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Abstract

Background: Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray

hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We

have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF

target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to

estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification

compared to other methods. Additionally, TIP’s output does not render binding-peak locations or intensity, information

highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file

formats has made input into TIP more difficult than desired.

Description: To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a

Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately

capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by

identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease

of implementation we have incorporated it into a web server (http://syslab3.nchu.edu.tw/iTAR/) that enables flexibility

of input file format, can be used across multiple species and genome assembly versions, and is freely available for

public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal

the potential function of the corresponding TF.

Conclusions: The iTAR web server provides a user-friendly interface and supports target gene identification in seven

species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server

generates the chart of the characteristic binding profiles and the density plot of normalized regulatory scores. The iTAR

web server is a useful tool in identifying TF target genes from ChIP-seq/ChIP-chip data and discovering biological insights.
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Background
Transcription factors (TFs) constitute a family of pro-

teins that play critical roles in regulating gene transcrip-

tion [1, 2]. Mechanistically, they operate by recognizing

and binding specific DNA sequences via DNA-binding

domain(s) or by forming complexes with other

regulatory co-factors [3]. Owing to the development of

technologies such as chromatin immunoprecipitation

followed by massive parallel sequencing (ChIP-seq) or

DNA hybridization (ChIP-chip), a large number of ex-

periments have in recent years sought to identify

genome-wide TF binding sites [4, 5], from which pre-

dictions about TF regulatory target genes can be made.

Given the ChIP-seq/ChIP-chip data for a TF, several com-

putational methods have been proposed to define these

target genes [6–8]. Most of these methods apply a peak-

based strategy: first, a peak-calling algorithm [9–11] is
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employed to generate a list of enriched binding peaks of a

TF, with target genes for that TF then defined by analyzing

the intensity and location of the binding peaks to nearby

genes. As signals from non-significant binding peaks are

not considered, these methods are sensitive to the choice

of peak-calling method. Indeed, a considerably different

set of TF binding peaks and derived target genes are iden-

tified when different peak-calling methods or different

parameter-settings are used, raising questions of validity

and false positivity of this approach.

To address this issue, we have previously developed a

probabilistic method, called TIP (Target Identification

from Profiles), to identify TF target genes based on

ChIP-seq or ChIP-chip data [12]. TIP requires no pre-

defined binding peaks; rather, it considers raw experi-

mental TF binding signals from all DNA regions of the

genome. TIP works by characterizing a binding profile

of a TF around the transcriptional start sites (TSS) of all

genes and then uses this profile to weight the binding in-

tensity of a TF in each gene’s promoter region, yielding a

continuous-valued binding score of a TF for each gene.

TIP then estimates the significance of each gene as a

regulatory target by comparing each gene’s binding score

to the distribution of all binding scores, using statistical

methods that assume distributional normality.

As others and we have shown, TIP identifies TF targets

with very high accuracy that can be readily used in down-

stream biological studies [13]. However, the following is-

sues hinder the application of TIP. First, the assumption

that binding scores follow a normal distribution makes the

calculation of p-values exceedingly conservative, which re-

sults in a lower sensitivity of the method for identifying

targets. This is because binding scores are generally not

normally distributed and instead are either bimodalor

positively skewed, reflecting the fact that the binding

scores fundamentally encompass two different popula-

tions: genuine targets (with higher scores) and background

genes (with lower scores). Thus, assuming distributional

normality elides over this heterogeneity and loses statis-

tical resolving power. Second, as TIP does not utilize bind-

ing peaks, it also does not output them, a shortcoming for

downstream analyses as they are helpful for visualization

and general experimental biology. Third, while a strength

of TIP is that it uses all the track files from ChIP-seq and

ChIP-chip experiments, in practice the file format vari-

ation of this data (Bed, BedGraph, Wiggle, and BigWig,

among others) has made file input into TIP less straight-

forward than desired.

To address these limitations, here we extend TIP with

key modifications. First, were vise the p-value calculation

using a Gaussian mixture model, thereby more accur-

ately taking into account the shape of the binding score

distribution and improving target gene identification

sensitivity. Second, we remedy the lack of binding peak

output by allowing TIP to optionally incorporate a

binding peak file into its analysis and identify peak

loci and intensity within the promoter regions of each

significant target gene calculated by TIP. Finally, for

ease of implementation we have created a web server

(http://syslab3.nchu.edu.tw/iTAR/) for track files up-

load and end-to-end TIP processing. The web server

currently accepts Wig, BigWig, and BedGraph com-

pressed (.gz or.rar) formats from TF ChIP-seq/ChIP-

chip experiments as the input, which contains the

binding signals of a TF at each genomic position (e.g.,

raw/normalized read coverage or fold-change), and

enables analysis for seven organisms (human, mouse,

fly, worm, chicken, zebrafish and yeast) with multiple

genome assembly support for human and mouse.

With a user-friendly interface and extensible backend for

future genome version support, the server is widely usable

for TF target gene identification and ChIP-seq analysis go-

ing forward.

As a walkthrough of its capabilities we provide an ex-

ample of its use for STAT3 ChIP-seq data. A validation

of its output is conducted using the NFE2 ChIP-seq and

gene expression dataset.

Construction and content
Server construction, supported organisms and genome

assemblies

The iTAR web server runs on Linux and is implemented

in JSP and Java. ChIP-seq data analysis is provided for

seven different organisms: human, mouse, fly, worm,

chicken, zebrafish and yeast, with multiple genome as-

semblies available for human (UCSC hg 18 and hg19)

and mouse (UCSC mm8, mm9, and mm10). In addition,

support for genome assemblies is extensible to enable

further genome assembly availability going forward.

Annotation files for RefSeq genes are downloaded

from the UCSC Genome Browser [14]. These files pro-

vide the chromosome, strand, transcriptional start site,

transcription terminal sites, structures and other gen-

omic information for all RefSeq genes for an organism,

based on the corresponding genome assembly.

The server is freely available to the public and does not

require login. Analysis of a ChIP-seq dataset for target

gene identification using the server is straightforward and

requires only three steps: (i) uploading input files, (ii)

choosing parameters, and (iii) receiving the output files.

Input files

The iTAR web server takes as input a ChIP-seq/ChIP-

chip signal track file and optionally a binding peak file

for a TF. The signal track file contains the binding signal

of a TF at each nucleotide position of the genome as

measured by sequencing in ChIP-seq or hybridization in

ChIP-chip data. The server supports three signal track
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formats: BedGraph, Wiggle, and BigWig. We note that

each format may have multiple variants. For example,

Wiggle files have two main formatting options–fixedStep

and variableStep, designed for data with regular and ir-

regular intervals between data points, respectively. The

server contains a module to process different formats of

signal track files to ensure the best usability.

The optional peak file is in bed format, containing the

chromosome, start position, end position and other infor-

mation of TF binding peaks. Users can run a peak calling

program, e.g. MACS or PeakSeq [9, 11], using the

uploaded ChIP-seq data as input to generate this peak file.

To improve the uploading time, the signal track files

must be compressed into either.rar or.gz format before

uploading. Alternatively, user can support download

links for track file and peak file, and then iTAR will

download the input files automatically.

Parameter settings

After the input file(s) have been uploaded, users need

to select the organism and the genome assembly ver-

sion from the drop-down list (see Fig. 1a). The selected

organism/assembly must match with the uploaded sig-

nal track file and an optional peak file to ensure accur-

ate results in subsequent analysis. In addition, users

need to specify three other parameters: the length of

considering binding signals around TSS, the FDR (false

discovery rate) threshold for TF targets and the P-value

threshold for GO enrichment analysis. The length of

promoter region will be used to select the regions of

the putative promoters, the FDR threshold will be used

to select a subset of target genes of the TF for subse-

quent GO enrichment analysis, and the P-value thresh-

old will be used to select significantly enriched GO

categories for displaying in the output webpage. After

all parameters have been specified, users can click the

“Submit” button to initiate online data analysis. A wait-

ing page will be displayed and updated every 5 s to re-

port the progress of the data analysis (Fig. 1b).

Depending on the organism and the signal track file

format, analysis may take 10–25 min to finish.

Output files

After data analysis has completed, the results will be

displayed in an output webpage. The main output con-

sists of five panels that include (i) a table summarizing

the parameter and input settings, (ii) a characteristic

binding profile of the TF, (iii) the distribution of nor-

malized regulatory scores for all genes, (iv) a list of sig-

nificant genes and (optionally) their associated TF peak

binding sites, and (v) a list of significantly enriched GO

terms (see Fig. 1 for an example). Significant genes in

(iv) are sorted by decreasing order of their regulatory

scores. For each gene, the p-value and the multiple-

testing corrected FDR value are calculated, using both

single normal and mixture normal models. To enable

parameter setting adjustment and iterative analyses

based on the output results, a “Rerun the program” op-

tion is included that accepts parameter setting modifi-

cations (to change statistical stringency requirements

for GO analysis, for example) without the need for re-

uploading input files.

TIP extensions

As mentioned above and previously described, TIP

builds a characteristic, averaged binding profile for a

TF around the TSS of all genes and then uses this

profile to weight the sites associated with a given

gene, providing a continuous-valued regulatory score

of a TF for each gene. It then normalizes the regula-

tory scores into z-scores and estimates their p-values

by referring to a standard normal distribution [12].

However, using a standard normal distribution to es-

timate the significance of regulatory scores is highly

conservative, giving rise to a confident but small tar-

get gene set. This is because the distribution of the

regulatory scores is typically not normal but posi-

tively skewed (Fig. 1d) or bimodal (Additional file 1:

Figure S1), reflecting the fact that binding scores en-

compass two distinct groups: background, non-target

genes with low regulatory scores, and genuine target

genes with higher regulatory scores. By not taking

this non-normal distributional shape into account,

statistical resolution is lost and p-value estimates are

conservative.

Motivated by these observations, here we refine TIP’s

p-value calculation by applying a two-component Gaussian

mixture model to estimate the significance of normalized

regulatory scores. Our approach is as follows: suppose that

each regulatory score y1,…, yn is instead derived from a

two-component (i.e., non-target and genuine target

genes, respectively) Gaussian mixture distribution.

The log-likelihood for data consisting of n observa-

tions y = (y1,…,yn), assuming a normal mixture model

with two components, is then given by

ℓ Θjyð Þ ¼
X

n

i¼1

log
X

2

k¼1

wkN yijμk ; σk

� �

 !

ð1Þ

where Θ = (w,Ψ) represents all unknown parameters

and N(⋅|μk, σk) denotes a Gaussian density function

with mean μ and standard deviation σ. Here the vec-

tor w = (w1,w2) consists of the mixing proportions and

subjects to
X

2

k¼1

wk ¼ 1 , Ψ = (μ1, μ2, σ1, σ2). The maximum

likelihood estimation of Θ can then be solved by
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Θ̂ ¼ arg max
Θ

ℓ Θjyð Þ ð2Þ

To choose the best mixture model with optimal pa-

rameters of the two Gaussian distributions, we use an

expectation-maximization (EM) algorithm [15] (See

Fig. 1d). EM is an iterative method for finding maximum

likelihood estimation of parameters by using the follow-

ing iterative algorithm,

Fig. 1 An overview of the iTAR web server. a The portal page of the iTAR web server: wig, bigwig, and bedgraph files in rar or gz format can be

used for upload. b The waiting page: after a wiggle file is uploaded, a waiting page will be shown to the user, updating job status every

5 s. For this example, we used the ENCODE STAT3 ChIP-seq data in HeLa-S3 cells. c The characteristic binding profile of an example TF.

It shows the aggregation plot of TF binding in a 20 kb DNA region centered at the transcriptional start site (TSS). This plot can be used

to make a rough evaluation of the data quality. In general, we expect to see a peak near by the TSS. d The density plot of normalized

regulatory scores (Z score). For each gene, the iTAR server will calculate a regulatory score, measuring the binding strength of a TF to

the gene. The regulatory scores for all genes will then be normalized, and p-values will be calculated based on a single normal distribution

model or a mixture normal distribution model. e A list of significant target genes and the associated TF binding site: significant RefSeq genes, gene

symbols and P-values will be shown. P-value 1 is estimated based on the mixture normal distribution model, and P-value 2 is estimated based on the

single normal distribution model. The summit location is the summit of the binding peak from TSS. f GO enrichment analysis with the target genes
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ŵk ¼

X

i¼1

n
ẑ ik

n
; μ̂k ¼

X

i¼1

n
ẑ ikyi

X

i¼1

n
ẑ ik

;

σ̂ 2
k ¼

X

i¼1

n ẑ ik yi−μ̂k

� �2

X

i¼1

n
ẑ ik

ð3Þ

with the posterior probabilities

ẑ ik ¼
ŵkN yijμ̂k ; σ̂ k

� �

X

h¼1

2
ŵhN yijμ̂h; σ̂ h

� �

ð4Þ

Once the optimal parameters are determined, we esti-

mate p-values by comparing each z-score to the left

Gaussian distribution (with the smaller mean value).

Gene ontology enrichment analysis

Given the target genes, we performed enrichment

analysis with GO terms using the Fisher exact test

based on a hypergeometric distribution [16]. To exclude

non-informative general GO terms, we restricted our ana-

lysis to those with gene numbers < 1000. The web server

shows significant GO terms ranked by p-value and pro-

vides the predicted target genes from them.

Utility and discussion
STAT3 ChIP-seq data

The ENCODE project contains STAT3 ChIP-seq data

for experiments run in HeLa-S3 cells [5]. By checking

the “Use Example” box and then clicking “Submit” in

the interface page of the iTAR server (Fig. 1a), ChIP-seq

data for STAT3 is processed and the results displayed in

an output page. The output page contains five panels

(Fig. 1b-f ). The first panel shows a table that summa-

rizes the data analysis including organism, version of

genome assembly, parameter settings and submission

time (Fig. 1b). The second panel shows the characteristic

binding profile for STAT3, also referred to as an aggre-

gation plot, which shows the average binding signals of

STAT3 across all RefSeq genes in the +/− 10 kb DNA

regions centered at the TSS of each gene (Fig. 1c). As

shown, the profile displays a sharp peak around the TSS,

suggesting that STAT3 shows a strong binding prefer-

ence to the TSS proximal regions. While in general

Fig. 1c’s purpose is to enable a visual check of binding

profile characteristics, the location hints at underlying

biology. Although most TFs show enriched binding sig-

nals around the TSS of genes, their characteristic bind-

ing profiles vary. This suggests that (i) different TFs tend

to bind at different locations relative to TSSs, which

could affect their transcriptional regulation of their tar-

get genes – signals closer to TSS may contribute more

to their target gene regulation [8, 17]; (ii) the binding

signals of different TFs at the same location might

influence nearby gene transcription differently – some

TFs may exert their influence over long distances, while

others exert only regional effects. Overall, Fig. 1c thus

enables the study of overall trends of a TF’s regulation

across the genome.

The third panel shows the distribution of normalized

regulatory scores of STAT3 on all human RefSeq genes

(Fig. 1d). The distribution shows a long tail to the right

side, which can be decomposed into two separate distri-

butions by using a two-component Gaussian mixture

model (the red and the green curves). The main output

of the iTAR web server is a ranked gene list as shown in

the fourth panel (Fig. 1e), with genes sorted in decreas-

ing order of their regulatory scores. P-values of all genes

are calculated and then adjusted using the Benjamini–

Hochberg multiple testing correction method (i.e. FDR)

based on a single normal distribution as well as a mix-

ture normal distribution. When the single normal distri-

bution is used, a total of 241 STAT3 RefSeq target genes

are identified at the 0.05 significance level (FDR < 0.05).

In contrast, the method based on mixture normal distri-

bution identifies 614 RefSeq target genes at the same

significance level, highlighting its increased sensitivity of

target gene prediction. By integrating Fig. 1d with 1e,

users can analyze the binding profile distribution and

decide which distribution model and p-value calculation

works best for their data and application.

The fifth panel is a table containing results from GO

enrichment analysis (Fig. 1f ) of STAT3’s predicted target

genes. Previous work has reported that unphosphory-

lated STAT3 (U-STAT3) influences gene transcription in

response to cytokines [18]. In Drosophila, U-STAT92E is

associated with HP1 and maintains heterochromatin sta-

bility. In addition, the U-STAT3-DNA interaction struc-

ture is important for chromatin organization [19]. Taken

together, U-STAT3 is considered to function as a tran-

scriptional activator of immune cells and a chromatin

organizer. A total of 185 GO terms are significantly

enriched in STAT3 target genes, in which the first, third,

and fifth GO terms are associated with the nucleosome

(GO:0000786, GO:0006334 and GO:0034728) and the

ninth GO term is associated with the immune response

(i.e. GO:0002673), consistent with STAT3’s known func-

tionality. GO:0000786 nucleosome has 67 genes, among

which 16 genes are STAT3 target genes (P = 1E-12)

(Fig. 1f ). To demonstrate the STAT3 binding signal in

these 16 genes, Additional file 1: Figure S2 shows the

STAT3 binding profiles in the promoter regions.

Among these 16 genes, some TF target genes have one

or more strong binding peaks in their promoter regions

(Fig. 2b), which can be identified by both TIP and

peak-based methods. On the other hand, some TF

targets are identified by TIP but not by peak-based

methods (Fig. 2a). As shown, these target genes are also
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associated with one or more binding signals, but they

are relatively weak and not identified as significant peaks

by peak-calling methods. Thereby, TIP shows a higher

sensitivity in detecting TF target genes with weak but

considerable binding signals.

The comparison of single normal distribution and mixture

normal distribution

To demonstrate the advantage of our extended TIP

method with mixture normal distribution, we utilized

the NFE2 ChIP-seq data and gene expression data

treated by NFE2 shRNA in K562 cells from the EN-

CODE project [5]. We compared the identified NFE2

target genes using three methods as follows: simple

method, TIP with single normal distribution and TIP

with mixture normal distribution. In the simple method,

we identified target genes using a conventional peak-

based method: select target genes as those containing

one or more binding peaks in their proximal (+/− 1000 bp

of the TSS) promoter regions. The simple method identi-

fied 1597 target genes. A total of 128 target genes are

identified for NFE2 by TIP at a FDR <0.1 significance

threshold when employing a single normal distribution for

significance testing. In contrast, the mixture normal based

analysis identifies 1426 target genes at the same signifi-

cance level. Figure 3a shows the number of significant tar-

get genes with various FDR thresholds of TIP algorithm.

The TIP with single normal distribution is a stringent

method and the numbers of significant target genes are

stable but much less than the other methods, whereas the

TIP with mixture normal distribution provides reasonable

numbers of target genes.

For target validation, we calculated the expression

changes (absolute value of log ratios) of all genes for the

cells treated with shRNA as compared to the untreated

cells, and then we sorted the genes in decreasing order

Fig. 2 The STAT3 binding profiles in the promoter regions of six histone proteins. The binding profiles are generated by using STAT3 ChIP-seq

data in HeLa-S3 cells from the ENCODE project. We selected six histone proteins from STAT3 target genes using the TIP algorithm. The red rectangles

indicate peaks from PeakSeq method. a There is no significant peak using PeakSeq method but TIP identifies the genes as target genes. b There are

significant peaks using PeakSeq method in the promoter regions and TIP also identifies the genes as the target genes

Fig. 3 Comparison analysis of target genes identified by single normal distribution and mixture normal distribution. We utilized the NFE2 ChIP-seq

data and gene expression data treated by NFE2 shRNA in K562 cells. a We compared the identified NFE2 target genes using three methods as follows:

simple method, TIP with single normal distribution and TIP with mixture normal distribution. In the simple method, we identified target genes using a

conventional peak-based method. The simple method identified 1597 target genes. We used various FDR thresholds (x axis) of TIP algorithm to select

significant NFE2 target genes. The y axis represents the number of target genes. b We calculated the expression changes (absolute value of log ratios)

of all genes for the cells treated with shRNA as compared to the untreated cells, and then we sorted the genes in decreasing order of absolute value

of their log ratios. The genes on the left have greater absolute value of log ratios (WT vs. shRNA) and are therefore more responsive to NFE2 regulation.

Given a threshold of absolute log ratio (x axis), the y axis shows the number of target genes satisfied the absolute log ratio threshold for each method
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of absolute value of their log ratios. As shown in

Fig. 3b, genes on the left have greater absolute value

of log ratios (WT vs. shRNA) and are therefore more

responsive to NFE2 regulation. Given a threshold of

absolute log ratio (x axis), the y axis shows the num-

ber of target genes satisfied the absolute log ratio

threshold for each methods. The area between the

gene number curve and the straight line indicates

accuracy of the target gene prediction. The area of

the TIP with mixture normal distribution (the area

between blue curve and blue straight line) has larger

area than the other two methods. As shown, target

genes identified by TIP are significantly more respon-

sive to regulate by NFE2 than those identified by the

conventional peak-calling method. Estimating p-value

of genes based on mixture normal distributions increases

the sensitivity of TIP, resulting in a larger target gene set

than that based on the single normal distribution.

The comparison of read-coverage and fold-change signals

of input data

To compare read-coverage and fold-change signals of

input data, we downloaded the K562 Nfe2 ChIP-seq

data and ChIP-seq control from the ENCODE project

and then use bowtie to re-align the reads (parameters: −m

1 -n 2 -S -a –best –strata) [20]. Using bamCoverage and

bamCompare tools of deepTools software (version 1.5.9.1)

[21], we obtained signal files of the read coverage and fold

change, respectively. 997 and 502 target genes were identi-

fied for read-coverage and fold-change signal files, re-

spectively, by iTAR with mixture normal distribution

(FDR <0.1). Additional file 1: Figure S3 shows the cumu-

late distribution of target genes identified by iTAR using

read-coverage and fold-change signals. As shown, the tar-

get genes identified by iTAR using read-coverage signals is

more responsive to NFE2 regulation.

Conclusions
With the rapidly increasing accumulations of ChIP-seq

data, we refined the TIP algorithm to construct the web

server, which offers a simple and user-friendly interface

for experimental biologists. We believe that the iTAR

web server will accelerate the research of gene regula-

tion and help the experimental biologists to discover

important biological mechanism. In addition, we pro-

vide a stand-alone JAVA package that users can choose

to download and analyze their ChIP-seq data in their

computers.

iTAR supports GO enrichment analysis for target gene

list. In addition, users can download the predicted target

gene list from iTAR, and submit to other interesting

database.

Availability and requirements
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