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Abstract—Mobile edge computing is an emerging technology
to offer resource-intensive yet delay-sensitive applications from
the edge of mobile networks, where a major challenge is to
allocate limited edge resources to competing demands. While
prior works often make a simplifying assumption that resources
assigned to different users are non-sharable, this assumption
does not hold for storage resources, where users interested
in services (e.g., data analytics) based on the same set of
data/code can share storage resource. Meanwhile, serving each
user request also consumes non-sharable resources (e.g., CPU
cycles, bandwidth). We study the optimal provisioning of edge
services with non-trivial demands of both sharable (storage) and
non-sharable (communication, computation) resources via joint
service placement and request scheduling. In the homogeneous
case, we show that while the problem is polynomial-time solvable
without storage constraints, it is NP-hard even if each edge
cloud has unlimited communication or computation resources.
We further show that the hardness is caused by the service
placement subproblem, while the request scheduling subproblem
is polynomial-time solvable via maximum-flow algorithms. In
the general case, both subproblems are NP-hard. We develop
a constant-factor approximation algorithm for the homogeneous
case and efficient heuristics for the general case. Our trace-driven
simulations show that the proposed algorithms, especially the
approximation algorithm, can achieve near-optimal performance,
serving 2–3 times more requests than a baseline solution that
optimizes service placement and request scheduling separately.

Index Terms—mobile edge computing; service placement; re-
quest scheduling; complexity analysis; approximation algorithm.

I. INTRODUCTION

Mobile edge computing [1], [2] has been one of the fastest-
rising technology trends for offering resource-intensive yet
delay-sensitive applications from the edge of mobile networks.
Compared to the approaches of running such applications
on mobile devices or servers located deep in the Internet,
mobile edge computing takes the approach of running these
applications on small cloud-computing platforms deployed at
the network edge (e.g., access points or base stations), referred
to as edge clouds [3] (a.k.a. cloudlets [4], fog [5], follow me
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cloud [6], and micro clouds [7]). Mobile edge computing
allows users to exploit the power of cloud computing without
incurring the high latency in communicating to remote clouds.

A major limitation in mobile edge computing is that
compared with traditional data centers, each edge cloud
(consisting of a single server or a small cluster of co-located
servers) is much more limited in resources. With the help
of virtualization techniques such as virtual machines (VM)
[8], [9] and containers [10], [11], the research community,
industry players, and standardization bodies have formed
several initiatives [12], [13], [14] to create a standardized
open edge computing environment, such that edge clouds
within the same geographical region will form a shared
resource pool. The main question is how to optimally allocate
resources from this pool to competing demands.

While having received significant attention in recent years,
existing solutions [15], [16], [3], [17], [18] mostly assume ad-
ditive resource consumption, i.e., the total resource consump-
tion on an edge cloud is the sum of all the demands scheduled
to it. While this assumption holds for resources like CPU
cycles and link bandwidth, where each user request is served
by a dedicated slice of resource, it fails to fully characterize the
demands of data analytics services. In data analytics services
such as augmented reality and video analytics [19], serving
each request requires both a non-trivial amount of computation
and data on the server, and a non-trivial amount of data from
the user. For example, in augmented reality, the server needs
to store the object database and the (pre-trained) visual recog-
nition models, and the user needs to upload the current camera
view, on which the server runs classification/object recognition
and returns the augmented information in real time.

When providing such services to a large number of users,
it may not always be possible to serve all the users from the
network edge, or serve every user from its closest edge cloud.
As was shown in [20], [21], [22], users can benefit from
resource pooling at the scale of metropolitan area networks
(MAN), which allows users to access services on edge clouds
outside their one-hop communication range. In terms of
resource consumption, users querying against the same server
dataset (e.g., object database related to the same region) can
be served by the same service replica, while serving each



user request (e.g., augmenting a specific view) consumes a
dedicated share of CPU and bandwidth (for uploading the
camera view). The fundamental problem in provisioning
such services from the network edge is how to optimally
place services in edge clouds and schedule user requests to
the placed services, while considering both sharable and
non-sharable resources1. While augmented reality and video
analytics have been identified by ETSI as examples of high-
value applications for mobile edge computing [19], the same
problem applies to any applications where users interested in
the same service can share the same copy of data/code, while
individual service requests compete for CPU and bandwidth.

Treating each type of data analytics as a “service”,
we address the above problem by formulating an integer
linear program (ILP) aiming at serving the maximum user
requests by a given pool of edge clouds, each with limited
communication, computation, and storage capacities. We
jointly study two related subproblems: (1) service placement,
which determines where to place each service (including data
and code), allowing multiple replicas per service, within the
storage capacities of edge clouds, and (2) request scheduling,
which determines whether/where to schedule each request
subject to wireless communication capacities between users
and edge clouds, computation capacities of edge clouds, and
other feasibility constraints (e.g., maximum tolerable latency),
as well as a constraint that the edge cloud scheduled to
process a request must have a replica of the requested service.

A. Related Work
Research on mobile edge computing has evolved to allow

users to access services on edge servers that are not within
their one-hop communication range [20], [21], [22]. These
works have proposed algorithms to place edge servers and
assign users to the servers, so that all the users can be covered
within a reasonable delay.

Allowing a user to access multiple edge servers opens up
the problem of workload scheduling. There is a rich literature
on edge workload scheduling, with various objectives (e.g.,
minimizing the cost [18] or the makespan [23]), workload
models (e.g., fluid model [18], tasks [23], multi-component
applications [24]), and edge cloud architectures (e.g., flat
versus hierarchical [25]). These works typically assume that
each workload requires its own resource for execution, i.e.,
the resources are non-sharable. While this assumption usually
holds for computation and communication resources (assum-
ing unicasts), it can be too restrictive for storage resources.
Note that although [23] allows each service replica to serve
multiple jobs, it does not optimize the service placement.

Another line of related work is content placement in cache
networks under cache capacity constraints, based on predicted
content popularities [26], [27] or request history [28]. In
particular, the content placement problem has been studied
in a cooperative cache cluster where a cache can serve
requests from other caches [29]. The problem of joint content
placement and request routing has also been studied [30].

1Here, sharable means a unit of resource can serve more than one unit
of demand, and non-sharable means a unit of resource can only serve a
unit of demand (even if the physical resource, e.g., CPU/link, can be shared
temporally/spectrally).

However, the content placement problem only focuses on the
sharable resource of cache space, ignoring the other types
of resources (e.g., CPU, bandwidth) consumed additively in
serving individual user requests. Although [28] was motivated
by “hosting services”, the solution was actually about caching.

Multiple types of resources (e.g., storage, computation,
communication) have been considered in the content/service
distribution problem [31], [32]. In [31], a mixed integer linear
program (MILP) was formulated for placing service func-
tions and activating storage, computation, and communication
resources in a distributed cloud network. In [32], a similar
MILP was formulated for placing content. However, no formal
complexity analysis or algorithm with performance guarantee
was provided. A dynamic service placement and workload
scheduling framework was proposed in [33] to jointly con-
sider storage and computation resources, but there is no hard
constraint on computation resources and no consideration of
bandwidth limitation. Recently, [34] proposed an algorithm
with performance guarantee for placing virtual network func-
tions (VNFs) in distributed cloud networks and routing service
flows among the placed VNFs under chaining constraints.
However, all the resources (CPU, memory, bandwidth) are
consumed additively by service flows (i.e., non-sharable). A
work ostensibly similar to ours is [35], which studied joint
resource placement and assignment in distributed networks
with multiple resource types. However, the work assumed that
each placed resource can only serve one request, i.e., non-
sharable, which is critically different from our problem that
considers both sharable and non-sharable resources, leading to
very different conclusions: the problem in [35] is polynomial-
time solvable, but our problem is NP-hard even in several
special cases (Section III).

To our knowledge, we are the first to rigorously study
joint service placement and request scheduling in mobile
edge computing, while simultaneously considering hard con-
straints on both communication/computation resources that are
consumed additively and storage resources that are sharable
among requests of the same type.

B. Summary of Contributions
We consider the problem of joint service placement and

request scheduling in edge clouds. Our contributions are:
1) We formulate the problem as an integer linear program

(ILP) aiming at serving the maximum number of user requests
using limited communication, computation, and storage re-
sources per edge cloud, considering that the storage resource
may be shared by requests of the same service.

2) We analyze the complexity of the problem in both the
general case and important special cases. We show that not
only the general case is NP-hard, but the special case of
homogeneous edge clouds and homogeneous services is also
NP-hard, and the hardness remains even in more special cases
when each edge cloud has unlimited communication or com-
putation resources. We further show that in the homogeneous
case, the hardness is caused by the service placement subprob-
lem, while in the general case, both the service placement sub-
problem and the request scheduling subproblem are NP-hard.

3) We propose polynomial-time solutions. In the homoge-
neous case, we show that the optimal resource scheduling (un-



TABLE I
NOTATIONS

Symbol Meaning
N set of edge clouds
U set of users (user ↔ user request)
L set of all possible services

nu ∈ N edge cloud covering user u
lu ∈ L service requested by user u

aun ∈ {0, 1} whether edge cloud n is allowed to serve user u
Un set of users covered by edge cloud n

K, W , R communication, computation, and storage ca-
pacities per edge cloud (homogeneous case)

xln ∈ {0, 1} indicator of placing service l at edge cloud n

yun ∈ {0, 1} indicator of scheduling user u to edge cloud n
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Fig. 1. System model, where different colors represent different types of
services (R = 1, W = 2, K = 3).

der a given service placement) can be computed in polynomial
time by converting it to a maximum flow problem. We further
show that under certain conditions, combining this solution
with greedy service placement gives an overall solution with
1/2-approximation to the optimum. In the general case, we
develop a heuristic that combines greedy service placement
with greedy request scheduling, and a heuristic based on linear
program (LP) relaxation and rounding.

4) We evaluate the proposed solutions via trace-driven
simulations. Our results show that the proposed solutions can
serve 2–3 times more requests than a baseline solution that
separately optimizes service placement and request scheduling.
Moreover, the approximation algorithm achieves near-optimal
performance, even under prediction errors in user demands.

Roadmap. Section II formulates the problem in the
homogeneous case. Section III analyzes the complexity of
the problem, and Section IV presents the proposed solutions.
Section V extends the formulation and the solutions to the
heterogeneous case. Section VI evaluates our solutions against
benchmarks. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

We start by formally defining our model of the mobile edge
computing system and formulating our resource provisioning
problem. Table I summarizes the main notations, where the last
two are decision variables and the rest are input parameters.

A. System Model

As illustrated in Fig. 1, we consider a mobile edge com-
puting system consisting of a set of edge clouds N , a set
of services L (each encapsulating the data and the code for
the service), and a set of user-generated service requests U .
Each edge cloud is assumed to be associated with a wireless
access point (e.g., base station, WiFi access point) covering
a local area referred to as a cell. We assume that the cells
collectively cover all the users (as uncovered users have to be
ignored) and each user is associated with only one cell. For
simplicity, we will refer to a user request as a “user”. The same
user generating multiple requests will be modeled as multiple
collocated users (possibly requesting different services).

Each edge cloud has certain communication, computation,
and storage resources, and the edge clouds in N form a
resource pool that serves the users collaboratively. We assume
that the edge clouds are connected by backhaul links that
can be used to send requests/responses between edge clouds,
which allows a user to be served by a non-local edge cloud.
Specifically, let nu ∈ N denote the edge cloud covering
(i.e., directly associated with) user u, and lu ∈ L denote the
service requested by user u. We allow the user to be served
from any edge cloud within a candidate set Nu ⊆ N , as
long as the resource constraints specified below are satisfied.
Parameter Nu is used to capture predetermined requirements
on candidate servers, such as quality of service requirements
(e.g., edge clouds reachable within a certain latency), hardware
requirements (e.g., edge clouds with GPU), and security
requirements. For ease of presentation, we encode Nu by
indicators {aun}n∈N , where aun = 1 if and only if n ∈ Nu.
Let Un , {u ∈ U : nu = n} be the set of users covered by
edge cloud n.

We consider three types of resource constraints: (1) the com-
munication capacity of the wireless access point associated
with each edge cloud limits the number of users the edge
cloud can admit, i.e., receive requests and return responses
for2, (2) the computation capacity of each edge cloud limits
the number of users the edge cloud can serve, i.e., process
requests for, and (3) the storage capacity of each edge cloud
limits the number of service replicas the edge cloud can store
(and hence the number of different services it can provide).
As a starting point, we consider the homogeneous case with
identical capacities for all the edge clouds and identical
demands for all the users, which is already challenging as
shown in Section III. In this case, the communication capacity
is simply measured by the maximum number of users admitted
by an edge cloud, denoted by K; the computation capacity
is the maximum number of users served by an edge cloud,
denoted by W ; the storage capacity is the maximum number
of different services an edge cloud can provide, denoted by R.
Note that only the edge cloud nu directly covering a user u
can admit it into the mobile edge computing system, but any
edge cloud in the candidate set Nu can serve its request. We
will address the heterogeneous case in Section V.

2We focus on communication capacity constraints imposed by the last-
hop wireless communications between the users and their access points
instead of the inter-edge cloud communications, because the last-hop capacity
is typically much smaller than the capacity in the backhaul.



B. Optimization Formulation

Our goal is to optimally provision the services such that we
can serve the maximum number of users (i.e., user requests)
from the network edge within the resource constraints. As
illustrated in Fig. 1, this includes determining which services
to store at each edge cloud, i.e., service placement, and how to
schedule users to edge clouds hosting their requested services,
i.e., request scheduling. The latter also implies admission
control, as users not scheduled to any edge cloud will be
dropped. Here “dropping” a user just means not serving it
from the edge; a dropped user can be served from the backend
cloud, typically at a higher (performance/operational) cost.

To model the above decisions, we introduce two sets of
decision variables: xln ∈ {0, 1} (l ∈ L, n ∈ N ), which
indicates whether service l is placed at edge cloud n, and
yun ∈ {0, 1} (u ∈ U , n ∈ N ), which indicates whether user
u is scheduled onto edge cloud n. Here x , (xln)l∈L,n∈N
denotes the service placement, and y , (yun)u∈U,n∈N denotes
the request scheduling. A user u is admitted if and only if∑

n∈N yun > 0. Using these variables, we can formulate our
problem as an integer linear program (ILP), called the Service
Placement and Request Scheduling (SPRS) problem:

max
∑
u∈U

∑
n∈N

yun (1a)

s.t.
∑
n∈N

yun ≤ 1, ∀u ∈ U, (1b)∑
l∈L

xln ≤ R, ∀n ∈ N, (1c)∑
u∈Un

∑
n′∈N

yun′ ≤ K, ∀n ∈ N, (1d)∑
u∈U

yun ≤W, ∀n ∈ N, (1e)

yun ≤ aun · xlun, ∀u ∈ U, n ∈ N, (1f)
xln, yun ∈ {0, 1}, ∀l ∈ L, u ∈ U, n ∈ N. (1g)

Objective (1a) maximizes the number of served users. Con-
straint (1b) ensures that each user is only counted once.
Constraints (1c) and (1f) ensure that each edge cloud stores
no more than R services and that an edge cloud can only
serve a user if it is a candidate server and has the requested
service. Constraint (1e) ensures that no more than W users are
scheduled onto each edge cloud, and constraint (1d) ensures
that each edge cloud admits (i.e., communicates over the
wireless link with) no more than K users within its coverage,
regardless of where they are scheduled. Finally, (1g) ensures
that all the decision variables are indicators.

Remark: While our explicit objective is to maximize the
number of served users, the formulation equivalently mini-
mizes the cost in serving all the users, where users not served
by edge clouds will be served by the backend cloud at a higher
cost. The assumption is that serving each user at the edge
provides a fixed cost saving, and the cost saving is the same
for all the users. While the objective function (1a) gives equal
weights to all yun’s, we can add weights to reflect different
cost savings for different users and/or edge clouds serving the
users, and our solutions can be easily extended for this case.

III. COMPLEXITY ANALYSIS

The SPRS problem (1) is related to but different from
several known problems in the theory literature:
• SPRS differs from the data placement problem (DPP)

[36], which generalizes the uncapacitated facility location
problem. DPP only considers the resource of cache space that
can be shared among requests for the same data object.
• SPRS differs from the generalized assignment problem

(GAP) [37], which generalizes the knapsack and the multiple
knapsack problems. In GAP, packing an item into a bin only
consumes resource from the selected bin, whereas in SPRS,
scheduling a user (i.e., user request) to an edge cloud not
only consumes storage and computation resources at this edge
cloud, but also consumes communication resources at the
(possibly different) edge cloud covering the user.
• SPRS also differs from the separable assignment problem

(SAP) [38], which allows general packing constraints for each
bin that can model both non-sharable and sharable resources.
As a special case, SAP includes the distributed caching
problem (DCP) [38], which is about assigning content requests
to caches subject to cache storage and bandwidth constraints.
In DCP, requests for the same content can be served by the
same content replica, but each request consumes a certain
amount of bandwidth. Nevertheless, SAP (or DCP) requires
the resource consumption to be limited to the selected bin (or
cache), which differs from SPRS.

Intuitively, consuming both local and non-local resources
makes SPRS harder than the above problems, which are
already NP-hard. In the following, we will not only confirm
this intuition, but also identify the root cause of hardness.

A. Special Cases

The three types of resource constraints, i.e., R-constraints
(1c), K-constraints (1d), and W -constraints (1e), have dif-
ferent impacts on the complexity of the SPRS problem. To
illustrate this point, we analyze the following special cases.

1) Case 1 – Removing K-constraints: If K ≥ |U |, then the
communication constraints (1d) are always satisfied, and can
thus be removed from the ILP in (1). We will show that this
special case is at least as hard as the 3-partition problem and
thus NP-hard.

Theorem III.1. The SPRS problem in (1) is NP-hard even
without K-constraints (1d).

Proof. We prove the hardness by a reduction from the 3-
partition problem [39]. Given a set of 3k positive integers
S = {t1, . . . , t3k} and v = 1

k

∑3k
i=1 ti, find subsets S1, . . . , Sk

of S of size 3 such that
∑

ti∈Sj
ti = v for all j = 1, . . . , k.

We can reduce the 3-partition problem to our problem as
follows. Suppose that there are 3k services, where service i has
ti users (i = 1, . . . , 3k). In addition, there are k edge clouds,
each with storage capacity R = 3, computation capacity W =
v, and communication capacity K =

∑3k
i=1 ti. Let aun ≡ 1 for

all the users and all the edge clouds. Then we claim that the
3-partition problem is feasible if and only if we can serve all
the users, i.e., the optimal objective value of the constructed
instance of SPRS equals

∑3k
i=1 ti. First, given a feasible 3-

partition (Sj)
k
j=1, placing the services corresponding to the



integers in Sj in edge cloud j and scheduling all the users of
these services to edge cloud j give a feasible solution to SPRS
that serves all the users. Moreover, given a feasible solution
to SPRS that serves all the users, grouping the integers cor-
responding to services placed on the same edge cloud gives a
feasible 3-partition. As the 3-partition problem is NP-complete
[39], the SPRS problem without K-constraints is NP-hard.

2) Case 2 – Removing W -constraints: If W ≥ |U |, then the
computation constraints (1e) are always satisfied and can thus
be removed from the ILP in (1). We will show that this special
case is at least as hard as the maximum coverage problem and
thus NP-hard.

Theorem III.2. The SPRS problem in (1) is NP-hard even
without W -constraints (1e).

Proof. We reduce the maximum coverage problem to our
problem. Given a positive integer I and a collection of
sets S = {S1, . . . , SJ} (I < J), the maximum coverage
problem is to find a subset S ′ ⊆ S of I sets such that the
number of covered elements |

⋃
Si∈S′ Si| is maximized. Let

Q ,
⋃

Si∈S Si be the ground set. Without loss of generality,
we assume that I < |Q| and maxSi∈S |Si| < |Q| (otherwise
the solution is trivial).

We construct an instance of the SPRS problem as follows.
We construct one edge cloud ne for each element e ∈ Q,
and give each edge cloud a communication capacity K =
1 + |Q| − I , a storage capacity R = 1, and a computation
capacity W = |Q|(|Q| − I) +

∑J
i=1 |Si|. For each set Si ∈ S

(i = 1, . . . , J), we construct a service li. For each e ∈ Si,
we construct a user u with lu = li and nu = ne. Moreover,
we construct |Q| − I additional services lJ+1, . . . , lJ+|Q|−I ,
each requested by one user in each cell. Let aun ≡ 1. Then
we claim that the optimal solution to the constructed instance
of SPRS gives the optimal solution to the maximum coverage
problem. This is because the optimal solution to SPRS must
have selected services lJ+1, . . . , lJ+|Q|−I as they are requested
from all the cells. After placing these services on any set
of |Q| − I edge clouds, the remaining edge clouds can only
store |N |R − |Q| + I = I more services from {l1, . . . , lJ}.
Moreover, each edge cloud only has communication capacity
for admitting one more user. This implies that given indices
A of the services selected from {l1, . . . , lJ} (|A| ≤ I), the
number of served users, in addition to those requesting services
lJ+1, . . . , lJ+|Q|−I , equals |

⋃
i∈A Si|. Thus, if A∗ is the set

of service indices that maximizes the number of served users,
then S ′ , {Si : i ∈ A∗} is the optimal solution to the
maximum coverage problem.

3) Case 3 – Removing R-constraints: If R ≥ |L| (i.e., one
edge cloud can store all the services), then the solution to xln
is trivially xln ≡ 1 (∀l ∈ L and n ∈ N ). Under this service
placement, the ILP in (1) is reduced to:

max
∑
u∈U

∑
n∈N

yun (2a)

s.t.
∑
n∈N

yun ≤ 1, ∀u ∈ U, (2b)

SPRS problem: hard

Remove R: 
easy

Remove K: 
hard

Remove W: 
hard

Fig. 2. Complexity of SPRS and its special cases.∑
u∈Un

∑
n′∈N

yun′ ≤ K, ∀n ∈ N, (2c)∑
u∈U

yun ≤W, ∀n ∈ N, (2d)

yun ≤ aun, ∀u ∈ U, n ∈ N, (2e)
yun ∈ {0, 1}, ∀u ∈ U, n ∈ N. (2f)

In contrast to the previous cases, the special case in (2) is
polynomial-time solvable. In fact, we will show later that the
SPRS problem is polynomial-time solvable once the service
placement is fixed (Section IV-A).

Lemma III.3. The SPRS problem without R-constraints, as
is given in (2), is polynomial-time solvable.

Proof. As (2) is a special case of the request scheduling sub-
problem for a fixed service placement xln ≡ 1, the lemma is
implied by the polynomial-time solution in Section IV-A.

B. General Case
The hardness of the special cases (Theorems III.1 and III.2)

implies that the SPRS problem is generally NP-hard.

Corollary III.4. The SPRS problem defined in (1) is NP-hard.

As illustrated in Fig. 2, besides establishing the hardness of
the problem, our analysis also identifies the R-constraints as
the cause of hardness. This insight motivates us to develop a
two-step solution that separately addresses the request schedul-
ing subproblem (focusing on K and W -constraints) and the
service placement subproblem (focusing on R-constraints).

IV. EFFICIENT ALGORITHMS

The hardness of the optimal solution motivates our search
for efficient suboptimal solutions. To this end, we develop a
polynomial-time solution with a constant-factor approximation
guarantee under certain conditions, and two efficient heuristics.

A. Optimal Algorithm for Request Scheduling
We will show that the hardness of the SPRS problem is

due to the hardness of finding the optimal service placement,
while the optimal request scheduling can be computed in poly-
nomial time. The key is to note that under any given service
placement, our problem can be converted to a maximum flow
problem in an auxiliary graph.

Graph construction: Given a feasible service placement
solution x , (xln)l∈L,n∈N satisfying constraint (1c), we con-
struct an auxiliary graph G as illustrated in Fig. 3. The nodes in
G consist of a source s, a destination d, a set of nodes U in 1-1
correspondence with the users, and two sets of nodes N1 and
N2 each in 1-1 correspondence with the edge clouds. Node s is
connected to each node in N1 by a directed link of capacity K,
and each node in N2 is connected to node d by a directed link
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Fig. 3. Auxiliary graph G for a given service placement x.

of capacity W . Moreover, each node n1 ∈ N1 is connected
to each node u ∈ U by a directed link of unit capacity if
nu = n1 (i.e., user u is covered by edge cloud n1), and each
node u ∈ U is connected to each node n2 ∈ N2 by a directed
link of unit capacity if aun2

xlun2
= 1 (i.e., edge cloud n2 is a

candidate server for user u and has the requested service). Note
that the topology of G depends on the service placement x.

We will show that the request scheduling subproblem for a
given x is equivalent to a maximum flow problem in G.

Theorem IV.1. Given a service placement x, the optimal value
of (1) equals the maximum flow between s and d in the graph
G defined in Fig. 3, and the optimal request scheduling is given
by setting yun = 1 if and only if link (u, n) ∈ U ×N2 carries
flow under the integral maximum flow from s to d.

Proof. First, by the Integral Flow Theorem [40], there exists
an integral maximum flow between s and d as link capacities
in G are all integral, and hence y is well-defined. Moreover,
an s-to-d flow satisfies link capacities in G if and only if the
corresponding y satisfies the constraints of (1). This is because
by construction, the capacity constraints for links in {s}×N1

represent constraints (1d), those for links in N1×U represent
constraints (1b), those for links in U×N2 represent constraints
(1f), and those for links in N2×{d} represent constraints (1e).
Note that constraints (1c) are already satisfied by the given
x, and constraints (1g) are satisfied by construction. Finally,
under an integral solution, the value of s-to-d flow in G equals
the value of the objective of (1). This is because as the links in
U ×N2 form a cut between s and d, the value of s-to-d flow
equals the sum of flows across these links, which by definition
equals the value of (1a). Therefore, the y constructed from the
integral maximum s-to-d flow is the optimal solution to (1)
under the given x, and the optimal objective value equals the
value of the maximum s-to-d flow.

Algorithm: By Theorem IV.1, once the service placement
is fixed, we can solve the request scheduling subproblem
optimally. The solution, called Optimal Request Scheduling
(ORS), is shown in Algorithm 1. In computing the maximum s-
to-d flow in G (line 3), we can leverage existing algorithms for
computing the maximum flow in directed graphs. In particular,
the Ford-Fulkerson algorithm [40] has guaranteed termination
and optimality in this case. More importantly, this algorithm
gives a maximum flow solution that is integral, i.e., only
sending an integral amount of flow per link. The optimality of
this algorithm is guaranteed by Theorem IV.1.

Corollary IV.2. Given a service placement x, ORS maximizes
the number of served users.

Complexity: It is easy to see that constructing G (line 2)

Algorithm 1: Optimal Request Scheduling (ORS)
input : Input parameters of (1) and service placement x
output: Request scheduling y

1 y← 0;
2 G ← auxiliary graph as in Fig. 3 for the service placement x;
3 compute the integral maximum flow from s to d in G;
4 foreach (u, n) ∈ U ×N do
5 yun ← 1 if link (u, n) in G carries flow;

takes O(|N |·|U |) time, dominated by the construction of links
in U × N2. It is known that for integral link capacities, the
Ford-Fulkerson algorithm has complexity O(|E| · F ), where
|E| is the number of links and F is the maximum flow. In our
case, |E| = O(|N | · |U |) and F = O(|U |). Thus, computing
the maximum flow (line 3) takes O(|N |·|U |2) time. Therefore,
the overall complexity of Algorithm 1 is O(|N | · |U |2).

Observation: Combining the hardness of the overall SPRS
problem (Corollary III.4) and the optimality of a polynomial-
time solution to the request scheduling subproblem (Corol-
lary IV.2) yields the following result.

Corollary IV.3. The service placement subproblem of the
SPRS problem (1) is NP-hard.

B. Approximation Algorithm for Service Placement
Since the service placement subproblem is NP-hard, we

focus on developing approximations for this subproblem. To
this end, we show that under the optimal request scheduling,
the optimization of service placement has certain properties
that allow easy approximation. We introduce the following
concepts from combinatorial optimization.

Definition 1 (Matroid [41]). A matroid M is a pair (E, I),
where E is a finite ground set and I ⊆ 2E a non-empty
collection of subsets of E, with the following properties:
• ∀A ⊂ B ⊆ E, if B ∈ I, then A ∈ I;
• ∀A, B ∈ I with |B| > |A|, ∃x ∈ B \ A such that
A ∪ {x} ∈ I.

Definition 2 (Monotone submodular function [41]). Given a
finite ground set E and a function f : 2E → R,
• f is monotone if ∀A ⊂ B ⊆ E, f(A) ≤ f(B);
• f is submodular if ∀A ⊂ B ⊆ E and e ∈ E \B, f(A ∪
{e})− f(A) ≥ f(B ∪ {e})− f(B).

If our objective function is monotone submodular and our
constraint forms a matroid, then the greedy algorithm, that se-
lects one element at a time such that each selection maximizes
the objective function, achieves 1/2-approximation.

Theorem IV.4 ([42]). Consider the problem of maximizing a
set function f : 2E → R over a collection of sets I ⊆ 2E .
Let f∗ denote the optimal value and fg the value achieved by
the greedy algorithm. If M = (E, I) is a matroid and f is
monotone and submodular, then fg ≥ f∗/2.

We will show that under certain conditions, the service
placement subproblem is maximizing a monotone submodular
set function under a matroid constraint. To this end, we rewrite
our problem as a set optimization. Let S(x) , {(l, n) ∈
L×N : xln = 1} denote the set of single-service placements
according to x, where (l, n) ∈ S(x) means to place a replica



of service l at edge cloud n. Let Ω(S(x)) denote the optimal
objective value of (1) for a given x. Simply writing S(x) as
S, we can rewrite the service placement subproblem as:

max Ω(S) (3a)
s.t. |S ∩ Sn| ≤ R, ∀n ∈ N, (3b)

S ⊆ L×N, (3c)

where Sn , L × {n} is the set of all possible single-
service placements at edge cloud n. We have the following
observations:
• Matroid constraint: Let I be the collection of all the S’s

satisfying constraints (3b, 3c). Then it is easy to verify that
M = (L×N, I) is a matroid. This is known as the partition
matroid as {Sn}n∈N is a partition of the ground set L×N .
• Monotone submodular objective function: We show that

the objective function (3a) has the following properties.

Lemma IV.5. Function Ω(S) is monotone and submodular
for any feasible S if (i) R = 1 or (ii) W ≥ |U |.

Proof. First, we note that adding an element (l, n) to S
corresponds to adding a set of links Lln , {(u, n) : aun =
1, lu = l} between nodes U and N2 in G (Fig. 3). Since adding
links can only increase the maximum flow, adding elements to
S can only increase Ω(S), i.e., Ω(S) is monotone increasing.

To prove submodularity of Ω(S), consider any S1 ⊆ S2

and (l, n) 6∈ S2. Let πi (i = 1, 2) be an optimal schedule
under service placement {(l, n)} ∪ Si that minimizes the
number of users served by (l, n), and U((l, n)|Si) be the set
of users served by (l, n) under πi. It suffices to show that
|U((l, n)|S2)| ≤ |U((l, n)|S1)|. For any u ∈ U((l, n)|S2),
under π1, u must be (1) served by (l, n), (2) served by (l, n′)
for n′ 6= n, or (3) not served. In case (2), modifying π2
to schedule u to (l, n′) will give an optimal schedule under
{(l, n)}∪S2 that schedules fewer users to (l, n) than π2, which
is a contradiction. The modified schedule must be feasible if
R = 1 or W ≥ |U |, as under these conditions, the additional
replicas in S2 \ S1 will not restrict the users that (l, n′) can
serve. In case (3), there must exist u′ (u′ 6= u) served by
(l′, n′) under π1, that blocks u from being served (due to K/W-
constraints). If (l′, n′) 6= (l, n), then modifying π2 to schedule
u′ to (l′, n′) instead of u to (l, n) will give an optimal schedule
under {(l, n)}∪S2 that schedules fewer users to (l, n) than π2,
which is again a contradiction. Thus, each u ∈ U((l, n)|S2)
must be either served by (l, n) or in one-one correspondence
with another user served by (l, n) under π1, which proves
|U((l, n)|S2)| ≤ |U((l, n)|S1)|.

Counterexample: We note that Ω(S) is not submodular in
general. Consider the case in Fig. 4. Given the placement
(l1, n2), adding (l1, n1) does not increase the number of served
users. However, given the placement {(l1, n2), (l2, n2)},
adding (l1, n1) helps to serve both users instead of only one.

Algorithm: The set function formulation (3) inspires us to
apply existing algorithms for such problems. In particular,
applying the generic greedy algorithm yields Algorithm 2,
referred to as Greedy Service Placement with Optimal Request
Scheduling (GSP-ORS). Starting from an empty placement,
the algorithm iteratively places one single service at a time

n2n1

l1 l1 l2

u1 u2

Fig. 4. Example for non-submodularity of Ω(S) (R = 2, K = 2, W = 1,
aun ≡ 1); colors indicate the types of services.

Algorithm 2: Greedy Service Placement with Optimal
Request Scheduling (GSP-ORS)

input : Input parameters of (1)
output: Service placement x and request scheduling y

1 S ← ∅;
2 ω∗ ← 0;
3 while ∃n ∈ N with |S ∩ Sn| < R do
4 (l∗, n∗)← ∅;
5 foreach (l, n) 6∈ S such that |S ∩ Sn| < R do
6 ω ← Ω(S ∪ {(l, n)});
7 if ω > ω∗ then
8 (l∗, n∗)← (l, n);
9 ω∗ ← ω;

10 if (l∗, n∗) 6= ∅ then
11 S ← S ∪ {(l∗, n∗)};
12 else
13 break;
14 convert S to its vector representation x;
15 compute y by ORS (Algorithm 1) for input x;

until all the edge clouds are full (lines 3–13), such that
each single-service placement maximizes the objective value
(lines 5–9). Note that each evaluation of the objective function
Ω(S∪{(l, n)}) (line 6) requires an invocation of ORS (where
the objective value is given by the maximum flow computed
in line 3 of Algorithm 1).

Complexity: There are O(|N |R) iterations in Algorithm 2,
within each of which the algorithm considers O(|L| · |N |) can-
didate single-service placements and evaluates the objective
function for each candidate placement by solving an O(|N | ·
|U |2)-complexity request scheduling subproblem. Therefore,
the overall complexity of Algorithm 2 is O(|N |3|U |2|L|R).

Approximation guarantee: When our objective is monotone
and submodular (Lemma IV.5), we can apply Theorem IV.4
to guarantee the following.

Corollary IV.6. If R = 1 or W ≥ |U |, GSP-ORS (Al-
gorithm 2) achieves an approximation ratio of 1/2, i.e., the
number of users served under this solution is at least half of
the maximum number of users served according to SPRS (1).

C. Heuristics
Although GSP-ORS has a polynomial complexity of

O(|N |3|U |2|L|R), the order of this polynomial is rather high,
which makes the algorithm slow for large systems. To further
simplify computation, we develop two heuristics.

1) Greedy Heuristic: This is a variation of GSP-ORS that
performs both the service placement and the request schedul-
ing greedily. Specifically, we replace the optimal scheduling in
line 6 of Algorithm 2 by scheduling as many users as possible,
without rescheduling any previously scheduled users.

To achieve this, we introduce the following variables: W̃n

denoting the residual computation capacity at edge cloud n,
K̃n denoting the residual communication capacity at edge



Algorithm 3: Greedy Service Placement with Greedy
Request Scheduling (GSP-GRS)

input : Input parameters of (1)
output: Service placement x and request scheduling y

1 x← 0;
2 y← 0;
3 foreach n ∈ N do
4 W̃n ←W ;
5 K̃n ← K;
6 foreach l ∈ L do
7 Ũln ← Uln;
8 while Φ(x) 6= ∅ do
9 (l∗, n∗)← arg max(l,n)∈Φ(x)

min(W̃n,
∑

n′∈N min(|Ũln′ ∩ Vn|, K̃n′));
10 xl∗n∗ ← 1;
11 o∗ ← min(W̃n∗ ,

∑
n∈N min(|Ũl∗n ∩ Vn∗ |, K̃n));

12 if o∗ = 0 then
13 break;
14 W̃n∗ ← W̃n∗ − o∗;
15 foreach n ∈ N do
16 o← min(o∗, min(|Ũl∗n ∩ Vn∗ |, K̃n));
17 K̃n ← K̃n − o;
18 randomly select a set U ′ ⊆ Ũl∗n ∩ Vn∗ with |U ′| = o;
19 foreach u ∈ U ′ do
20 yun∗ ← 1;
21 Ũl∗n ← Ũl∗n \ U ′;
22 o∗ ← o∗ − o;
23 if o∗ = 0 then
24 break;

cloud n, and Ũln denoting the set of unserved users covered by
edge cloud n that request service l. Let Uln , {u ∈ U : nu =
n, lu = l} denote all the users covered by edge cloud n that
request service l, and Vn , {u ∈ U : aun = 1} denote all the
users that can be served by edge cloud n. We develop a greedy
heuristic referred to as Greedy Service Placement with Greedy
Request Scheduling (GSP-GRS), shown in Algorithm 3. GSP-
GRS is similar to GSP-ORS in that it still places services
iteratively (lines 8–24). The difference is that within each itera-
tion, it places the additional service that serves the maximum
number of new (i.e., previously unscheduled) users without
rescheduling any of the existing users, by only using the resid-
ual capacities W̃n and K̃n to schedule the unserved users Ũln.

Specifically, we note that placing an additional service l at
edge cloud n (assuming l was not placed at n) serves at most

min(W̃n,
∑
n′∈N

min(|Ũln′ ∩ Vn|, K̃n′)) (4)

new users without rescheduling the existing users. Let

Φ(x) , {(l, n) ∈ L×N : xln = 0,
∑
l′∈L

xl′n < R} (5)

denote the set of feasible placements of one additional service.
GSP-GRS selects the placement in Φ(x) that maximizes
(4) (line 9). After placing the selected service (line 10), it
computes the number of newly served users o∗ (line 11). If
o∗ = 0, the algorithm stops (line 13). Otherwise, it sequentially
goes through the edge clouds to schedule eligible unserved
users and updates the residual capacities (lines 14–24).

Complexity: The while loop is repeated O(|N |R) times,
and the computation within the loop is bottlenecked by the
service placement selection (line 9) which takes O(|L||N ||U |)
time, while the remaining steps (lines 10-24) take O(|U |)
time. Therefore, the overall complexity of Algorithm 3 is
O(|N |2|U ||L|R). Compared with Algorithm 2, Algorithm 3
reduces the complexity by a factor of O(|N ||U |).

2) LP Relaxation with Rounding: The ILP formulation of
the SPRS problem (1) allows us to apply linear program (LP)
relaxation. This method first computes a fractional solution to
(1) by relaxing the integer constraints (1g) to linear constraints
xln, yun ∈ [0, 1] (∀l ∈ L, u ∈ U, n ∈ N ), and then rounds the
solution to integers as follows. For each edge cloud n ∈ N ,
we sort the services into descending order of the fractional
xln’s (∀l ∈ L), and place the top R services in edge cloud n;
for each user u ∈ U , we sort the edge clouds into descending
order of the fractional yun’s (∀n ∈ N ), and schedule u to the
first available edge cloud (if any), subject to the constraints in
(1).

Complexity: The dominating step is to solve the LP re-
laxation of (1). This LP has O(|N |(|L| + |U |)) variables
and O(|N |(|L| + |U |)) constraints, and thus can be solved
in O(|N |7.5(|L| + |U |)7.5) time by Karmarkar’s algorithm
[44]. Thus, the complexity of LP relaxation with rounding
is O(|N |7.5(|L| + |U |)7.5). Although in theory this is slower
than GSP-ORS, in practice it can be faster (see Table II) by
leveraging existing efficient LP solvers.

V. EXTENSION TO HETEROGENEOUS CASE

In general, different edge clouds can have different capac-
ities, and different services can require different amounts of
resources. We now characterize the impact of heterogeneity
on the problem complexity and the proposed solutions.

A. Generalized Optimization

To model heterogeneity among the edge clouds, we gen-
eralize the parameters K, W , and R to Kn, Wn, and
Rn (n ∈ N ), respectively, to denote the communica-
tion/computation/storage capacity of edge cloud n, which can
be different for different edge clouds. Similarly, to model
heterogeneity among the services, we introduce new param-
eters κl, ωl, and rl (l ∈ L) to denote the communica-
tion/computation/storage requirement of service l, where the
communication/computation requirement is per request, and
the storage requirement is per placement (of a service replica).
Using these parameters, we generalize the SPRS problem (1)
to the following ILP, referred to as the Generalized SPRS
problem:

max
∑
u∈U

∑
n∈N

yun (6a)

s.t.
∑
n∈N

yun ≤ 1, ∀u ∈ U, (6b)∑
l∈L

xln · rl ≤ Rn, ∀n ∈ N, (6c)∑
u∈Un

(
∑
n′∈N

yun′) · κlu ≤ Kn, ∀n ∈ N, (6d)



∑
u∈U

yun · ωlu ≤Wn, ∀n ∈ N, (6e)

yun ≤ aun · xlun, ∀u ∈ U, n ∈ N, (6f)
xln, yun ∈ {0, 1}, ∀l ∈ L, u ∈ U, n ∈ N. (6g)

B. Complexity Analysis
As (6) is a generalization of (1), which is NP-hard (Corol-

lary III.4), the Generalized SPRS problem is NP-hard. Mean-
while, we show that while the request scheduling subproblem
is polynomial-time solvable in the homogeneous case (Corol-
lary IV.2), it becomes NP-hard in the heterogeneous case.

Theorem V.1. Even if the service placement x is given,
the request scheduling subproblem of the Generalized SPRS
problem (6) is still NP-hard.

Sketch of proof. We prove the result by constructing an in-
stance of the request scheduling subproblem of (6) that is
equivalent to the partition problem, which is known to be NP-
complete. We refer to [45] for details.

C. Generalized Algorithms
While GSP-ORS (Algorithm 2) cannot be extended to

the heterogeneous case due to the hardness of optimal re-
quest scheduling, both GSP-GRS (Algorithm 3) and the LP
relaxation method (Section IV-C2) can be extended to the
heterogeneous case. We refer to [45] for the details.

VI. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed
algorithms against benchmarks via both synthetic and trace-
driven simulations. Due to space limitation, we only present
the results of trace-driven simulations, and refer to [45] for
additional results from synthetic simulations.

A. Benchmarks
As benchmarks for our algorithms, we evaluate: (i) the

optimal solution obtained by solving (1) and (6) using an ILP
solver, and (ii) a baseline solution that first places the top-R
(homogeneous case) or top-Rn (heterogeneous case) most
popular services in each edge cloud, and then schedules as
many users as possible via ORS (homogeneous case) or greedy
scheduling (heterogeneous case). The service placement
strategy in the baseline is the same as the offline static policy
in [28]. Here the service popularity for an edge cloud is
computed based on all possible requests that can be scheduled
to it, i.e., {u ∈ U : aun = 1}. This baseline, referred to as
‘top-R’, is used to evaluate the performance of optimizing
service placement and request scheduling separately (as it
ignores how requests will be scheduled when placing services).

B. Simulation Setting
We extract user and edge cloud locations from real

mobility traces and cell tower locations. We use the taxi
cab traces from [46], from which we extract the traces
of 280 users (i.e., taxi cabs) over a 100-minute period
with location updates every minute3. We quantize the user

3We filter out inactive nodes with no update for at least 5 minutes and
regulate the update intervals through linear interpolation.
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Fig. 5. Performance comparison in the basic setting.

locations into Voronoi cells based on cell tower locations
in the geographical area covered by the traces, obtained
from http://www.antennasearch.com, and find
that at most 6 cells are occupied in any 1-minute slot. To
simulate nontrivial scenarios, we set |N | = 6 and assume
that only the occupied cells can host services4. Unless stated
otherwise, we generate a request for each user in each slot
according to the Zipf distribution with exponent α. We set
|L| = 1000 and α = 0.6. In the homogeneous case, we set
K = 15, R = 5,W = 10; in the heterogeneous case, we
uniformly draw Kn ∈ [10, 15], Rn ∈ [1, 5], Wn ∈ [5, 10]
for each n ∈ N , and κl, rl, ωl ∈ [0.1, 1] for each l ∈ L. We
set aun ≡ 1 (∀u ∈ U, n ∈ N ). Similar results have been
observed under other parameter settings.

All the algorithms are implemented in MATLAB R-2017a,
and evaluated on a machine with Mac OS 64 bits, 2.8 GHz
Intel Core i5 Processor, and 8 GB 1600 MHz DDR3 memory.

C. Evaluation Results
1) Performance Comparison: Fig. 5 shows the cumulative

distribution function (CDF) of the number of served users over
the 100 slots. In the homogeneous case (Fig. 5(a)), the average
number of served users is 57.68 for both the optimal solution
and GSP-ORS, 56.85 for GSP-GRS, 54.73 for LP relaxation
(with rounding), and 26.04 for top-R; in the heterogeneous
case (Fig. 5(b)), this number is 92.22 for the optimal solution,
89.25 for (the generalized) GSP-GRS, 88.19 for LP relaxation,
and 25.51 for top-R.

In both cases, there is a 2–3-fold gap between the baseline
solution (top-R) that optimizes service placement and request
scheduling separately, and the other solutions that consider
the two problems jointly, which signals the importance of
joint service placement and request scheduling. In this setting,
the proposed algorithms (GSP-ORS, GSP-GRS, and LP relax-
ation) all achieve near-optimal performance, where the number
of served users is within 5% of the optimal, and GSP-ORS is
exactly optimal in the homogeneous case (Fig. 5(a)).

Meanwhile, these algorithms have very different average
running times as presented in Table II. While the optimal
solution is very slow due to the NP-hardness of the problem,
GSP-ORS is also slow due to a large number of calls to
ORS, and the other solutions are fast. In particular, GSP-
GRS provides a good tradeoff between performance and
complexity, serving a near-optimal number of users with very
low running time (∼ 50 times faster than LP relaxation). We
note that the presented running times are based on our initial

4There are many more (> 280) cell towers in the area covered by the
traces, and thus the resource provisioning problem will become trivial if edge
clouds are deployed at all the cells.



TABLE II
RUNNING TIME FOR PROPOSED ALGORITHMS VS. OPTIMAL SOLUTION

Algorithm Average Running time
Optimal via brute-force search5 8.7357e+75 sec

GSP-ORS 535.9117 sec
GSP-GRS 0.0188 sec

LP relaxation with rounding 0.9852 sec
top-R (with best-effort scheduling) 0.0277 sec

implementation in Matlab, and can be improved via more
efficient implementation methods.

2) Stress Test: To stress-test the proposed solutions, we
repeat the above simulations under increasing loads. We tune
the load by generating a Poisson(λ) number of requests per
user in each slot, and vary the parameter λ (average number
of requests per user per slot). Each request is independently
drawn from the Zipf distribution with exponent α. To speed up
the simulation, we reduce the number of users to 50 (randomly
selected from all the users), and the number of edge clouds to
5 (as at most 5 cells are occupied by the selected users). The
other parameters are the same as before.

Fig. 6 shows the average number of served requests under
each value of λ. In the homogeneous case (Fig. 6(a)), as λ
increases, GSP-ORS starts to show notably better performance
than the heuristics. This result shows that besides having
guaranteed approximation in the worst case, GSP-ORS also
achieves superior average performance. Among the heuristics
(GSP-GRS, LP relaxation, and top-R), GSP-GRS performs
the best. In the heterogeneous case (Fig. 6(b)), the same com-
parison is observed. However, the best-performing heuristic
(GSP-GRS) still has a substantial optimality gap, indicating
room of improvement for more sophisticated algorithms.
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Fig. 6. Performance comparison under increasing loads.

3) Sensitivity Analysis: To apply our solutions in an online
setting, we need to predict user demands (i.e., locations
and requested services). To understand the sensitivity of our
solutions with respect to (wrt) prediction errors, we apply the
proposed algorithms by first placing services according to each
of these algorithms based on the predicted user demands, and
then scheduling user requests based on the placed services
and the actual user demands. In these simulations, we only
generate one request per user in each slot. Below we only show
the results for the homogeneous case due to space limitation.

Sensitivity to errors in user locations: We predict the user
locations at time t based on their locations at time t − T .

5This is estimated by multiplying the number of possible service placements
with the time to compute the optimal request scheduling for each placement,
estimated by the running time of ORS (the heterogeneous case is even harder).
This is for a fair comparison with the other algorithms which are implemented
as Matlab scripts. In the simulations, we used a commercial-grade ILP solver
(Matlab intlinprog) to compute the optimal solution.
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Fig. 7. Sensitivity analysis.

Fig. 7(a) shows the average number of served users as we vary
T , where the optimal solution is computed based on current
user locations (no prediction error), while the rest are based on
predicted user locations. We see that the algorithms are robust
against errors in user locations. We have verified that there are
substantial errors in the predicted user locations and the error
rate does increase with T (from 30% of error for T = 1 to
87% of error for T = 20). Nevertheless, as we allow requests
to be served by non-local edge clouds, the dominating factor
for the service placement subproblem is the types of requested
services, not where the users are located.

Sensitivity to errors in user requests: We perform a similar
experiment by predicting the types of requested services. We
assume that in each slot, each user requests a new service
(drawn independently from the Zipf distribution with exponent
α) with probability p, and requests the same service as in the
previous slot with probability 1 − p. The types of services
requested at time t are predicted based on their values at
time t − 1. Fig. 7(b) shows the average number of served
users wrt p, where the optimal solution is based on current
requests (no error) and the rest are based on predicted requests.
We see that the performance of GSP-GRS and LP relaxation
degrades quickly as p increases. The reason is that as the
users change their interests more frequently, services placed
to serve requests in the previous slot become less useful for
the current slot. The performance of top-R stays roughly the
same, as it is only based on service popularity, which remains
the same on the average (as requests are drawn from the same
distribution). Interestingly, we observe that GSP-ORS is highly
robust against prediction errors in service types.

VII. CONCLUSION

We have studied the problem of joint service placement
and request scheduling in mobile edge computing systems
under communication, computation, and storage constraints.
Through a thorough complexity analysis, we not only prove
the NP-hardness of the problem, but also identify the root
cause of hardness. We further propose a polynomial-time
algorithm with approximation guarantee for the homogeneous
case, and efficient heuristics for the general case. Our trace-
driven evaluations show that the proposed solutions, especially
the algorithm with approximation guarantee, can achieve near-
optimal performance while significantly reducing the running
time compared to the optimal solution.
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