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Abstract Eye movement sequences—or scanpaths—vary
depending on the stimulus characteristics and the task
(Foulsham & Underwood Journal of Vision, 8(2), 6:1-17,
2008; Land, Mennie, & Rusted, Perception, 28, 1311-1328,
1999). Common methods for comparing scanpaths, however,
are limited in their ability to capture both the spatial and
temporal properties of which a scanpath consists. Here, we
validated a new method for scanpath comparison based on
geometric vectors, which compares scanpaths over multiple
dimensions while retaining positional and sequential in-
formation (Jarodzka, Holmgqvist, & Nystrom, Symposium on
Eye-Tracking Research and Applications (pp. 211-218),
2010). “MultiMatch” was tested in two experiments and pitted
against ScanMatch (Cristino, Mathot, Theeuwes, & Gilchrist,
Behavior Research Methods, 42, 692—700, 2010), the most
comprehensive adaptation of the popular Levenshtein method.
In Experiment 1, we used synthetic data, demonstrating the
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greater sensitivity of MultiMatch to variations in spatial posi-
tion. In Experiment 2, real eye movement recordings were
taken from participants viewing sequences of dots, designed
to elicit scanpath pairs with commonalities known to be prob-
lematic for algorithms (e.g., when one scanpath is shifted in
locus or when fixations fall on either side of an AOI boundary).
The results illustrate the advantages of a multidimensional
approach, revealing how two scanpaths differ. For instance, if
one scanpath is the reverse copy of another, the difference is in
the direction but not the positions of fixations; or if a scanpath
is scaled down, the difference is in the length of the saccadic
vectors but not in the overall shape. As well as having enor-
mous potential for any task in which consistency in eye move-
ments is important (e.g., learning), MultiMatch is particularly
relevant for “eye movements to nothing” in mental imagery
and embodiment-of-cognition research, where satisfactory
scanpath comparison algorithms are lacking.

Keywords Scanpath - Similarity - Eye movement -
Sequence - Dimensional - Comparison

Whether passively viewing a picture or engaged in a higher-
level cognitive task, we make sequences of eye movements
commonly known in the literature as scanpaths. Recent years
have seen rapidly growing interest in scanpaths (Burmester &
Mast, 2010; Day, 2010; Mannan, Kennard, & Husain, 2009;
Underwood, Humphrey, & Foulsham, 2008) because, unlike
unitary eye movement events (such as fixations and saccades,
as well as the measures that can be derived from them),
scanpaths encompass a whole range of oculomotor data into
one construct, which reveals visual processing over time and
in space. However, precisely because scanpaths comprise both
spatial and temporal information, this has led to major com-
putational challenges in comparing one scanpath to another
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(e.g., Coco, 2009; Foulsham & Underwood, 2008). In this
article, we evaluate the strength of a new method for scanpath
comparison, MultiMatch, that incorporates spatial and tempo-
ral information together, using geometric vectors to represent
saccades and fixations. The basic principles of MultiMatch
have been previously outlined in Jarodzka, Holmqvist, and
Nystrom (2010). Here, we expand on our previous discussion,
testing the performance of the algorithm with real and simu-
lated data of the type commonly encountered in research on
visual perception and cognition.

Scanpath comparison: Methods that rely on areas
of interest (AOIs)

Levenshtein distance Interest in scanpaths dates back to the
early studies of Noton and Stark (1971), who recorded
eye movements during pattern perception and found a
striking resemblance between the sequence of fixations
produced during initial inspection (encoding) and subse-
quent presentation (recognition) of the same image. Quan-
tifying this “resemblance,” Brandt and Stark (1997) went
on to utilize a measure of scanpath similarity that had
originally been implemented for eye movement research
by Hacisalihzade, Stark, and Allen (1992): the Levenshtein
distance principle, used to identify commonalities in strings of
symbols for DNA sequence matching (Levenshtein, 1966).
The basic principle of Levenshtein distance, or string-edit,
as it is also known, is that fixation sequences are first
represented by overlaying discrete AOIs onto stimulus
space so that the locations of fixations can be replaced
with characters corresponding to the AOI positions occu-
pied. Scanpaths are thus reduced to strings of symbols that
retain information about the sequential order of the fixa-
tions and provide an approximation of their spatial posi-
tion. The similarity between two such strings can then be
calculated as the “editing cost” of transforming one string
into the other via insertion, deletion, and substitution of
constituent characters. The Levenshtein distance is then
the least number of editing steps required, while similarity
is often expressed as 1 minus this number (normalized
over scanpath length or the number of elements in the
string).

While the Levenshtein technique is relatively powerful
from the point of view of capturing information pertaining
to the order of fixations within a scanpath, it suffers from a
number of problems that have been documented in the
literature but to date not adequately solved.

These problems revolve around the division of stimulus
space into AOIs. Owing to this, the original positions of
fixations are not well represented. This lack of spatial reso-
lution can have drastic consequences for the similarity met-
ric produced. For example, two fixations close to one
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another in proximity but that fall on either side of an AOI
border will be judged to be as dissimilar as two fixations in
completely different regions of the stimulus. Likewise, fix-
ations occupying the same AOI are often grouped such that
a cluster of fixations in one spatial region become repre-
sented by only one letter. This has the effect of ignoring
local differences in eye movement control and ongoing
cognitive processing, in favor of retaining a better represen-
tation of the global characteristics of the scanpath. More-
over, depending on the sizes of the AOIs and how they are
chosen, situations could easily arise in which two fixations,
maximally distant within one area, are calculated to be more
similar to each other than they are to other fixations that are
closer in Euclidean distance but that fall outside of the
AOTU’s strict perimeter. The problems associated with using
AOIs are common to many of the approaches to scanpath
comparison (see Fig. 1).

ScanMatch ScanMatch (Cristino, Mathot, Theeuwes, &
Gilchrist, 2010) has emerged recently as a more advanced
adaptation of Levenshtein distance, addressing some of the
problems to do with AOIs. The strength of ScanMatch lies
in its use of the Needleman—Wunsch algorithm to align and
compare eye movement sequences. If we take two letter
strings that represent the sequences of fixations within
AOIs, BETRV and BLJTV (Fig. 2), the first step is to align
one string with the another. The Needleman—Wunsch algo-
rithm does this by using a substitution matrix containing all
potential pairings of elements in the two strings. Aligning B
with B, for instance, would be a perfect match obtaining the
highest possible score in the matrix, whereas the cost of
aligning mismatches such as E and L can be adjusted
according to the relationship between the AOIs that these
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Fig. 1 Problems with AOIs and with the string-edit method. a Fix-
ations in regions B and C are close in space, but are judged to be as
different as those in B and X. b All three fixations in D are represented
by just one letter. ¢ The fixations in P span the farthest distance within
the AOI, and though the fixation in Q is closer to one of them, it will be
regarded as more different than the other fixation in P, according to the
Levenshtein similarity metric



Behav Res (2012) 44:1079-1100

1081

A F K P u

BOl ¢ | L | a|®
o 1O 710
C|H|/M|[eR |IwW
D| 1 | N|is| X

(@) -0
E.\l O.T Y

Fig. 2 Two scanpaths represented by the strings BETRV (filled
circles) and BLJTV (unfilled circles)

letters represent. For example, they might be close to each
other in spatial proximity, have some basic, low-level visual
property like luminance in common, or contain similar
semantic content. A comparison matrix can then be created
in which the sequence of letters in one scanpath forms the
column divisions, and the sequence of letters in the other
forms the row divisions. The comparison matrix uses the
substitution matrix as a lookup table to find the entries
(costs) for each of its cells. The Needleman—Wunsch algo-
rithm then searches for the optimal route through this matrix
(i.e., yielding the highest score from the top left corner to the
bottom right). This score, normalized for the length of the
sequence, is the similarity result between 0 and 1, where 1
indicates identical scanpaths according to AOI visits and the
substitution matrix.

If we refer back to our letter-string example (Fig. 2),
Levenshtein distance treats all differences between strings
equally. The editing cost of replacing E with L, inserting J,
and deleting R in the first sequence, to align it with the
second, is the same in all cases, and this would translate to
the same value in the substitution matrix for all cells except
the diagonal, where there is no cost associated with identical
letters. ScanMatch, on the other hand, can take both physical
and cognitive characteristics of the stimulus into account
when creating the AOI-based substitution matrix. For in-
stance, E and L may be the same color, and the substitution
matrix could be designed accordingly, attributing less cost to
alignments where AOIs containing the same color are visited.
This is a large advantage in comparison with Levenshtein
distance, which is effectively blind to the stimulus being
viewed, because no relationship between the AOIs is speci-
fied. However, care must be taken in how the scoring of the
substitution matrix is devised. The weightings cannot be sub-
jective, but should quantitatively reflect the connection (visual
or semantic) between AOIs in the stimulus.

However, whilst ScanMatch is a much needed improve-
ment to the Levenshtein method, because it rests on the

same principles of carving up stimulus space into AOIs,
similar criticisms may be leveled at this new technique for
comparing scanpaths. While allowing the researcher to
specify the relationship between AOIs is a worthwhile ad-
vancement, one may still question this way of segmenting
the recorded eye movement data. As with Levenshtein, two
maximally distant fixations within one AOI will still be
treated as more similar to each other than they are to fix-
ations that are closer in Euclidean distance but that occupy a
different AOI (even if distance is taken into account in the
substitution matrix; see Fig. 1¢). This is because ScanMatch
does not consider where in an AOI a fixation lands.

Likewise, the shapes of the scanpaths being compared
are neglected in the similarity calculations of both the Lev-
enshtein method and ScanMatch: One scanpath could pro-
duce exactly the same shape as another in terms of the
angular distances between saccades and the saccadic ampli-
tudes, but because the fixations fall outside AOI limits, the
scanpaths would not be recognized as similar (Fig. 3).!
Shape has been clearly shown to be a crucial attribute of
scanpaths in the mental imagery research (Johansson,
Holsanova, & Holmgqvist, 2006, 2011; Laeng & Teodorescu,
2002; Zangemeister & Liman, 2007). Johansson et al. (2006)
found that when orally describing a picture while looking at a
blank screen, participants’ eye movements matched those
made during the original encoding of the picture. Moreover,
this effect was equally strong for visual encoding (looking at a
picture) and aural encoding (listening to a description of a
picture’s spatial layout). Critically, however, the correspon-
dence between the scanpaths at encoding and the subsequent
imagery was often in terms of shape but not absolute spatial
position. Scanpaths could be scaled (shrunk or enlarged)
during imagery but otherwise remain consistent. Similarly,
scanpaths could assume the same shape during imagery, but
be spatially offset (recentered or shifted relative to a new
locus). Johansson and colleagues (2006, 2011; see also
Johansson, Holsanova, Dewhurst, & Holmgqvist, 2011) used
a coarse measure of relative saccade direction and fixation
distribution to tackle this issue, but it is evident that a more
stringent measure of scanpath shape is desirable.

A caveat is necessary here, however. While there are
advantages to studying scanpath shape in the context of
mental imagery research, and in light of aspects of neuro-
logical visual disorders, it would not be appropriate to let
similarities in scanpath shape dominate in the absence of a
clear hypothesis. For example, if comparing monitors of
different sizes or big-screen projections of images, it would

" The example gives extreme cases of scanpath shape similarity in
order to exemplify the point. In reality, such occurrences would be
rare, and in the majority of cases one should question similarity on the
basis of shape alone, because this would mean that different regions in
space were foveated.
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Fig. 3 Scanpaths can form similar shapes with completely different
fixation positions. The panels show a scanpath (solid lines) and its
comparison pair (dotted lines). The locus can be shifted (left panel), a
scanpath can be scaled (center panel), or the two scanpaths can comprise

be appropriate to predict similarity in shape instead of
absolute space, but if comparing eye movements on differ-
ent images of constant size, the absolute spatial positions of
fixations (and their order) become more important.

Nevertheless, when imposing restricted AOIs onto the
stimulus, it is inevitable that basic spatial information about
the scanpath will be compromised (see Jarodzka, Holmqvist,
& Nystrom, 2010): The locations of individual fixations are
generalized to extended areas, restricting the spatial resolution
of the final similarity calculation. This also has the effect of
distorting scanpath shape to the extent that this representation
is lost in the final similarity metric.

Scanpath comparison: Methods that do not rely on AOIs

Mannan linear distance The Mannan linear-distance ap-
proach to scanpath comparison (Mannan, Ruddock, &
Wooding, 1995, 1996) directly compares fixation positions
without the use of AOISs, thereby not quantizing space, as is
the case with both Levenshtein distance (e.g., Brandt &
Stark, 1997) and ScanMatch (Cristino et al., 2010). It takes
as input two sets of position data in x, y space: 4 and B, each
having specified M and N locations. The Euclidean distance
(d) between each point (i), of a possible M in A4, and its
nearest neighboring point (j), of a possible N in B, is then
computed. The resulting output is a “similarity index” that
can be expressed as the mean of the ds squared:

1 Mo N
Ditannan = m <Z min dzi"j + Z min dzi’/) (1)
i=1

J=1

Basically, the linear-distance method simply quantifies how
close positions are to each other. It has the advantage of
comparing absolute points in space, so the similarity be-
tween the veridical positions of fixations can be directly
calculated (though, equally, raw sample data from the eye-
tracking system could in theory also be used). However,
what is gained in spatial resolution is lost in sensitivity to the
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different saccadic amplitudes (right panel). From Eye Tracking: A Com-
prehensive Guide to Methods and Measures, by K. Holmqyvist et al.,
2011, p. 351; Oxford, U.K.: Oxford University Press. Copyright 2011
Oxford University Press. Reprinted with permission

more fundamental dimensions of a scanpath. Because each
position is associated with its nearest neighbor, the impact of
individual fixations can be disproportionate. For example, a
cluster of several local fixations in Scanpath Sequence 1 can
be mapped onto just one fixation in Scanpath Sequence 2. A
high similarity score could then be returned, despite an
overall impression of two very different scanpaths. Such
concerns have been raised in the literature (see, e.g.,
Henderson, Brockmole, Castelhano, & Mack, 2007; Tatler,
Baddeley, & Gilchrist, 2005; Underwood et al., 2008), such
that the original formulation of Mannan’s linear distance is
now hardly used. Henderson et al. developed a “unique
assignment” version of the similarity index to address these
concerns, where each fixation in set 4 is linked to a single
mate in set B—the pairings producing the lowest variance
being selected for Eq. 1 (Fig. 4). Nevertheless, while order
might be assumed for scanpaths containing few fixations,
as the sequence grows in length, it is not improbable that
fixations will be matched irrespective of temporal order
(the 4th fixation in Scanpath lof the figure is paired with
the 2nd fixation in Scanpath 2). Moreover, unique assignment
requires that the two scanpaths be of equal length (i.e., contain
the same number of fixations), which they commonly would
not be.

Recently, however, Mathot, Cristino, Gilchrist, and
Theeuwes (2012) tried to rectify some of these shortcomings.
Instead of mapping one single point to one other point, they
advised double mappings, to provide the lowest overall posi-
tion variability. This overcomes the problem of the necessary
pruning of sequences with unique assignments when the two
scanpaths are not of equal length (but may still lead to several
points in one scanpath being mapped to just one in the other).
Moreover, Mathét et al.’s “Eyenalysis” procedure allows for
some dimensionality in scanpaths to be considered: the dura-
tion of the fixation points, for instance, or their timestamps,
which—although they are not exact measures of order—do
allow the temporal characteristics of the sequence to be taken
into account.

Taking the actual coordinates of the recorded eye move-
ment data is clearly an advantage of Mannan’s linear-distance
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Fig. 4 Mannan similarity, with unique assignment. Of the same two
scanpaths from Fig. 2, the numbers indicate the orders of the fixations
from the first scanpath (filled circles) and the second (open circles).
The lines show the minimum linear distance between the matched
fixations of each scanpath. Even with just five fixations, the sequence
comparison is compromised

method and its derivatives. However, what is gained in spatial
resolution is lost in sensitivity when matching fixations, and it
becomes very difficult to retain sequential information from
the scanpaths, which is one of their defining characteristics.

Attention/heat maps Some have argued that attention maps,
and the family of comparison measures that can be derived
from them, capture scanpath similarity (e.g., Caldara &
Miellet, 2011; Grindinger, Duchowski, & Sawyer, 2010).
With attention maps, there is not an issue of which fixation
point to map onto another for position comparisons, since a
smooth Gaussian landscape is produced from the fixations
that make up each scanpath (Fig. 5), and from here one may
take the attention map difference (Wooding, 2002) as a

Fig. 5 Two attention maps
comprising fixations (a and b)
and the difference between
them (c)
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measure of scanpath similarity (though, equally, more
complex measures such as the correlation coefficient
between attention maps [Ouerhani, von Wartburg, Hiigli, &
Miiri, 2004], the Kullback—Leibler distance [Rajashekar,
Cormack, & Bovik, 2004], or the earth mover distance
[Dempere-Marco, Hu, Ellis, Hansell, & Yang, 2006]
may also be used). However, despite their computational
strength, attention maps, like the Mannan similarity
index (e.g., Mannan et al., 1996), struggle to effectively
capture the sequence of fixations inherent to a scanpath.
There are ways that this issue can be tackled—for
example, by weighting the attention map by first entry time,
so that peaks in the attentional landscape reflect regions in the
stimulus that were visited earlier (see Holmqvist et al., 2011,
p- 233). Trying to preserve ordinal information in this way,
however, necessitates the use of AOIs, because the researcher
must specify the time that it took to reach a spatially restricted
area. As we have seen, this introduces quantization noise.
Moreover, neither attention maps nor the Mannan similarity
index tackle the limitation of existing methods already pointed
out—that of representing scanpath shape.

What’s missing in scanpath comparison?

It is evident that more advanced, or rather, more finely
tuned, scanpath comparison measures are needed. One fea-
ture of scanpaths that this article has not yet covered is the
duration of fixations that comprise a scanpath. We know
from many empirical examples that the amount of time
spent foveating a particular point greatly influences (and is
influenced by) ongoing cognitive processing (cf. Henderson
& Pierce, 2008). It is strange, then, that this avenue is

5
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(c) Attention map difference
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remarkably unexplored in the context of scanpath analysis.
ScanMatch (Cristino et al., 2010) does attempt to address
this, approximating fixation duration by representing AOIs
that were inspected for longer with more letters (e.g.,
each occurrence of a letter could denote, say, 50 ms, so
that if a region labeled A is dwelt upon for 150 ms it
would be represented by AAA in the string). Note,
however, that dwell times (usually defined as the sum
of fixation durations from entering an AOI until leaving
it) will rarely fit into the boundaries imposed by binning
in this way. If the bins are 50 ms and an AOI is
inspected for a total of 130 ms in one dwell, should this
be rounded down to XX or rounded up to XXX for the
particular AOI in question? Again, a kind of quantization
of time applies here, in the same way that quantization of
space applies to the use of AOIs. However, one should
point out that there is no actual physical constraint on
temporal bin size in ScanMatch, and in principle this
could be set to the sampling frequency of the eyetracker.
To summarize what is missing, ideally, a measure that has
the minimum requirements of incorporating the following
dimensions into scanpath comparison is desirable:

1. Order: To be a “path,” the ordinal sequence of fixations and
saccades must be reflected in the comparison, otherwise
two scanpaths traversing exactly the same spatial positions
but in the reverse order would be judged as identical.

2. Position: The scanpath representations being compared
must reflect, as accurately as possible, the locations of
fixations and saccades in x, y space. This avoids the
quantization noise associated with the use of AOIs.

Fig. 6 Representing a scanpath as a hexidecimal sequence. The ampli-
tudes of saccades are measured on a 16-unit hexadecimal ruler (left); a
16-region segmentation of circular space is used to represent saccadic
direction (right). The first saccade of the example sequence is mea-
sured with each representation type, giving D7. The whole scanpath is
represented by the string D7 23 71 28 73 B3 54. From here, it is
possible to perform editing operations between two strings, adopting
the same principles as in the Levenshtein method. As the hexidecimal
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3. Shape: An intuitive property if asked to subjectively
judge the similarity between two scanpath visualizations
would be shape. The proportional relationships between
the geometry of two scanpaths can have important
implications in vision research.

4. Fixation duration: When the point of highest visual
acuity—the fovea—pauses en route, this is arguably
the most important aspect of a scanpath from a behav-
ioral and perceptual perspective, because this is when
visual information is extracted. Fixation duration should
therefore be a prerequisite in scanpath comparison.

These criteria for scanpath comparison go some way to
meeting the definition of a scanpath set out in Holmqvist et al.
(2011): “the route of oculomotor events through space within
a certain timespan” (p. 254). It should be noted, however, that
these criteria might be contradictory in some circumstances.
For example, in Fig. 3, if we are interested in shape similarity,
then by definition we are not interested in position similarity.
This is not to say that the dimensions of our approach—out-
lined below—are mutually exclusive, however; it is quite
possible for two scanpaths to be similar in shape and position.

Scanpath shape and MultiMatch

We have not yet touched on methods that take shape into
account. There are ways in which this can be done, and one
of the lesser-known methods for scanpath comparison
implemented by Gbadamosi and Zangemeister (2001; Gba-
damosi, 2000) treats scanpaths as a sequence of vectors,

sequence is independent of the stimulus (AOIs are not used), the costs
associated with insertions, deletions, and substitutions can be drawn
directly from the vector differences (i.e., the Euclidean distance be-
tween the endpoints of vector pairs). From Eye Tracking: A Compre-
hensive Guide to Methods and Measures, by K. Holmqvist et al., 2011,
p. 271; Oxford, U.K.: Oxford University Press. Copyright 2011
Oxford University Press. Reprinted with permission
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retaining shape information (Fig. 6). We have already dis-
cussed that shape can be important in mental imagery re-
search—for example, when one scanpath is spatially scaled
down relative to the other, or shifted relative to a new locus
(Johansson et al., 2006). Indeed, Gbadamosi and Zange-
meister used vector string-editing to study visual imagery
in homonymous hemianopia, revealing that, despite their
perceptual deficit, patients with hemianopia present consis-
tency in their scanpaths during visual imagery of a picture.

It is important to point out, however, that while shape
might be important in isolation for other reasons (e.g.,
comparing between experiments with different x, y coordi-
nates, comparing rotated stimuli, or validating phenomena
such as the well-known F-shape scanning pattern on web-
sites; Nielsen, 2006), usually the position of fixations and
their order take precedence outside of the field of mental
imagery research.

In neural terms, it makes sense to consider shape, though: It
has been proposed that “buildup” cells in the superior colliculus
exclusively code the landing position of an upcoming saccade,
whilst “burst cells” independently execute the eye movement
with the required metrics to reach this location (Findlay &
Walker, 1999). This is analogous to treating saccades as vec-
tors, since the superior colliculus carries separate neural repre-
sentations of saccadic direction (in buildup cells) and amplitude
(in burst cells; Munoz & Wurtz, 1995a, 1995b). In this view,
scanpath comparison should always consider the shape that the
scanpath forms, since this is how the saccade programming
system handles the complex job of directing the fovea.

However, as it stands, vector-based string-editing region-
alizes angles between vectors into discrete bins, such that
360 deg can be split into 16 equal segments of 22.5 deg.
Representation of vector length is done similarly, with lengths
0-n being divided on a ruler that measures the vectors, in
some fairly liberal unit like centimeters.

Despite its appeal, therefore, vector-based string-editing
gives a similarity value that is entirely blind to the veridical
positions of fixations in the recorded data. Moreover, quan-
tization noise (not of stimulus space itself, but of the scan-
path representation) remains a problem, because saccades
are segregated into discrete bins. How can we incorporate
shape satisfactorily, as well as the other desirable criteria for
scanpath comparison outlined in the “What’s Missing in
Scanpath Comparison?” section?

Our principle for scanpath comparison (described in Jar-
odzka, Holmqvist, & Nystrom, 2010) considers all the pre-
requisites outlined, shape included. It uses vector mathematics
to represent scanpaths as ideal saccades connecting fixation
points via the shortest route between them. Each saccade
vector [u = (x, y)] has direction and length, and because
fixations are joined, both the position and duration of fixations
remains unchanged. This technique makes several dimensions
available to the user in a way that addresses the vast majority

of the concerns raised above. It uses a representation of eye
movements closer to the recorded oculomotor data, whilst
retaining the temporal sequence and spatial structure inherent
to scanpaths. In the previous article, we described this tech-
nique and highlighted its strengths with some basic artificial
data. Here, we put it to the test with simulations and real
empirical data, to evaluate its utility for scanpath research into
visual and cognitive processing. As our approach has the
flexibility to compare multiple scanpath dimensions, we here
name it “MultiMatch.”

MultiMatch: Implementation details

As our approach has been fully outlined in a previous article
(Jarodzka, Holmqvist, & Nystrom, 2010), we limit the cover-
age here to information that will assist the reader in the context
of the present experiments. Several consecutive steps must be
followed in MultiMatch to meet the conditions for scanpath
comparison set out above.

Simplification

Scanpaths form rich data that can be too complex to com-
pare without a prior stage of simplification: Small, irrelevant
differences can (invalidly) lower, or sometimes inflate, the
similarity result. The goal is to condense the scanpath
enough so that small saccades and fixations in local areas
do not overly bias the final similarity result, but not so much
that the properties of the original scanpath are lost in the
simplification process. As we have seen, this is at the heart
of the challenge in scanpath comparison. MuliMatch
achieves this via thresholding that groups small, locally
contained saccades together. Thus, if successive saccade
vectors (uy, up, U3, . . . U,) have amplitudes smaller than
the threshold set (7;,p), they are grouped to form one new
vector (u' = uj+tuy+us+. ..+ u,), as illustrated in Fig. 7
(dashed circles). Likewise, if successive saccades follow the
same general direction between two points in the stimulus,
these vectors are merged, because they do not, in of

Fig. 7 MultiMatch Step 1: Simplification—Amplitude-based (dashed
circles) and direction-based (dashed arrow) clustering. From Eye
Tracking: A Comprehensive Guide to Methods and Measures, by K.
Holmgqvist et al., 2011, p. 275; Oxford, U.K.: Oxford University Press.
Copyright 2011 Oxford University Press. Reprinted with permission
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themselves, impart any extra meaning to the generic shape
of the scanpath. Consequently, when the angular deviation
between two saccades is smaller than the threshold level
(Ty radians), the vectors are combined into one larger
saccade vector as in Fig. 7 (dashed arrow). The simplifi-
cation process is iterative, with direction- and then
amplitude-based clustering operating in a loop until no
further simplification can be carried out. Throughout this
article, the threshold level for amplitude-based simplifica-
tion was set to 10 % of the screen diagonal, while the
threshold for direction was 45 deg.

It is crucial to note here that direction-based clustering can
be dangerous, and in many cases it would be necessary to set a
condition for the removal of fixations. If the example in Fig. 7
were taken from scene viewing, we might not want to remove
fixations along the path of the dashed arrow, since they could
correspond to information acquisition from the scene. This is
clearly important, and in such cases it would be advisable to
set a minimum duration above which fixations would never be
excluded (e.g., the average fixation duration within the trial).

Alignment

Once we have two simplified scanpaths, the next step is
to temporally align them, so that we know which vector

8°[9°]6°|7°|5°

8° [ 1° [10°]12°]11°

S, 4° [12°10.5°| 7° | 3°

7o |12o| 70 | 10 | 40

4o (1o 1o [ 70 | 4° !

(a) Comparison matrix.

Fig. 8 Pairwise vector comparison of all saccades in two vector
representations (S} = uy, uo, Us, g, us and Sy = vy, v, v3, Vs, vs) of
scanpaths. Circles denote the onsets of scanpaths. a The comparison
matrix shows, for each pairwise vector comparison, the length of the
differential vector (1; — v;) in degrees of visual angle. If the two vectors
are similar in amplitude and direction, this value is low. b Scanpaths
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pairings to compare. This is done on the basis of
scanpath shape, taking the new, simplified scanpaths
(Sl = Uy, Up, U3, . . . Uy and S2 = Vi, Vo, V3, . . . Vn)
and matching the sequence of vectors using a compar-
ison matrix in which costs are drawn from vector differ-
ences between potential pairings. Note that throughout
this article the similarity metric used for alignment is
vector difference—that is, shape—but it is equally pos-
sible to align scanpaths on the basis of other dimensions—
for instance, the positions of fixations or fixation dura-
tion. MultiMatch uses the Dijkstra (1959) algorithm to
find the shortest path through the comparison matrix,
from the top left corner to the bottom right. This algo-
rithm works on a graph representation of the matrix,
where matrix elements are called nodes and vector
differences are the costs of links between nodes. The
algorithm finds the shortest path from the first node to
the last, taking all possible routes into account. This
approach is analogous to way-finding, where nodes are
cities and the costs are the driving distances between
them; the goal is to find the shortest route. Now the
vector sequences can be aligned according to this path.
The process of temporal alignment is indicated in Fig. 8
and is explained in full in Jarodzka, Holmgqvist, and
Nystrom (2010).

(b) Scanpaths.

used in the comparison. Gray matrix cells in panel (a) indicate consec-
utive mappings that would produce a good alignment for a subset of
the saccades. From Eye Tracking: A Comprehensive Guide to Methods
and Measures, by K. Holmqvist et al., 2011, p. 277; Oxford, U.K.:
Oxford University Press. Copyright 2011 Oxford University Press.
Reprinted with permission
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Comparison

Finally, MultiMatch can compare the aligned scanpaths.
This is a simple process of subtracting dimensions between
the vectors (see Table 1) and taking an average. Each pair of
simplified saccade vectors, and their accompanying fixa-
tions, can be compared on the basis of five dimensions,
yielding similarity values between 0 and 1 (inverted so that
1 equates to identical).

Table 1 Dimension subtraction

presented, in which MultiMatch is assessed against the
most popular and accessible new scanpath comparison
algorithm, ScanMatch (Cristino et al., 2010; note that we
used the default settings with ScanMatch throughout). The
first experiment evaluated how sensitive each algorithm is
to spatial noise using simulated data. The second was
designed to provide data with known issues in scanpath
comparison—for example, the problems with AOIs or
scaling described above—and real eye movement data

Shape: This is the vector difference between aligned saccade pairs,
(u; — vj)—a measure of similarity in scanpath shape. The result-
ing similarity value is normalised by 2x the screen diagonal (the
maximum theoretical value).

Length: This is the difference in length between the endpoints
of saccade vectors— a measure of similarity in saccadic amplitude.
The resulting similarity value is normalized by the screen diagonal.

Direction: This is the angular distance between saccade vectors—
a measure of similarity in shape when saccadic amplitudes are
different. The resulting similarity value is normalized by m.

Position: This is the difference in position between aligned fix-
ations—a common measure of scanpath similarity in terms of Eu-
clidean distance. The resulting similarity value is normalised by
the screen diagonal.

Duration: This is the difference in fixation durations between
aligned fixations—a measure of similarity in processing time. The
resulting similarity value is normalized against the maximum du-

ration of the two being compared.

For each of the five dimensions—shape (vector difference), length, direction, position, and fixation duration—a difference can be calculated.
Arrows denote vector—saccade pairs. The sizes of the circles in the duration case indicate one fixation that is longer than the other.

MultiMatch thus gives a finer level of detail in scanpath
comparison. AOIs are not used, so quantization noise is
much reduced, and this is true of fixation durations also,
where the actual durations are used. Moreover, scanpaths of
different lengths can be compared, which has been a distinct
problem in scanpath comparison to date. Often this problem
is solved by cutting off the scanpaths after 7-10 fixations,
which is obviously not optimal because—for difficult tasks
especially—one participant could inspect a region much
later than another. MultiMatch takes the order (sequence)
and position into account, and also preserves scanpath
shape, which is a fundamental characteristic largely ignored
in the literature.

The overarching goal of this article is to test the limits
of MultiMatch with the kinds of data acquired in the
attention and perception experiments employed in eye
movement research. To this end, two experiments are

were collected to test how well MultiMatch and Scan-
Match capture scanpath similarity in these dimensions.

Experiment 1: Robustness to spatial noise

To estimate the sensitivity of MultiMatch, a procedure similar
to that followed in Cristino et al. (2010, Exp. 1) was imple-
mented. Whereas Cristino et al. pitted ScanMatch against the
Levenshtein method, here we assessed MultiMatch versus
ScanMatch.

Method and results
Two scanpaths (S; and S,) with random positions were

generated, each containing ten synthetic fixations. The fix-
ation positions in scanpath S; were perturbed with noise
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Fig. 9 Example of two random scanpaths, S; and S,, and the variation
S, that is created by adding spatial noise to S; (0 = 0.1 ). A scanpath
similarity algorithm should classify S; and S, as more similar than S,
and S,

drawn from a Gaussian distribution, with a standard devia-
tion (o) of 10 %—-90 % of the screen width (). This created
a new scanpath S;,,. Figure 9 shows examples of three such
scanpaths.

Twenty-four sets of perturbed scanpaths were generated
for each level of o, which varied in five steps of 0.2 inter-
vals; each set contained 50 new scanpaths. As ¢ increases,
each new artificial fixation position in S, differs more and
more from its origin in S}, rendering the two scanpaths less
similar, until their commonality is no longer distinguishable
as compared to S,. Thus, the similarity S between S(S7, S>)
and S(S;, S1,) was computed for each case using four of
the dimensions in MultiMatch (duration was omitted
because in this experiment, we were only concerned
with the spatial characteristics of similarity classification).
When S(S;, $5)<S(S), S1,)—that is, when the similarity be-
tween S; and its noise-perturbed variation is larger than the
similarity between the two random scanpaths—MultiMatch
was considered to have correctly classified the perturbed
scanpath. As S, varied in terms of spatial position, it was
expected that the position dimension of MultiMatch would
provide the best classification. Scanpaths were also classified
according to the same procedure with ScanMatch using the
default settings and a 12x8 AOI grid. This gives a total of
30,000 classifications: 24,000 for the four dimensions of
MultiMatch, and 6,000 for ScanMatch.

Figure 10 shows the results of Experiment 1. Adding
noise with an increasing standard deviation to the fixa-
tion positions, the proportions of correctly classified
trials decreased, until the algorithms could no longer
detect that §; was the base of §j,, at around o = 0.7.
The decrease was somewhat steep for both MultiMatch
and ScanMatch already at small noise levels (a drop in
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Classification results
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[ MM: direction
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Fig. 10 Influence of adding Gaussian noise with standard deviation o
on the abilities of ScanMatch and MultiMatch to correctly classify a
perturbed scanpath, such as S;, in Fig. 9, as more similar to S; than S|
is to S,. The levels of o reflect percentages of screen width, which in
this case was 1,280 pixels; thus, perturbations of 0.1 translate to 128
pixels, up to 1,152 pixels for perturbations of 0.9. Error bars represent
standard deviations of the means

classification accuracy of roughly 20 % on average
between perturbation levels of 0.1 and 0.3). It is reas-
suring, however, that both the position dimension of
MultiMatch and ScanMatch retained a high proportion
of correctly classified perturbed scanpaths at higher
noise levels, each still performing approximately 10 %
above chance at noise level 0.5. The position dimension
of MultiMatch did a little better than ScanMatch at a
noise level of 0.3, but this was not a huge difference;
otherwise, MultiMatch and ScanMatch performed
comparably.

Because the scanpaths were perturbed spatially (i.e., in
terms of position), the results are in line with what we
hypothesized. But it is also important to note that the shape
and direction dimensions performed comparably to Scan-
Match throughout. The worst classification was on the
length dimension, most likely because vector pairings are
likely to differ least in length between S, and a randomly
drawn S,.

Discussion

Taken together, these results demonstrate that it is possible
to compare scanpaths on multiple dimensions in a way that
makes sense: Position was varied, and the position dimen-
sion fared best in simulated classifications. Both Multi-
Match and ScanMatch performed well here, with some
noteworthy trends in the data. When subtracting between
the positions of synthetic fixations in S;, S;,, and S,
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MultiMatch takes the veridical difference in x, y coordi-
nates, whereas ScanMatch uses generalized AOIs. This
may explain the approximately linear reduction in classifi-
cation accuracy for the position dimension of MultiMatch,
while the remaining dimensions, and ScanMatch, demon-
strated a more exponential fall-off. It should also be noted
that each dimension of MultiMatch (length excepted), and
ScanMatch as well, still performed above chance up to high
levels of noise (¢ = 0.7). This illustrates that both methods
are robust, and the advantage of the distance criterion in the
substitution matrix of ScanMatch over the basic Levenshtein
distance.

Experiment 2: Assessing performance for sequences
with known issues in scanpath comparison

The first experiment demonstrated the favorable perfor-
mance of MultiMatch to variations in spatial noise. How
well does it cope with some of the other known issues
in scanpath comparison outlined in the introduction? For
example when scanpaths are spatially scaleddown, or
shifted in locus, as in mental imagery research, or when
both position and order is integral, as when one scan-
path is an exact reverse copy of the other. In the second
experiment, we addressed the generality of MultiMatch
to detect different kinds of scanpath similarity, and
again contrasted its performance against that of Scan-
Match. Real eye movement data were collected from human
observers while they viewed sequences of dots, presented one
at a time. To the participants, the dots appeared much as when
the eyetracker was calibrated, but in reality each dot sequence
was paired with another, randomly interleaved, that retained a
degree of intuitive similarity difficult to capture and quantify
by scanpath comparison algorithms at present (e.g., similarity

1. Random

2. Spatial offset

6. Local/Global
@]

©

Fig. 11 Eight different examples of known issues in scanpath com-
parison. The dark and light dot sequences share types of similarity that
are often missed in scanpath comparison research. Each sequence of
dots that participants viewed was matched with another, according to

in scaling, spatial offset, or fixation duration; see Fig. 11). The
logic is that by using multiple dimensions, MultiMatch should
be able to identify similarity (or the lack of it) between the
matched scanpaths that these dot pairings would produce,
whereas ScanMatch should have difficulty.

Method

Participants and apparatus A group of 20 participants (9
females, 11 males; 26.94+5.3 years old) generated scanpaths
by looking at stimuli in an eyetracker. All participant had
normal or corrected-to-normal vision. In addition, ideal
scanpaths were synthesized by assuming that a single par-
ticipant perfectly performed the task of looking at points in
the given order.

The stimuli were displayed on a Samsung Syncmaster
931c TFT LCD 19-in. (380 x 380 mm) screen running at
60 Hz, with a resolution of 1,280 x 1,024 pixels. The stimuli
were presented using MATLAB R2009b and the Psycho-
physics Toolbox (Brainard, 1997).

Binocular eye movements were recorded at 500 Hz with
the SMI HiSpeed system and iView X 2.5, using default
settings.

Stimuli and design Dot sequence stimuli were produced in
order to elicit scanpaths with varying degrees of similarity
between them. Random pairs were constructed to form a
baseline for scanpath similarity against which scanpath sim-
ilarity values for other pairs could be compared. The other
seven types of scanpath pairs each represented a particular
aspect of similarity (Fig. 11). A good scanpath similarity
algorithm should be able to recognize each of these types of
similarity by reporting a high similarity score for that par-
ticular aspect.

4. Reversed

3. Ordinal offset

7. Scaled 8. Duration

one of the eight examples shown. The dot size represents presentation
time. (This figure is presented for clarification only, and these exact dot
sequence pairings were not necessarily used.)
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Eight types of sequence pairs were constructed as follows.
Each type contained ten pairs.

1. Random sequences contained dots with (x, ) coordinates
drawn from a uniform distribution U(0.05, 0.95). Random
scanpaths served to produce baseline scanpath similarity
values, the similarity expected by chance.

2. Spatial offset means that one dot sequence was translated,
with an arbitrarily large spatial offset, in relation to the
other dot sequence in the same pair.

3. Ordinal offset means that one sequence was shifted
(with an ordinal offset) in relation to the other sequence
in the same pair; that is, the dot at position i in one
sequence corresponded to the dot at position 7 + 1 in the
other sequence, and so forth.

4. Reversed pairs contained sequences with the same posi-
tions, but in reversed order; that is, a dot at ordinal
position i in one sequence would be at position 1 — i +
1 in the other sequence, where 1 was the length (number
of dots) of the sequence.

5. AOI border refers to the case in which two sequences
differed only by the fact that the dots were located on
each side of an AOI border, after stimulus space had
been divided into a 5 x 5 grid with equally sized sectors.
Each AOI spanned a grid sector.

6. Local/global sequences were constructed such that two
or more dots in a sequence formed local clusters, where-
as the other dots were farther apart. The global shapes of
two paired sequences were similar, but the local clusters
could differ.

7. Scaled pairs of sequences differed in the degrees to
which they covered the stimulus space. The se-
quence with large coverage was an upscaled, but
otherwise identical, version of the one with small
coverage.

8. Duration sequence pairs again had random positions,
but the durations of each dot and its pair were un-
matched, being drawn at random.

Each sequence contained five dots (/ = 5). The dots were
black (intensity 0) with white centers (255), and presented on
a midgray background (128). The diameter of a dot spanned
half a degree of visual angle. Ten versions of each sequence
pair were generated, giving in total 160 sequences (80 pairs).
Figure 12 shows approximately what a sequence of dots and
its pair looked like to the participants. All sequences except
the random and duration ones were created manually. The
durations for which dots remained visible were randomly
selected from the interval 800—1,500 ms. With the exception
of duration, each dot in one sequence was matched with the
corresponding dot in its pair in terms of presentation time. In
the case of duration, however, the presentation times for dots
were not matched between sequences, but remained random

@ Springer

Fig. 12 Example pair of dot sequences in which Scanpath 1 is an
enlarged version of Scanpath 2 (equivalent to “Scaling”). The legend
and the lines connecting dots were not used in the actual experiment,
where each sequence was shown one dot at a time

(cf. the sizes of the circles for the random and duration patterns
in Fig. 11).

These spatial and temporal restrictions allowed different
properties of the scanpaths to be assessed. For example,
fixation durations should be dissimilar for the duration se-
quence pairs, but the duration dimension should return higher
similarity for the other seven types (where, if Dot 3 in s; was
presented for 900 ms, Dot 3 in s, would also be presented for
900 ms).

Procedure On their arrival, informed consent was obtained
from the participants, in accordance with the ethics policy of
the Humanities Lab at Lund University. Instructions were
available on the computer screen explaining the task, and
the experimenter was present throughout to clarify any
uncertainties that the participants might have. After the
participants had agreed to take part and confirmed that they
understood the task, the experimenter used a 13-point cali-
bration procedure to calibrate the eyetracker, followed
immediately by validation with the four points oblique
to the center. The validation accuracy across all partic-
ipants was 0.91 £ 0.60 deg (x offset) and 0.60 + 1.02 deg
(y offset) (M = SD).

Each trial (i.e., one complete sequence of five dots) began
with a central fixation cross presented for 2,000 ms. Dots
sequences were presented one at a time, with the partici-
pants having been expressly instructed to “look at each dot
in turn as it appears, and remain looking at it while it is still
on the screen, without moving the eyes in anticipation of the
next dot before it has appeared.” The dot sequences were
presented to participants randomly interleaved, so partici-
pants were unaware of the sequence pairings. Accuracy was
stressed to the participants—to look at each dot as directly
as possible—but they were also asked to perform the task at
a natural pace. After half of the sequences had been shown
(80 trials), the participants were given a break, during which



Behav Res (2012) 44:1079-1100

1091

recalibration was carried out if required. A chinrest was used
to maintain a stable viewing position of 670 mm throughout
the experiment. Depending on the participants’ speed at the
task and on the time taken to calibrate and recalibrate the
eyetracker, the experiment took approximately 30—40 min to
complete for one participant.

All participants viewed every sequence. This allowed
us to evaluate scanpath similarity within subjects—that
is, the similarity of the two scanpaths produced when the
same participant viewed a dot sequence and its matched
pair.

Data preprocessing Fixations were detected with the adap-
tive velocity-based algorithm created by Nystrom and
Holmgvist (2010) using the default settings stated in their
report. The first fixation in each trial was excluded, since it
derived from the initial fixation cross.

As an initial check that participants had followed the
instructions and that the recorded eyetracking data had
sufficient accuracy (acceptable offset), the proportions of
raw data samples located inside AOIs were calculated. The
AOIs comprised squares with 4-deg-long sides, centered on
each stimulus dot. If the average proportion over all trials
was below 50 %, then that participant was excluded. This
was the case for one participant only (38 %). In the average
trial for the remaining participants, 75 % of the raw data
samples were located inside an AOI. Furthermore, partici-
pants with a longest common sub-sequence smaller than
three (i.e., poor behavioral performance in following the
dots; see below for details) were also omitted from further
analysis. This criterion excluded another two participants.

Results

The findings of Experiment 2 are organized as follows.
Results that address participants’ performance on the task
are presented first. Then, the main body of the results is split
into two main sections. The first section assesses how well
MultiMatch and ScanMatch would handle the data if they
were collected from ideal viewers—that is, viewers who
would look exactly at the center of each dot every time,
without making any mistakes. The second section carries
out the same comparisons with the actual recorded eye
movement data. Contrasting these two analyses is impor-
tant, because it allowed us to gauge the objective similarity
between the sequences with each dimension of MultiMatch
and ScanMatch, as well as the similarity obtained when a
degree of noise was introduced with real data, as would be
the case in any eye movement experiment.

Task performance To determine how well participants per-
formed the task, each recorded scanpath was first evaluated
against the scanpath from an “ideal viewer”—that is, one

that would immediately take the correct path without mak-
ing any mistakes. The commonality between ideal and ob-
served scanpaths was assessed by computing their longest
common sub-sequence (LCS; Hirschberg, 1977). This meth-
od compares two sequences—in this case, the numbers 1-5
in order, indicating the correct (ideal) sequencing of dots,
versus whatever numbers were generated from the partici-
pants’ actual data (observed). The LCS measure returns the
maximum value if the same order is followed anywhere in
the sequences—that is, irrespective of global differences and
repetitions. In our case, an LCS of 5 would indicate that the
participant successfully looked at the dots in the right order,
regardless of deviations from the sequence along the way.
Since the dots were shown one at the time on the computer
screen and the task was very simple, an average LCS close to
5 could be expected. Figure 13 shows a histogram of the LCSs
for all participants and trial types, and verifies high perfor-
mance, giving an average LCS of 3.88 & 1.14 symbols.

However, it is possible to have an LCS that equals 5 but at
the same time to look around a lot in the stimulus space. This
would give an observed scanpath that was very different from
the ideal one, even though all of the dots have been visited in
the right order. To capture this aspect of task performance, we
also report the numbers and durations of fixations. The aver-
age number of fixations per trial needed to complete the task
was 8.65 + 3.47, with an average fixation duration of 422 +
158 ms. Additional fixations beyond the ideal five are likely to
reflect refixations and pauses with corrective saccades be-
tween dots that are far apart.

Given the data preprocessing steps taken and the behav-
ioral performance measures, it is evident that the remaining
data very well reflected participants who were completing
the dots task properly, but that a certain amount of noise also
remained. To quantify this source of natural variability, we
first calculated the scanpath similarity for ideal viewers, and
then contrasted this with the similarity results for the real
participants’ eye movement data.

1200
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Number of occurences

Fig. 13 Longest common sub-sequence histogram for Experiment 2,
over all trial types and participants
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Table 2 Scanpath similarity for scanpaths from ideal observers

Type of Difference in Pair Vector Difference Direction Length Position Duration ScanMatch
Duration .79 73 .80 .63 .54 40
Spatial offset .87 .86 .81 .82 75 .35
Ordinal offset 78 72 79 .66 .55 5
Reversed 74 .64 78 .66 .88 47
AOI border .89 .88 .87 .89 73 35
Local global 78 72 .76 .76 51 .54
Scaling .90 .88 .87 .84 .66 34
Random .69 .62 .70 .63 .58 .39

Each value should be compared to the baseline from the random scanpaths. For instance, a difference in spatial offset yields a higher (.87) than

random (.69) similarity for the vector-difference dimension of MultiMatch.

Ideal viewers Table 2 presents the scanpath similarities
between ideal pairs of scanpaths using the five dimensions
of MultiMatch (cols. 1-5) and using ScanMatch (col. 6).
These data are from hypothetical ideal viewers who would
look exactly at the center of every dot in all sequences,
without making any mistakes. What we then have are sets of
matched scanpaths—perfectly positioned from a saccade-
targeting point of view—according to the eight sequence
types shown in Fig. 11. The input to MultiMatch consists of
two fixation—saccade sequences generated from the ideal
viewer, whereas the input to ScanMatch consists of two
sequences of AOI labels created by dividing the stimulus
space into a 5 X 5 grid and labeling each “fixation” on the
basis of the grid element (AOI) it landed on (Holmgqyvist et al.,
2011, p. 193). ScanMatch was run using the default settings.

Values in the table indicate the average similarities for all of
the sequence pairings of a particular type. The bottom row
contains the similarities obtained when comparing two scan-
paths with random positions. These values should be used as a
baseline when interpreting the other similarity scores in the
table. Thus, the numeric similarity scores are independent

0.35

between the dimensions of MultiMatch and ScanMatch. The
data are then converted into difference scores in Fig. 14 so that
it is easier to pick out which metrics are doing well, and when.

It can be seen from the table and figure that when the
fixation positions in one scanpath are close to the fixation
positions in the other scanpath (e.g., ordinal offset and local/
global), ScanMatch does very well in capturing the similarity.
Even two scanpaths with reversed order are judged as more
similar than in the random case. However, when other aspects
of similarity, such as spatial offset and scaling, are considered,
the dependency on an AOI division of space in ScanMatch
means that it does not recognize the inherent similarity in
terms of shape between the scanpath pairs. This is better
captured in several of MultiMatch’s five dimensions—vector
difference and direction, in particular.

This exercise with simulated data captures the fundamen-
tal differences between MultiMatch and ScanMatch. It can
be seen in Fig. 14 that MultiMatch never really treats ordinal
offset and local/global as containing as much similarity as
some of the other sequence types, whereas these are the two
where ScanMatch finds the most in common. This is where

Fig. 14 The same data (for
ideal observers) shown as
difference scores. This 0.3F
illustrates the relative
differences on each dimension,
given the different random
baselines
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Table 3 Scanpath similarity for scanpaths within the same participant

Type of Difference in Pair Vector Difference Direction Length Position Duration ScanMatch
Duration .79 .62 .84 70 41 31

Spatial offset .89 .81 90 .78 44 28
Ordinal offset 85 73 .88 .80 42 .46
Reversed 78 .61 .81 T2 41 .36

AOI border 85 .80 85 .82 44 32
Local/global 85 74 .87 81 45 42
Scaling .84 79 .76 79 44 27
Random 75 .58 .81 .63 43 30

Each value should be compared to the baseline from the random scanpaths. For instance, a difference in spatial offset yields a higher (.89) than random
(.75) similarity for the vector-difference dimension of MultiMatch. Numbers in bold font represent similarities that are significantly /arger—that is, more

similar—than the random baseline.

your choice of comparison approach depends critically on
how subtle you expect differences between scanpath pairs to
be. MultiMatch is very sensitive to geometric differences
following sequence alignment (i.e., at the micro level
between saccade vector pairs) but may underrepresent over-
all spatial similarities (as with ordinal offset and local/-
global). ScanMatch, on the other hand, is a spatially more
coarse measure, but this may be a good thing if we want to
identify general differences between scanpaths.

Finally, it is also important to highlight in these data that
MultiMatch tells us what differs between the scanpaths
being compared. For instance, the difference between two
scanpaths, one of which is a reversed copy of the other, is
signaled as a difference in direction and position, but simi-
larity in terms of vectors, length, and duration.

Within-subjects scanpath similarity We now show the
same analysis for the real eye movement data. It is
reasonable to expect that scanpaths recorded from the
same participant over the paired dot sequences will
highly resemble the ideal-viewer data, just with added
spatial error (cf. Exp. 1). The data were thus compared
within subjects using MultiMatch and ScanMatch, as
before. Differences in similarity between the scanpaths
recorded from random dots and the scanpaths recorded
from the other types of dot sequences were tested using
a two-sample Kolmogorov—Smirnov test with a = .01.

Table 3 and Fig. 15 show that every type of difference in
the pairs of dot sequences is reflected in a significant dif-
ference in one or more of the dimensions of MultiMatch or
ScanMatch. Again, ScanMatch is robust to sequence devia-
tions when position similarity is high (e.g., the ordinal-offset
and reversed sequences) and can cope with minor differ-
ences in shape (e.g., local/global). However, ScanMatch
does not do so well when clear geometric similarities fall
outside of AOI boundaries (e.g., spatial offset and scaling).

This is most clearly demonstrated in the AOI-border case, in
which the only difference between the scanpaths is that
fixations are directed to positions on either side of AOI
boundaries, yet no similarity is detected by ScanMatch here,
as compared to MultiMatch.

Attention should also be drawn to two particular cases of
matched sequence pairs: spatial offset and scaling. Here,
MultiMatch again achieved its objective to capture similar-
ity in shape very well. Direction returns very large differ-
ences in similarity from the random baseline (.23) for the
spatial-offset sequence types, whereas the difference from
baseline in the position dimension is much smaller (.15).
This is exactly what would be expected when the main
difference between the two matched sequences is a shift in
spatial position but an exact retention of scanpath shape.
The ability of MultiMatch to capture shape similarity is also
illustrated in the case of scaling, where all that has changed
is the lengths of the saccades, and indeed, the length dimen-
sion no longer reaches statistical significance.

However, there are some downsides to the degree of
dimensionality offered by MultiMatch in these analyses.
First, the results can be difficult to interpret. One needs to
keep in mind that the scanpaths are first temporally aligned
before comparison (see the “Alignment” section above).
Second, as the dimensions are independent,” it is problem-
atic to compare between them. Third, with no real standard
against which to gauge similarity, some results could be
misleading. For example, MultiMatch still returns high
(i.e., above chance) similarity on the position dimension
between scaled scanpath pairs (Fig. 15). Perhaps it is more
appropriate that ScanMatch finds even less position similar-
ity in scaled scanpath pairs than between two randomly
generated scanpaths (as indicated by the negative difference

2 Note, however, that vector difference is essentially the combination
of direction and length.
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Fig. 15 The same data (with real eye movements) shown as difference scores. This illustrates the relative difference on each dimension, given the
different random baselines. The same results as in Table 3 are significant at the p<.01 level with one-sample ¢ tests; these are indicated with asterisks

score for the scaling sequences with ScanMatch). Again,
this is a matter of measurement sensitivity and understand-
ing the eye movement data that you collect.

Lastly, an interesting pattern emerges if we compare the
results for the duration dimension between the ideal and real
eye movement data. With ideal viewers (Table 2), we can
see that duration similarity is high for all cases in which
corresponding points in space are more likely to be aligned
between the pairs (spatial offset, reversed, AOI border). As,
apart from duration sequence types, dot presentation times
were matched ordinally, it makes sense that when equivalent
dots are compared, higher-duration similarities are
returned.> However, this was not the case with the real eye
movement data (Table 3). Here, the similarity in fixation
durations never exceeded .45. This finding will be returned
to in the Discussion section that follows.

Discussion

Using real eye movement data, Experiment 2 revealed that
MultiMatch is successful in detecting similarities in scan-
path shape, as well as being sensitive to position, order, and
fixation duration, the minimum requirements for scanpath
comparisons set out in the “What’s Missing in Scanpath
Comparison?” section. This goes some way to quantifying
the intuitive sense of similarity that we have for certain
scanpath visualizations.

While similarity was identified by MultiMatch in cases
where ScanMatch fell short, it should be noted that the

3 Note that, although dot presentation times in the random case were
matched between sequence pairs, because the positions were drawn at
random, it is less likely that Dot 1 in s; would be aligned to Dot 1 in s,
for comparison, and so on for Dots 2, 3, and so forth.
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default settings were used with ScanMatch. These could
have been customized according to the task constraints
(see “MultiMatch and ScanMatch” in the General Discus-
sion below). Nevertheless, this introduces a certain subjec-
tivity on the part of the experimenter in terms of where
similarity is known or expected to occur, whereas Multi-
Match returns a range of similarity metrics that are indepen-
dent of stimulus features and spatial organization.

The fact that we found high duration similarities when
equivalent points were more likely to be compared in the
ideal, but not the real, eye movement data is noteworthy. It
supports findings that fixation duration is idiosyncratic
(Andrews & Coppola, 1999; Rayner, Li, Williams, Cave,
& Well, 2007), but it is also likely to reflect the fact that real
eye movement data contain instances of refixations on the
target dots, as well as occurrences in which saccades are
launched from farther away when the dots are not presented
in close proximity to each other. This would create a vari-
able time lag before the target fixation commences that is
absent in the ideal data. From these findings, it seems that a
push—pull relationship between maintaining fixation and
initiating a saccade is more at play here than is the artificial
task of looking at a dot for the whole length of time that it is
shown (cf. Findlay & Walker, 1999). Thus, our data support
previous findings that it is difficult to exert voluntary control
over fixation durations (cf. Mosimann, Felblinger, Colloby,
& Miiri, 2004).

Experiment 2 was purposefully designed to demonstrate
the strengths of MultiMatch, and in this regard it is not
surprising that it outperformed ScanMatch. We can attribute
the poorer performance of ScanMatch to its use of AOIs, not
to the method itself, which, as we have seen in the intro-
duction, provides very useful solutions to some of the main
problems in scanpath research.
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General discussion

In this article, the application of a new method of scanpath
comparison was assessed. Our method, MultiMatch, based
on Jarodzka, Holmgqvist, and Nystrom (2010), performs
comparably to ScanMatch (Cristino et al., 2010) with both
simulated (Exp. 1) and real (Exp. 2) eye movement data.
MultiMatch provides the flexibility to compare scanpaths in
multiple dimensions, a feature that ScanMatch does not
offer. The work presented here demonstrates the ability of
MultiMatch to capture zow two scanpaths differ, rather than
simply returning a value that says that they are not the same
but does not reveal why.

The converse of this is that MultiMatch is able to identify
how scanpaths can be similar in one respect, but different in
another. For example, when one scanpath is a scaled version
of another, the difference is in length (cf. saccadic ampli-
tude), but otherwise their spatial properties are very much
alike (see Table 3).

MultiMatch and ScanMatch

An obvious question that arises is why MultiMatch returns
such high similarity values in relation to ScanMatch, and
whether this is appropriate. The reason is that, because Multi-
Match is AOI-independent, it is more sensitive to small com-
monalities between scanpaths. This is particularly true of the
position dimension, since we saw in both Experiments 1 and 2
that MultMatch is a better similarity detector on this dimen-
sion (see Fig. 10 and Table 3). However, greater sensitivity
may not always be appropriate; it will increase the probability
of finding similarity by chance (notice that the baseline sim-
ilarity, even for the randomly generated scanpaths, is already
high on the vector-difference and length dimensions, in par-
ticular). It is therefore always advisable to compare results to
random baselines when using MultiMatch; otherwise, it
would be theoretically possible to identify similarity between
any two sequences.

Another point often returned to in this article is the use of
AOIs. We have frequently argued that the absence of AOIs is a
major advantage of MultiMatch over ScanMatch. However,
presumably it is technically possible to remove the need for
AOIs from the implementation of ScanMatch? This would
necessitate the use of absolute Euclidean differences in posi-
tion in the substitution matrix. It would be interesting to see
whether this is a computationally pragmatic solution, and how
the results would compare if it were implemented.

Again, related to the substitution matrix in ScanMatch,
one may also challenge our results on the grounds that we
did not weight the matrix beyond the default settings, and
therefore it would be possible to push ScanMatch much
further with our data. This is a valid criticism. However, it
is not obvious what the substitution matrix should be

weighted in terms of. Clearly, our stimuli here contained
no semantic content, being simple dot sequences, and there-
fore weighting the substitution matrix by semantic related-
ness would not be appropriate. Likewise, there are no low-
level visual properties that some stimuli could share in
common (e.g., color or luminance). ScanMatch could take
into account the spatial distances between dots to greater
effect. In fact, Cristino et al. (2010, p. 694) did recommend
setting the distance-based substitution matrix to two stan-
dard deviations of all saccadic amplitudes in the experiment
at hand. We fully acknowledge that to do so could have a
big impact on the results. However, apart from this distance-
setting recommendation, we argue that when choosing
weightings based on stimulus attributes, the researcher has
to have some prior knowledge of the similarity result
expected. In the context of a real experiment not set up to
study scanpath algorithms per se, this could introduce a
level of subjective bias on the part of the experimenter.

Of course, our stimuli in Experiment 2 were purposefully
designed to demonstrate MultiMatch’s strengths, and in this
regard it was an unfair test. Even if we had used a distance
setting of two standard deviations of saccade size in the
substitution matrix of ScanMatch, it is unlikely that the
results would be dramatically different, since we purpose-
fully manipulated shape in many of our conditions, and
where we did not, ScanMatch did as well as or better than
MultiMatch. Future research should test the relative
strengths of both algorithms with the kinds of experiments
employed in popular research areas (e.g., scene perception,
mental imagery, or embodiment of cognition). It is likely
that ScanMatch (with its better ability to define and predict
scanpath similarity a priori) will be more suited for some
research questions, while MultiMatch (with its better ability
to identify different kinds of similarity independently of the
stimuli) will be more suited to others.

MultiMatch settings

We have repeatedly argued against quantization of scanpath
representations prior to a comparison; however, there is
inherent quantization in the simplification steps of Multi-
Match. Amplitude- and direction-based clustering (Fig. 7)
reduces information from the original scanpath, effectively
contradicting our own position maxim from the introduc-
tion. The goal, though, is that only redundant information is
dismissed—more so than is the case with previous scanpath
comparison techniques, especially those relying on AOIs.
The remaining, simplified scanpath is a truer representation
than either letter strings (weighted or not) or positions in x, y
space alone, the two predominant principles of ScanMatch
and Mannan linear distance, respectively. However, this is
only the case if the thresholds are chosen appropriately, a
matter that we now turn to.
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Why is it necessary to quantize at all? Scanpaths are
intrinsically complex, hence the difficulty in developing
algorithms that suitably convey their properties. Some com-
promise in data reduction must be made, otherwise the
comparison will not be computationally viable and will be
near impossible to interpret. We believe that MultiMatch
provides a good solution. Moreover, it should be noted that
it is possible to change the threshold settings for simplifica-
tion in MultiMatch.* This would depend on the nature of
your research. For example, in reading research, it would be
inappropriate to use a high direction-based simplification
setting, because this could compress all saccades across
the text into a straight line (one vector) apart from regres-
sions and return sweeps. The influence of thresholds on
scanpath similarity for different tasks is a worthwhile ave-
nue for further research with MultiMatch. In the present
article, the threshold settings were effectively arbitrary
(10 % of screen diagonal for amplitude, 45 deg for direction,
as stated above in the “Simplification” section). It would be
very useful to quantify nonarbitrary thresholds, perhaps on
the basis of the distinction between ambient and focal scan-
ning (cf. Unema, Pannasch, Joos, & Velichkovsky, 2005).
But, as it stands, there is no such distinction; in fact, it is
questionable whether distinct categories of saccades are
associated with global and local subscans at all. The fact
that the researcher has the option to effectively “tune the
level of quantization” and measure its effects should, in this
context, then be seen as an advantage. However, this is not
an excuse for choosing threshold values that are not theo-
retically motivated. As quantization noise is unavoidable, it
should at least be based on sound assumptions about the
oculomotor system. Exactly what these would be for the
optimal threshold settings in MultiMatch remains to be seen.

There is also the choice of setting which dimension to
align scanpaths on the basis of. We have used vector differ-
ence, because one of the aims of this article was to highlight
the importance of scanpath shape. However, nothing pro-
hibits the user from aligning on the basis of other dimen-
sions. For example, it may be highly relevant to align on the
basis of fixation duration. As we have seen with the matched
dot pairs in Experiment 2, temporal alignment based on
shape does not necessarily align corresponding dot pairs
for comparison when their presentation in space is random
(Table 2). This returns low duration similarity scores even
though, sequentially, each dot was presented for the same
duration as its mate. Alignment on the basis of duration
would allow similarity in fixation durations to be detected

4 Using thresholds per se means that we introduce some of the quan-
tization noise that we are trying to avoid, and in terms of the direction
threshold, this mean that some fixations will be excluded (unless steps
are taken, as suggested at the end of the “Simplification” section).
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independently of space—however, possibly at the expense
of finding genuine similarity in the other (spatial) dimen-
sions. Deciding which threshold to use for alignment is
another setting choice for the researcher. It may be appro-
priate to align scanpaths according to the dimension in
which you expect to find a difference, providing that this
choice is theoretically motivated.

Which dimension is most relevant? There is a danger with
MultiMatch that in the absence of a clear hypothesis, simi-
larity could be found without knowing why. In fact, because
the number of possible ways in which two scanpaths can be
similar is greater, so is the chance of making a Type I error.
Therefore, some guidance is needed as to which dimension
to choose from the output. Perhaps the best way to do this is
with some example scenarios of experiments:

1. Expertise: Say that we have a between-groups design in
which expert and novice radiographers each examine
the same chest X-rays for lung nodules (cf. Donovan,
Manning, & Crawford, 2008). Which dimensions are
important here? First and foremost, we want to know
whether the places containing tumors on the images are
fixated, so position becomes our primary concern. Are
expert radiographers a more homogeneous group than
novices in terms of the ordinal sequence of the positions
that they fixate? Conversely, do novices consistently
fixate the wrong positions? If some spatial positions in
the stimulus are identical between groups, and fixation
of these locations is a prerequisite for correct task com-
pletion, then the position dimension should be the pri-
mary concern. Note, however, that by position we mean
the exact position in x, y space, not spatially distributed
or semantic AOls.

2. Visual search strategies: We know that there is a tight
relationship between saccade amplitude and fixation
time in visual search (e.g., Hooge & Erkelens, 1996).
If the search task is difficult—due to crowding, for
example—we can expect longer fixation durations and
shorter saccade amplitudes (Vlaskamp & Hooge, 2006).
If we make the task easier—by increasing the target—
distractor discriminability, for instance—fixations be-
come shorter, and saccades longer and more direct. This
is further compounded by the fact that fixation durations
are highly idiosyncratic (Andrews & Coppola, 1999;
Rayner et al., 2007): It is likely that duration similarity
will be higher in MultiMatch when comparing the scan-
paths of the same person on different images than when
comparing different people on the same image. This
demonstrates the importance of knowing your stimuli,
and the potential search strategies that your participants
will use, before making predictions on the basis of the
duration and length dimensions. Fixation duration
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should vary more between participants, whereas saccade
amplitude (length) may be more sensitive to stimuli,
depending on visual clutter.

3. Gaze biases: There is growing concern with biases in
where we look, whether this be systematic tendencies to
saccade toward the center of a scene (Tatler, 2007) or
horizon biases along the scene meridian (Foulsham &
Kingstone, 2010; Foulsham, Kingstone, & Underwood,
2008). As well as the obvious case of being able to
differentiate between two scanpaths containing the same
positions but fixated in the opposite order (e.g., the
reversed scanpaths in Fig. 11), the instances of gaze
bias mentioned above are times when we should be
developing our hypotheses in terms of the direction
dimension when using MultiMatch. If a rose-plot direc-
tion histogram is a suitable format for your results, or
you are interested in saccadic curvature, it is likely that
the sequence of direction similarity produced by Multi-
Match would be revealing, too.

4. Spatial transformations: In several instances, it would
be helpful to quantify shape information more compre-
hensively outside of the mental imagery domain and
make predictions on the basis of the vector-difference
dimension. Suppose that we were investigating commu-
nication in face-to-face interaction with mobile eyetrack-
ing devices mounted on two participants conversing (e.g.,
Gullberg & Holmgqvist, 1999). Here, what is “left” for
participant A will be “right” for participant B, and vice
versa. The vector-difference dimension comes into its
own here, because shape remains intact, despite the spatial
translation. In other instances, however, related to the
particular paradigm that you are working with, you may
wish to prioritize predictions about vector similarity. The
double-step paradigm in oculomotor planning research,
for instance (Schlag & Schlag-Rey, 2002), raises a num-
ber of testable hypotheses about the deviations in saccade
direction and amplitude (i.e., vector) from the planned
saccade trajectory.

The note of caution here should be that, just because
MultiMatch returns similarity on a particular dimension,
does not necessarily mean that this similarity is meaningful,
unless you know why. Furthermore, it can also be very
revealing if dimensions are not showing a difference: The
lack of similarity on the direction and length dimensions,
respectively, differentiates the reversed and scaled scanpaths
in Fig. 15.

Implications and future research
Pairwise versus groupwise similarity Something that Multi-

Match cannot provide is groupwise scanpath similarity, in
the way that attention maps do. We have stated from the

outset that this is a pairwise comparison algorithm (like
Levenshtein distance, ScanMatch, and Mannan linear dis-
tance) for taking two vector strings and identifying com-
monalities between them. Given many participants and only
one task (e.g., free web search), it is not immediately obvi-
ous which scanpaths should be compared without some
justification for matching two participants together. Thus,
for larger-scale, but ultimately more coarse, analysis, atten-
tion map difference measures (e.g., Dempere-Marco et al.,
2006; Ouerhani et al., 2004; Rajashekar et al., 2004) or
transition matrix measures (e.g., Holmqvist, Holsanova,
Barthelson, & Lundqvist, 2003; Hyo6nd, Lorch, & Rinck,
2003) may be more satisfactory. Nevertheless, pairwise
approaches like MultiMatch could be very revealing for
such research purposes if the task and design were well
enough controlled. The strength of MultiMatch for future
research lies in its ability to more rigorously test hypotheses
relating to scanpath theory: for example, the similarity in
viewing strategies between participants for similar tasks, or
the similarity within participants when viewing the same
image. To this end, it may be particularly powerful for
encoding-recognition paradigms in scene perception
research.

Different tasks, different similarity We touched on the
issues surrounding scanpath similarity for different tasks
and stimuli when offering advice above about which
dimensions are most relevant. It would be worthwhile
to corroborate these suggestions and a number of other
avenues that remain unexplored at present. Perhaps po-
sition, duration, and direction would be useful for iden-
tifying scanpath similarity in tasks such as learning
strategies in educational software (e.g., Karemaker,
Pitchford, & O’Malley, 2010) or for distinguishing be-
tween experts’ and novices’ eye movement profiles
(e.g., Jarodzka, Scheiter, Gerjets, & Van Gog, 2010),
so as to establish better eye movement training techni-
ques (e.g., Dewhurst & Crundall, 2008; Van Gog,
Jarodzka, Scheiter, Gerjets, & Paas, 2009). This would
make sense, since acquiring visual skill involves learn-
ing both the importance of fixed and variable positions
and the ability to transition between them, as well as
how long we look where, which is often argued to be a
good indicator of processing. To tackle which combina-
tion of dimensions apply in these scenarios, a factor
analysis could be conducted to see how similarity clus-
ters along MultiMatch’s dimensions. This could be ap-
plied in a number of different task settings between
different fields of research.

How important is the fixation detection algorithm? Some-

thing that is often overlooked in eye movement research is
the importance of the fixation detection algorithm. Here we
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used a saccadic-velocity-based method (Nystrom &
Holmqvist, 2010) that, as well as detecting saccades and
fixations, also detects glissades (small “wobbles” of the eye
appended to around 50 % of saccades). The very fact that
analysis of glissadic eye movement events does not come as
standard in commonly used event detection algorithms
(e.g., SR Research, 2007) demonstrates the sensitivity
of established measures, such as fixation duration and
saccadic amplitude, to the algorithm used to parse raw
sample data from the eyetracker. To this extent, the event
detection algorithm used prior to scanpath comparison is
likely to affect the similarity results obtained. This could
be particularly true for MultiMatch because, as we have
seen, it can be sensitive to small differences between two
saccade vector strings (depending on the threshold set-
tings for simplification described earlier). It would be
interesting to see whether two different fixation detection
algorithms produce different scanpath similarity results
for the same data set (either using MultiMatch or one
of the other scanpath comparison principles described
herein). If this is the case, then this should caution eye
movement researchers as to the root cause of scanpath
similarity—whether this be the system and tools used to
find it (undermining conclusions about human vision) or
the participants under study (supporting conclusions
about the etiology of eye movement sequences).

Summary and conclusions

In this article, we have tested a new method for scanpath
comparison previously described in Jarodzka, Holmqvist,
and Nystrom (2010). We showed that our method, which
we here name “MultiMatch,” can detect scanpath similarity
across several dimensions: saccadic amplitude (length), di-
rection, fixation position, fixation duration, and scanpath
shape (vector difference). As scanpaths are inherently com-
plex entities in eye movement research, we showed, both
with artificial and real eye movement data, that this is a
worthwhile step in being able to more comprehensively
analyze scanpaths in a way that simultaneously captures
both their spatial and temporal characteristics. Are two
scanpaths similar? With the use of multiple dimensions,
this article shows that it really does depend on how you
look at it.

Using MultiMatch

If you would like to use MultiMatch, please contact one of the
authors, who will be happy to supply code (in MATLAB).
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