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A method is proposed for the detection of item bias with respect to observed or unobserved 
subgroups. The method uses quasi-loglinear models for the incomplete subgroup x test 

score x Item 1 × • • • x item k contingency table. If subgroup membership is unknown the 

models are Haberman's incomplete-latent-class models. 

The (conditional) Rasch model is formulated as a quasi-loglinear model. The parameters in 

this loglinear model, that correspond to the main effects of the item responses, are the condi- 
tional estimates of the parameters in the Rasch model. Item bias can then be tested by com- 

paring the quasi-loglinear-Rasch model with models that contain parameters for the interaction 

of item responses and the subgroups. 

Key words: loglinear models, Rasch model, item bias, differential item performance, latent- 
class models, IRT 

Educational or psychological tests are biased if the test scores of equally able test 

takers are systematically different between racial, ethnic, cultural, and other similar 

subgroups. Biased test scores may lead to unfair decisions or erroneous conclusions 

about individuals from particular subgroups. A test score is biased only if one or more 

of the test items are biased. A test item is biased if individuals with the same ability level 

from different subgroups have a different probability of a right response, that is, the 

item has different difficulties in different subgroups. A test can be made fairer by 

deleting or improving the biased items. 

Binet and Simon (1916; see also Jensen 1980, p. 367) were already concerned with 

bias when they applied their test of general intelligence that was standardized on work- 

ing class children to children of higher social status. Since then, many methods for 

detecting item bias have been developed. Reviews are given by Osterlind (1983), and 

Shepard, Camilli and Averill (1981). Handbooks on item bias detection methods and 

research are provided by Berk (1982) and Jensen (1980). 

Over the years methods have been improved by better control for ability. This is 

done either by using the number-correct score of test items to control for ability (Cam- 

illi, 1979; Holland & Thayer, 1986; Kok, Mellenbergh, & van der Flier, 1985; Mellen- 

bergh, 1982; Nungester, 1977 [see also Ironson, 1982]; Scheuneman, 1979)or by study- 

ing item bias under an IRT model (Durovic, 1975; Fischer & Forman, 1982; Lord, 1980; 

Muth6n & Lehman, 1985; Mislevy, 1981; Wright, Mead, & Draba, 1975). 

Using IRT models, item bias is detected as differences of item parameters across 

subgroups. Since IRT models provide a clear separation of person ability and item 

difficulty, they are ideally suited to detect item bias. In this paper this advantage of the 

Rasch model is combined with the evaluative power of loglinear models. 

The Rasch model describes the probability P(Xj = xjla) that an individual with 

parameter oz gives a response Xj to i temj (j = 1 . . . .  , k), where the random variable 

Xj can take values ;9 = 0, 1 for a wrong (0) or a right (1) response: 
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exp ( x j (a  - 6j))  

P ( X j  = x j l a )  = 1 + exp (a - 6j)' (I) 

where 6 j q  = 1 . . . . .  k)  is a single i tem paramete r  describing the difficulty of  i t emj .  I f  

this i tem paramete r  varies f rom subgroup to subgroup, the i tem is considered biased. 

Although the Rasch model  is a ra ther  simple model ,  its pars imony yields several  vir tues 

in using it to detect  i tem bias. 

The  Rasch  model  is an exponential  family model  wherein the simple number  right 

score T = X 1 + - • • + X k is a sufficient statistic for  the person  paramete r  a .  Assuming 

local independence of  the i tem responses  for  a given value of  a and after  conditioning 

on the number  right score,  the joint  probabil i ty P (X1 = x l . . . . .  Xk = x k l T  = t) of  the 

i tem responses  X1 . . . . .  Xk for a given score T = t becomes:  

exp ( - x l 6 1  . . . .  Xkfk) 
P ( X 1  = x l  . . . . .  X k  = xk l  T = t) = 

X " ' "  X exp (-x161 . . . .  xkfk)" 
X! Xk 

I = X I + * ' ' + X k  

(2) 

By conditioning on the score,  the nuisance paramete r  a has vanished (Rasch,  1966). In 

this paper  the invariance over  subgroups i (i = 1 . . . . .  m) of  the joint i tem response  

distributions for given values of  T 

Pi(X1  = Xl . . . . .  X k  = x k l T  = t) = P ( X 1  = x l  . . . . .  X k  = x k l T  = t) (3) 

is tested to study i tem bias. According to Model (2) any deviation of  this invariance 

must  be explained by differences in i tem difficulty between the subgroups.  No te  f rom 

(2) that the use of  the Rasch model to study item bias is both  an observed score method 

and a IRT method.  

In this paper,  i tem bias detection methods are described using a loglinear IRT 

model  assuming a Rasch model  for ability and difficulty. Quasi-loglinear models  are 

formulated for test data  and the Rasch model is formulated as one of  them. Alternat ive 

models  are described to test  various aspects  of  i tem bias. The use of  these tests is 

illustrated on a set of  test  data  f rom Kok  (1982), where i tem bias was introduced 

experimental ly.  Finally, further  developments  of  the basic model  are described where  

the subgroups are unknown.  

Quasi-Loglinear  Models  for  the Incomple te  Subgroup x Score x I t em 1 x - - - x 

I t em k Table 

Le t  f i tx,  . . . x k  be the number  of  individuals f rom subgroup i (i = 1 . . . . .  m) with 

number  right score T = t (t = 0, I . . . . .  k) and i tem scores X 1 = x! . . . . .  X k = x k. 

Since it is logically impossible to have a test  score that is unequal to the number  of  

correct  i tem responses  (excluding counting errors) the counts  f i t x , . . . x k  are zero for  

t # E j  x j .  Contingency tables with structurally zero cells are called incomplete  contin- 

gency tables. 

Fienberg (1972; see also Bishop, Fienberg & Holland,  1975) presents  a general 

theory for  the statistical analysis o f  incomplete mult iway cont ingency tables by quasi- 

loglinear models.  We apply Fienberg ' s  theory to the analysis o f  the subgroup x score 

× i tem I x • • • x i tem k contingency table to detect  i tem bias. 

Let mitx~ . . .xk be the expected  counts for the table under  some model .  I f  

t ~ x 1 + • • • + x k, the expected  counts are again structurally zero. I f  t = x I + • • • + 
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x k ,  the expec t ed  coun t s  are s t ruc tura l ly  nonze ro  and these  coun t s  are  exp la ined  b y  a 

quasi - logl inear  model .  The  sa tu ra ted  or  fully specified mode l  for  the table is: 

In m i t x ,  . . . x k  = u + ul(i) + u2(t) + u3(xl) + • • • + U ( k + 2 ) ( X k )  

+ u12 ( i t )  + U l 3 ( i x l )  + " " • + U(k + l)(k + 2)(Xk- iX/) 

+ U123( i t x l )  + • " " + U123... ( k + 2 ) ( i t x l  " " " Xk)  (4) 

f o r i = l , . . . , m ; x  I = 0 , 1 ; . . .  ; x  k = 0 , 1 ; t = x  1 + ' ' - + x  k, w h e r e  ln is the na tura l  

logar i thm.  Mode l  (4) has  cons t ra in ts :  

Ul(+)  = U2(+) . . . . .  U(k+2)(+) = U 1 2 ( + t )  = UI2(i+) 

= Ul3(+Xl) = U13(i+) . . . . .  U(k + l)(k + 2)(+Xk) 

= U ( k  + 1)(k + 2) (X/-  1 + )  . . . . .  UI23(+tXl)  = UI23(i+xI)  

= U 1 2 3 ( i t + )  . . . . .  U123... (k + 2)(+tXl " " " Xk)  

= U123... (k + 2)(i+Xl ' " " Xk) . . . .  

----- U123 .. .  ( k + 2 ) ( i t x l  " " " X k -  1 +)  = 0. (5) 

T h e  u - t e rms  in Mode l  (4) desc r ibe  main  effects  and in te rac t ion  effects  o f  subg roup  

i, score  t and  i tem r e sponses  Xl, • • • , xk. The  u - te rms  in (5) deno te  sums  o f  p a r a m e t e r s  

that  occu r  in (4) w h e r e  a plus sign replacing an index indicates  that  the s u m m a t i o n  is 

o v e r  the rep laced  index.  The  cons t ra in t s  (5), h o w e v e r ,  are  not  sufficient to ensu re  tha t  

all p a r a m e t e r s  in (4) are  es t imable .  Addi t ional  cons t ra in t s  mus t  be  imposed  to ob ta in  a 

unique solut ion o f  the mode l  p a r a m e t e r s .  T h e s e  cons t ra in t s  will be  d i scussed  later .  

Res t r i c t ive  quasi - logl inear  mode l s  are  defined by  set t ing u - t e rms  in (4) equal  to 

zero.  The  on ly  mode l s  cons ide red  here  will be  h ierarchical ,  tha t  is, w h e n e v e r  a par t ic-  

u lar  u - t e rm is set  to zero ,  all its higher  o rde r  re la t ives  mus t  a lso  be  set  to zero .  

T h e  R a s c h  Mode l  as a Quas i -Log l inea r  Mode l  

A res t r ic t ive  quasi - logl inear  mode l  is 

In m i t x ,  . . .  x ,  = u + u l ( i )  + u2(t) + U l 2 ( i t )  + u3(xl) + " ' "  + Uk + 2(Xk) ,  (6) 

wi th  the cons t ra in t s  

Ul(+ ) = u2(+ ) = u12(+/) = u12(i+) = u3(+ ) . . . . .  Uk+2(+) = 0 (7) 

Mode l  (6) can  be ob ta ined  f rom the sa tu ra ted  quasi - logl inear  mode l  (4) by  set t ing 

all in te rac t ions  wi th  and  b e t w e e n  i tem r e sponses  equal  to zero .  

I f  the subgroup  and score  are  t aken  as fixed var iab les  and the i tem r e s p o n s e s  are  

cons ide red  as r a n d o m  var iables ,  Mode l  (6) is equ iva len t  to the condi t ional  R a s c h  

model .  In  tha t  c a s e  mitx...xk is the condi t ional  e x p e c t e d  f r e q u e n c y  of  the  r e s p o n s e  

X i  = x l  . . . . .  X k  = x k  for  g iven subgroup  i and score  t. The  condi t ional  p robab i l i ty  o f  

r e s p o n s e  XI  = Xl . . . . .  Xk = xk for  i and t can  then  be  ob ta ined  f rom (6) by  

P i ( X 1  = x l  . . . . .  X k  = x k l  T = t )  = 

m i t x t  • • • xk 

" " " ~" m i t x , "  • "xk 

Xl Xk 

X l  + • " " "l" X k  = t 
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exp (u3(xx) + '  " + u,  + 2(x,)) 

Z " "  E exp (u3(x0 + ' "  + Uk+2(Xk))" 
XI Xk 

X ~ + . . , + X k = t  

(8) 

Except  for a reparameterization, (8) is equivalent to (2). In (2) the effect - x j 6 j  of  a 

response Xj = xj on item j is - 6 j  for  a correct  response (Xj = 1) and zero for an 

incorrect  response (Xj = 0), whereas in (8) the effect of  a correct  response is u j+2(1) and 

the effect of  an incorrect  response is uj+2(O), where uj+2(0) = -uj+2(1) by the con- 

straints (7). Model (8) can be parameterized in the same way as (2) if uj+2(1) is added 

to each parameter  uj+2(xj) so that the new parameter  uj+2(xj) + uj+2(l) becomes 

uj+2(0) + uj+2(1) = 0 with an incorrect response and 2uj+2(1) with a correct  response.  

This can be done by multiplying both numerator  and denominator  by 

exp (//3(1) + " ' "  + Uk + 2(1)), 

so that (8) becomes (2) with 

- xj6j = uj+ 2(xj) + uj+ 2(1) = xj(2uj+ 2(1)), 

for  a l l j  = 1 . . . . .  k; that is, 6j = 2uj+2(0 ). This shows that the conditional Rasch model 

is equivalent to the quasi-loglinear model (6). Other derivations of  this fact are given by 

Cressie and Holland (1983), Duncan (I984), Kelderman (1984), and Tjur (I982). 

In (6) there is an obvious overparameterizat ion because of  the linear dependence  

of  the item responses and the score: adding a constant  c to each of  the item parameters  

uj+2( l  ) ( j  = 1 . . . . .  k) and subtracting c from uj+2(0) ( j  = 1, . . . , k) to satisfy the 

constraints (7) is equivalent to adding t • c - (k - t) • c = (2t - k) • c to Uz(t). This 

indeterminacy can be removed from (2) by putting one linear constraint on the item 

parameters,  for example,  by setting Uk+z(Xk) equal to zero. This also fixes the metric of  

the latent trait. 

We now describe some less restrictive quasi-loglinear models that can be used to 

detect  item bias. 

Quasi-Loglinear Models to Detect  I tem Bias 

To study item bias in a particular set of  data, quasi-loglinear models may be set up 

that contain subgroup-dependent item parameters in addition to the parameters  of the 

Rasch model (Rasch, 1960). The fit of  these models can be compared by a likelihood 

ratio test with the fit o f  more restrictive models to test the significance of  each of  the 

subgroup-dependent  item parameters.  If  a test yields a significant result, the item is 

considered biased. The subgroup-dependent item parameters  each describe a particular 

type of  item bias. 

To detect  the simplest type of  bias, for  example in item one, the model 

In mitx, . . . x ,  = u + ul ( i )  + u2(t) + ul2(i t)  + u3(xl)  + " ' "  + uk+2(xk)  + Ul3(ix l ) ,  (9) 

with the usual constraints (5), is compared with the loglinear Rasch model (6) to test the 

null hypothesis  that the interaction between the subgroup and the response to item one, 

u 13 (ix l) is zero. If the test is significant, it may be concluded that u 13 (ix1) is not zero so 

that the difficulty of  item one varies from subgroup to subgroup. The parameter  2u13(i0 ) 

is the change in item difficulty in subgroup i. Note  that loglinear Rasch models with 

subgroup × item interactions (such as (9)) can be viewed as loglinear Rasch models 

with item difficulties equal to the sum of the item-main effect and the item interaction- 
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effect parameter. In (9), 2(u 3 (0) + u 13(/0)) is the difficulty of item one in subgroup i. The 

unbiased items have the same difficulty 2uj+2(0) (j = 2 . . . . .  k) in all subgroups. In this 

way all item difficulties are put on the same scale. 

In (9) a u-term is specified to test item bias for only one item. Obviously similar 

u-terms can be specified for two or more items if necessary. For example, comparing 

the loglinear Rasch model with the model: 

In mitxl . . .xk = u + ul(i)  + u2(/) + u12(it) + u3(xl)  + " ' "  

+ uk+2(Xk) + Ul3(ixl) + Ul4(ix2), (10) 

yields a simultaneous test for bias in both item one and item two. 

An item may be more difficult in one subgroup than another, because the item 

introduces some specific difficulty, e.g. reading ability, in which the members of  one 

subgroup are generally more proficient than the members of another. If the ability to 

solve this difficulty varies from individual to individual within each of the subgroups 

and if there are two items in the test that both introduce the same difficulty we may 

expect these items to show an interaction that is not explained by the original latent 

trait. 

This interaction may be investigated using the model: 

In mitx ...xk = U + ul(i) + u2(/) + ul2(it) + ua(xl) 

+ " ' "  + Uk+2(Xk) + u13(ixl) + U14(ix2) 

+ U34(XIX2) + U134(ix1x2), (11) 

which contains two u-terms, u34(xlx2) and U134(ix1x2) describing an interaction be- 

tween item one and two. If  RI34(ix1x2) is zero but u34(x~x 2) is not zero, there is a simple 

interaction between both items that is the same in all subgroups. If u134(ixlx2) is not 

zero, the interaction is different from subgroup to subgroup. This may, for example, be 

the case if reading ability does introduce common variance in one subgroup but does 

not introduce any variance in another subgroup, because the individuals in that sub- 

group are all of relatively superior reading ability. 

Comparing Model (11) with the loglinear Rasch model (6) yields a test for the 

hypothesis that all subgroup-dependent item parameters in (11) are simultaneously 

zero. If  the test is significant, it may be concluded that one or more of these parameters 

are not zero. Comparing (I 1) with (10) yields a test for the item-interaction terms alone. 

To test both item-interaction terms U34(X1X2) and U134(iXlX2) separately, an intermedi- 

ate submodel must be defined that contains u34(xlx2) but not u134(ixlx2). 
If  an item-interaction parameter is included in the model, it is no longer a condi- 

tional Rasch model (2) for ICC (1). Therefore, the model should not be considered as 

a "Rasch  model with correlated errors".  The model is merely meant to test whether the 

data deviate from the Rasch model in this respect. 

Table 1 lists all relevant models (a through e) containing subgroup-dependent item 

parameters for the case of two items. Table 2 summarizes which models in Table 1 must 

be compared to test specific subgroup-dependent item parameters. Hypothesis 3 and 4 

shows which models must be compared to test u34(xlx2) and u134(ixlx2) respectively. 

Hypotheses 1 through 4 in Table 2 refer to what Mellenbergh (1982) has called 

"un i fo rm"  item bias. It means that the bias is constant within each subgroup. With 

"nonuni form"  item bias (Mellenbergh) the bias of in each subgroup is dependent on the 

individual's ability level. Nonuniform bias may be studied with quasi-loglinear models 

containing item parameters that depend both on the subgroup and the score. 
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TABLE 1 

Quasi-Logline4u" Models for Detecting Item Bias. 

Models with Subgroup-Depen~nt Item Parameters 

a. Rasch + Ul3(/Xl) 

b. Rasch + u14(/x 2) 

c. Rasch + Ul3(/Xl) + u14(/x2) 

d. Rasch + Ul3(/Xl) + u14(/x2) + u34(XlX2) 

e. Rasch + u13(/Xl) + u14(/x2) + u34(XlX 2) + u134(/XlX 2) 

Models with Subgroup and Score-Dependont Item Parameters 

f. (a) + u23(tx I) 

g. (a) + u23(txl) + u123(itxl) 

h. Ca) + u24(tx2) 

i. Co) + u24(tx2) + u124(itx 2) 

j. (c) + u23(tXl) + u24(tx 2) 

k. (c) + u23(txl) + u24(tx2) + u123(itxl) + u124(itx 2) 

I. (d) + u23(tXl) + u24(tx2) + u123(itxl) + u124(/tx2) + 

+ u234(txlx2) 

m. (e) + u23(tx I ) + u24(tx 2) + u123(itxl) + u124(itx 2) + 

+ u234(/XlX 2) + u1234(itxlX 2) 
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TABLE 2 

Comparison of Ouasi-loglinear Models to Test u-terms for Item Bias Hvoothesis. 

Hypothesis Model Terms Comparison 

of Models 

Uniform Bias 

1. One item uniformly biased Ul3(/Xl) 

2. Two items uniformly biased Ul3(/Xl), u 14(/x2) 

3. Two items with common uniform bias: u34(XlX 2) 

4. Two items with common uniform bias: u134(/XlX2) 

subgroup dependent interaction 

Rasch - a 

Rasch - c 

c-d 

d-e 

Non-uniform Bias 

5. One item non-uniformly biased u123(itxl) 

6. Two items non-uniformly u123(itxl), u124(itx2) 

biased 

Two items with common non-uniform bias 

Two items with common non-uniform 

bias: subgroup dependent interaction 

7. u234(tXlX2) 

8. u1234(itxlx2) 

f - g  

j - k  

k - I  

1-m 
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Table 1 shows a series of models (f through m) with subgroup- or score-dependent 

item parameters. Since quasi-loglinear models are hierarchical, each model with a 

subgroup × score × item(s) interaction term must contain the corresponding subgroup 

× item(s) interaction term. In Table 1 all models f through m contain a submodel 

identical to one of the models a through e, which is indicated by its letter for brevity. 

Table 2 shows which of these models must be compared to obtain a statistical test that 

is sensitive to a specific type of nonuniform item bias. Note that these tests concentrate 

only on the nonuniformity of the bias and not on the uniform part of the bias. Therefore, 

if these tests are not significant, items may still be uniformly biased. 

Hypothesis 5 in Table 2 concerns the simplest type of nonuniformity in item bias. 

If model g and f (Table 1) differ significantly, it can be concluded that the subgroup × 

score × item interaction u123(itxl) is not zero. This nonuniformity in item bias may be 

expected, for example, if the difficulty of an item varies from subgroup to subgroup for 

low ability individuals only, which is the case if an item involves a specific skill that is 

not mastered by the low ability individuals of only one of the subgroups. 

Hypothesis 6 (Table 2) concerns this hypothesis for two items simultaneously, 

whereas Hypotheses 7 and 8 address the question whether item interaction is nonuni- 

form (U234(IXlX2) ~ 0) or whether subgroup differences in item interaction are nonuni- 

form (u1234(itxlx2) ~ 0). This may be called nonuniform common item bias, where the 

amount of item bias that two items have in common depends on ability level. This type 

of item bias may occur, for example, if in only one subgroup two items introduce a 

common difficulty for low ability individuals but do not introduce a common difficulty 

for high ability subjects. 

In most of the models in Table 1, the constraints are not sufficient to ensure 

identifiability of the model parameters. The same indeterminacy between the item main 

effect parameters and the sum score parameters that existed in the Rasch model are also 

present in the models of Table 2. This indeterminacy can again be removed by fixing 

one item-main-effect parameter to be zero. To interpret likelihood-ratio tests and in- 

teraction parameterS, this need, however, not be the same item-main-effect parameter. 

If the model is complex, other indeterminacies in the parameter estimates may be 

present. For example, the parameter u23(tx 0 with t = 0 and Xl = 1 or t = k and 

x 1 = 0 cannot be estimated because it corresponds to structurally zero cells only. A 

convenient and reliable way to determine the number of estimable parameters is to 

determine the rank of the information matrix, which should be equal to the number of 

estimable parameters for a given set of data (Goodman, 1974; McHugh, 1956). Baker 

and Nelder (1978, sec. 4.3) describe a weighted least-squares algorithm for the analysis 

of contingency tables, which estimates the parameters in a sequential fashion. If a 

parameter is linearly dependent on the preceding parameters, or if there are no obser- 

vations to estimate it from, the parameter is removed from the model, thus the infor- 

mation matrix is of full rank. 

Estimation and Testing 

The kernel of the log likelihood is 

l =  In 1-[ 1-I I - I . . .  1-I (mitx, . . .  x k )  f i t x ' ' ' ' x k  

i t x l  xk  

= ~  ~ ~,'''~fit~...x~lnmitx~...x~. 
i t Xl Xk 

(12) 
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Inserting a loglinear model for In m i t x ,  . . .  xk this log likelihood yields a sum of products 

of model parameters (e.g., u3(x0) with the corresponding sufficient marginal counts 

(e.g., f++x, +-. .  +). For example, using the loglinear Rasch model (6) in (12) gives 

/(Rasch) = f + . . . +  u + ~ f i+. . .+ul(i)  + ~ f+t+...+u2(t) 
i t 

+ ~ ~ fit+...+ul2(it) + ~ f++x~+...+u3(xl)''" 
i t x i  

+ ~_, f+... +x~Uk+ 2(xk), (13) 
Xk 

where a plus sign replacing an index denotes summation over that index. Log likeli- 

hoods of larger models (e.g., Model (9)) may be obtained by adding terms (e.g., 

EZj~+x+... +u13(/x0) to (13). If one modelwsay model Mwis  a special case of another 

model~say  model M*--model M* may be tested against model M by - 2  times the 

natural logarithm of the likelihood ratio of both models, or equivalently, by - 2  times 

the difference in log likelihood of both models 

GZ(M; M*) = -2(/(M) -/(M*)).  (14) 

Under the assumption of model M, G 2 is asymptotically distributed as chi-square with 

degrees of freedom equal to the number of estimable parameters of both models (Bish- 

op, Fienberg & Holland, 1975, p. 525; Rao, 1965, p. 351). 

An overall goodness of fit test for model M is obtained by testing it against the 

saturated model M* where the expected cell counts (m) in (12) are set equal to the 

observed cell counts (f). 

For example the Rasch model (6) is a special case of (9). Model (9) has all param- 

eters of the Rasch model but adds the term Ul3(ixO. Testing (6) against (9) is a test for 

the hypothesis ul3(ixO = 0. If the parameter estimates of both (6) and (9) are known, 

the likelihood-ratio statistic GZ(M; M*) can be calculated easily from the sufficient 

marginal sums corresponding to the parameters. 

Maximum-likelihood estimates of the model parameters can be obtained by setting 

the observed marginal counts corresponding to each of the parameters equal to the 

corresponding expected marginal counts and solving the resulting system of equations 

for the parameters (Haberman, 1979, p. 448). For example, for the Rasch model the 

maximum-likelihood equations are 

fit+...+ = mit+...+, 

and (15) 

f + - ' ' + x j + - - - +  = m + - - - + x j + - . - +  , 

f o r / =  1 . . . . .  m; t = 0 . . . . .  kandxj  = 0, 1; j  = 1 . . . . .  k. 

In general, for quasi-loglinear models, the maximum-likelihood equations yield no 

direct solution of the model parameters. The equations must be solved iteratively. 

Algorithms to solve the maximum-likelihood equations for quasi-loglinear models have 

been described by Goodman and Fay (1974; ECTA) and Baker and Nelder (1978; 

GLIM). These programs require the internal storage of the full observed and expected 

tables of counts which is virtually impossible if the number of items is larger than, say, 

10. To deal with larger numbers of items a new computer program LOGIMO (loglinear 

IRT modeling) has been written (Kelderman & Steen, 1988). The program uses a very 
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efficient algorithm to calculate expected sufficient marginals in (15), the Marginaliza- 

tion-by-Variable (MBV) algorithm (Kelderman, 1987). Furthermore, it calculates the 

parameter estimates from the observed and expected marginals using an iterative pro- 

portional fitting procedure. This means that it is not necessary to store the full observed 

and expected contingency table. The program can be used to estimate the parameters 

in ordinary loglinear models or quasi-loglinear Rasch models with one or more sub- 

group variables, one or more sum score variables, items of any number of response 

categories and loglinear models for relatively large numbers (say 40) of variables. 

An Example 

Kok (1982) studied item bias in multiplication items by experimentally varying the 

test takers skill in bias factors that can be expected to be operating in differently 

formulated test items. In this section, fifteen multiplication items are reanalyzed to 

illustrate the use of quasi-loglinear models for the detection of item bias. In Item 1 

through 12 the numbers are written out in Dutch and in Item 13 through 15 Roman 

numerals are used. The subjects were 286 Dutch undergraduates of which 144 randomly 

selected individuals received a short training in Roman numerals. It can be expected 

that the Roman numerals items are biased. 

In Table 3 for each item the values of the likelihood-ratio test and the degrees of 

freedom are shown for both uniform (Hypothesis 1, Table 2) and nonuniform bias 

(Hypothesis 5, Table 2). 

From Table 3 it is seen that for all Roman numerals items the likelihood-ratio 

chi-square value of the Rasch model against a model with one item uniformly biased 

(Model a, Table 1) yields a significant value. Table 3, also shows that none of these 

items is nonuniformly biased. Furthermore, two Dutch items, Items 6, 9 and 10, are 

identified as biased. The effect Ul,j+2(11) of a correct response from the trained groups 

is given. Note that each of these parameters is from a different Model a (Table I) and 

the other interaction parameters can be obtained from the constraints t / l , j+2 ( l l )  = 

U l , j+2(20 ) = - -Ul , j+2(10)  = --Ul , j+2(21) .  
It is seen that the Roman numerals items are all less difficult for the trained group 

than for the untrained group. The biased Dutch Items, 6, 9 and 10, however, are more 

difficult for the trained group than for the untrained group. This might indicate that the 

system of deciphering Roman numerals interferes with the method of obtaining the 

number from t~e Dutch in these items. 

It was hypothesized that the Roman numerals Items 13, 14 and 15 are biased by a 

common cause and the Dutch Items 6, 9 and 10 are biased by another common cause. 

Likelihood-ratio statistics of Test 3 of Table 2 and the corresponding interaction pa- 

rameters Uj+2,1+2(l 1) in each Model d (Table I) are computed for each pair of biased 

items. It is found that the Roman numeral, Items I3 and 14 have significant interaction 

with Item 15 (u13+2,15+2(11) = 0 .18,  G 2 = 7.04, p = 0.01; and u14+2,15+2(11) = 0.16, 

G 2 = 4.06, p = 0.04). A simultaneous test of the three interactions between the Roman 

numerals items, is also significant (G 2 = 10.96, p = 0.01). 

To test whether the interactions between the items are different for the trained 

group than the untrained group, Test 4 of Table 2 is performed for each pair of biased 

items. For all biased items computed are the likelihood-ratio statistics and the values of 

the parameter Ul,j+l,l+2(111), that is, the effect for the trained group with both item j 

and l correct. The results show that the Roman numerals Items 13 and 14 are less 

correlated in the trained group than in the untrained group. (u1,13+2,14+2(111) = -0.18, 

G 2 = 5172, p = 0.02). 
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TABLE 3 

Likelihood-Ratio Tests for Uniform and Non-uniform Bias (Test land Test 5). 

691 

Difficulty Bias 

Item Uniform Non-uniform (Rasch) (Model a) 

G12(Rasch;a) G142(f;g) uj(0) Ul,j+2(10) 

1 0.67 0.00 0.06 

2 0.10 0.65 -0.03 

3 0.02 0.39 -0.00 

4 3.06 1.27 0.14 

5 0.16 0.38 0.03 

6 4.03* 11.04 0.02 0.15 

7 0.30 0.04 0.04 

8 3.64 0.07 0.14 

9 4.41" 17.40 0.18 0.15 

10 14.95"** 9.08 0.89 0.28 

11 2.03 0.88 0.10 

12 1.04 1.63 -0.10 

13 5.21" 9.19 0.34 -0.16 

14 55.41"** 9.22 0.44 -0.54 

15 12.39"** 11.35 0.37 -0.25 

* p<.05,** p<.Ol,*** p<.O01 

On the other  hand, the two Dutch I tems 6 and 9 have a significantly larger inter- 

action in the trained group (ul,6+2,9+2(111) = 0.12, G~ = 4.78, p = 0.03). 

This example  shows that loglinear models can give us very  useful information on 

which hypotheses  about  the causes  of  bias are confirmed by  the data. 

Further  Developments  

In some practical situations, items may be expected  to be biased for certain sub- 

groups of  individuals, but it is not known a priori to which subgroup each of the 

individuals belongs. For  example,  for an item in an examinat ion the probabili ty of  a 

correct  response  may  be larger for a group of individuals with certain educational 

experiences than for individuals without that experience,  or for an item in a mas tery  

test the probabil i ty of  a correct  response may be larger for a subgroup of individuals 

having a different study strategy or for a subgroup of  individuals having a different 

cognitive strategy to solve the item, and so forth. In these examples ,  information on the 
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individuals subgroup membership may be difficult to observe or, as in the last example, 

the test behavior itself may be the natural indicator of subgroup membership. 

Within the theory of contingency table analysis a straightforward extension of the 

range of item bias detection methods is the inclusion of unobserved subgroups. 

When subgroup membership is unobserved the subgroup variable becomes a latent 

variable. The models to detect item bias then become latent-class models. For example, 

if the latent classes are denoted by to(to = I . . . . .  m), a latent-class item-bias-detection 

model becomes, 

In m,otx,...xk = u + Ul(to) -{- Uz(t) + Ul2(tot) + u3(xl)  

+ ' ' "  + t/k+ 2(Xk) + UI3(toXl) + "  "" + U l ,  r + 2(toXr), (16) 

t o = l  . . . . .  m;x i = 0 , 1 ; . . .  ;x k = 0 , 1 ; t = x  I + " - + x k ; w i t h t h e u s u a l c o n s t r a i n t s  

(5). 
Model (16) describes a Rasch model in each latent class to, where the difficulty of 

Item 1 through r may be different in each latent class. The parameters Ul3(toxl), " • ", 

u l,r+z(toXr) describe the differences in item difficulty between the latent classes. If such 

a parameter is not zero, the corresponding item is biased with respect to the latent 

classes. 

Latent-class models have been introduced by Lazarsfeld (1950; Lazarsfeld & 

Henri, 1968; Goodman, 1978). At first, latent-class models assumed local independence 

within each latent class. Goodman (1975) introduced latent-class models where the 

observed variables form an incomplete-contingency table assuming quasi independence 

within each latent class. Haberman (1979, chap. 10) formulates a latent-class model for 

an incomplete table where the model is not necessarily an independence model. The 

model can be any identifiable loglinear model containing unobserved categorical vari- 

ables. Model (16) is a special case of Haberman's general latent class model where 

Items 1 through 4 may have a different difficulty in each of m latent classes, where the 

number m of latent classes is specified by the investigator. 

Methods for the estimation and testing of latent-class-quasi-loglinear models differ 

from those for ordinary quasi-loglinear models. Since latent-class membership is un- 

observed, the frequencies f ,  otx,...x~ are not known. Consequently, the maximum-like- 

lihood equations (e.g., fo,+x,+ = mgO+x,+) for parameters involving latent classes to 

(e.g., ul3(toXl)) cannot be solved because the frequencies are unknown. Haberman 

(1979, chap. 10), however, gives a rule for the derivation of maximum likelihood esti- 

mates in latent-class models from the known frequencies f+tx i . . . xk .  Haberman (1979) 

states, "The same maximum-likelihood equations apply as in the ordinary case in 

which all frequency counts are directly observed, except that the unobserved counts 

are replaced by their estimated conditional expected values given the observed mar- 

ginal totals" (p. 543). 

Under some loglinear model M (e.g., (16)), these estimates are 

]'<otx,...x~ = EM(f~,tx . .  "xdf +tx¢" "xk) 

_(,h,o,x,..x,) 
(17) 



HENK KELDERMAN 693 

t = x 1 + . . .  + xk; x 1 = 0, 1; . . . ; x k = 0, 1. For  (16) the likelihood equations 

would then become 

f t o t + ' ' ' + =  I~ltot + ' ' '+  , f  ++x, + ' " +  = rh++xl+...+ 

f +. . .+ x , =  f n + . . . + x , , L , +  x, + . . . +  = fn,o+ x, + . . . +  . . . . .  

f,o +-.. +x,+. . .+ = rh,o + . . .+x ,+ . . .+  • (18) 

The estimated counts f are obtained from (17) where the rh are described by (16). A 

scoring algorithm to solve these equations has been described by Haberman (1979, p. 

556). An alternative way to solve these equations, is by using the EM algorithm (Demp- 

ster, Laird & Rubin, 1977) with (17) as the expectation step and solving (18) as the 

maximization step. 

Unfortunately if the number of  items is larger than say 10, these algorithms can no 

longer be used because the number of  expected counts become too large. On the other  

hand, with a small number  of  items convergence is so slow that no final solution could 

be reached. An extension of  the Marginalization-by-Variable algorithm as used in the 

LOGIMO program (Kelderman & Steen, 1988) for the case of latent class analysis 

might be made to estimate the parameters of the loglinear Rasch model with latent 

classes. 

Discussion 

In this paper an item bias detection method is proposed that uses a latent trait as 

an internal criterion for ability. 

Latent  trait parameters  are removed from the model by conditioning on the number  

right score. The quasi-loglinear formulation of  the model is extended with parameters  

that describe different types of  item bias. The general theory of  (quasi-) loglinear mod- 

els is used to obtain maximum-likelihood parameter  estimates and likelihood-ratio 

tests. 

The models presented in this paper have two parts: one part contains parameters  

describing item bias, the  other  part contains parameters for the Rasch measurement  

model. The latter implies that the method assumes that all nonbiased items conform to 

the Rasch model. It may be asked how robust the item-bias-detection method is with 

respect  to violations of  this assumption. To check this, a simulation study was per- 

formed. Two hundred data sets were generated. Each data set contained the item 

responses of  I000 individuals on 11 items. In the first 100 data sets the data where 

generated from a Rasch model and in the last 100 data sets the data were generated from 

a two-parameter-logistic model. In all data sets the first item is a biased item and the last 

ten items are unbiased. Each data set contains two subgroups of  500 individuals each. 

In the first subgroup the biased item has a difficulty parameter  of  0.5 and the ability 

parameters  are drawn from a normal distribution with mean 0.5 and variance 1.0. In the 

second subgroup the biased item has a difficulty parameter  0.0 and the ability param- 

eters are drawn from N(0, 1). In all data sets the biased item has a slope parameter  of  

one. Fur thermore,  in all data sets the ten remaining item difficulty parameters  are 

drawn from a normal distribution with mean zero and variance one. 

In the 100 data sets conforming to the two-parameter-logistic (2PL) model,  slope 

parameters of the 10 unbiased items are chosen as follows. The angle of  the item- 

characteristic curve is drawn from a uniform distribution from 7r/8 to 3~r/8. The slope 

parameter  is the tangent of  that angle so that they are between 0.5 and 2.0. 

The slopes are not sampled uniformly between 0.5 and 2.0 because in that case 



694 PSYCHOMETRIKA 

TABLE 4 

Statistics for Simulated Data S~ts with Item One Biased 

Data Set Difference in Likelihood Ratio 

Simulated Mean SD 0-5 5-I0 10-15 1 5 - 2 0  20-25 25-30 30> 

1PL 12.50 7.20 16 26 24 18 10 4 2 

2PL 12.33 7.91 20 25 24 18 8 3 2 

there would be about twice as much ICC's  with slopes larger than the slopes 1 of  the 

Rasch ICC than there would be ICC's  with slopes smaller than the Rasch ICC. In that 

case, the mean slope parameter  of  the unbiased items in the 2PL data sets would be 

greater  than that one of  the Rasch data sets. We do not want to simulate mean differ- 

ences in slope but variation or no variation in slope between the two data sets. 

For  each data set the loglinear Rasch model (6) and the item bias model with item 

one uniformly biased (9) where fitted, and the difference in likelihood-ratio statistics 

(14) of  both models calculated. Table 4 gives the observed numbers of  datasets with the 

difference in likelihood-ratio statistic, in each of  several categories generated under  the 

Rasch (or IPL) model and generated under the two-parameter  logistic (2PL) model. It 

is seen that the difference between the frequency distributions for the Rasch and the 

2PL model is small (Pearson chi-square = 0.83, DF = 6). Table 11 also gives the means 

and standard deviations of  the difference in likelihood-ratio statistics. It is seen that the 

means are about equal (t = .  15, DF = 198). This simulation study suggests that the test 

for bias in item one is rather robust for deviations of the slope of  the item characteristic 

curves in the remaining items. Item bias in tests following a two-parameter-logistic 

model is detected just  as good as item bias in tests following a Rasch model. 

In the preceding data sets there was a considerable bias effect in item one. It might 

be suspected that the method may erroneously reveal item bias in the 2PL data if the 

TABLE 5 

Statistics for Simulated Data Sets with Item One Unbiased 

Data Set Difference in Likelihood Ratio 

Simulated Mean SD 0-5 5-10 10-15 1 5 - 2 0  20-25 25-30 30> 

1PL 1.04 1.33 48 21 7 8 7 1 8 

2PL 1.28 1.55 38 19 16 7 6 5 9 
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real bias in item one is small or absent. To assess this, the same simulation study was 

performed except  that no bias was introduced in item one. The item difficulty parameter  

of  item one was set equal to 0.5 for all subjects. The results in Table 5 suggest that for  

the data generated under  the Rasch model the distribution of  the difference in likeli- 

hood-ratio statistics is located more to the left than for data generated under the two- 

parameter  logistic model. The differences, however,  are small and do not reach signif- 

icance (Pearson chi-square = 7.65, DF = 6, t = - 1.19, DF = 198). Thus both simulation 

studies indicate that the item bias detection method is robust with respect to deviations 

of  the assumption of  parallel item characteristic curves.  Therefore ,  the assumption of  

a Rasch measurement  model does not seem to be critical for the applicability of  the 

method when the items follow a two-parameter logistic model. 

I tem bias detection methods using an internal ability criterion, assume that a good 

measure of  this criterion is available, that is, the item used to measure this criterion fit 

the measurement  model. If that is not the case, particularly if one or more of these items 

are biased themselves,  the results may be erroneous. Marco (Lord, 1980, p. 228) pro- 

posed a procedure to purify a test of biased items. The total test is analyzed, items that 

appear to be biased are removed and the remaining items are used as an internal ability 

criterion to test the bias of  all the test items one by one. Although this procedure does 

not escape the inherent circularity of  the problem it should suffice if not too many items 

are biased. This procedure can also be used with the test presented in this paper  where 

in the first phase only one-item-uniform bias is tested and in the second cycle the set of  

unbiased items is combined with pairs of  possibly biased items to use the diagnostic 

tests presented in this paper. 

If  one or more items is uniformly biased and the uniform-item-bias model fits the 

data, it is not really necessary to remove the items from the test if one is willing to use 

different item difficulties in each subgroup. The uniform-item-bias model specifies a 

Rasch model within each subgroup. So latent trait values can be calculated for each 

subject provided that the item difficulties belonging to his or her subgroups are used in 

their calculation. It is doubtful, however,  whether  a scoring rule that makes use of  

subgroup membership would be acceptable to the testees. 

Finally it should be remarked that the item bias part of  the models may be more 

elaborate. The models in this paper contain parameters that indicate deviations due to 

item bias. Kok and Mellenbergh (1985) go further and formulate models that describe 

the processes involved in the genesis of item bias more precisely. Our models may be 

used to give directions as to which of  Kok ' s  models may be appropriate. 
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