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Abstract 
Physical activity is regulated by a variety of genetic molecules.  However, the pathways through which those 

molecules work to regulate activity is largely unknown.  The purpose of this study was to gather the known 

genetic molecules that are associated with activity regulation and define overall upstream regulator pathways 

through which these molecules work. We conducted a systematic review to gather all available published 

datasets related to physical activity regulation, standardized the data for genomic location and species, and 

used this data, in an unbiased manner to create a dataset that was used: (1) to physically map and visualize all 

identified molecules to homologous chromosome locations and (2) as the dataset for which an Upstream 

Regulator Analysis (URA) was conducted using Qiagen Ingenuity Pathway Analysis (IPA) software. Our search 

resulted in 469 genetic molecules (e.g. genomic variant, transcript, protein, micro-RNA) that were split into 

brain (n=366) and muscle (n=345) sub-groups, which was our attempt to separate differences in central vs 

peripheral pathways.  The brain and muscle data sets had several potential upstream regulators, the top-rated 

being β-estradiol as a regulator for 19.5% and 21% of the brain and muscle datasets respectively.  To our 

knowledge, β-estradiol’s identification as a potential regulator, is the first evidence to link the well-known 

effects of sex hormones on physical activity with genetic regulation of physical activity. There were a variety of 

potential upstream regulators for the molecules collected in this review, but interestingly, three of the top five 

for both brain and muscle are nuclear receptor binding ligands; estradiol (estrogen receptor), dexamethasone 

(glucocorticoid receptor), and tretinoin (retinoic acid receptor), indicating a potential role of nuclear receptors in 

the regulation of physical activity. Selective nuclear receptor modulation may be an area of interest in future 

mechanistic studies of the genetic regulation of physical activity. 
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Introduction 

Physical activity has been broadly defined “as purposeful exercise or movement that expends a 

significant amount of energy”1, and more specifically defined as any bodily movement produced by the 

contraction of the skeletal muscles resulting in an increase in caloric requirements over resting energy 

expenditure2.  Several published papers have established that daily physical activity levels have a significant 

genetic control element3, with observed heritability of physical activity control ranging from 20-92%4,5 

depending upon the model, analysis method, and duration of data collection.  Common environmental factors 

appear to play a small, if negligible role in controlling daily activity, while unique environmental factors play 

roles similar in magnitude to genetic factors3 (e.g. factors such as diet and the presence of environmental 

toxicants). 

Overall, there are a wide-variety of genetically controlled physiological mechanisms that can influence 

physical activity - including various neurotransmitters1,6–8, muscle energy sources9, muscle calcium handling 

mechanisms10, and/or substrate availability11,12. It has been hypothesized13 and generally accepted3 that the 

genetic molecules that regulate physical activity function at the central level (i.e., brain/neural) and/or at the 

peripheral level (i.e., skeletal muscle).  Data supports gene interference, gene silencing, and/or overexpression 

at either the central and peripheral levels can significantly influence daily activity10,14–16.  While sex hormones 

have long been shown to influence daily activity17–21, it is unclear whether the actions of the sex hormones on 

physical activity are mediated through genetic mechanisms (e.g., genetic variation in hormone release/receptor 

activity) or through direct biological mechanisms (e.g., inhibition of a pathway). The literature establishing that 

genetics are a significant regulator of daily physical activity is extensive; however, a critical gap remains 

surrounding the integration of these molecules into multi-omics datasets and the identification of common 

upstream pathways controlling the regulation of daily physical activity.   

The development of multi-omics datasets is most often accomplished through ‘omics’ data within the 

same model22 (e.g., genomic variation, proteomics, transcript expression variation).  In the area of “genetic 

regulation of physical activity”, the challenge faced is the lack of ‘omics’ datasets in the same set of samples. 

Only one group to our knowledge has produced multiple omics datasets in the same model10,15,23–25.  Thus, 

developing an ‘omics’ dataset of physical activity regulation requires the combining of datasets from various 

investigators, species, and models.  Understanding the systems genetics network(s) involved in physical 
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activity regulation will help the future synthesis and translation of a general mechanistic understanding of the 

upstream regulators that control physical activity. Given that the last summary of the known genomic variants 

associated with physical activity level was published in 201226, and that further data regarding transcriptomic, 

proteomic, and other molecular variants associated with physical activity have been published since then; the 

purpose of this project was to (i) present an updated summary of the currently known manuscripts and 

molecules associated with, and mechanistically linked with daily physical activity regulation; (ii) provide a novel 

visualization of genomic-linked regulators based on chromosome location (mouse and human) and (iii) to 

identify potential common- upstream regulators of the identified molecules associated with physical activity.  

Methods 

Overview:  We conducted a comprehensive systematic review to gather all available published datasets 

related to physical activity regulation, standardized the data for genomic location and species, and used this 

data to create a dataset that was used: (1) to physically map and visualize all identified molecules to 

chromosome locations and (2) as the dataset for which an Upstream Regulator Analysis (URA) was conducted 

using Qiagen Ingenuity Pathway Analysis (IPA) software (Qiagen Inc., https://digitalinsights. 

qiagen.com/IPA, Germantown, MD, USA).  

Literature Search:  To create our omics dataset, the PubMed/MEDLINE database27 was utilized to 

identify manuscripts containing “omic” data (e.g. QTLs, eQTL, miRNA, proteomics) related to physical activity 

regulation in humans and mice. To build up the literature search in PubMed, we used the following MeSH-

terms: Mice, Humans, Motor Activity / genetics, proteome, gene expression profiling, microRNAs, quantitative 

trait loci, and exercise. Using the same criteria, several additional databases were searched through the 

University-Library services to locate additional manuscripts (e.g. ERIC, ScienceDirect, Web of Science, Google 

Scholar). Author expertise and knowledge was also utilized to verify and confirm included manuscripts. Initial 

searches were completed on April 1, 2020 and subsequent verification of these searches was completed on 

October 12, 2020, returning a total of 251 potentially qualifying manuscripts. Two authors independently 

applied eligibility criteria, assessed the quality of the study, and extracted and coded data. We contacted study 

authors for more information where necessary. Studies were selected based on the following inclusion criteria: 

(1) original research papers with prospective or retrospective design, (2) physical activity was the primary 

dependent variable [e.g. wheel running, spontaneous cage activity, locomotion activity, accelerometry data, 
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self-reported physical activity], (3) contained some variant of ‘omics’ data (e.g., genomic variation, proteomics, 

transcript expression variation) as an independent variable that were found to have either been associated with 

or causative of (i.e., directly affect) physical activity. Manuscripts showing up in multiple searches were 

counted only once, and review or summary papers were not retained. Studies were excluded when 

exercise/physical activity was the independent variable (e.g. study was not intended to identify genetic 

response to exercise). In total, 46 manuscripts qualified for data extraction (Table 1). 

Data Extraction and Standardization Methods: From qualifying studies, 464 molecules were identified 

(Supplemental Table 1), and subdivided into muscle (n=344) and brain (n=361) subsets. Subset assignment 

was based on whether or not the tissue type was identified in the original manuscript. The majority of genomic 

variant related manuscripts did not indicate which tissue/sample was utilized for extraction; when this occurred, 

the molecule(s) were assigned to both datasets (e.g. brain/muscle; Supplemental Table 1). However, when the 

tissue type was indicated (e.g. soleus muscle vs striatum), the molecules were assigned to either the muscle or 

brain set. Our intention was to separate differences in central vs peripheral networks, but in reality, the two 

networks had a large amount of overlapping data points due to lack of disclosure of tissue extraction type for 

genomic variants.  

Integration of omics data from the 46 articles required standardization of genomic location and cross-

species comparisons. Genomic locations associated with physical activity from earlier papers [where 

microsatellites were used as genomic markers] were converted from ‘centimorgans’ to ‘base pairs’ utilizing a 

publicly available converter that was recently decommissioned (http://cgd.jax.org/mousemapconverter/).  

Genomic locations of the identified variants were updated to the build of the specific species current at the time 

of data collection for this systematic review (for human GRCh38.13, ref.28, for mice: GRCm39, ref.29). Cross-

species comparisons of genetic molecules require translation into a common species to allow these analyses.  

Given that many of the genetic molecules associated with physical activity (miRNA, transcripts, proteome, and 

genomic variants) have been identified in mouse models, genomic locations for the molecules in humans (all 

genomic variants) were converted to the homologous genome location within the mouse chromosome.  

Ensembl (https:// ensembl.org) was used to convert the human genetic molecules to the mouse homologs30. 

Following extraction and standardization, and when possible, the molecules were:  (1) mapped to their 

chromosome location using the online program MG2C31 (mg2c.iask.in) with the molecules only found in 
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humans (i.e., not homologous) mapped to the human chromosome and (2) uploaded and linked to molecules 

in the IPA database for Upstream Regulator Analysis (URA) (Supplemental Table 3,4).  Kramer et. al (2014) 

describes the algorithms, tools, and visualizations in IPA utilized for the URA analysis32. Briefly, URA 

determines likely upstream regulators that are connected to dataset genes through a set of direct or indirect 

relationships32.  Our dataset did not include expression-fold change, expression ratios, or expression log ratios.  

Consequently, the URA is unable to predict activation status (activated or inhibited) but may be a useful tool to 

investigate mechanistic targets in future studies.  In the results, the p-value of overlap indicated the most 

significant upstream regulators that influence target molecules from the dataset. 

Results 

The resulting papers from our systematic literature review (Table 1) netted a total of 469 genetic 

molecules (Supplemental table 1) that have either been associated with or causative of (i.e., directly affect) 

physical activity. Genomic variants made up the majority of molecules (n=225, 48%) while other types of 

genetic molecules were less prominent in the literature (proteomic, n=61, 13%; transcript, n=139, 30%; and 

miRNA, n=44, 9%). 

First Author / Year Type of genetic 
molecule reported 

Citation in 
Bibliography 

 First Author / Year Type of genetic 
molecule reported 

Citation in 
Bibliography 

Bruneau 2018 Genomic variant 33 Keeney 2012 Proteomic 34 
Caetano-Anolles, 

K, et al. 2016 Transcriptomic 35 Klimentidis 2018 Genomic variant 36 

Cai 2006 Genomic variant 37 Knab 2009 Proteomic 1 
Comuzzie 2012 Genomic variant 38 Kostrzewa 2014 Genomic variant 39 

Dawes 2014 Transcriptomic 23 Kumar 2010 Transcriptomic 40 
Dawes 2015 miRNA 24 Leamy 2008 Genomic variant 41 

De Moor 2007 Genomic variant 42 Leamy 2010 Genomic variant 43 
De Moor 2009 Genomic variant 44 Leamy 2011 Genomic variant 45 
Doherty 2018 Genomic variant 46 Lightfoot 2008 Genomic variant 25 

Dubreucq, 2012 Proteomic 16 Lightfoot 2010 Genomic variant 47 
Eisener-Dorman 

2010 Transcriptomic 48 Lin 2018 Genomic variant 49 

Ferguson 2014 Proteomic 10 Maestu 2013 Genomic variant 50 
Ferguson 2015 Proteomic 15 Nehrenberg 2010 Genomic variant 51 

Furuse 2002 Transcriptomic 52 Pistilli 2011 
Proteomic / 

Transcriptomic / 
Genomic Variant 

53 

Gielen 2014 Genomic variant 54 Saul 2017 Transcriptomic 55 

Hartmann 2008 Transcriptomic / 
miRNA 

56 Simonen 2003 Genomic variant 57 

Hillis 2020 Genomic variant 58 Steffan 2002 Genomic variant 59 
Jean 2012 Proteomic 60 Tsao 2001 Proteomic 9 

Kas 2009 Transcriptomic / 
Genomic Variant 

61 Umemori 2009 Transcriptomic 62 

Kelly 2010 Genomic variant 63 Wilkinson 2013 Genomic variant 64 
Kelly 2012 Transcriptomic 13 Williams 2014 Transcriptomic 65 
Kelly 2014 Transcriptomic 66 Yang 2009 Transcriptomic 67 

Keeney 2008 Proteomic 68 Yang 2012 Genomic variant 69 

Table 1. Citations reporting genetic molecules associated with/causative of physical activity. 
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Location Mapping: Of these molecules, 385 were mappable to the mouse chromosome map (Fig. 1) and an 

additional 74 were mappable only to the human chromosome map (Fig. 2).  Ten of the molecules previously 

found (3 transcripts and 7 genomic variants) were unmappable due to outdated markers and locations that 

could not be standardized.  Of the 116 human genomic variants associated with physical activity 

(Supplemental Table 1), only 40 had homologs on the mouse genome (indicated in red on Figs. 1 and 2) and 

two were not mappable due to outdated location markers that could not be standardized.  

 
Figure 1. Chromosome Map for Omics Data Associated With/Causal for Physical Activity.  
Color indicates the type of “omic” data; with green- genomic, blue – transcriptomic, purple – proteomic, yellow 
– miRNA, red – homologous human genomic variant. 

 
Figure 2. Map of Genetic Molecules Associated with Physical Activity - Human Genome 
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Potential Upstream Regulators 

 As detailed in the methods, subsets of data were created for brain and muscle. Not all the molecules 

from our brain or muscle datasets corresponded to molecules in the IPA database. Of the 366 molecules in the 

brain and 345 molecules in the muscle dataset, 226 (61.75%) and 195 molecules (56.52%) corresponded to 

molecules in the IPA database for brain and muscle respectively (Supplemental Table 2). The upstream 

regulator analysis (Table 2; Suppl Tables 3 and 4) revealed that β-estradiol was the highest predicted regulator 

for both data sets, with 44 molecules in the brain dataset affected (p=0.000000048) and 41 molecules in the 

muscle dataset (p=0.00000000179). This finding indicates that 19.5% of the brain data and 21% of the muscle 

data are potentially regulated upstream by β-estradiol.  The other predicted regulators in the top five for both 

sets (Table 2) were also similar (e.g. TP53 ranked 5th in brain and 2nd in muscle), varying primarily in the 

number of molecules affected.   Also unique to these data were the potential for exogenous chemical drugs – 

lipopolysaccharide (2nd brain, 30 molecules / 3rd muscle, 32 molecules) and dexamethasone (3rd brain, 27 

molecules / 5th muscle, 27 molecules) - as potential regulators of physical activity. The amount of overlap 

between the two datasets (muscle vs brain subsets) was not surprising due to the overlap of data points 

discussed previously in the methods.  

 

Table 2. Top 5 Upstream Regulators for Brain and Muscle Subsets 

 
Brain  

Upstream  
Regulator 

 

 
Molecule Type 

 
p-value of 

overlap 

 
#  

molecules 
affected 

 
IPA Target Molecules in Dataset 

beta-estradiol chemical - endogenous 
mammalian 

4.8E-08 44 ACE, ADORA2A, AFF4, AHR, AKAP10, ANXA2, APBA1, 
APOE, BAZ1A, CHRM1, CHRM3, CKB, CNR1, CUBN, 
CYP24A1, CYP4F8, DNAJC1, DRD1, DRD2, EGR3, 
ENO1, FAM107A, FOXG1, GABRG3, GPR88, GSTM1, 
HSPA9, HTR4, ICAM5, IL15, IQGAP2, NPW, NTS, 
PAPSS2, PPARGC1A, PRKCB, SLC38A2, SNAP25, SST, 
TH, THRA, TLN2, TPH2, VDR 

lipopolysaccharide chemical drug 0.00349 30 ACE,ADORA2A,AHR,ANXA2,APOE,CASR,CUBN,DDN,E
GR3,ENO1, FOXG1, GPR3, GPR34, IFNAR2, IL15, 
LGALS1, NTS, PAPSS2, PLA2G7, PML, PPARD, 
PPARGC1A, PRKCB, RORA, RXRG, SLC38A2, SLCO2A1, 
TH, THRA, VDR 

dexamethasone chemical drug 0.0086 27 ACE,APOE,CRHBP,CYP24A1,DACH1,EGR3,ENO1,FAM
107A,FOXG1,GPR34, GSTM1, HSPA9, IFNAR2, IL15, 
LGALS1, MAP2, MSTN, NTS, PPARD, PPARGC1A, 
PRKCB, RORA, SLCO2A1, SST, THRA, UGT1A6, VDR 

tretinoin chemical - endogenous 
mammalian 

0.000839 25 AHR,ANXA2,APOE,CNR1,CNTNAP2,CUBN,DRD2,IL15,
LGALS1,MAP2, NRGN, PA2G7, PML, PPARD, 
PPARGC1A, PRKCB, RAI14, RXRG, SLC38A2, SCLO2A1, 
SP7,SST,TH,THRA,VDR 
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TP53 transcription regulator 0.00488 25 ACE,ANXA2,APOE,CALU,CDH10,CKB,CYP24A1,DLX1,D
NAJB4,EGR3, ENSA, GDA, GSTM1, KCNG1, KCNJ4, 
PHLDA3, PML, PPARD, PPARGC1A, PRKCB, PTPRV, 
SP7, SUCLG1, THRA, VDR 

 
Muscle  

Upstream  
Regulator 

 

 
Molecule Type 

 
p-value of 

overlap 

 
#  

molecules 
affected 

 
IPA Molecules in Dataset 

beta-estradiol chemical - endogenous 
mammalian 

1.79E-09 41 AARS1,ACADVL,ACE,AFF4,AHR,AKAP10,ANXA4,APBA
1,APOA1,APOE, ATP5F1B, CA14, CHRM3, CNR1, 
CUBN, BYP24A1, DNAJC1, ENEO1, GABRG3, IFI30, 
ILF3, IQGAP2, LUM, MYH10, OGDH, PAPSS2, PMM2, 
PPARGC1A, PRKCB, RDX, SERPINA1, SERPINA3, SLCA4, 
SNAP25, SPARC, TF, TP53, TPH2, TXRD1, VCL, VIM 

TP53 transcription regulator 1E-08 34 ACADVL,ACE,ALDH1A1,ANXA4,ANXA6,APOA1,APOE,
CALU,CYP24A1,DNAJB4, FKBP4, IFI30, MYH10, MYL3, 
NDUFS3, OGDH, PCK1, PDHB, PDHX, PDP1, PFKFB1, 
PML, PPARD, PPARGC1A, PRDX6, PRKCB, SDHA, 
SERPINA3, SLCA4, SP7, TP53, TUBB3, VCL, VIM 

lipopolysaccharide chemical drug 1.45E-05 32 AARS1,ACE,AHR,ALDH1A1,ANXA5,APOA1,APOE,CAS
R,CCT6A,CUBN, ENO1,EPHX2, IFI30, IFNAR2, IL15RA, 
MT1, MTMR14, MYL3, PAPSS2, PML, PPARD, 
PPARGC1A, PRKCB, SDHA, SERPINA1, SERPINA3, 
SPARC, TF, TP53, VCL, VIM, YWHAQ 

tretinoin chemical - endogenous 
mammalian 

3.16E-06 27 AHR,ALDH1A1,ANXA5,ANXA6,APOE,CNR1,CNTNAP2,
CUBN,HPX,ILF3, MAP2, MT1, PCK1,PML, PPARD, 
PPARGC1A, PRKCB, RAI14, SERPINA1, SLC2A4, SP7, 
SPARC, TF, TP53, TUBB3, VCL, VIM 

dexamethasone chemical drug 0.000388 27 ACE,ALDH1A1,APOA1,APOE,CYP24A1,ENO1,FKBP4,IF
NAR2,ILF3,MAP2, MSTN, MT1, PCK1, PMM2, PPARD, 
PPARGC1A, PRDX6, PRKCB, SDHA, SERPINA1, 
SERPINA3, SLC2A4, SPARC, TF, TP53, VCL, VIM 

 

Discussion 

The greatest number of genetic molecules in the mouse genome reside on Chrms 2, 1, 16, 9, 11, and 

13 (n= 61, 36, 36, 34, 33, and 22, respectively, Fig. 1).  When standardized for length of chromosome, Chrms. 

8, 15, 7, 18, and Y (n=20, 15, 20, 1, 1, respectively), have the highest density of genetic molecules (Fig. 1).  

However, given the multi-chromosomal interaction of some of the molecules (e.g., miRNA) as well as the 

unmapped epistatic molecules41, it is unclear whether chromosomal density of these molecules is important.  

Interestingly, there were 74 genetic variants identified in humans that did not have homologous molecules in 

the mouse model, the majority on Chrm 18 (human).  A major source of these molecules is De Moor and 

colleague’s findings44 that were associated with exercise participation.  These non-homologous molecules may 

represent specific human-related mechanisms that regulate physical activity.  To date, Kostrzewa, et al. is the 

only cross-species translation attempt in this literature39. Certainly, cross-species translation is an area that 

needs further investigation to determine if there are pathways specific to either the animal or human genetic 

control of physical activity (Fig. 2).  
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There are a variety of potential upstream regulators for the molecules collected in this dataset. 

Interestingly, three of the top five for both brain and muscle are nuclear receptor binding ligands; estradiol 

(estrogen receptor), dexamethasone (glucocorticoid receptor), and tretinoin (retinoic acid receptor), indicating a 

potential role of nuclear receptors in the regulation of physical activity. Unlike most intercellular messengers, 

these ligands can cross the plasma membrane and directly interact with nuclear receptors inside the cell 

verses being limited to cell surface interactions70. Activation of nuclear receptors subsequently causes 

transcription of genes controlling a variety of cellular processes like cell proliferation, development, 

metabolism, and reproduction; additionally, some nuclear receptors have also been found to regulate cellular 

functions within the cytoplasm (e.g. estrogens)71. Selective nuclear receptor modulation may be an area of 

interest for future studies.  

The top ranked upstream regulator for both muscle and brain datasets identified in this review was β-

estradiol.  Since initial efforts in the 1920’s20, it has been well established that sex steroids – most prominently 

estrogen19,21,  and/or testosterone17,18, markedly alter physical activity levels. For example, removal of 

endogenous sex steroids decreased wheel-running by 90% in male animals and 69% in female animals, with 

administration of exogenous testosterone recovering wheel running activity (103% of baseline in females, 90% 

of baseline in males)18. However, what has not been clear is the mechanism through which these sex steroids 

work; i.e., is the level of sex steroids – and thus activity – controlled by genetics, or is the effect of sex steroids 

merely as a ‘biological influencer’ [a detailed review of the mechanistic differences exists by Bjornstrom et al72]. 

There is evidential support for the capacity of estradiol to increase physical activity levels; however, the 

mechanisms directly linking estradiol to increased physical activity have not been tested. For example, both 

testosterone and 17β-estradiol have been shown to enhance insulin-stimulated glucose uptake in female 

myotubes and to increase palmitate oxidation in both male and female myotubes73 suggesting a role for 

estradiol in regulating substrate availability in the muscle. Further, there is extensive literature74 showing that 

expression of Slc2a4 – also known as Glut4 – is affected by estrogen triggered-mechanisms.  Tsao, et al.9 

clearly showed that overexpression of Glut4 increased wheel-running activity in mice, suggesting that any 

mechanism through which Glut4 expression was increased, would like-wise increase physical activity levels. 

Muscle biopsies obtained from men supplemented with 17b-estradiol demonstrated elevated medium-chain 

acyl-CoA dehydrogenase (MCAD), PGC1a mRNA, and reduced micro-mRNA, miR-29b (predicted to regulate 
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PGC-1a) supporting enhanced fat oxidation during exercise75. Supporting central mechanisms of estradiol; 

Peterson, et al. demonstrated estradiol impacts behavioral and synaptic correlates of addiction in female rats 

through activation of cannabinoid 1 receptor (CB1R - CNR1 gene)76.  Dubreucq, et al. has demonstrated 

decreased dopamine activity and subsequent decreased wheel running in CB1R deficient mice16 supporting a 

link between estradiol, cannabinoid receptors, and dopamine levels. In short, given the large number of 

targeted muscle molecules that are regulated in some manner by β-estradiol in both the brain and muscle, it is 

probable that β-estradiol exerts its physical activity regulating effects through both peripheral and central 

mechanisms.  

Another potential regulator, TP53, a nuclear transcription regulator – was 2nd and 5th ranked potential 

upstream regulator of the muscle and brain molecules, respectively.  TP53 is most often classified as a tumor 

suppressor gene and is activated by a variety of cellular stresses including oxidative stress at which time it 

becomes a transcription regulator (40).  It has recently been suggested that moderate intensity exercise 

stimulates the cancer protective functions of TP53 (41).  Thus, it is likely that physical activity can cause TP53 

to accumulate in the stressed cell and regulate the various target genes in the physical activity dataset.  

However, since TP53 is not upregulated until physical activity is undertaken, TP53’s effects would be a product 

of exercise, rather than being a regulator of physical activity. 

Limitations: There are several limitations that must be considered when interpreting the results of this 

systematic review.  First, while we worked to be as inclusive as possible, it is probable that there are studies 

that are missing from this summary. Certainly, there is no one set of key terms used by all the authors in this 

field; some agreed-upon set of terms would help similar future efforts.  

Second, during the time-span of the considered papers, ranging from publication in the early 2000s to 

2020, the methodology employed in genetic investigations changed dramatically.  One significant example is 

the switch from using microsatellites to SNP as genomic markers.  While we made the best efforts to 

standardize measurements, such as using the most recent builds (at time of data analysis) of the murine and 

human genomes, there were some results that could not be standardized42 and thus, were left out of the 

analysis.  In a similar vein, the minimal epistatic data that are available41,45 was left out of the analysis primarily 

because of uncertainty of how to classify these data within the parameters of the network analysis.  Removing 

these data from the analysis should not be construed to indicate they are not important – indeed the epistatic 
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data are the only available data of their kind in the field – but rather are examples of the limits of our analysis 

paradigm.  

Third, a significant limitation both in the composing of and interpretation of the analyses is that there is 

a tremendous amount of data available.  While we recognize our limits for interpretation and the length 

limitations of a written study, we have provided not only the data-files used in the network analyses as 

supplemental information, but also, extensive supplementary tables to enable other investigators to add to the 

dataset and rerun the analysis, or to gather the interpretative-narrative in their own work. Fourth, it must be 

remembered that like much work in the genetic realm, the results are mostly associative with few causal 

studies available.  While some of the data used in this study were causative9,10,15,16,53, much of the data are 

associative, especially the genomic variants we identified.  Given there have been past difficulties noted in the 

literature in regards to defining mechanisms based on associative findings – especially genomic variant 

designs77  – inferences based on genomic variant data should be made cautiously.  Further, a continuing 

limitation of designs focusing on genomic variation is the uncertainty of whether these variants translate into 

different functional molecules.  The addition of proteomic, transcript, and microRNA data compliments the 

genomic variation data and can add support for those genomic variants.  If anything, our results guide future 

studies that focus on causative mechanisms.  

Last, the work is limited by the tools available.  Even though tools such as IPA are powerful, these tools 

are still limited in their scope and the genetic molecules available in their databases.  For example, between 

40-45% of the target molecules identified from the literature are not identifiable in the IPA database and so it is 

possible that other critical networks have been missed in this report.  Additionally, given the magnitude of 

potential targets of each miRNA, it is possible that IPA does not contain full network linkages for all the 

miRNAs in the dataset and as such may not be the best approach to investigating the potential role of miRNAs 

in regulating physical activity.   

In conclusion, the current paper describes our approach to gather the significant physical activity 

genetic regulating molecules from the literature, and to integrate all the known possible data into common 

upstream regulators related to physical activity control.  Given the established consensus that physical activity 

is regulated both at the central and peripheral levels, potential upstream regulators are presented for both 

central (e.g., brain) and peripheral (e.g., muscle) molecules. Based on these analyses, the upstream regulator 
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analyses may be a great tool for future researchers to build research questions and investigate the broader 

scope of mechanisms directly linking upstream regulators to regulation of physical activity.  
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Table Legend 
 
Table 1: Citations reporting genetic molecules associated with/causative of physical activity 

Table 2: Top 5 Upstream Regulators for Brain and Muscle Subsets 

 

 

Figure Legends 

Figure 1 – Map of Mouse/Human Genetic Molecules Associated With/Causal for Physical Activity.  

Figure 2 – Map of Genetic Molecules Associated with Physical Activity.  
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Figure 1 – Map of Mouse/Human Genetic Molecules Associated With/Causal for Physical Activity
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Figure 2 – Map of Genetic Molecules Associated With Physical Activity – Human Genome
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