 7.6 82.9 41.6 12 29.6 23 30.3 71.7

KM Precision 35.1 21.9 18.6 12.5 14.3 52.8 39.0 16.9 19.5 0 17.6 48.5

Recall 38.5 36.8 44.4 28.6 2.1 47.8 30.8 34.2 41.7 0 6.4 47.8

MLP Precision 53.9 29.8 40.8 75 36 48.6 59.3 39.8 48.3 90 39 50.2

Recall 46.1 37.3 37 9.8 13.6 78.3 53.9 44 25.9 14.8 34.8 77.6

Feature selection & DT Precision 88.6 85.2 86.4 82.5 86.2 87.7 87.9 87.2 84.9 82 79.7 93.1

Classifier
Entropy

Recall 87.6 92 70.4 77 84.8 93.4 89.9 90.7 83.3 82 83.3 88.8

RBFN Precision 42.4 35.3 28.1 45.5 25 39.7 60.4 42.1 37 40 14.3 35.8

Recall 28.1 16 29.6 8.2 6.1 83.6 32.6 10.7 18.5 6.6 1.5 90.8

KM Precision 36.5 21.6 0 13.8 16.1 93.4 33.3 19.6 11.8 16.7 17.5 54.8

Recall 36.5 21.6 0 34.1 18.2 84.1 15.4 23.7 5.6 29.5 23.9 50

MLP Precision 71 42.2 51.7 50 30.9 57.4 55.3 49 52.6 100 33.9 46.3

Recall 49.4 61.3 27.8 16.4 31.8 78.9 47.2 32 18.5 16.4 31.8 85.5

DT Precision 92.8 88 87.3 89.1 88.9 88 86.9 88.4 89.6 82.5 74 86.4

NLGA
Recall 86.5 88 88.9 80.3 84.8 96.1 82 81.3 79.6 77 86.4 92.1

RBFN Precision 57.6 27.3 40 31.3 45 49.1 53.6 38.3 47.4 33.3 29.7 41.6

Recall 42.7 40 25.9 16.4 13.6 75.7 41.6 24 16.7 8.2 16.7 84.9

KM Precision 32.8 16.9 0 17.4 15.6 40.2 38.3 14.3 16.7 27.3 16.0 49.0

Recall 38.5 28.9 0 9.1 29.8 31.6 34.6 2.6 25 6.8 27.7 55.1

Missing values imputation method

Mean imputation ANN imputation

Class (months) 6 12 18 24 36 >36 6 12 18 24 36 >36

MLP Precision 57.3 41.9 55.6 55.6 29.1 59.3 82.6 60 62.5 54.2 40.7 54

Recall 57.3 41.3 27.8 24.6 37.9 75.7 64 48 27.8 21.3 50 84.9

DT Precision 86.2 86.3 89.8 85.7 87.1 88.3 91.9 84.8 88.1 87.7 84.5 89.5

t-test
Recall 91 84 81.5 78.7 81.8 94.7 88.8 89.3 68.5 82 90.9 95.4

RBFN Precision 40.2 36.4 38.9 35 38.5 38.4 50 26.7 22.2 42.1 21.1 43.5

Recall 37.1 16 13 11.5 7.6 83.6 38.2 16 22.2 13.1 6.1 83.6

KM Precision 34.5 22.6 18.4 12.5 14.3 51.2 35.6 19.4 19.0 12.5 14.3 52.5

Recall 38.5 36.8 44.4 4.5 2.1 46.3 40.4 34.2 44.4 4.5 2.1 46.3

MLP Precision 63.5 43.6 37.5 100 34.5 46.5 82 58.2 77.8 82.4 37.9 46.5

Recall 52.8 22.7 27.8 8.2 28.8 86.8 56.2 42.7 25.9 23 33.3 88

Feature selection & DT Precision 87.6 76.5 87.5 77.8 84.6 89.7 86.9 87.5 91.1 91.1 80.6 82.7

Classifier
Entropy

Recall 87.6 86.7 64.8 80.3 83.3 91.4 82 84 75.9 83.6 81.8 94.1

RBFN Precision 50.8 42.3 38.5 44.4 30.8 36 45.2 33.3 20 42.9 50 40

Recall 33.7 14.7 18.5 6.6 6.1 86.2 37.1 33.3 3.7 4.9 1.5 86.8

KM Precision 28.3 18.2 10 20.5 8 55.5 31.6 20 15.2 13.2 14.3 52.8

Recall 25 31.6 5.6 34 4.3 48.5 11.5 31.6 33.3 20.5 6.4 41.2

MLP Precision 85.7 52.9 53.8 45 47.2 47.5 52.7 83.8 42.9 67.9 37.8 53.8

Recall 47.2 36 25.9 29.5 37.9 86.8 66.3 41.3 22.2 31.1 47 74.3

DT Precision 86.7 84 86.3 87 87 92.8 96 87.3 90.9 79.7 85.3 84

NLGA
Recall 87.6 90.7 81.5 77 90.9 92.8 80.9 82.7 74.1 83.6 87.9 96.7

RBFN Precision 53.1 27.9 38.5 23.3 50 48.5 45.3 38.6 44.1 23.1 33.3 42.8

Recall 29.2 45.3 27.8 11.5 18.2 74.3 38.2 22.7 27.8 9.8 10.6 83.6

KM Precision 31.9 11.1 13.5 11.8 16.9 50 27.6 19.1 0 18.7 21.9 53.2

Recall 28.8 5.3 27.8 4.5 29.8 41.9 15.4 34.2 0 38.6 29.8 36.8
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Fig. 14 The classification results from different missing value imputation methods and different feature selection (FS) techniques on

6 months class

the robust methods, for example EM algorithm, showed
better results than others. The reason for this is that the
EM algorithm determines maximum likelihood estimates.
Tables 1 and 2 show that the statistics (mean and stan-
dard deviation) of variables and data distribution before
and after applying imputation techniques. The means and
standard deviations (Table 1) for EM algorithm are similar
to original data. The similarity indicates, that this method
provides greater flexibility in the shape of the distribution
while maintaining about the same means and standard de-
viations (Table 2).

Tables 5 and 6 show the differences in the performances
between the wrapper and filter approaches to feature se-
lection. It can be seen that NLGA approach provided fea-
tures which classified the data better than t-test and en-
tropy (Tables 5 and 6). NLGA uses the efficiency of neural
network to search for features which satisfies an error cri-
terion. However, in general, wrapper approaches are more
computationally intensive than the filter approaches (t-test
and entropy). It can be seen from Fig. 14 that for the criti-
cal class of 6 month decision trees provide higher precision
value than other classifiers.

Amongst the various approaches for classification,
RBFN′s and decision tree′s (DT) had a slightly better per-
formance than that of the other classifiers (Tables 5 and
6 and Fig. 14). The basic functions can be advantageous
when the data has a multimodal distribution. It is typically
trained using a maximum likelihood framework by maximiz-
ing the probability (minimizing the error), and hence the
model performs a better approximation, and noisy interpo-
lation.

Decision tree is a form of non-parametric multiple vari-
able analysis. This method requires no information on the
distribution of data. Decision trees are produced by algo-
rithms that identify various ways of splitting a data set into
branch-like segments and can generate rules that are easy
to understand. Thus often clinical support systems are de-
veloped on the basis of these decision trees[71]. Internally,
decision trees used information gain and entropy to select
appropriate attributes at each node in order to create the

branches.

6 Discussion

It is important to note that the issue of missing values
in datasets is a major issue as it affects dimensionality re-
duction and classification[72] . This paper demonstrates four
missing values imputation methods: 1) mean imputation,
2) EM algorithm imputation, 3) k-NN imputation and 4)
ANN imputation. The primary reason carrying out impu-
tation is to retain the size of the data rather than reduce
it by eliminating record from the datasets. Tables 1 shows
the statistical properties are mean and standard deviation,
and Table 2 shows the data distribution before and after
data imputation. The mean imputation techniques used
the population mean of the data variable to replace the
missing values, while k-NN calculates the population mean
of k-nearest variables. Therefore, both methods produced
similar results. The EM algorithm estimates values by us-
ing maximum likelihood technique. The EM algorithm re-
sults shown in Tables 1 and 2 fall in different distribution
to the original distribution while this method can main-
tain the means and standard deviations. ANN imputation
shows an increase in the number of data under the distribu-
tion curve. In addition, imputation techniques have shown
that they are able to maintain the size of the datasets and
also applicable for many data types including categorical
and numerical data. It is important to note that imputing
missing data with an inappropriate algorithm or technique
can lead to biased, invalid or insignificant results. Hence it
is vital to select an appropriate method specific for a partic-
ular dataset. A rule of thumb could be adopted to visualize
the initial distribution of the data if the data is skewed or
the data contains high percentages of missing values, then
the single imputation method may not be appropriate.

Tables 5 and 6 show the results for various combinations
of the imputation methods, feature selection methods and
classification methods. It is important to note that the
EM algorithm uses the Kullback-Leibler distance (KL)[48],
which is also known as relative entropy. Relative entropy
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defines a distance between two probability distributions,
and thus imputes missing values. This process is similar
to entropy ranking for feature selection. Results shown in
Table 5 indicate that for only two classes, the precision
and recall values are similar. However, unbalanced classes,
i.e., the distributions of the two classes are not even, pose
a challenge in terms of classification accuracy. This is a
major issue with most clinical datasets where the observa-
tions are based on people with a particular ailment, and
a good clinical system is always one where the number of
alive patients far out weights the patients who succumb to
the ailment. Table 6 shows the results when class of alive
patients in further split into 6 classes of mortality months.
Comparing the results from the two tables, it can be seen
that, non-parametric classifier such as decision tree shows
the most significant (precision and recall) results compared
to parametric classifiers such as RBFN, MLP and k-means.
The key point to note here is that the parametric methods
are more suitable for data which is normally distributed.
Further, considering one class (6 months) in Fig. 14, the
decision tree classifier shows better performance on differ-
ent feature selection methods and different imputations.

On further analysis of the results, it can be seen that the
variables selected using the t-test reduction method, such
as triglycerides, potassium, urea/uric acid, creatinine, NT-
proBNP and sodium have strong associations with mortal-
ity of heart failure[73, 74]. Thus a conclusion can be drawn
that this method provides the most suitable set of features.
However, the results also indicate that all feature selection
algorithms perform equally well; classification accuracy is
improved in similar magnitudes. However, the clinical im-
portance of the variables selected would result in a particu-
lar method being used. Yu and Liu[46] argue that in theory,
more features should provide more power, argue that in the-
ory, more features should provide more power, however, in
practice an appropriate subset of features perform well as
more features[45].

Feature selection depends on the nature of the distribu-
tion of data. The pre-processing step provides information
on the data and a better understand of the nature of dis-
tribution of the data. This information allows for appropri-
ate feature selection technique to be selected. The cluster-
ing algorithms employed in this study have shown that the
dataset is structured in an unsupervised manner in order to
simplify the process of information retrieval. This finding
correlates with works by Bean and Kambhampati[62], where
the authors exploited this notion by presenting knowledge
extracted from real data in the form of a decision rule set
with minimal ambiguity to support and aid in decision mak-
ing. This was accomplished by employing clustering analy-
sis and rough set theory, also explored the conceptual dif-
ferences and similarities as well as the link between the two
techniques[67].

It is well know that k-means[62] algorithm for clustering
and classification has some issues, particularly as the results
are dependent on the initial conditions. However, there are
methods for selecting the correct initial conditions. In this
paper, the method developed by Mirkin[67] has been em-
ployed. In this method, the number of clusters, k and num-
ber of centroids, c1, c2, · · · ck are specified initially. Without
this initialization, clustering can often produce misleading

results as a result of inappropriate final centres and clusters.
Mashor[75] suggests that k-means plays an important role
in enhancing the performance of RBF, the algorithm deter-
mines the centres of the RBF. The location of the centres
influences the performance of RBF networks. Obtaining
accurate centres is important for RBF networks, for the ac-
tivation function is dependent on the distance between the
data and centres.

Hierarchical clustering suffers from a disadvantage that
the quality of the dendrogram can be poor, for example
once a merge (agglomerative) or split (divisive) decision
has been completed, it is unfeasible to adjust or correct
it. Agglomerative is known to perform remarkably slowly
for large datasets due to the complexity of O(n3) where n

is the number of objects[76].

7 Conclusions and future work

The methods illustrated in this paper have been applied
to a heart failure dataset, and can be applied to various
clinical datasets as these datasets present with similar is-
sues. This paper has addressed some of the many challenges
presented by clinical datasets. It has also showed how these
can be handled using the current methods from statistics
and data mining. The first challenge faced is that of missing
values (Tables 1 and 2). There are several methods for han-
dling this challenge. Often a preliminary exercise is to[37, 77]

discard the variables with a large percentage of missing val-
ues, followed by imputing missing values (Tables 5 and 6).
An alternative is to ignore missingness by analysing the in-
complete data. Imputation techniques are essential if the
original size of the dataset is to be retained, and if some use-
ful information is to be extracted. In this paper, techniques
for imputing missing values were outlined, these methods
produce appropriate values for the missing data.

Table 1 shows the means and standard deviations from
different types of imputation methods, these mean values
are close to the expected mean value and are in confirma-
tion with the law of large numbers[78]. When the sample
size is small, imputation can have a dramatic effect than
when the sample size is large.

In the framework (Fig. 1) provided in the paper, indeed in
any data mining framework, after the initial pre-processing
of the data, reduction of dimensions is almost a necessity.
This paper outlined methods for reduction of dimensions.
There are a wide variety of methods, which are broadly
classified as feature extraction or feature selection. In most
clinical applications, feature selection is more appropriate
as it retains the variable labels and hence the final model is
more meaningful. Features are selected based on a criterion,
and often these are based around how effective the features
are in performing the task of classification and prediction.
In this paper, classification accuracy was selected as the
criteria to assess the effectiveness of the feature selection
methods. The classifier used were: Multilayer perceptron
(back-propagation), J48 (decision tree), RBFN (neural net-
work), SVM and random forest. From the results (Tables
5 and 6) it can be seen that both missing value imputa-
tion and feature selection do affect the result. However,
the fundamental factor here is to understand the nature of
the dataset in order to choose a suitable technique. An-
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other issue that should be noted is the difference between
supervised and unsupervised methods in mining of clinical
datasets. These datasets have embedded within them nu-
merous complexities and uncertainties in the form of class
imbalances, missing values (which could be systematic).
Supervised techniques show better results in the form of
confusion matrix (precision and recall) than unsupervised
techniques such as clustering (see Tables 5 and 6).

This paper has presented a framework for mining of clin-
ical datasets. Currently research is being focused on ways
to handle class imbalances within clinical datasets. Often
in a clinical setting, the success of the clinic is judged on
the number of patients who have recovered from illness and
not the number that have succumbed to it. Thus real clin-
ical datasets have a large imbalance, in that the class of
live patients would far outweigh the number in the dead
class. This imbalance affects imputation, feature selection
and classification. Some preliminary results have been ob-
tained and can be seen in [39, 40, 79].
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