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ABSTRACT

Large-scale Internet applications, such as content distribution net-
works, are deployed across multiple datacenters and consume mas-
sive amounts of electricity. To provide uniformly low access laten-
cies, these datacenters are geographically distributed and the de-
ployment size at each location reflects the regional demand for the
application. Consequently, an application’s environmental impact
can vary significantly depending on the geographical distribution
of end-users, as electricity cost and carbon footprint per watt is lo-
cation specific. In this paper, we describe FORTE: Flow Optimiza-
tion based framework for request-Routing and Traffic Engineering.
FORTE dynamically controls the fraction of user traffic directed to
each datacenter in response to changes in both request workload
and carbon footprint. It allows an operator to navigate the three-
way tradeoff between access latency, carbon footprint, and elec-
tricity costs and to determine an optimal datacenter upgrade plan
in response to increases in traffic load. We use FORTE to show
that carbon taxes or credits are impractical in incentivizing carbon
output reduction by providers of large-scale Internet applications.
However, they can reduce carbon emissions by 10% without in-
creasing the mean latency nor the electricity bill.

Categories and Subject Descriptors.

C.2 [Internetworking]: Network Architecture and Design
General Terms. Design, Management, Performance
Keywords. Green computing, Energy

1. INTRODUCTION
Internet-scale applications, such as social networks, video distri-

bution networks, and content distribution networks, provide service
to hundreds of millions of end users. They achieve their enormous
scale, while simultaneously reducing access latency, by routing ser-
vice requests to a set of geographically distributed servers, typically
located in datacenters. Such datacenters, which host up to 200,000
servers, are large-scale consumers of electricity, which is used not
only for powering servers but also for keeping them cool. Currently,
datacenters that power Internet-scale applications consume about
1.3% of the worldwide electricity supply and this fraction is ex-
pected to grow to 8% by 2020 [22]. Forrest, Kaplan, and Kindler
in the McKinsey Quarterly, November 2008 showed data center
carbon emissions were 0.6% of the global total, nearly those of
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the Netherlands. By 2020, the fraction is expected to reach 2.6%,
exceeding the carbon emission of Germany. A single provider of
Internet-scale services, Google, consumed 2.26 ×106MWh in 2010
[14]. In the United States, on average, generating a kWh of electric-
ity emits about 500g of carbon [41], so Google’s carbon emission
in 2010 is equivalent to that emitted by 280,000 cars, assuming that
each car runs 10,000 miles per year and emits 4 tons of carbon [1].

Given the rapid growth in the scale and usage of Internet-based
applications, our primary goal is to help socially-aware companies
reduce the carbon footprint of their infrastructure. We would also
like to factor in the carbon cost of upgrades to this infrastructure.
Importantly, we realize that carbon cost is only one factor in a
complex decision process faced by application providers: what is
needed is a way to navigate the three-way tradeoff between carbon
footprint, electricity cost, and access latency.

This is a difficult problem. In addition to the inherent large scale,
the carbon footprint of a datacenter varies both spatially and tempo-
rally, as does request load. Although requests can be easily routed
to datacenters [33], optimal request-routing requires a complex joint
optimization of both request-routing and data placement. More-
over, the continuing growth of request load implies that it is also
necessary to periodically upgrade the infrastructure, keeping in mind
both the available budget and the expected future workload. These
inherent complexities have not been addressed in recent work, which
focus essentially only on either the electricity cost [30,35,37] or the
carbon footprint of datacenters [9, 26, 29].

In this paper, we introduce FORTE, a Flow Optimization based
framework for Request-routing and Traffic Engineering and Fast-
FORTE, a heuristic that closely approximates FORTE but runs about
20 times faster. FORTE takes a principled approach to the problem
by using an objective function that balances the weighted sum of
access latency, electricity costs, and carbon footprint. Our major
contributions are:

• FORTE, a request-routing framework that provides a three-
way tradeoff between access latency, electricity cost, and car-
bon footprint;

• Using FORTE to analyze the costs of carbon emission reduc-
tion for a large-scale Internet application; and,

• Using FORTE to determine a green datacenter upgrade and ex-
pansion plan for an Internet application.

Our approach is scalable and leads to three non-intuitive results.
First, unless the price of carbon is set unrealistically high, applica-
tion providers have no incentive to reduce their carbon footprint by
more than a few percent. Second, by exploiting regional variations
in carbon footprint and electricity costs, an application provider
such as Akamai can reduce their carbon footprint by nearly 10%
using FORTE, with no impact on their electricity cost or access la-
tency. Third, FORTE can find green upgrade plans that can reduce
the carbon footprint by over 25% over three years, compared to a
carbon-oblivious upgrade plan, again, with no impact on electricity
cost or a bounded increase in access latency.

211



Coal Oil Gas Nuclear Hydro Other Total
Elec.(TWh) 8,263 1,111 4,301 2,731 3,288 568 20,261
Proportion 41% 5% 21% 13% 16% 3% 100%

Table 1: Source of Electricity (World total, year 2008)

Hydro 

67% 

Nuclear 

9% 

Gas 

10% 

Coal 

8% 

Other 

6% 

Washington 

Nuclear 

10% 

Gas 

45% 

Coal 

37% 

Other 

8% 

Texas 

Figure 2: Generator fuel type in Washington and Texas

2. BACKGROUND
This section describes large-scale Internet services, the datacen-

ters that host them, and the nature of electricity generation.

2.1 Datacenters and Request-Routing
We focus on large-scale Internet applications whose components

run at multiple geographically distributed locations to provide scal-
ability and reliability, and to reduce access latency (high access la-
tency has been shown to have a negative economic impact [39]).
For example, Google has more than 30 datacenters in at least 15
countries with an estimated 900K servers [31] and Akamai has
more than 95,000 servers in nearly 1,900 networks in 71 coun-
tries [2].

Application providers usually place copies of data items such as
video files or entire websites at one or more datacenters. Then, a
request-routing system uses a set of metrics to direct end-hosts to
datacenters that can best serve their requests. Current best prac-
tices for request-routing are carbon oblivious, that is, they ignore
the amount of carbon emissions they generate. For example, a data-
center may be selected based on content availability, latency to the
end-host, and load at that datacenter [33]. Our work modifies the
request-routing algorithm to additionally take both the electricity
cost and the carbon footprint of the datacenter into account.

2.2 Spatial and Temporal Variability in Elec-
tricity Carbon Footprint

Because of their scale, large-scale Internet services consume con-
siderable amounts of electricity, which is delivered by the electric-
ity grid. This grid inter-connects generator plants with consumers,
including datacenters, in a geographical region. A region is usually
served by several generators, which use different fuel types, such
as gas, oil, coal, nuclear, and wind. Generation by burning fossil
fuels emits much more carbon than generation with renewable en-
ergy, such as hydroelectricity, or nuclear plants. Two thirds of elec-
tricity is generated by fossil fuel today, as can be seen in Table 1,
which shows fuel sources of electricity worldwide in 2008. How-
ever, there is significant difference among the fuel mix in different
regions. A datacenter in Washington State uses cleaner electricity
fuel sources than one in Texas. This is shown in Figure 2, which
shows the fuel mix for these two states.

The carbon output of electricity generation varies temporally as
well. The electricity grid has no storage, so the supply of electricity
must match demand. Some generators are turned off in periods of
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Figure 3: Hourly breakdown of total production by resource type, Califor-

nia, Jan 23rd 2012 [5]
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Figure 4: Grams of carbon per kWh vs. the cost of electricity in the 50 U.S.

states.

low demand, and turned back on during peak hours. This is illus-
trated in Figure 3, which shows both the peak loads and the gen-
eration fuel mix in California on 23 January, 2012. The generators
turned on during peak demand are usually thermal generators that
emit more carbon. It is difficult to adjust the output of a nuclear
plant, so they typically serve the base load.

There is no correlation between the “cleanness" of a region’s
electricity fuel mix and the price of electricity in the region. This is
shown in Figure 4, which plots the cost and carbon output of elec-
tricity in each of the 50 U.S. states. The electricity in states like
Washington is both clean and cheap, in contrast to states like West
Virginia, where electricity is cheap but has a large carbon footprint.
Consequently, schemes to reduce the electricity cost of powering
an Internet service using request-routing (such as [35]) do not also
reduce the carbon emissions of their operations.

2.3 Power Proportionality and PUE
Another way to reduce the carbon output of an Internet-scale

application is to reduce the amount of energy its datacenters con-
sume. There are two main ways to do this: power proportional-
ity and lowering energy overheads. A power-proportional device
uses power directly proportional to its utilization, e.g., if it is 10%
utilized, then its power use will be 10% of its maximum power
use [4]. A power-proportional datacenter can be built using power-
proportional servers or by dynamically shutting off unnecessary
equipment. Another approach to reducing datacenter power is to
improve the effectiveness with which it uses electricity. This notion
is captured by the power usage effectiveness (PUE) metric, which
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is defined as:

PUE =
Total IT equipment power

Total facility power
(1)

The most efficient datacenters have a PUE of around 1.07–1.2 [15,
34], while the industry average is around 2.0 [10]. That means the
average datacenter uses nearly 50% of its power on cooling and
power transformation.

A power-proportional datacenter with a low PUE is clearly de-
sirable. However, a datacenter’s carbon emissions still depend on
its regional electricity fuel mix. Therefore, a service operator that
wants to minimize its carbon output should build and use datacen-
ters in regions with green sources of electricity. In the remainder of
this paper, we design algorithms to navigate the three-way tradeoff
between carbon footprint, access latency, and electricity cost.

3. FORTE
The location and time-specific nature of carbon emission rates

offers a currently untapped opportunity for Internet applications,
deployed across multiple datacenters, to reduce their carbon foot-
print by directing traffic to cleaner locations. In this section, we
describe FORTE, a Flow Optimization based framework for re-
quest Routing and Traffic Engineering, that offers a principled ap-
proach to assigning users and data objects to datacenters. FORTE
performs user assignment by weighting each assignment’s effect on
three metrics: access latency, electricity cost, and carbon footprint.
By making this three-way tradeoff explicit, FORTE enables Inter-
net application providers to determine their optimal operating point
that balances performance with cost and carbon footprint. Any ap-
plication that uses dynamic request-routing can be easily modified
to use FORTE to assign users to datacenters.

3.1 Model
Determining the impact of different user assignment decisions

requires data on the location of users and datacenters, regional elec-
tricity costs, and the carbon emission per watt at each datacenter
location. Additionally, one must also consider what data users are
interested in and the location of the data. To encapsulate this infor-
mation, we use a simple abstract model representing the relation-
ship between the following three entities:

1. User Group: A user group is a collection of users who are
geographically close or in the same autonomous system, for
example: users from the same city or customers of a regional
ISP.

2. Datacenter: A datacenter is a collection of servers that can
serve user requests frequently. We use the term datacenter gener-
ically, and use it also to represent a cluster in a content delivery
network (CDN).

3. Data: A data is an abstract object that users request, such as
a video in an online video website. It can be a webpage, in-
cluding all associated images and text files. Data can also be
associated with a cloud service such as search or email for a
cloud service provider. Note that we only model popular data,
as the transfer of popular data accounts for most of Internet
traffic.

The relationship between these three entities is illustrated in Fig-
ure 5. User groups indicate their desire for data through data re-
quests, and these requests are served by any datacenter with a copy
of the data. Note that content distribution systems are complicated,
so our model necessarily makes some simplifying assumptions.
However, we believe that this model largely captures the behav-
ior of content distribution systems, and therefore our conclusions
are robust to changes in the model’s parameters.

u1 
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n2 

n3 

nj 
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d2 

dk 

User groups 
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Figure 5: The relationship between user groups, datacenters, and data

We model the relationship between users and data as a minimum
cost flow circulation problem. Here, the user group to datacenter as-
signment is re-evaluated periodically to adapt to changing request
patterns. In addition to mapping user groups to datacenters, FORTE
can also migrate or copy data to different datacenters with changes
in the workload. The following is a complete list of the model pa-
rameters:

• c(nj) is the average server carbon emission rate of the data-
center nj .

• e(nj) is the average server electricity cost of datacenter nj .

• f(ui,nj,dk) is the size of the flow from user group ui, served
by datacenter nj , and requesting data dk.

• l(ui,nj,dk) is the average latency cost of the link between
user group ui and datacenter nj for data dk.

• m(nj) is the number of servers running in datacenter nj

• p(nj) is the average processing power of servers in datacenter
nj . It is normalized to the number of requests it can process
concurrently.

• r(dk,ui) is the number of users in user group ui requesting
data dk.

• rep(dk,nj) equals true if data dk has a replica at data center
nj .

• u(nj) is the number of servers in datacenter nj .

Note that we model latency cost as a two part function l(ui, nj , dk).
When latency is less than lmax, the latency cost is linearly propor-
tional to latency. Beyond lmax, latency cost grows quadratically in
order to model the user tendency to abandon Internet applications
with perceptible interaction delays [39].

The FORTE model also differentiates between different data types.
Specifically, it categorizes data as either throughput-sensitive or
latency-sensitive, and enables different assignment decisions to be
made based on the data category. For a data dk that is throughput-
sensitive, the latency cost will be 0 when access latency is less than
lmax. This significantly relaxes the constraint on feasible assign-
ment decisions and enables throughput-sensitive traffic to be di-
rected to any datacenter within the cut-off latency without paying
latency costs.

3.2 Design
Our model captures the relationship between user groups, data-

centers, and data, which enables FORTE to reason about the opti-
mal mapping of users to datacenters and data to datacenters. The
following sections describe FORTE’s algorithms for optimally per-
forming these two mappings. We also describe Fast-FORTE, an ap-
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proximation algorithm that significantly improves upon the perfor-
mance and scalability of FORTE while maintaining near-optimal
assignments.

3.2.1 Assigning Users to Datacenters

The user to datacenter assignment problem, as we had previously
mentioned in Section 3.1, can be modeled as a flow circulation
problem. There are two main objectives when performing this as-
signment: all user requests must be satisfied and the weighted sum-
mation of access latency, carbon emission, and electricity cost must
be minimized. We formulate this as a linear program:

minimize:
f(ui,nj ,dk)

(2)

X

ui,nj ,dk

f(ui, nj , dk)l(ui, nj , dk)

+ λ1

X

nj

m(nj)c(nj) + λ2

X

nj

m(nj)e(nj)

subject to:

∀nj ,
X

ui,dk

f(ui, nj , dk) ≤ m(nj)p(nj) (3)

∀ui, dk,
X

nj

f(ui, nj , dk) = r(dk, ui) (4)

∀nj , 0 ≤ m(nj) ≤ u(nj) (5)

∀ui, nj , dk, f(ui, nj , dk) ≥ 0 (6)

∀ui, nj , dk, s.t. rep(nj , dk) = false, f(ui, nj , dk) = 0 (7)

This linear program minimizes its objective function, Equation 2,
which represents the sum of access latency, electricity costs, and
carbon emissions. The relative weight between the three metrics
can be adjusted by changing the weight parameters λ1 and λ2.
Equation 4 represents the constraint that all flows are served by
some datacenters.

Additionally, we can easily incorporate several other constraints
in this linear program to address pragmatic, deployment-related re-
quirements. This includes: ensuring that the total load assigned to
a datacenter is less than the datacenter’s service capacity (Eq. 3),
limiting the number of active servers in each datacenter (Eq. 5),
and restricting users from requesting data dk from datacenter nj

if a replica of dk does not reside in nj (Eq. 7). To ensure that the
linear program return feasible results, we also restrict the flow and
load balancing cost variables to be positive values (Eq. 6).

3.2.2 Assigning Data to Datacenters

In the previous section, we assumed that the data assignment is
fixed and pre-determined, and use linear programming to solve the
user assignment problem only. However, the data assignment is ac-
tually a parameter under our control, and in this section, we show
how FORTE determines the optimal data assignment while assum-
ing that each user has already been assigned to a datacenter.

As part of our data to datacenter problem formulation, we first
define a temporary variable:

f(nj , dk) =
X

ui

f(ui, nj , dk) (8)

which is the flow size of edge (nj , dk). Given this definition of edge
flows size, we further define fth as a percentile threshold across a
set of flows.

From our analysis of Akamai traffic data (the dataset is described
in Sec. 4.1), we found that flow sizes follow the Pareto Principle,

Flow size percentile Percentage of total bytes

10% 90.998%
20% 97.941%
30% 99.520%

Table 6: Flow sizes follow the Pareto Principle for our Akamai workload.

Algorithm 1 Algorithm for determining the initial data placement.

Input: User Data Request Matrix R(dk, ui)
Input: Network Latency Cost Matrix L(ui, nj)
Input: Percentile Threshold fth

Output: Need of Data Matrix NEED(dk, nj)
Assume rep(dk, nj) = true for all (dk, nj)
Find out F (ui, nj , dk) by linear programming
for each (nj , dk) do

if f(nj , dk) is a fth percentile large flow then

need(nj , dk) = true

else

need(nj , dk) = false

end if

end for

that is, a small percent of large flows account for a large percent
of total bytes transferred. We see in Table 6 that 10% of the largest
flows account for 90.998% of the total bytes transferred. Therefore,
the size of a flow is the primary factor in determining data place-
ment; we decide whether we need a replica of data dk at datacenter
nj by the size of f(nj , dk). More precisely, in our problem formu-
lation, data dk is needed by datacenter nj if f(nj , dk) is among the
fth percentile of large flows.

To solve the data assignment problem without regarding the user
assignment as a priori, we use the following algorithm.

First, we perform user assignment using the linear programming
approach we introduced in Section 3.2.1 with the added assumption
that all data is available at every datacenter. Using this user assign-
ment, we then determine whether data dk is needed at datacenter
nj . Algorithm 1 shows the details of this approach1.

However, this algorithm does not account for changes in user
request patterns. Accommodating user assignment changes in re-
sponse to request pattern changes is relatively simple and straight-
forward; users would be redirected to a different datacenter by chang-
ing request-routing. Unfortunately, changes in user assignment will
lead to changes in data assignment, which potentially requires mi-
grating a large volume of data. Such data migration is unreasonable
if the data is only needed a small number of times before being
migrated to another location. Therefore, we limit data migration
frequency in our data assignment algorithm by first defining two
additional matrices and parameters:

• rep_ttl(dk, nj) indicates the time to live of data replica dk

at data center nj . rep_ttl(dk, nj) = 0 if the data dk has no
replica at data center nj . rep_ttl(dk, nj) > 0 if there is a
replica and the value of rep_ttl(dk, nj) indicates the time to
live.

• rep_counter(dk, nj) is a counter that tracks how frequently
need(dk, nj) = true recently.

• rep_initial_ttl is the initial time to live.

• rep_threshold is a parameter deciding when to copy data. If
rep_counter(dk, nj) > rep_threshold , data dk will be actu-
ally copied to data center nj .

1Please note that we use upper case letters to represent matrices
and lower case letters to represent entries in a matrix.
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Algorithm 2 Update Data Replication

Input: Need of Data Matrix NEED(dk, nj)
Input: Original TTL Matrix REP_TTL(dk, nj)
Input: Original Replication Counter Matrix REP_COUNTER(dk, nj)
Output: Updated Replication Status Matrix REP_TTL(dk, nj)
Output: Updated Replication Counter Matrix

REP_COUNTER(dk, nj)
for each (dk, nj) do

if need(dk, nj) = true then

if rep_ttl(dk, nj) = 0 then

rep_counter(dk, nj) + +
if rep_counter(dk, nj) = rep_threshold then

Copy data dk to data center nj

rep_ttl(dk, nj) = rep_initial_ttl
end if

else

rep_ttl(dk, nj) = rep_initial_ttl
end if

else

rep_ttl(dk, nj) −−

if rep_counter(dk, nj) > 0 then

rep_counter(dk, nj) −−

end if

if rep_ttl(dk, nj) = 0 then

Remove data dk from data center nj

rep_counter(dk, nj) = 0
end if

end if

end for

At every time step, we obtain the updated user data request ma-
trix R(dk, ui) and determine the NEED(nj , dk) matrix by Algo-
rithm 1. We increment rep_counter(dk, nj) by 1 if data dk has no
replica at data center nj and need(nj , dk) = true. If the counter
reaches rep_threshold , we replicate the data dk to data center nj .
The rep_ttl(dk, nj) will decrease one if need(nj , dk) = false at
this time step. This process is described in Algorithm 2. By using
Algorithm 2, we guarantee that only data replicas that tend to be
used frequently will be replicated and only data that is infrequently
used for a long time will be removed. This reduces unnecessary
data migration across the datacenters.

3.2.3 Fast-FORTE

FORTE optimally assigns users to datacenters to minimize the
cost function. However, its reliance on linear programming limits
its scalability. In our experiments, FORTE’s optimizer takes 2 min-
utes to run on a standard personal computer using a partial trace
of Akamai traffic data as input. Because measurements are taken
every 5 minutes, this allows us to essentially solve the assignment
problem in real time. However, this is unlikely to be fast enough for
a complete CDN network, given the rapid growth rates of Internet
services. Hence, the number of data objects and user groups in the
user-datacenter-data model (as shown in Figure 5) may be much
larger than those in our simulations. For these scenarios, FORTE
can be very slow as the complexity of the Simplex method grows
quadratically. We therefore designed an alternative solution, called
Fast-FORTE, that uses the same model as FORTE but replaces the
linear programming flow solver with a heuristic algorithm based on
entropy. Before describing the algorithm in detail, we first define
the aggregate cost of a link between user group ui and datacenter
nj as:

a_cost(ui, nj) = l(ui, nj) + λ1
c(nj)

p(nj)
+ λ2

e(nj)

p(nj)
(9)

which is the cost to route user ui to datacenter nj . We also define

Algorithm 3 Fast-FORTE User Assignment

Input: User Data Request Matrix R(dk, ui)
Input: Network Latency Cost Matrix L(ui, nj)
Input: Data Replication Matrix REP (dk, nj)
Output: Flow Assignment Matrix F (ui, nj , dk)

Set all f(ui, nj , dk) = 0
Calculate A_COST (ui, nj , dk)
Calculate E(dk)
Sort A_COST (ui, nj , dk) in ascending order and put them in queue
Sort E(dk) in descending order
while Queue of A_COST (ui, nj , dk) not empty do

pop out link (ui, nj)
put E(dk) in queue
while Queue of E(dk) not empty do

Pop out data dk

if rep(nj , dk) == true then

if remaining(nj) ≥ r(dk, ui) then

f(ui, nj , dk) = r(dk, ui)
else

f(ui, nj , dk) = remaining(nj)
end if

end if

end while

end while

Output flow assignment

the weighted entropy of data dk

E(dk)

=P (dk)H(U |D = dk)

= − P (dk)
X

ui∈U

P (ui|dk) log P (ui|dk) (10)

where P (ui|dk) is the probability that, given a request is asking
for data dk, it comes from user group ui. The weight P (dk) is the
probability that a request is asking for data dk. The entropy value
H(U |D = dk) measures the uncertainty of the requests. When the
entropy reaches its maximum, we are uncertain about the location
of requests as the location probability of each request is evenly dis-
tributed.

The Fast-FORTE algorithm is as follows. First, links between ui

and nj are sorted by their aggregate cost a_cost(ui, nj). Data ob-
jects are also sorted by their weighted entropy E(dk). At each step,
we select the link with the minimum aggregate cost and remove it
from the graph. We then attempt to fill this link with data requests
until we have exhausted all data requests. As we fill the link with
data requests, we also attempt to fulfill requests asking for data with
larger weighted entropy. The details of the algorithm is described in
Algorithm 3. We use remaining(nj) to keep track the remaining
capacity of datacenter nj .

We evaluated Fast-FORTE by using the same experimental data
we used for evaluating FORTE (described in Sec. 4.1). Fast-FORTE
finds a solution in approximately 6 seconds compared to 2 minutes
for FORTE. To estimate the quality of approximation, we calculate
the approximation ratio:

Ratio =
Objective in Equation 2 by Approximation

Objective in Equation 2 by LP

The average of approximation ratio is 1.00320 with a standard de-
viation 0.00558. Among the data we tested, the approximation ratio
is less than 1.03 for 99.5% of the data points.

3.3 Using FORTE for Upgrading Datacenters
Determining a user and data assignment strategy that strikes a
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good balance between latency, electricity cost, and carbon foot-
print only addresses half of the assignment problem. To datacen-
ter operators, determining how to upgrade their datacenters in re-
sponse to growth is equally important, as Internet traffic has main-
tained an explosive growth rate of 40 percent per year in the past
decade (see, e.g., [25]). Specifically, datacenter operators need to
determine which datacenters should be upgraded, and how many
servers within each datacenter should be upgraded. Simply upgrad-
ing the greenest datacenters first is not optimal, as it does not prop-
erly weigh the three-way tradeoff. For example, upgrading a green
datacenter in a remote area will provide minimal benefits as, due
to the high latency to end-users, most traffic will be directed away
from it. In this section, we extend FORTE to help decision mak-
ers determine the optimal upgrade plan. The objective of upgrad-
ing is to ensure that an application service provider can meet user
traffic demands while minimizing electricity cost and carbon emis-
sions. This is made easier by assuming the continued adherence to
Moore’s law, which allows us to assume that servers in datacenter
can be replaced with new models that consume the same amount
of energy but provide twice the computing power. In this modified
model, we must introduce three new variables:

• a(nj) is the amortized purchasing cost of upgrading a server
at datacenter nj . The one time upgrading investment on the
server is divided by its service period. e.g.: 5 years.

• budget is the maximum number of server that are allowed to
upgrade by the budget.

• up(nj) is the percentage of server that are upgraded.

The new model includes the cost and benefit of upgrading a dat-
acenter. If the benefit of upgrading, such as reduction in latency,
offsets the amortized purchasing cost a(nj), the datacenter will be
upgraded. The following is the linear program formulation for solv-
ing the upgrade problem. The parts that differ from our previous
user assignment linear program are marked in bold font.

minimize:
f(ui,nj ,dk),up(nj)

(11)

X

ui,nj ,dk

f(ui, nj , dk)l(ui, nj , dk)

+ λ1

X

nj

m(nj)c(nj) + λ2

X

nj

m(nj)e(nj)

−λ1

X

nj

u(nj)up(nj)c(nj) − λ2

X

nj

u(nj)up(nj)e(nj)

+λ3

X

nj

u(nj)up(nj)a(nj)

subject to:

∀nj ,
X

ui,dk

f(ui, nj , dk) ≤ m(nj)p(nj) (12)

∀ui, dk,
X

nj

f(ui, nj , dk) = r(dk, ui) (13)

∀nj,0 ≤ m(nj) ≤ u(nj)(1 + up(nj)) (14)

∀ui, nj , dk, f(ui, nj , dk) ≥ 0 (15)

∀ui, nj , dk, s.t. rep(nj , dk) = false, f(ui, nj , dk) = 0 (16)

∀nj,0 ≤ up(nj) ≤ 1 (17)
X

nj

u(nj)up(nj) ≤ budget (18)

We highlight four equations that are changed in this model:

Equation 11: The new expression adds the total amortization cost
X

nj

u(nj)up(nj)a(nj)

into the objective. If the amortized purchasing cost of adding a
server is smaller than the extra latency cost to direct further away
traffic to this datacenter, it will then be worthwhile to add a new
server. Since the new model consumes the same amount of energy
as the original one, upgrading a server will not lead to extra elec-
tricity cost nor carbon emission. The term

−λ1

X

nj

u(nj)up(nj)c(nj) − λ2

X

nj

u(nj)up(nj)e(nj)

removes the extra carbon counted by

+λ1

X

nj

m(nj)c(nj) + λ2

X

nj

m(nj)e(nj)

when up(nj) > 0.

Equation 14: Note that in the new model, m(nj) is the effective
computing power rather than the number of running servers. There-
fore, it is possible that m(nj) > u(nj). When 20% of servers in
datacenter nj are upgraded (up(nj) = 0.2), the effective comput-
ing power m(nj) = 1.2 × u(nj), as 20% of the servers double
their computing power. up(nj) can be viewed as a “slack variable”
to m(nj). The value of the slack variable up(nj) determines the
amount of growth m(nj) that is needed to reduce the total cost
(Equation 11). In other words, the value of up(nj) is the optimal
upgrading percentage to minimize cost.

Equation 17,18: These two constraints limit the range of upgrad-
ing percentages and the total number of servers to upgrade.

Linear programming will find the trade-off between the cost and
benefit of adding new servers at each location. The output of up(nj)
indicates the percentage of server that needs to be upgraded in dat-
acenter nj . The input traffic matrix should be the average value of
a relatively long period, say a month, to give stable results.

4. RESULTS
We now evaluate the carbon emission reductions that are possi-

ble using FORTE. Throughout our evaluation, we use the Akamai
content distribution network (CDN) as a case study. We begin by
describing our simulation methodology and the Akamai dataset;
we then find the maximum amount of carbon emission reductions
possible before evaluating the three-way tradeoff between carbon
emissions, latency, and electricity costs. Finally, we give the results
of using FORTE to upgrade datacenters.

4.1 Methodology
We implemented a custom discrete time simulator to evaluate

FORTE, using a 24-day workload from Akamai. In the following
sections, we describe Akamai’s infrastructure and this dataset, how
we estimate the carbon emissions of each datacenter, and our ap-
proximation of latency between a user and datacenters.

4.1.1 Akamai CDN

We use Akamai as a case study to evaluate the carbon emis-
sion reduction potential of an Internet-scale system. Akamai is the
largest content delivery network in the world. It delivers 15–20 per-
cent of worldwide Internet traffic [33] and it has more than 95,000
servers in 1,900 networks across 71 countries [2].

The Akamai workload we use as a case study was collected
from 18 December 2008 through 11 January 2009, and was col-
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lected from a subset of their datacenters. The datacenters included
are Akamai’s public datacenters, which are generally located in-
side of co-location centers. As opposed to Akamai’s private CDN
nodes, these public datacenters can serve requests for any client.
The dataset does not include logs for private Akamai datacenters.
These are typically located within a university or enterprise net-
work. The workload contains logs for users and CDN datacen-
ters worldwide; however, the information given on users outside
of North America is not detailed enough for our purposes, so we
omit it from our simulations.

The dataset consists of measurements taken over a 5 minute in-
terval. Each measurement contains the geographical origin of user
requests, the datacenter that served the requests, and the aggregate
size of the requests. We use FORTE to compute an updated user-
to-datacenter assignment for each measurement. Then, this assign-
ment is used for the duration of the 5 minute interval represented by
the measurement. Because these logs contain Akamai’s actual as-
signment of users to datacenters, we can compare FORTE to Aka-
mai’s proprietary request-routing scheme, even though we have no
details about their scheme. In Section 4.2, we show that FORTE
can closely approximate this scheme.

The logs include the load factor for each datacenter. This is es-
timated by the combination of CPU, memory, and network utiliza-
tions. We use the load factor together with the user request logs to
estimate the capacity of each datacenter.

The user request logs contain only aggregate statistics, and do
not provide us with the type or name of content requested by the
user. Akamai handles interactive requests, which are latency-sensit-
ive, as well as streaming requests, which are throughput-sensitive.
To account for this, we assume that 90% of user requests are latency-
sensitive, and that the remaining 10% of requests are not sensitive
to latency. Recall that FORTE models user access latency costs for
latency-sensitive traffic with a two-part function. For distances less
than lmax, the user access latency cost is linearly proportional to
latency. Beyond lmax, latency cost grows quadratically in order to
discourage FORTE from routing users to far away datacenters. For
our Akamai case study, we set lmax equal to 2,000 km which is
half of the distance across the length of the U.S.. FORTE does
not include access latency in its objective function for throughput-
sensitive traffic, so these users are routed to datacenters with low
carbon footprints, regardless of their distance.

4.1.2 Power proportionality and bandwidth

For all simulations, we assume that the datacenters are fully power-
proportional . Most datacenters today are not power-proportional,
though the industry is heading that direction [4]. One challenge
here is that servers are not power-proportional. However, a dat-
acenter can be made power-proportional by shutting off unused
servers [28] and switches [18]. There are also proposals for power-
proportional storage systems [3, 24]. By assuming that datacenters
are fully power-proportional, we find an upper bound on the amount
of carbon emission reductions possible with FORTE.

Further, we assume that bandwidth cost increases are insignif-
icant. FORTE does not increase the number of user requests, and
its optimization procedure minimizes the number of times a data
item must be retrieved. However, because it routes users to min-
imize carbon emission, it is possible that it increases bandwidth
costs. Currently, bandwidth costs are based on the 95/5 bandwidth
pricing scheme, which divides traffic into 5 minutes intervals and
uses the 95th percentile for pricing. Because bandwidth prices are
not geographically differentiated for Akamai [35], re-routing traffic
to another datacenter does not increase the overall bandwidth cost.
However, affecting the 95th percentiles does. In our simulations,

Figure 7: Carbon emission rate of each state in U.S. The average carbon

emission rate of U.S. is 562g/kWh. Most of Akamai datacenters are in states

with carbon emission rate between 200-599g/kWh.

Nuclear Coal Gas Oil Hydro Wind

CO2 g/kWh 15 968 440 890 13.5 22.5

Table 9: Carbon dioxide emission per kilowatt-hour for the most common

fuel types [19].

we found that the sum of the 95/5 values for each datacenter us-
ing the request-routing assignments found by FORTE was 97% of
the sum of 95/5 values found by Akamai’s scheme. This indicates
that FORTE does not significantly affect the 95th percentiles. Fur-
thermore, bandwidth is relatively inexpensive today, with network
bandwidth expenses only contributing a couple of percent to the to-
tal cost of operating a datacenter [16]. Finally, if bandwidth costs
are a concern, then they can easily be incorporated into FORTE’s
optimization constraints.

4.1.3 Carbon footprint data

To estimate the carbon emission rate of each datacenter, we use
electricity generation data from the U.S. Energy Information Ad-
ministration’s website [41]. They report the average electricity fuel
mix of all the states in U.S. for the seven major types of fuel. Then,
the average carbon emission rate of a state is found by summing
the weighted contribution from each fuel type. This is defined as:

state’s avg. carbon emission rate =

P

ei × ri
P

ei

(19)

where ei is the electricity generated from fuel type i and ri is the
carbon emission rate of fuel type i. The carbon emission rate of
the most common fuel types is shown in Table 9. Of course, data
at a finer grain than state-level would improve the fidelity of our
results. However, as carbon emission rates are often governed by
state-regulated legislation and power-generation, we believe that
state-level carbon emission data is sufficiently fine grain for our
model.

Figure 7 shows our estimate of the carbon emissions caused by
electricity generation in each state. The carbon emissions of loca-
tions with an Akamai datacenters is summarized in Figure 8. We
see that, despite not directly optimizing for carbon emissions, Aka-
mai’s datacenters are typically in low-polluting locations, and most
of its datacenters are located in states with carbon emission rate less
than U.S. average (562 g/kWh).

As described in Section 2.2, the carbon emission rate of electric-
ity generation varies with both location and time, because the fuel
mix changes with the turning on/off of peak plants. We do not have
hourly fuel mix data of states in the U.S.. However, we know that
most of peak plants are powered by oil and gas [8], so peak plants
emit more carbon than base load plants. We estimated the daily
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Figure 8: Distribution of the carbon emissions of Akamai datacenters.
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Figure 10: Percentage of carbon emission reduction with various PUEs and

different schemes. The practical scheme increases the average user distance

and the conservative scheme fixes both distance and electricity cost to their

respective values under Akamai’s routing scheme.

change on the carbon emission rate of each state by the change of
total load and composition of fuel source. On average, the maxi-
mum carbon emission hour for a state emits 63% more carbon than
its daily average.

4.1.4 Approximating latency with distance

The Akamai dataset does not include latency measurements, and
latency estimation is a challenging problem. Therefore, we approx-
imate access latency with geographical distance in our simulations.
Although distance is not a perfect estimator of network latency,
we believe that it is sufficiently accurate to determine the relative
rank in latency from datacenters to each end-user. Therefore, for the
remainder of this section, we use geographical distance as an ap-
proximation for latency. In practice, CDN providers have accurate
measurements on network latency, so they can use their datasets to
improve latency estimation.

4.2 Carbon Emission Reduction
We begin by determining the maximum amount of carbon re-

duction that is possible for Akamai. The reductions possible de-
pends on the PUE of the datacenters in the distribution network,
because the carbon output per unit of work is lower in datacen-
ters with a lower PUE. We found the upper bound on carbon re-
duction possible as the PUE of the datacenters varies, assuming
all datacenters have the same PUE. The results are shown in Fig-
ure 10. Here, carbon emission reduction is the main objective of
FORTE’s optimization—electricity costs and latency have a rela-
tively smaller weight. Therefore, we can estimate the upper bound
of carbon reduction for different PUEs.

As expected, as datacenter efficiency increases, FORTE achieves
greater carbon emission reductions. For inefficient datacenters with

a PUE of 2, we found that FORTE can reduce carbon emissions
by 8%, while carbon emissions can be reduced over 38% if the
datacenters have a PUE of 1. This graph demonstrates the incentive
to further reducing PUE for a system whose current PUE is small.
We do not have the PUE of the datacenters in the Akamai dataset;
however, the industry average PUE was 2.0 in 2007 [10] and was
1.91 in 2009 [40]. The best datacenters have a PUE as low as 1.07
[13, 34].

Figure 10 also shows the sensitivity of FORTE to datacenter
PUE. We vary the PUE of the CDN datacenters and found the car-
bon reduction achieved by two schemes, a practical scheme and a
conservative scheme, as well as the upper bound on carbon reduc-
tion. For the practical scheme, we fixed the electricity cost at the
current Akamai level. We found that this scheme increased the av-
erage distance from 745 km to 1000 km; however, FORTE does
not minimize distance for throughput-sensitive traffic, so this traf-
fic disproportionally affects the average distance. The conservative
scheme fixes both distance and electricity cost to the current Aka-
mai levels. From the figure, we find that PUEs of less than 1.5
is the sensitive region, which motivates datacenter owners to fur-
ther reduce their PUE. For the remainder of our simulations, we
assume that all datacenters have a PUE of 1.2. In the 2007 E.P.A.
report [10], they indicate that best-practices yield datacenters with
PUEs of 1.3. Therefore, we believe that a 1.2 PUE is a reasonable
estimate for a modern best-practice datacenter.

Next, we evaluated the effects of changing the weight of carbon
emissions in FORTE’s objective function. That is, we evaluate the
effect of changing λ1 on carbon emissions. We used four values for
λ1 and fixed all other parameters. The results are shown in Figure
11. The chart shows carbon emission levels, normalized to Aka-
mai’s carbon emissions, for the duration of the Akamai trace. We
see that even if λ1 is set to a very small value, we have around 4%
carbon emission reduction. This is because users can be assigned
to cleaner datacenters within a similar distance, so carbon emis-
sion reductions are found without increasing latency. When λ1 is
set to a large value, carbon emissions can be reduced up to 20% on
average.

We also observed that:

• The major difference in carbon reduction between λ1 = small
and λ1 = medium is at non-peak hours.

• The major difference in carbon reduction between λ1 = medium
and λ1 = large is at peak hours.

This shows that when the load is low, FORTE has more freedom
to assign users to cleaner datacenters. Therefore, as presented in
Section 3.3, FORTE indicates where are the desirable places for
datacenter upgrading. The result of datacenter upgrading is demon-
strated in Section 4.4.

4.3 Costs of Carbon Reduction
We have shown that FORTE can reduce an Internet application’s

carbon emissions; however, these reductions may come at the price
of increased access latency and electricity cost. To explore the trade-
offs an operator can make, we show the effects of varying distance
and electricity costs on carbon emissions in Figure 12.

We find that we can reduce carbon emissions caused by Aka-
mai’s datacenters by 10% without increasing latency nor electricity
cost from their existing levels. When carbon emissions are at 81%
of the current Akamai level, the electricity cost reduces with the
reduction of carbon emissions. This is because for some regions,
carbon emission is positively correlated with electricity prices. In
this situation, assigning users to datacenters powered by cleaner
electricity will reduce both carbon emissions and electricity cost.
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To better understand the 3D surface plotting carbon emissions,
electricity cost, and distance, shown in Figure 12, Figures 14 and 15
show the results of fixing electricity cost to the current Akamai cost
and of fixing distance to the current Akamai distance respectively.
Figure 13 shows the locations of these fixed points.

Figure 14 shows carbon emission vs. distance when we fix the
electricity cost to Akamai’s current electricity cost. We can reduce
carbon emission by 10% without affecting distance. Electricity cost
reductions beyond 20% increase distance linearly. After this point,
further carbon emission reductions are cost prohibitive.

Figure 15 shows carbon emission vs. electricity cost when the
average distance is fixed to Akamai’s current distance. We observe
that FORTE reduces carbon emissions by nearly 10% without in-
creasing electricity cost. However, after this point, further carbon
reduction is very expensive, as the reduction curve flattens out. To
reduce the carbon emission by 0.1 ton per hour, the extra electricity
cost is $23. The cost of unit carbon reduction is $230/ton, which is
significantly higher than the current carbon tax ($5/ton to $39/ton
[21]). Hence, paying the carbon tax is less expensive than reducing
carbon emission.

4.4 Upgrading Datacenters
To evaluate FORTE’s datacenter upgrade algorithm, we again

use Akamai as a case study; however, we now assume that their
traffic growth rate is 40% per year. (This growth rate is consis-
tent with recent measurements [25].) We assume that each year, the
datacenter operator has a budget large enough to increase the total
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Figure 14: Carbon emissions vs. average user distance when electricity

costs are fixed to Akamai’s current costs.

number of servers by 15%. To simplify our analysis, we assume
that upgrades are performed in June each year.

Each month’s traffic estimation is used by FORTE to find the up-
grading plan for each month. Let upy,m(nj) denote the percentage
of servers to be upgraded in datacenter nj at month m of year y.
We use the 12 month running average of upy,m(nj) to calculate the
upgrading plan for year y. Mathematically, we upgrade datacenter
nj in year y by:

upy(nj) = α

12
X

m=1

(1 − α)12−m
upy,m(nj) (20)

where α is a parameter controlling the weight of recent months.
We compared FORTE’s upgrading algorithm with a carbon obliv-

ious uniform upgrading scheme, which adds the same percentage of
server each month. The total number of servers added for FORTE
and the carbon oblivious scheme are the same. Figure 16 shows
the carbon emissions of both schemes over a 36 month period. Up-
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Figure 16: Carbon emissions over time in the datacenter upgrade scenario.

FORTE performs upgrades every June, hence the drop in carbon emissions

every 12 months.

grades take place at months 7, 19, and 31, which can be seen as dips
in the carbon emission. The actual percentage of servers purchased
each year is shown in Table 17. The carbon emission growth rate is
also lower using FORTE’s algorithm. At month 1, FORTE’s solu-
tion has 83.22% of the carbon emission that the oblivious uniform
upgrading scheme’s solution has. At the end of month 36, FORTE’s
carbon emission is 72.80% of the carbon oblivious one. Therefore,
FORTE lowers the carbon emission growth rate.

The datacenters upgraded are primarily near the most densely
populated regions in United States such as the west coast, the north-
east and the south. We selected some typical upgraded datacenters
and plot the percentage of servers upgraded each year in Figure
18. When we compare Figure 18 with Figure 7, we see that dat-
acenters selected for upgrades are primarily from the states with
cleaner electricity generation. The state of Washington, California,
New York, and New Jersey all have carbon emission rates less than
400 g/kWh. Although Texas has a emission rate of 562 g/kWh, it is
a relatively clean state in the southern U.S., so upgrading is benefi-
cial because it reduces latency for users in the southern part of the
country.

5. DISCUSSION
Impact on application service providers: Application service
providers fall into three broad classes. The first class, like Ama-
zon, Google, Facebook, and Microsoft, are vertically integrated and
own both the application as well as the underlying request-routing
framework and datacenters. Such providers can use FORTE as-is to
optimize their request-routing algorithms and datacenter upgrades.
The second class of service providers, like Amazon Cloudfront,

Month Upgrading Percentage

6 5.365%
18 9.872%
30 10.107%

Table 17: Percentage of servers upgraded among all servers

Month 6

Month 18

Month 30

No Upgrade

TX1 

NJ1 

NY1 

CA1 

WA1 

CA2 

NJ2 

Figure 18: Three year upgrade plan for selected datacenters

Microsoft Azure, AT&T, and Telefonica, own and operate data-
centers that host applications and also provide a request-routing
framework, but do not own the applications that they host. Such
providers can also use FORTE as-is by monitoring the usage of the
applications that they host. The third class of service providers, like
Akamai, Limelight, Cotendo, and CDNetworks, own neither data-
centers nor applications, and primarily provide a request-routing
service and access to servers collocated at datacenters around the
world. Although such providers can use FORTE to modify their
request-routing algorithms, our approach is less applicable to them
because they do not actually pay for energy but the capacity of
power provisioned to the servers (a fact also noted by [35]). How-
ever, they can still use FORTE to decide which collocation sites to
upgrade in an effort to minimize their overall carbon footprint.

Will carbon taxes or credits work? The price of electricity to-
day does not reflect externalities such as its carbon footprint. It has
been suggested2 that this can be corrected by a carbon tax (or its
converse, a carbon credit for green generators). Can these affect the
behavior of Internet-scale application providers?

We believe that, at least for the near future, the answer is nega-
tive, because the carbon cost of a server is under 2% of the elec-
tricity cost. To see this, consider a typical server that uses approxi-
mately 250 W = 0.25 kW [23] in a region where the electricity cost
is 11.2 c/kWh, the US average [41]. The hourly electricity cost of
operating the server would be 0.25 * 0.112 = $0.28/hour. Recall that
the mean carbon footprint of electricity in the US is 562g/kWh. The
server’s carbon emissions are therefore 0.25*562g = 140.5g/hour.
The US currently does not impose a carbon tax. However, the Eu-
ropean Union suggests a carbon tax of $5 to $39 per 1000 kg =
$0.000039/g [21]. Even at the high end of this scale, the carbon
cost of the server would be only $0.00548/hour, which is less than
2% of the electricity cost. Given this disparity, unless carbon taxes
are at least an order of magnitude larger, which is unlikely for the
next few years, they will have little effect on application service
providers.

We believe, instead, that carbon footprint reductions can be achie-
ved using a combination of intelligent request-routing and non-cash
incentives. Section 4 demonstrates that, using FORTE, a service

2http://www.carbontax.org/
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provider can reduce its carbon footprint by up to 10% with no im-
pact on its electricity cost or mean access latency. The increased
electricity cost of additional reductions could be balanced by the
goodwill this can generate with the general public: a cost, like ad-
vertising, that corporations are often willing to bear.

A principled approach to datacenter location: FORTE provides
a principled approach to decide where to build new datacenters and
how large these should be. A service provider indicates candidate
locations to FORTE by placing zero-size data centers in these loca-
tions and then running the upgrade algorithm presented in Section
3.3. An upgrade to a datacenter with zero servers to a datacenter
with n servers is readily interpreted as a selection of this location
for a new datacenter with n servers. In reality, location decisions
are often heavily influenced by various incentives offered by au-
thorities trying to attract datacenters to their location. It is straight-
forward to reflect these incentives in the objective function by ad-
justing the cost to build a datacenter in a given location.

Datacenter emergy: Electricity consumption is only part of an In-
ternet service’s carbon footprint. A more complete life-cycle as-
sessment should incorporate additional environmental impacts, such
as the energy and materials used to produce the datacenters it is de-
ployed on. Emergy is the amount of energy used to manufacture
a product, that is, it is the embodied energy of the product. The
emergy of a product can be significant; for example, a study from
2004 estimated production to account for 81% of a computer and
display’s total life-cycle energy use [43]. Additionally, Raghavan
and Ma estimate that embodied power is 53% of the Internet’s total
power use [36]. The relative contribution of emergy to a server’s
life-cycle energy use is less: it accounts for at most 21% to 10% of
its total energy use, assuming an average power of 250 W to 500
W and a three-year lifespan and that a typical server has 5 GJ of
emergy [6]. Because a datacenter is not just servers, the emergy of
a datacenter may be considerably higher. Therefore, estimating the
relative importance of datacenter emergy is an interesting direction
for future work.

6. RELATED WORK
Request-routing and electricity: There has been considerable in-
terest in reducing the electricity consumption of datacenters and
networks in recent years. Qureshi et al. proposed a request-routing
scheme to minimize the electricity bill of multi-datacenter systems
[35]. They showed that this sort of optimization can reduce the
electricity bill by 13% when assuming power-proportional datacen-
ters. Later work, such as [30, 37], has improved the algorithms of
Qureshi et al.. Other proposals consider how request-routing can be
used to help with load balancing in the electric grid [32].

Recently, there has been work investigating modifying request-
routing to reduce carbon emissions. Le et al. [26] considered the
joint optimization problem of minimizing carbon emission and elec-
tricity cost. Their user assignment algorithm does not attempt to
minimize the distance between users and the datacenters that serve
them, so they are not able to capture the full space of tradeoffs.
Liu et al. [29] also proposed an algorithm to geographically load
balance users while taking carbon into account. Their algorithm
assigns users to datacenters based on access latency and costs only;
however, they put a dollar cost on carbon emissions for their anal-
ysis. As previously discussed, the per dollar cost of carbon is low
compared to the cost of electricity, so carbon emission needs to
be more explicitly considered in the optimization procedure. Liu
et al. use their algorithm to investigate whether user load balanc-
ing can facilitate the introduction of stochastic energy sources (like
wind and solar) to the electric grid. In [9], Doyle et al. proposed
adjusting the number of servers running in datacenters to tradeoff

between latency and carbon emissions. In this preliminary work,
the authors use a simple model of the problem, which does not take
into account load distribution, network latency, and the temporal
dynamics of carbon emission rates.

None of the previously proposed request-routing schemes al-
low operators to tune all three parameters: electricity costs, access
latency, and carbon emissions. FORTE solves this problem, and
specifically we make the following contributions beyond previous
works: (1) we model data at datacenters, whereas previous work
ignore this and assume full replication of the data; (2) we propose a
new algorithm for user assignment that accounts for the location of
data, whereas previous works ignore data locality; (3) we propose
an algorithm to plan datacenter upgrades such that carbon emis-
sions are minimized; and, (4) we use this algorithm to thoroughly
explore the tradeoffs between latency, electricity costs, and carbon
emissions.

New architectures for service energy reduction: Others have con-
sidered new architectures to reduce the electricity costs of con-
tent distribution. Vytautas et al. proposed the use of nano datacen-
ters [42], which act similar to peer-to-peer distribution networks, to
replace the current centralized model. They argue that fixed costs
such as cooling consume a large proportion of energy in datacen-
ters, which is avoided by nano datacenters, because a nano data-
centers are freely cooled by ambient air. Jourjon et al. [20] also
proposed a peer-to-peer-based architecture; however, they have not
yet evaluated their proposal. Uichin et al. [27] and Guan et al. [17]
proposed architectures to reduce content distribution energy costs
using content-centric networking (CCN). A CCN incorporates stor-
age components into switches and routers in the network, enabling
them to cache content. This may reduce energy use for serving
static content distribution, but does not work for dynamic content.

These alternative approaches are promising, but it is unclear whe-
ther they will save energy. Others have argued that peer-to-peer
content delivery architectures use more electricity overall than cen-
tralized models like CDNs [11]. However, these architecture do re-
duce the electricity use of datacenters, but because they increase
overall electricity use, they will increase carbon emissions overall.

Datacenter upgrade and expansion: Site selection for new data-
centers has traditionally been performed based on factors such as
susceptibility to natural disasters, electricity prices, land prices, tax
breaks, workforce, and availability of Internet connection points
[38]. Recently, Goiri et al. [12] proposed a rigorous framework
for datacenter site selection. Their solution automates site selection
using optimization, and their algorithms simultaneously optimize
many objectives, including minimizing costs and carbon emissions.
Expanding the capacity of existing datacenters has not been as wide-
ly studied in the literature. However, there has been work on data-
center network upgrades and expansions [7].

7. CONCLUSIONS
The carbon footprint of Internet-scale applications is a relatively

small but still rapidly growing fraction of total emissions. To ad-
dress this issue, we propose FORTE, a principled approach based
on flow optimization to route users to datacenters. FORTE allows
application service providers, such as content distribution networks,
to navigate the three-way tradeoff between carbon footprint, ac-
cess latency and electricity cost. To deal with the scale of the prob-
lem, we also describe Fast-FORTE, a greedy algorithm that obtains
nearly the same results as FORTE but runs faster by at least an
order of magnitude. Due to their underlying principled approach,
both algorithms can be easily enhanced to take other factors, such
as tax incentives and upgrade budgets, into account.

Using FORTE and Fast-FORTE to analyze traces from the Aka-
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mai CDN, we find that our approach to request-routing can reduce
Akamai’s carbon footprint by 10% without increasing electricity
cost, while simultaneously bounding the access latency. We also
find that further reductions in carbon footprint come at the expense
of either latency or electricity cost, and that these costs are unlikely
to be offset by carbon credits or taxes. We modify FORTE to de-
termine how best to upgrade datacenters in response to increases in
request traffic. We find that, using our approach, under some sim-
plifying assumptions, Akamai can reduce its carbon footprint by
about 25% over three years, compared to a carbon-oblivious up-
grade algorithm.
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