
Item Factor Analysis: Current Approaches and Future Directions

R. J. Wirth and

L. L. Thurstone Psychometric Laboratory, Department of Psychology, University of North Carolina

at Chapel Hill

Michael C. Edwards
Department of Psychology, The Ohio State University

Abstract

The rationale underlying factor analysis applies to continuous and categorical variables alike;

however, the models and estimation methods for continuous (i.e., interval or ratio scale) data are

not appropriate for item-level data that are categorical in nature. The authors provide a targeted

review and synthesis of the item factor analysis (IFA) estimation literature for ordered-categorical

data (e.g., Likert-type response scales) with specific attention paid to the problems of estimating

models with many items and many factors. Popular IFA models and estimation methods found in

the structural equation modeling and item response theory literatures are presented. Following this

presentation, recent developments in the estimation of IFA parameters (e.g., Markov chain Monte

Carlo) are discussed. The authors conclude with considerations for future research on IFA,

simulated examples, and advice for applied researchers.
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Item-level data within the social and behavioral sciences are often categorical in nature.

Dichotomous (e.g., disagree vs. agree) or polytomous (e.g., strongly disagree, disagree,

neither, agree, and strongly agree) item response formats may fail to maintain the scale and

distributional properties assumed by models such as ordinary least squares regression or

common linear factor analysis. Traditional regression techniques describe the outcome

variable as an optimal linear function of observed predictors. The proper implementation of

these techniques requires assumptions such as independent and normally distributed

residuals, a continuous conditionally normal outcome, and that the model is correctly

specified (i.e., a linear relationship exists between the outcome and predictors). The

common linear factor model, which describes the covariances among observed variables as a

function of a smaller number of latent factors, makes many of the same assumptions. It is

assumed that the unique factors (those that affect only one measured variable) are normally

distributed, the outcomes are continuous and conditionally normally distributed, and a linear

relationship exists between the observed and latent variables. Although this list of

assumptions is not exhaustive, it does represent assumptions that are easily violated with

itemlevel ordered-categorical data. Attempting to estimate model parameters, for example,
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with dichotomous outcomes within the standard confirmatory factor model (as described by

Jöreskog, 1969) results in parameter estimates that are biased and impossible to interpret

accurately (Di-Stefano, 2002). However, all is not lost; just as logistic and ordinal regression

techniques offer appropriate alternatives to linear regression when modeling dichotomous or

polytomous (e.g., ordinal, Likert-type scales) outcomes, item factor analysis (IFA) offers an

appropriate alternative to the common linear factor model when modeling categorical item

responses (Mislevy, 1986).

This article is intended to offer a targeted review of IFA within the structural equation

modeling (SEM) and item response theory (IRT) frameworks. Specific attention is paid to

the subset of models most relevant for psychological research. In doing so, we consider

model parameterizations for ordered-categorical data, outline the analytic relationships

between these parameterizations, and offer an introduction to standard, as well as recently

developed, estimation measurement models within psychology, a consideration of when IFA

models are an appropriate choice for modeling psychological constructs, and an overview of

the work that lies ahead. Another fundamental goal of this article is to offer advice and

recommendations for the use of these models in substantive research. With the use of

simulated data, we offer guidelines for choosing an appropriate parameterization, choosing

an appropriate estimation method, and gaining confidence in results.

Item Factor Analysis Models

There are a wide range of IFA models available in both the SEM and IRT literatures

including models for items with ordered responses (Samejima, 1969), models for items with

unordered responses (Bock, 1972), models that allow for partial credit (Masters, 1982;

Muraki, 1992), and models that allow for guessing (Birnbaum, 1968, pp. 404–405). All of

these models are considered variants of a general item factor analytic framework (see

Thissen & Steinberg, 1986, for a taxonomy of these models). We do not cover all of these

models; instead, we focus on IFA models appropriate for full-credit ordered responses with

no guessing, that is, for the type of data most often encountered in psychological research.

This discussion includes the categorical confirmatory factor analysis (CCFA) model as well

as the two-parameter logistic (2PL) and graded response models.

Latent Response Distributions and CCFA

CCFA assumes that ordered-categorical item responses are discrete representations of

continuous latent responses. That is, it is assumed that individuals possess a latent score,

denoted  for individual i on item j, that reflects their level on a continuous, normally

distributed1 latent construct. An observed item response, xij, such as choosing disagree for

the item “I generally feel sad” is the categorical manifestation of the latent continuous

response. Thus, the distribution of categorical responses to a particular item is the

manifestation of the  distribution corresponding to that item.

The proportion of individuals who endorse each categorical response option provides

information about the latent response distribution by way of threshold (τ) parameters.

Analytically, τ can be defined as

(1)

1Although the continuous latent response distribution is generally assumed to be normally distributed, it is important to note that this
assumption is required only in the presence of correlated unique factors; otherwise, the assumption is one of statistical convenience
(i.e., it reduces complexities associated with estimation; see Pearson, 1900). However, we are unaware of any software that is
currently capable of accommodating nonnormal latent response distributions.

Wirth and Edwards Page 2

Psychol Methods. Author manuscript; available in PMC 2011 August 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



where τjc defines C ordered-categorical responses (τj0 = −∞, τjC = ∞, and c equals, e.g., 0,

1, …, C − 1) with respect to the continuous latent response distribution of item j.

More specifically, τ parameters denote the point on the continuous latent response scale that

separates one manifest discrete response (e.g., a response option on a Likert-type scale) from

the next. Assuming a normally distributed latent response distribution, as in Figure 1, if the

observed proportion for the disagree response of a dichotomous item (i.e., xij = 0) is .1587,

τ11 equals −1.0 (i.e., the corresponding z score). The value τ11 in this case suggests that

individuals with  (i.e., the individual’s latent score) less than one standard deviation

below the mean of the distribution, , will choose the disagree option, whereas individuals

with  greater than −1.0 will endorse the agree option.

Suppose individuals responded to two items. There are now two univariate latent response

distributions as well as their bivariate latent response distribution. As can be seen in Figure

2, obtaining the threshold values for two items provides information about their joint

distribution, which is assumed to follow a bivariate normal distribution. With two

dichotomous items, the thresholds denote the points through the bivariate normally

distributed latent response distribution that gave rise to the corresponding 2 × 2 table of

observed proportions. However, these proportions are also a function of the correlation

between the latent response variables, called tetrachoric and polychoric correlations for

dichotomous and polytomous items, respectively. In Figure 2, the ellipses represent the top

view of the underlying latent response distribution (a three-dimensional representation of

this distribution can be found in Figure 3), with the inner ellipses representing higher

sections of the distribution. If the correlation between two response variables was zero, the

ellipses would appear as circles. As the correlation between two response variables

increases, the distribution becomes more narrow, resulting in the ellipses becoming more

narrow and a larger proportion of individual responses falling on the diagonal of four

quadrants in Figure 2. More specifically, as the correlation increases, the subsequent

expected proportions in the lower left and upper right quadrants in the 2 × 2 table of

observed responses also increase.

Following the earlier work of Christoffersson (1975) and B. O. Muthén (1978), Olsson

(1979) introduced a maximum-likelihood method for finding the correlations between two

or more latent response variables using the proportion of responses in the observed response

contingency table (for two variables, the contingency table would comprise the four

quadrants presented in Figure 2). Although simultaneously estimating all of the thresholds

and correlations for a particular set of items is ideal, as the number of items increases there

is a corresponding increase in the complexity of the estimation process. Finding the

correlation among latent response variables requires integration (e.g., computing the area

under the bivariate latent response distribution in Figure 3). As the number of items

increases, so does the number of dimensions requiring integration. For example, to obtain

simultaneous estimates of a tetrachoric/polychoric correlation matrix with 10 items, 10-

dimensional integration is required, as opposed to the two-dimensional integration required

in Figure 2. Noting the analytic difficulties with simultaneously estimating thresholds and

correlations, Olsson suggested a two-step approach. This approach relies on the univariate

estimation of thresholds, as has been discussed above. Then, treating the thresholds as fixed,

the correlations are estimated bivariately, just as in Figure 2. The difference between the

two-step approach and the simultaneous approach is that in the two-step approach, the

thresholds and correlations are estimated separately and each element of the correlation

matrix is estimated independently of all other elements.
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Although Olsson (1979) suggested that the two-step method provides comparable estimates

while reducing the analytic burden of the simultaneous method, this approach has

limitations. Estimating each correlation independently no longer provides true maximum-

likelihood estimates of the correlation matrix and can result in a matrix that is nonpositive

definite (Song & Lee, 2003) and therefore cannot be inverted.

CCFA attempts to model the correlational structure of the latent responses  by way of a

linear combination of model parameters. The unconditional CCFA model can be defined as

(2)

In Equation 2,  denotes the population covariance matrix of the j-dimensional latent

response distribution (i.e., the distribution of the theoretical, continuous, latent responses),

 denotes a matrix of factor loadings,  denotes a covariance matrix of normally

distributed latent factors, and  denotes a (typically) diagonal matrix of unique variances.

This model is similar to the common factor model; however, the CCFA model is slightly

more difficult to estimate because of the presence of unobserved variables on both sides of

the equation.

Item Response Models

IFA models within the IRT framework were specifically developed for categorical

responses. For example, the 2PL model was created for dichotomous data and is commonly

expressed as

(3)

where xj is an observed response to item j, θ is a latent variable being measured, aj is a slope

parameter describing the strength of the relationship between item j and the latent factor, bj

is a severity or difficulty parameter describing how much of the latent construct someone

must possess to have a 50% probability of endorsing item j, and D is a scaling constant. It is

important to note that D is something of a historical artifact. Early IRT development focused

on the normal ogive model (Lord, 1952; Lord & Novick, 1968; Samejima, 1969), similar to

the probit regression model. However, likelihood-based estimation procedures have relied

more heavily on the logistic approximation to the normal ogive. The scaling constant

(typically 1.7) is used to place results from the logistic model on the same scale as the

normal ogive model.

Figure 4A is a graphical representation of Equation 3 generally referred to as an item

characteristic curve or trace line. The trace line for a given item represents or traces the

probability of endorsing an item as a function of an individual’s level on the underlying

construct. If this were an item assessing depression, the trace line found in Figure 4A would

suggest that an individual who is roughly 1.6 standard deviations below the population

average would have a 50% chance of endorsing this item. Because most of the area under

the normal curve falls above −1.6 (approximately 95% of it), almost all of the population

would have a greater than 50% probability of endorsing this item. This tells us that the item

in question indicates a relatively low level of depression, as individuals with less-than-

average depression would still have a good chance of endorsing it.
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Closely related to the 2PL is the graded response model (Samejima, 1969) for polytomous

data. In fact, when examining the two models side by side, it is easy to see that the 2PL is a

constrained version of the more general graded response model. More specifically, this

model can be defined as

(4)

where all parameters are as previously defined, with one slight modification. Given the now

polytomous nature of the data, the graded response model incorporates C − 1 severity

parameters, bjc, representing the boundaries between the C categories. These severity

parameters denote the point on the latent variable separating category c from category c + 1.

With more than two categories, the probability of endorsing a particular response option can

be estimated by taking the difference between the probability of a response in category c

(e.g., disagree) or higher and the probability of a response in category c + 1 (e.g., neither) or

higher.

Figure 4B contains a sample trace line plot for an item using a five-category response scale.

Each response category (0–4) has its own curve. These curves represent the probability of

choosing any given category as a function of the level on the underlying construct. At any

given level of the latent construct, it is possible to see not only which category is the most

likely to be chosen but also the probabilities attached to the endorsement of any of the five

categories. As one might expect, the higher the level of the latent construct, the more likely a

given individual is to choose a higher category (assuming the categories are coded such that

higher categories represent higher levels of the construct of interest).

Analytic Relationship Between CCFA and Item Response Models

The IFA parameterizations presented above, although found within two different modeling

frameworks, are closely related. In fact, the analytic relationship between a one-factor

CCFA model and the unidimensional 2PL (and graded) IRT model was originally presented

(see Lord, 1952; Lord & Novick, 1968) and demonstrated mathematically (Takane & de

Leeuw, 1987) many years ago. Transforming the parameter estimates from one framework

to another is straightforward. Although these transformations are rarely needed in practice,

they do highlight the differences in interpretation of the parameters obtained within the SEM

and IRT frameworks.

For example, parameters from the 2PL IRT model can be shown to be equivalent to

parameters from the CCFA model such that

(5)

and, vice versa,

(6)
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where  is the factor loading for item j and all other parameters are as previously defined. It

is worth noting that the D = 1.7 scaling constant comes into play only when the IRT

parameters come from a program that uses the logistic form. The most popular IRT software

packages use this form of the two-parameter IRT model, so the scaling constant is included

in the conversion equations above. If one is dealing with the normal ogive, D = 1 and drops

out of the equations. Using the normal ogive model as opposed to the logistic model is

analogous to using probit regression as opposed to logistic regression. Note that in the case

of the graded response model, the only change to Equations 5 and 6 is that all occurrences of

τj and bj receive an additional c subscript to denote the corresponding threshold.

An interesting relationship can be seen in Equation 5, where aj is shown to be a factor

loading weighted by the square root of its unique factor variance. This highlights the role of

unique variability on the relationship between the latent construct and the probability of

endorsing an item within the IRT framework. An important point often overlooked in the

applied CCFA literature is that as an element of  approaches unity (uniqueness goes to

zero), the strength of the relationship goes to infinity, thereby suggesting perfect

measurement (i.e., reliability equal to one).

Items are almost never perfectly related to the underlying construct. Practical experience

with IRT suggests that, when dealing with dichotomous data, slope parameters (in the

normal ogive metric) much greater than three should be viewed with skepticism and values

greater than four should, in most situations, be considered unreasonable.2 These values

logically translate into skepticism for  and objection to  values greater than .97

(when the CCFA model is identified by standardizing the latent construct). Slopes tend to be

higher for the graded response model than for the 2PL, but even in this instance, slopes

greater than four are unusual. Given the experience with item factor models within the IRT

literature and the relationship between these models, greater care should be taken when

attempting to interpret parameters close to their statistical or applicable boundary (i.e.,

values approaching Heywood, 1931, cases).

Obtaining accurate estimates of IFA parameters can be difficult. The examples and

recommendations offered in this article are intended to aid in the use of IFA models in

psychological research.

The Challenge of Dimensionality

To appropriately address the use of IFA in substantive research, it is important to understand

the challenge dimensionality continues to pose when working with IFA models. Parameter

estimation for IFA models typically requires integration. As described above, in the context

of the CCFA model, the dimensionality of this integration is related to the number of items.

In the IRT context, as is discussed in detail below, the dimensionality of the integration is a

function of the number of latent factors. Unfortunately, high dimensional integration is

extremely difficult and computer intensive. Although the challenge of high dimensional

integration has not been insurmountable, it has been a focus of much of the IFA research in

the past 2 decades.

Parameter Estimation and the Challenge of Dimensionality

A common misconception is that IFA models within a particular modeling framework are

limited to either a few items (in the SEM framework) or a few factors (in the IRT

2Items with slopes greater than four are essentially Guttman-type items that are perfectly discriminating. Items not specifically
designed with this end in mind are rarely encountered in the social sciences.
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framework). Many of these misconceptions may arise from the characteristics of currently

available software. For example, most IRT software programs focus exclusively on

unidimensional models (i.e., models that have only a single latent factor). However,

theoretically, all of the models presented in this article can be extended to any number of

factors and any number of items. The difficulty is not with the models; rather, it is with

estimating the parameters of the models in question.

Standard Estimation of CCFA Parameters

There are a number of methods available for the estimation of CCFA model parameters.

This section introduces three of these methods: weighted least squares for categorical data

(WLSC), modified weighted least squares for categorical data (MWLSC), and full-

information maximum likelihood (FIML). Each of these methods has its own set of

advantages and disadvantages (see Table 1 for a full list of estimators discussed in this and

the following sections).

We begin with WLSC, a common method for CCFA parameter estimation. A useful way to

understand the issues facing WLSC is to begin with weighted least squares (WLS) for

continuous indicators. The WLS fit function can be defined as

(7)

where s is a vector containing the unique elements of a p × p sample covariance matrix and

σ is a vector containing the unique elements of the p × p model implied covariance matrix.

The weight matrix, W−1, is the inverse of a positive definite matrix of order u × u, where u =

p(p + 1)/2, and is a consistent estimate of the asymptotic covariance matrix (Browne, 1984).

Even with continuous indicators, difficulties arise in finite samples, the greatest of which is

the ability to obtain an accurate estimate of the weight matrix. A few examples will

demonstrate why this can be such a difficult task. First, note that the weight matrix

comprises u(u + 1)/2 distinct elements. This means that when p = 3, u = 6 and the weight

matrix comprises 21 unique elements (see Figure 5A). In a slightly more realistic case, say,

with 20 items (p = 20), u = 210, and the weight matrix comprises 22,155 distinct elements.

Clearly, the number of distinct elements grows rapidly as the number of indicators increases.

Minimally, the sample size (N) must be larger than u to ensure that the matrix can be

inverted; however, in practice, N is typically required to be much larger than u (Browne,

1974, 1984) to ensure an accurate estimate of the matrix. Indeed, the quality of the weight

matrix (i.e., the accuracy of the estimated weight matrix) can often be questioned even when

the sample size is large and the weight matrix is invertable. Methods to increase confidence

in the quality of the weight matrix are addressed in a later section.

The fit function in Equation 7 can be rewritten in the presence of categorical data in terms of

correlations and defined as

(8)

where ρ is a vector containing the unique elements of the p × p model implied correlation

matrix (Jöreskog, 1994) and r is a vector containing the unique elements of a p × p sample

tetrachoric or polychoric correlation matrix. Other researchers (e.g., B. O. Muthén, du Toit,

& Spisic, 1997) have included the observed and model implied threshold values in the r and

ρ vectors, respectively.3 Regardless of whether or not the thresholds are included in the fit

function, the estimation and inversion of a suitable positive definite weight matrix are still
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necessary. As with WLS for continuous indicators, WLSC requires a sufficiently large

sample for estimation of an accurate weight matrix (B. O. Muthén et al., 1997). For

psychological applications, this is not a trivial issue as the number of items found on popular

scales can be quite large. For example, the Child Behavior Checklist for Ages 6–18

(Achenbach & Edelbrock, 1983) has 118 items (24,650,731 unique elements in the weight

matrix), whereas the Revised NEO Personality Inventory (Costa & McCrae, 1992) has 240

items (418,197,660 unique elements in the weight matrix).

Sample size and the ability to obtain stable, accurate estimates are not the only obstacles

faced when using WLSC. There is no closed form solution (i.e., a single answer that can be

mathematically derived) to the asymptotic covariance matrix of categorical data as

implemented in Equation 8. Furthermore, multiple approaches for estimating the weight

matrix in the presence of ordered-categorical data are available (Jöreskog, 1990, 1994; Lee,

Poon, & Bentler, 1990b, 1995; B. O. Muthén, 1984; B. O. Muthén et al., 1997). Although

the various methods should converge asymptotically, researchers should be aware that

differences may arise in finite samples (see Oranje, 2003, for a comparison of these

methods). One way to overcome the limitation associated with using a full weight matrix is

to reduce the analytic burden by using only the diagonal elements of the weight matrix for

the estimation of model parameters.

Modified weighted least squares—Modified (or diagonally) WLS estimators for

ordered-categorical indicators, MWLSCs, are a variation of the methods presented above

and can be defined as

(9)

where r and ρ are defined as before. However, unlike Equation 8, the weight matrix in

Equation 9, , contains only the diagonal elements of the full weight matrix. This

modification greatly reduces the number of nonzero elements and thereby reduces the

computational (and sample size) burden. Returning to the example above, when p = 3, u = 6,

and the diagonal weight matrix comprises only 6 unique elements; see Figure 5B. In the

slightly more realistic case, when p = 20, u = 210, and the diagonal weight matrix comprises

210 as opposed to 22,155 distinct elements.

Two notable MWLSC estimators that use this general strategy are diagonally WLS

(Jöreskog & Sörbom, 2001; see also Christoffersson, 1975) and robust WLS (B. O. Muthén

et al., 1997), also commonly denoted as WLSm and WLSmv for mean-adjusted and mean/

variance-adjusted WLS, respectively. These methods provide accurate estimates of the

model parameters given a stable weight matrix.

Because of the reduction in information, estimation using MWLSC is not statistically

efficient. That is, once all the off-diagonal elements of the weight matrix have been

removed, it is no longer the optimal weight matrix (B. O. Muthén et al., 1997). This

reduction in efficiency leads to biased standard errors and test statistics. One way to correct

these inaccuracies is with the use of the Satorra-Bentler scaled chi-square and robust

standard errors (Satorra & Bentler, 1994; Yuan & Bentler, 1998; see also Oranje, 2003).

These methods adjust the chi-square test statistic and standard errors of the parameters but

leave the model degrees of freedom unadjusted. Another method to correct the inaccurate

3This difference has little influence on the estimation of CCFA parameterizations discussed here (i.e., the thresholds are saturated and
thus do not add any information to the estimation of other model parameters).
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test statistic and standard errors similar to the Satorra-Bentler adjustments can be found in B.

O. Muthén et al. (1997). This method also corrects the chi-square test statistic and standard

errors of the parameters. However, the mean-and-variance-adjusted chi-square presented by

Muthén and colleagues also adjusts the model degrees of freedom. Early research exploring

these modified methods, as well as their associated chi-square and standard error

adjustments, suggests that they perform well in practice (Flora & Curran, 2004).

Full-information maximum likelihood—An alternative to modifying WLS is to use a

FIML method (see Jöreskog & Moustaki, 2001; Lee, Poon, & Bentler, 1990a; Neale, Boker,

Xie, & Maes, 2002). These methods rely on p-dimensional integration over a multivariate

distribution. As opposed to solving for the correlational structure of the multivariate latent

response distribution, these methods attempt to account for the correlational structure by

way of the model parameters (i.e., ). The full-information methods provide

accurate standard errors and fit statistics, unlike the aforementioned MWLSC estimators.

However, the problem of dimensionality remains. The multiple integration required with

these methods is computationally intensive, thereby limiting their practical application with

large models (i.e., many items, many factors; Jöreskog & Moustaki, 2001; Lee et al., 1990a).

Standard Estimation of IRT Parameters

Much like the FIML methods addressed above, methods for the estimation of IFA models

within the IRT framework generally rely on raw data. These methods take full advantage of

the information in the data and are thus referred to as full-information estimators. However,

unlike the FIML methods available within the SEM framework, these methods require

integration (or approximations to integration) over the latent factors—not items.

One of the most commonly used estimation methods for IRT parameters is maximum

marginal likelihood (MML) with an expectation-maximization (EM) algorithm (MML/EM;

Bock & Aitkin, 1981). The MML/EM algorithm is a reformulation of the Bock and

Lieberman (1970) MML method that incorporates Dempster, Laird, and Rubin’s (1977) EM

algorithm. In this section, we detail the historical developments that have given rise to the

MML/EM algorithm along with explanations of the key concepts.

One of the earliest approaches developed to estimate IRT parameters directly is joint

maximum likelihood (JML). When using JML, one attempts to estimate all the parameters,

person and item, simultaneously. In such instances, there are more parameters being

estimated than there are observations (one parameter for each individual plus varying

numbers of parameters per item, depending on the model). In such cases, some of the

important properties of maximum-likelihood estimates may not hold. The most important of

these lost properties is consistency. An estimator is consistent if, as sample size approaches

infinity, the estimated value approaches the true value. Even if we are concerned only with

the item parameters, using JML there is no guarantee that increasing sample size will yield

better estimates.

Rather than attempting to estimate all item and person parameters simultaneously, the MML

approach integrates over the person-specific parameters (this process is known as

marginalization) and estimates the item parameters in the marginal distribution. The

rationale to this approach is attributable to Neyman and Scott (1948), who made a

distinction between structural and incidental parameters. In the context of IRT, the item

parameters are the structural parameters, and the person parameters (θi) are the incidental

parameters. By assuming that the person parameters are randomly drawn from some

distribution (typically assumed to be normal), it is then possible to integrate over that

distribution. In essence, the marginalization process removes the person parameters from the
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likelihood. Then, it is possible to find the item parameters that maximize that likelihood

without having to be concerned about the person parameters. In the case of MML, the

marginal likelihood is what remains once the person parameters have been removed from

the likelihood. It is this likelihood that is maximized to find the item parameter estimates.

A necessary step in MML estimation involves computing the unconditional probability of

subject i giving a particular response pattern (xi) as given by

(10)

where g(θ) represents the continuous latent distribution (typically assumed to be a standard

normal distribution, but see Woods & Thissen, 2006, for other alternatives). It is common

practice for integrals of the form found in Equation 10 to be approximated using numerical

integration. In IRT estimation, the numerical integration is generally conducted using Gauss-

Hermite quadrature (discussed below), which works well for relatively smooth functions.

Quadrature-based integration, rather than analytically computing integrals to determine the

area under the curve, uses a series of rectangles to approximate the area. The area of a

rectangle is very easy to compute, and simply by adding up the areas of the different

rectangles, it is possible to get a numerical approximation of the area under any given curve.

By having more (and smaller) rectangles, it is possible to more closely follow the contours

of the curve in question, but at a cost of greater computational burden. Computing the

probability in Equation 10 using Gauss-Hermite quadrature to approximate the integral

results in

(11)

where the summation occurs over quadrature points, Qk, and A(Qk) is the quadrature weight

for each point Qk. Although calculation is straightforward for a one-dimensional problem, as

the number of dimensions increases, it becomes more complicated. The number of

quadrature points (per dimension) corresponds to the number of rectangles used to

approximate the area under the curve. Thus, more quadrature points lead to a better

approximation. The Gauss-Hermite quadrature-based integration used by Bock and Aitkin

(1981) is not recommended for more than five factors, which is often too few for many

applications in the social sciences.

Despite MML’s theoretical importance, computational difficulties limit the number of items

for which parameters can be estimated using MML to no more than 12. The reformulation of

the Bock and Lieberman (1970) approach found in Bock and Aitkin (1981) overcomes the

computational difficulty by adopting a strategy now recognized as being equivalent to the

EM algorithm. The EM algorithm is an iterative method for finding maximum-likelihood

estimates in the presence of incomplete data. The term incomplete data is intentionally

vague and covers instances from missing data to latent variables. Rubin (1991, p. 242) gave

a very general description of the idea underlying the EM algorithm as “fill in missing data,

estimate parameters, re-estimate missing data, etcetera until no real change.” In the IRT

framework, the missing data are the individual latent scores on a factor (θi). The expectation

step (E-step) of the EM algorithm implemented by Bock and Aitkin involves using

provisional estimates of the item parameters to obtain estimates for the expected number of

endorsements for item j at a particular level of the latent variable and for the expected
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number of examinees at that level. The maximization step (M-step) involves obtaining new

estimates of the item parameters by substituting the E-step estimates in the likelihood

equations. This process continues until some convergence criterion is satisfied.

In addition to the many applications of MML/EM to unidimensional IRT models, there have

been extensions to multidimensional IRT (MIRT) models. The earliest such extension was

an exploratory MIRT model by Bock, Gibbons, and Muraki (1988), which they called a full-

information IFA model. Subsequent research by Gibbons and Hedeker (1992) has expanded

the scope of MIRT models to include some limited kinds of confirmatory models (e.g.,

bifactor models).

Unfortunately, the standard implementation of MML/EM is still based on MML and the use

of Gauss-Hermite quadrature, which limits the number of latent constructs or factors. This

limitation of the IRT-based methods is not unique to the two-parameter and graded response

models discussed here, but applies to most of the IFA models found in the IRT literature

(Bartholomew & Knott, 1999). This issue is especially salient in psychology, where many of

the commonly used inventories measure multiple factors. For instance, the revised version

of the Minnesota Multiphasic Personality Inventory (Butcher, Dahlstrom, Graham, Tellegen,

& Kaemmer, 1989) consists of over 30 clinical subscales (factors). Measurement scales of

this magnitude pose a serious challenge to the methods of estimation that have traditionally

been used in psychometrics.

Recent Advances: Meeting the Challenge

The issue of marginalization and integration, as well as at what point in the estimation

process they are performed, remains one of the critical distinctions separating IRT and SEM

parameter estimation. This issue, most explicitly discussed in Takane and de Leeuw (1987),

also sheds light on current dimensional challenges faced in IFA. When marginalization

occurs after the latent response distribution (x*) has been categorized (i.e., is broken up via

the thresholds into observed categories), integration is required over the number of factors.

This is generally the problem encountered when using the standard estimation approaches

for IFA models found in the IRT framework. When marginalization occurs on the

multivariate latent response distribution prior to categorization, integration is required over

the number of items. This is generally the problem encountered when using the standard

estimation approaches for IFA models found in the SEM framework, where the analysis is

performed on the estimated correlations among the latent responses.

A common theme in the literature is how best to handle this integration (regardless of where

the integration occurs) while obtaining simultaneous estimates of all IFA model parameters.

Here, we focus on three recent developments: the underlying bivariate normal (UBN)

approach of Jöreskog and Moustaki (2001), Markov chain Monte Carlo (MCMC)

estimation, and adaptive numerical integration.

Underlying Bivariate Normal

The UBN approach (Jöreskog & Moustaki, 2001) for item-level factor models was

developed as an alternative to the FIML or multivariate normal approach first proposed for

the CCFA model by Lee et al. (1990b). Recall that the FIML approach requires integrating

over the number of latent response variables (i.e., items). As the number of items increases,

the integration becomes exceedingly computer intensive and eventually becomes unfeasible

(somewhere around four items; Jöreskog & Moustaki, 2001).

The UBN approach circumvents integration over many dimensions by relying solely on the

univariate and bivariate marginal distributions. Similar to other CCFA estimation methods,
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marginalization with the UBN approach occurs across the number of items and not factors.

In contrast to many of the estimation methods readily available for CCFA parameter

estimation, the UBN approach simultaneously estimates all of the model parameters

(including the thresholds). Moreover, the UBN procedures estimate the parameters without

requiring the inversion of a weight matrix.

Traditional methods for estimating the CCFA model (e.g., WLSC) comprise three steps.

First, the thresholds are estimated; then, the correlation matrix is estimated; finally, the

model parameters are estimated. In the case of WLSC, parameter estimation involves the

estimation of a large matrix that must then be inverted. In the case of other maximum-

likelihood-based methods (e.g., FIML), the weight matrix may have to be reestimated for

every iteration. Unlike these other methods, the UBN approach minimizes all univariate and

bivariate fit functions. In doing so, the UBN method requires only one- and two-dimensional

integration. The integrals required with the UBN method correspond to finding the threshold

for a particular item (as shown in Figure 1) and finding the relationship between two items

(as shown in Figure 2). Therefore, the integration required for the simultaneous estimation

of all model parameters using the UBN approach is no more computationally intensive than

the integration required to estimate the polychoric correlation matrix used with the WLSC

and MWLSC methods.

Early research suggests that the UBN method with ordered- categorical data may be

appropriate for many factors and many items (Jöreskog & Moustaki, 2001). Although more

work is needed to fully understand the behavior of the UBN approach in finite samples, this

method is an exciting development in the estimation of IFA model parameters. Indeed, the

ability to simultaneously estimate all parameters in models with many items and many

factors would be a significant improvement over current, multiple-step CCFA estimation

methods.

Markov Chain Monte Carlo

Another approach that, although relatively new, has been gaining popularity in the social

sciences is MCMC estimation. MCMC methods evolved from work conducted at the Los

Alamos National Laboratory by Nicholas Metropolis and colleagues (Metropolis,

Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Metropolis & Ulam, 1949) in the 1940s

while working on the Manhattan Project. These methods were generalized by Hastings in

the early 1970s (Hastings, 1970). The resulting algorithm is commonly referred to as the

Metropolis-Hastings algorithm and is a very general MCMC method. As explained by some

of the originators of the method, “the essential feature of the process is that we avoid dealing

with multiple integrations or multiplications of the probability matrices, but instead sample

single chains of events” (Metropolis & Ulam, 1949, p. 339). Before we provide an

overview4 of the specifics of MCMC, it is useful to consider the more basic idea of Monte

Carlo integration.

Imagine for a moment that you want to know the area of a circle but that no formula is

available to compute it directly. Using the following procedure, it is possible to obtain an

estimate of the area of the circle. Start off by creating a square (with known area) that is

larger than the circle and then place the circle inside. Next, consider what will happen if you

repeatedly place dots at random locations in the square—some of the dots will fall in the

circle, and some will fall outside. If you then calculate the proportion of dots that fall inside

the circle and multiply that by the total area of the square, you will have a reasonable

4For a more detailed introduction to MCMC, refer to Casella and George (1992); Chib and Greenberg (1995); Gilks, Richardson, and
Spiegelhalter (1996); and Gill (2002).
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estimate of the area of the circle. The more dots you use, the more precise your estimate will

be.

Now suppose that instead of wanting to know the area of a circle, you want to know the area

of some irregular shape. In many such instances, no equation exists to directly compute the

area, but the “dot method” just discussed will still be able to provide an estimate of the area.

This is the essential idea of Monte Carlo integration.

In the context of IFA models, we are not dealing with circles and squares but with

distributions. There are many variants of the basic Monte Carlo integration strategy (see Liu,

2001). When dealing with distributions, it is often the case that we would like to obtain

estimates of quantities such as the mean and the standard deviation. Consider two different

ways to obtain information about the expected value of some density function f(x) that

represents the distribution and ranges from −∞ to ∞. One way to obtain information about

the expected value is to compute it directly using

(12)

If it is possible to generate independent random draws from f(x), we can also gain

information about the expected value using

(13)

where the summation is over the n draws from f(x). Rather than analytically solving the

integral in Equation 12, we obtain an estimate of the same quantity by drawing n samples

from the distribution of interest and computing their mean. In essence, Monte Carlo

integration replaces what can be very complex analytic integration with very simple

computations.

Unfortunately, it is often the case that the distribution in question cannot be sampled from

easily. For the IFA models discussed up to this point, the distribution we would like to

sample from is intractable, which means we cannot draw samples from it directly. This is

where MCMC proves to be invaluable. By constructing a Markov chain with the desired

distribution (also called a target distribution) as its stationary distribution (i.e., the

distribution the chain converges to), one is able to make dependent draws from the

distribution of interest.

A Markov chain consists of a series of random variables that are ordered in time. If it is the

case that what happens at time t + 1 depends only on what happened at time t and no earlier

time points, that series is considered a Markov chain. To make the idea more concrete,

imagine you are trying to decide what shoes to wear tomorrow. Suppose that you have a rule

that you cannot wear the same pair of shoes 2 days in a row. In this case, the shoes you

choose to wear tomorrow depend on the shoes you are currently wearing but not on the

shoes worn yesterday or at any earlier time. This is the idea of a Markov chain—it is a

sequence of events where what happens next depends only on the present set of

circumstances and not on any earlier ones.

Once a given Markov chain has converged, samples from that chain will approximate

samples from the distribution of interest. Convergence refers to when the Markov chain

moves from its initial state to its stationary distribution (the distribution from which we
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would like to draw samples). To further extend the shoe metaphor, imagine that you have

recently moved and that all of your possessions are in unlabeled boxes. One of these boxes

has all of your shoes in it, but you do not know which box it is. You decide to randomly

open boxes and take an object out until the object you find is a shoe. All the objects you find

that are not shoes are like what you get from the Markov chain before it converges. They are

objects but not the right kind. In fact, just as you would not try to keep one of those objects

and use it as a shoe, in MCMC, you discard the draws that occur before convergence (called

burn-in) as they are not what you are looking for. Once you find the box with shoes (i.e.,

your search has converged), you do not have to keep searching, and every additional draw

you make is what you want. In MCMC, once the Markov chain has converged, then the

values it produces behave as if they had come from the desired distribution. Once a suitable

number of samples are taken from a converged chain, a point estimate for a given parameter

can be taken as the mean (or mode) of the draws, and the standard error can be estimated as

the standard deviation of the draws.

The bulk of MCMC research in IFA has focused on the models found in the IRT literature

(but see Shi & Lee, 1998), beginning with the work of Albert (1992) on the normal ogive

form of the two-parameter model (Equations 5 and 6 with D = 1). Much of the IRT-based

MCMC work has focused on the normal ogive, rather than the logistic, forms of IRT models

as the benefits of using the logistic approximation are not present in the MCMC context.

Albert used data-augmented Gibbs sampling (see Geman & Geman, 1984; Tanner & Wong,

1987), a widely used form of MCMC. Albert and Chib (1993) expanded the work of Albert

to incorporate polytomous data. A number of studies have compared MCMC estimation

with other popular estimation methods (Baker, 1998; Bradlow, Wainer, & Wang, 1999;

Kim, 2001; Patz & Junker, 1999; Sahu, 2002; Wollack, Bolt, Cohen, & Lee, 2002) for some

of the most commonly found unidimensional IRT models. Although there are differences in

the various findings reported in these studies, the typical finding is that MCMC and more

standard methods (such as MML/EM) provide estimates of similar quality.

The introduction of MCMC estimation methods for IFA models has been an exciting recent

development, but these methods have their own set of complexities. Draws from a Markov

chain can only be considered approximate draws from the distribution of interest if the chain

has converged, or reached its stationary distribution. Although there is a wide variety of

methods available for assessing convergence (see Cowles & Carlin, 1996, for an excellent

review), there are as many chains as there are parameters to be estimated, so assessing each

chain for convergence can be time consuming. In addition, given the computer-intensive

aspect of MCMC estimation, analyses can take substantial amounts of time even on fast

computers. Moreover, the available software requires a substantial quantitative knowledge

to be used properly.

MCMC deals with the problems encountered using Gauss-Hermite quadrature by avoiding

the use of quadrature entirely. Although this is certainly one possible solution, given the

additional complexities introduced by MCMC, it is reasonable to explore other solutions that

mitigate the difficulties encountered in the estimation of IFA parameters.

Adaptive Numerical Integration

One potential remedy for the shortcomings of traditional Gauss-Hermite quadrature is the

use of adaptive numerical integration. As discussed by Meng and Schilling (1996), there are

several different ways in which numerical integration can be made adaptive, thereby

expanding the number of dimensions for which it is a feasible alternative. The Monte Carlo

EM algorithm, which replaces quadrature-based integration with Monte Carlo integration, is

one such approach. This approach is appealing in that it remains within the traditional

MML/EM framework but uses new developments to deal with the difficulties in numerical
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integration. This solution has been implemented in the newest versions of TESTFACT

(Bock et al., 2002) and Mplus (B. O. Muthén & Muthén, 2006) but has not yet seen

widespread use.

A related adaptation of the EM algorithm is the Stochastic EM algorithm (Diebolt & Ip,

1996). The Stochastic EM algorithm replaces the E-step of the traditional EM algorithm

with a stochastic step. This stochastic step uses MCMC to fill in the missing data, which

include the latent factor scores. Although this particular estimation scheme has not been

used for IFA models to date, it appears to be a very promising avenue for future research.

The use of MCMC to aid in the integration step of the EM algorithm highlights the fact that

there are a number of ways to use MCMC. One such way is to perform Bayesian

computations. This is the most popular use of MCMC in the IFA literature, where MCMC is

used to produce draws from posterior distributions of interest, which are the focus of

Bayesian inference. The second use of MCMC, highlighted by the Stochastic EM algorithm,

is in conjunction with likelihood-based methods as an integration aid. It is not necessary to

be a Bayesian to benefit from MCMC.

A third version of adaptive numerical integration, called adaptive quadrature, has been one

of the primary driving forces behind the recent emergence of the generalized linear latent

and mixed models (GLLAMM) approach of Rabe-Hesketh, Skrondal, and Pickles (2004).

GLLAMM is a very general framework that includes as a special case many of the IFA

models considered here. Adaptive quadrature does not use fixed quadrature points, as does

Gauss-Hermite quadrature. Instead, part of the numerical integration procedure involves

determining the optimal location for each of the quadrature points. This adaptability allows

for more efficient use of quadrature points, which allows for fewer points per dimension.

Although this method can also be computer intensive, it is no more so than many of the

other numerical alternatives currently available. GLLAMM is currently available within

STATA (StatCorp, 2003). For an excellent overview and comparison of some of these

recent developments in adaptive integration as applied to IFA models, see Schilling and

Bock (2005).

Summary

Recent advances in IFA have significantly improved researchers’ ability to estimate models

with many items and many factors regardless of the modeling framework. Some methods

(e.g., UBN) circumvent the challenge of dimensionality by limiting the information used in

the estimation. This approach can provide stable parameter estimates with reduced analytic

and computational burden. Other methods (e.g., MCMC) avoid quadrature-based integration

by relying on a sampling-based estimation strategy. Although all of these approaches allow

for the estimation of more complicated IFA models, they are also more difficult to

implement in practice than the methods discussed in earlier sections. The difficulty in

practical implementation is not surprising given the cutting-edge nature of this technology,

but these methods are certainly worth considering when making choices regarding IFA

estimation.

The Future of IFA Parameter Estimation

It is impossible to predict the future of estimation; however, MCMC appears to offer a

promising area of research for the simultaneous estimation of IFA parameters. These

methods were specifically developed to contend with high dimensional integration and thus

are well suited for the problems facing item-level factor analysis. Several researchers have

already begun applying these methods in the psychological literature with some success (see

Béguin & Glas, 2001; Segall, 2002; Shi & Lee, 1998). As demonstrated by the work of Fox

and Glas (2001), who incorporated a multilevel structure into an IFA model, another
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advantage of MCMC is the relative ease with which one can estimate more complex models.

This is not meant to imply that MCMC is easy, but rather that there are situations where

MCMC will be easier to implement than likelihood-based approaches.

There are still many aspects of MCMC that need to be explored with respect to item factor

models. For example, little work has been done to examine which variant of MCMC (e.g.,

data-augmented Gibbs sampling vs. Metropolis-Hastings within Gibbs sampling) is best

suited for the estimation of IFA parameters. Different variants have strengths and

weaknesses that may be more or less beneficial depending on the complexities of the model.

Work on such issues has begun (e.g., Edwards, 2004), but it is too early to draw definitive

conclusions. Although we believe that MCMC holds great promise for the future of IFA

parameter estimation, we do not believe that other estimation methods will become obsolete.

In the presence of multiple factors and a small number of items per factor, the WLS-based

methods can provide stable solutions. These methods are less computationally intensive than

many of the more recently developed methods, and it seems reasonable to continue using

WLS-based methods when feasible. However, given that many commonly used methods are

based on tetrachoric or polychoric correlations (e.g., WLSC and MWLSC), more research is

needed to better understand the role of low cell counts, non-centrally located thresholds, and

missing data on the estimation of these correlations and their associated asymptotic

covariances. Such work could lead to greater flexibility in research design as well as greater

confidence in parameter estimates. Aspects of this work have already begun (e.g., see Neale

et al., 2002, and Song & Lee, 2003, for tetrachoric or polychoric correlations with missing

data), whereas other researchers are deriving new estimation methods that avoid the need for

such correlations entirely (Jöreskog & Moustaki, 2001). However, much remains to be done

before these methods can be easily applied to the wide variety of data encountered in

psychological research. In fact, a logical next step in the advancement of IFA would be a

study examining all of the estimation methods addressed in this article.

IFA in Applied Research

The choice of an IFA model and estimation method often depends on the research question

of interest. For instance, if a researcher is interested in individual item characteristics or

obtaining scores for individual participants, IRT-based IFA may be more practical. The IRT

literature offers numerous models with parameters that apply directly to the items and are

intended to explain the interaction between people and items. The history of IRT has largely

been focused on these item-level properties and has seen extensive research on scale

development, scoring, and other aspects of assessment. On the other hand, if the research

question focuses on the structural makeup of a scale (e.g., number of factors, cross-loadings,

correlated errors, higher order factors), SEM-based IFA may provide a more natural

framework for addressing such questions. The SEM literature offers the CCFA model with

parameters that are intended to explain the relationship between constructs (or factors) and

latent response distributions. The history of SEM has largely been focused on the latent

factors and has seen extensive research on multiple factor analysis, higher order factor

analysis, and measurement models within larger structural models such as latent growth

models. Regardless of the IFA model implemented, there are a number of estimation options

available (see Table 1). We apply a subset of these methods to simulated data below.

Although each example comprises only a single random sample, the results of these

examples highlight the potential pros and cons of the methods.

Examples

Examples 1 and 2—Examples 1 and 2 rely on the same factor model with 10

dichotomous indicators. This model is intended to be relatively simple in terms of producing
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parameter estimates. The number of items is low (j = 10), the items range from moderate

(i.e., λ = .6) to strong (i.e., λ = .8) in their relationship to a single latent factor, and the

thresholds vary around the center of the latent response distributions (see Table 2 for the

generating parameter values). With a sufficient sample size, say, an N of 300, any of the

estimation methods previously addressed should accurately recover the population

parameters. These examples are intended to highlight the similarities between the modeling

frameworks as well as the advantages and disadvantages of a subset of estimation methods

(i.e., WLSC, MWLSC, MML/EM, and MCMC).

There is no single best method of estimation for all data types, sample sizes, or model

parameterizations. The first two examples include WLSC and MML/EM, which are two of

the more common methods found in the categorical SEM and IRT literatures, respectively.

Two other methods, MWLSC and MCMC, reflect estimation methods that are increasing in

popularity as well as methods that we believe will play significant roles in the future of IFA

estimation. These methods are very adept at handling large numbers of factors and items.

The parameter estimates obtained using WLSC and MWLSC (specifically, robust WLS)

were done using Mplus Version 2.14 (L. K. Muthén & Muthén, 2001)5; for MML/EM

estimates, MULTILOG version 7.0.3 (Thissen, Chen, & Bock, 2003) was used, whereas

MCMC estimates for Examples 1 and 2 were obtained with code written for R (R

Development Core Team, 2005). The MCMC code used for Examples 1 and 2 was derived

from the work of Albert (1992). The MCMC estimates for Example 3 were obtained using C

++ code developed by Michael C. Edwards (see Edwards, 2005, 2006).6 All MCMC results

presented here use a slope–intercept parameterization of the two-parameter normal ogive

(2PNO) model that changes how the resulting intercept is converted to a CCFA threshold.

To convert the MCMC estimated intercept to a CCFA τ, use

(14)

where γj is the 2PNO intercept term for item j. The scaling constant (D) is omitted as the

model used in the MCMC estimation is already in the normal ogive metric. The conversion

for the slope remains unchanged from Equation 6.

Results for Example 1—Example 1 consists of the aforementioned one-factor model

estimated with a sample size of 300. The results, found in Table 2, highlight two important

points. First, similar parameter estimates have been obtained from the SEM and IRT

parameterizations. Even with a small sample and the IRT estimates converted to SEM

parameters (see Equations 6 and 14), the MWLSC, MML/EM, and MCMC results are

strikingly similar. Second, although WLSC estimates have been obtained, the estimates are

consistently more discrepant than those produced by the other estimation techniques. Recall

that WLSC relies on a large weight matrix during estimation (see Equation 8). This weight

matrix contains u(u + 1)/2 unique elements. In the current example, p = 10, so u = 55, and

the weight matrix has 1,540 unique elements. A sample size of 300 allows for the estimation

and inversion of the asymptotic variance/covariance matrix, thus allowing estimates to be

obtained. However, it appears that a sample of 300 does not provide enough information for

an accurate estimate of the weight matrix, thereby leading to more discrepant estimates of

the parameters. Obtaining a solution, regardless of the estimation method, does not ensure

an accurate solution (Gagné & Hancock, 2006).

5Equivalent estimates are obtained using more recent versions (3 and 4) of Mplus.
6Data and code for Mplus, MULTILOG, and R can be found online at the supplemental material Web site identified at the beginning
of the article. MCMC code for Example 3 will be made available once the software has been released.
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Results for Example 2—The model was reestimated with a sample size of 1,000 for

Example 2. Much like Example 1, the MWLSC, MML/EM, and MCMC methods provide

very similar results, both to one another and to the generating values (see Table 3).

However, unlike Example 1, WLSC also provides similar results. The necessary sample size

is often a function of model complexity (e.g., number of variables, number of parameters,

scale reliability, etc.; see Gagné & Hancock, 2006, for a discussion and sample size

recommendations based on various measurement characteristics). Simply put—there is no

good rule of thumb. However, relying solely on a software’s ability to return results could

potentially lead to accepting poor estimates. We strongly recommend, when possible,

exploring a model with at least two of the estimators discussed in this article. With a single-

factor model, estimates can easily be obtained using both SEM and IRT software. Therefore,

one may estimate the model using, for example, MWLSC and MML/EM methods. For

multiple-factor models, one may have to rely solely on a single parameterization. In such

cases, one may want to estimate a model using WLSC and MWLSC methods (or MCMC and

UBN methods as they become more readily available). The level of agreement among these

different estimation methods can serve as a means for gauging confidence in the parameter

estimates.

Example 3—Example 3 examines four correlated factors with 10 items on each factor. The

first factor comprises indicators with five categories (representing Likert-type item

responses), whereas the other three factors have dichotomous indicators (see Tables 4, 5, 6,

and 7 for generating parameter values). Given the number of correlated factors, the SEM

parameterization seems most appropriate. This example is intended to highlight that models

with many items and many factors require close scrutiny even when using a relatively large

sample.

Results for Example 3—Using a sample size of 1,000, parameter estimates obtained

using WLSC are quite different from the MWLSC and MCMC methods (see Table 4). For

example, for the first three items, WLSC converges to λ values of .69, .79, and .86, whereas

MWLSC converges to λ values of .55, .67, and .78, respectively. MCMC provides estimates

(λ1 = .57, λ2 = .68, and λ3 = .80) that are slightly closer to the population values than the

MWLSC estimates. Further exploration of the WLSC parameter values finds that λ39 has a

value of .98. Values this high (i.e., >.97) may suggest an inappropriate solution. Given the

differences between the WLSC, MWLSC, and MCMC results, as well as the λ39 value

obtained with WLSC, the results suggest that the sample size is too small to obtain a stable

WLSC solution. An alternative estimator should be used: Here, those alternatives are

MWLSC and MCMC. However, one may find that other methods, such as UBN or a

maximum-likelihood approach with adaptive quadrature, work just as well. A comparison of

the MWLSC and MCMC estimates with the population values found in Tables 4–7 shows

that the methods generally obtained estimates within just a few hundredths of a point to the

population values. Again, careful examination and comparison of parameter estimates

obtained using multiple methods can lead to much greater confidence in a researcher’s final

conclusions.

Considerations and Recommendations

There are a number of issues researchers should consider when using IFA. For example, the

purpose of the research can be used to decide which IFA methods are most appropriate for a

particular question or whether IFA is required at all. Moreover, sample sizes are generally

required to be larger with categorical data than with continuous data, and additional steps

may need to be taken to gain confidence in the model results.
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The methods available for IFA are complicated (e.g., nonlinear, highly parameterized, etc.)

and make strong demands on the data that often necessitates the collection of large samples

to achieve stable, accurate solutions. Careful planning prior to data collection can help to

alleviate the difficulties associated with estimating IFA models. Although it is recommended

that researchers compare results from a number of the methods outlined in this article, this is

hard to accomplish without first collecting the data. A number of steps can be taken prior to

data collection to help ensure that the models of interest can be adequately evaluated. The

first step is to decide on the need for IFA.

At times, IFA may not be required, and with proper planning, it may be avoided. If the

purpose of the research is to explore structural relationships among constructs, the

researcher may circumvent the use of IFA by relying on established scales. In this case, it is

important to find scales with well-validated scoring algorithms. These algorithms would

preferably be based on previous IFA studies and would take individual item characteristics

into consideration (i.e., differentially weight the items). In doing so, a researcher may be

able to obtain continuous scale scores to be used as indicators, thereby allowing traditional

methods to be used for parameter estimation.

Similarly, some research has suggested that if a sufficient number of item response options

are used (e.g., five or more) per item, traditional maximum-likelihood methods with Satorra-

Bentler or Yuan-Bentler adjustments may be appropriate (DiStefano, 2002; Dolan, 1994).

However, it is important to note that relying solely on traditional maximum-likelihood

methods with Pearson product–moment correlations ignores the categorical nature of the

data and implicitly introduces a misspecification into the series of equations. These methods

were developed for continuous data. More recent research has shown that using standard

estimation methods with categorical data, even on raw data, and a single-moment

adjustment (e.g., Satorra-Bentler or Yuan-Bentler adjustments) can fail to accurately capture

the true fit of the model to the data (Cai, Maydeu-Olivares, Coffman, & Thissen, 2006).

Thus, when considering use of traditional factor analytic techniques, it remains important to

compare parameter and standard error estimates using various estimation methods. This

comparison should include estimation methods appropriate for categorical data and should

focus not on the best fitting model, but on the triangulation of a stable solution.

If the purpose of a research project is to examine the measurement characteristics of a scale

and the number of response options per item is small (e.g., five or fewer), IFA is required.

The same holds true when using a scale that has not been well validated in the population of

interest. In such cases, it is imperative that the items are carefully scrutinized and studied

prior to data collection. Substantive theory should be able to help predict characteristics of

the item distributions (and subsequent item parameters). If theory suggests that the item

responses will be uniformly distributed among the various response options, sample sizes

similar to those found above may be more than sufficient. If, however, substantive theory

predicts skewed item responses (e.g., many individuals endorse agree and very few endorse

disagree on a dichotomous item), then the sample size should be increased. Predicting the

frequency of individual item responses can be difficult. Researchers such as Krosnick and

Fabrigar (in press) have written extensively on this topic, and we encourage researchers to

explore this literature prior to data collection.

The number of categories can also influence the model and estimation method used. Much

research exploring the robustness of normal theory estimators has been done; see Hoogland

and Boomsma (1998) and Boomsma and Hoogland (2001) for reviews of this literature.

Standard estimation techniques such as maximum likelihood (Lawley & Maxwell, 1963),

asymptotic distribution free (Browne, 1984), or ordinary least squares can, at times, provide

accurate parameter estimates for item-level data. The number of response categories used by
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the participants can often act as a gauge for the likelihood that normal theory estimation

techniques will accurately recover the population parameters. A general rule of thumb is to

use categorical estimation techniques like those outlined in this article with fewer than five

response categories. However, simply maintaining five response categories will not ensure

that the normal theory estimators obtain equivalent or superior estimates compared with the

methods discussed here. In fact, research has shown that even with five categories, relying

on standard estimation methods may result in biased estimates of the parameters and

standard errors (DiStefano, 2002; Dolan, 1994). When considering relying on a normal

theory estimator, a comparison of the parameter estimates and standard errors with those

obtained by one (or more) of the methods presented above can increase confidence in the

results. If the number of categories is large and the results mimic those of the more

analytically intensive methods, reporting the results from the normal theory method seems

appropriate.

Sample size issues take on a different character in IFA models than in models for continuous

data. Although we are hesitant to make any definitive recommendations, in our experience,

sample sizes less than 200 need to be treated with particular care when conducting IFA. In

addition to concerns about the overall sample size, there must be consideration of the

number of responses in each observed category. Any further divisions of the data (e.g., for

multiple group analyses) can exacerbate these issues. With any of the estimation approaches

discussed here, item-level frequency distributions (and graphical representations) play a

crucial role in the process of better understanding one’s data. In addition, when using any of

the procedures that rely on tetrachoric/polychoric correlations, it is important to consider

item-by-item contingency tables. Sparseness in these tables can prove problematic when

estimating the correlations. Moreover, missing data can significantly reduce a researcher’s

effective sample size when using tetrachoric/polychoric correlation approaches (e.g., WLSC

or MWLSC). Many of the statistical software programs default to listwise deletion for the

estimation of correlation matrices (see, e.g., Jöreskog & Sörbom, 2001; L. K. Muthén &

Muthén, 2001). Thus, in the presence of substantial missing data, researchers may find it

beneficial to consider estimation approaches such as FIML, MML/EM, or MCMC.

Having a sufficient sample size is only the first step in estimating IFA parameter values.

Researchers will also want to carefully examine the parameter estimates not just for

common issues such as Heywood cases but also for parameter estimates approaching their

boundaries. Another useful way to gain confidence in the parameter estimates is to estimate

the parameters using a number of different methods. Inconsistencies in the results suggest

that at least one of the methods is providing poor estimates. Although using various methods

of estimation may seem complicated, many software programs offer a choice of estimation

methods that can usually be defined with a single command.

Software

At the time this article was written, CCFA parameters can be estimated using WLSC or

MWLSC estimators in commercially available software packages such as EQS (Bentler,

2005), LISREL (Jöreskog & Sörbom, 2004), and Mplus (B. O. Muthén & Muthén, 2006), as

well as in Mx (Neale et al., 2002), a freely available package. Each of these programs

estimates tetrachoric/polychoric correlations, and although many of them rely on listwise

deletion, Mx offers the estimation of these correlations in the presence of data missing

completely at random. Many of these programs also offer FIML estimation methods.

Although not specifically addressed in this article, EQS, Mplus, Mx, and the freely available

CEFA program (Browne, Cudeck, Tateneni, & Mels, 2004) can estimate exploratory factor

analysis models with ordered-categorical data.
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There are a number of software programs for estimating the IFA models found in the IRT

literature; many of these programs rely on the MML/EM estimator. Currently,

unidimensional model parameters for dichotomous data can be estimated using BILOG-MG

(Zimowski, Muraki, Mislevy, & Bock, 2003), MULTILOG (Thissen et al., 2003),

PARSCALE (Muraki & Bock, 2003), and the ltm package (Rizo-poulos, 2006) for R. In

addition to unidimensional models for dichotomous data, TESTFACT (Bock et al., 2002)

can also estimate several kinds of multidimensional models, although the majority are of an

exploratory nature. Unidimensional model parameters for polytomous data can be estimated

using MULTILOG, PARSCALE, and the ltm package. Some multidimensional 2PL and

graded response model parameterizations can currently be obtained using Mplus.

To date, there are very few software programs specifically designed to estimate IFA models

using the methods outlined in the recent advances section above. Although the UBN

approach is not currently available in any commercial software, it will be soon be available

in LISREL. WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003), a freely available

MCMC software program, can perform estimation for a subset of IFA models. However, it

is important to note that WinBUGS is a general MCMC program and not specifically

designed for IFA. Of course, many of the methods discussed in this article can be

programmed in general statistical software programs such as R, GAUSS (Aptech Systems,

2003), or MATLAB (MathWorks, 2003).

Concluding Remarks

The issue of how to model measures with many items and many factors has been a

motivating question for methodologists involved with categorical measurement model

research for some time now. It seems realistic to expect that in the next decade or two

continued progress in this area will render estimation of IFA models with many items and

many factors commonplace. As these models become better able to adapt to the size and

complexity of psychological assessment, they will undoubtedly play a more central role in

the study of human behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Latent response distribution for a single dichotomous item representing the latent

distribution of interest. τ11 marks the latent cut-point between observed responses.
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Figure 2.

Bivariate and marginal latent response distributions for two dichotomous items. The

bivariate latent response distribution, with a correlation of .70, represents the distribution of

interest. The ellipses represent the .01, .05, and .10 regions. The threshold parameters τ11

and τ21 denote the cut-points for Items 1 and 2, respectively.
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Figure 3.

Three-dimensional bivariate latent response distribution for two items with a correlation of .

70.
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Figure 4.

A: Two-parameter logistic (2PL) model trace line for a single dichotomous item with a

difficulty (i.e., b) equal to −1.67. The slope of the trace line (a = 1.28) describes the strength

of the relationship between the underlying latent construct (i.e., θ) and the probability of an

individual endorsing the item. B: Graded response model trace lines for an item with C = 5

response categories. Each line represents the corresponding probability of endorsing the cth

category given θ. Category 0 is denoted with a long-dashed line (– – –), Category 1 is

denoted with dash–dot–dash line (– · –), Category 2 is denoted with a dotted line (…),

Category 3 is denoted with a short-dashed line (- - -), and Category 4 is denoted with a solid

line (―).
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Figure 5.

A: Weighted least squares weight matrix where p = 3 and u = 6. B: Modified weighted least

squares for categorical data weight matrix where p = 3 and u = 6.
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Table 5

Correlation Matrix of Latent Factors From Example 3 (N = 1,000) Using the WLSC Estimation Method

Factor 1 2 3 4

1 1.00 0.30 0.59 0.65

2 0.30 1.00 0.35 0.36

3 0.40 0.30 1.00 0.66

4 0.50 0.40 0.50 1.00

Note. Population (lower triangle) and WLSC (upper triangle). WLSC = weighted least squares for categorical data.
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Table 6

Correlation Matrix of Latent Factors From Example 3 (N = 1,000) Using the MWLSC Estimation Method

Factor 1 2 3 4

1 1.00 0.27 0.42 0.49

2 0.30 1.00 0.28 0.39

3 0.40 0.30 1.00 0.50

4 0.50 0.40 0.50 1.00

Note. Population (lower triangle) and MWLSC (upper triangle). MWLSC = modified weighted least squares for categorical data.
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Table 7

Correlation Matrix of Latent Factors From Example 3 (N = 1,000) Using the MCMC Estimation Method

Factor 1 2 3 4

1 1.00 0.28 0.41 0.49

2 0.30 1.00 0.28 0.38

3 0.40 0.30 1.00 0.50

4 0.50 0.40 0.50 1.00

Note. Population (lower triangle) and MCMC (upper triangle). MCMC = Markov chain Monte Carlo.
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