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ABSTRACT

This study extended item parameter recovery studies in item response theory to the nominal
response model (NRM). The NRM may be used with computerized adaptive testing, testlets,
demographic items, and items whose alternatives provide educational diagnostic information.
Moreover, with the increasing popularity of performance-based assessment, the use of polytomous
item response theory models, in general, and the NRM in particular, will more than likely see
increase application. Establishing guidelines for reasonable item parameter estimation was seen
as fundamental to the the use of the NRM. Factors studied were the sample size ratio, the latent
ability distribution, and item information level. Results showed that as the latent ability
distribution departs from a uniform distribution the accuracy of estimating the slope parameter
decreased. This decrease in accuracy may be compensated for, in part, by increasing the sample
size. Moreover, more informative items tended not to be as well estimated as less informative
items. The results appear to indicate that if one is interested in estimating ability, a sample size
ratio of 5 : 1 can produce reasonably accurate item parameter estimates for this purpose.
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Item response theory (IRT) has emerged as a popular approach ft); solving various

measurement problems. IRT is used in state testing programs such as the Maryland State

Department of Education's High School Functional Assessment program as well as in municipal

programs, such as the Portland School district. Both of these programs use IRT for test equating

and the Portland program also uses IRT for test design (Ferrara, personal communication. October

4, 1991; Kingsbury, personal communication. Nov. 19, 1991; Forster, 1987). The nationally

available California Achievement Test and the California Test of Basic Skills (Fourth Edition) are

designed and equated using IRT (CTB/McGraw-Hill. 1987; CTB/MacMillan/McGraw-Hill. 1991).

Moreover, certification boards such as the Arr. Tican Society of Clinical Pathologists have an IRT-

based adaptive testing program for certification (Bergstrom & Lunz. 1991).

Most IRT work has been based on binary models such as the one- and three-parameter logistic

models. With these models an individual's response is categorized as either correct or incorrect.
However, not all examinee-item interactions may be appropriately modeled by binary models. For

instance, to capture the information in a Likert item or to assign credit for a partially correct

answer requires a model that contains more than two categories. Moreover, because the

distributions of wrong answers over the options of multiple-choice items differ across ability

levels (Nedelsky, 1954; Levine & Drasgow. 1983). it is possible and may be desirable to use a
model that can assess information from ali item options rather than to use a model which assumes

an examinee either knows the correct answer or randomly selects an incorrect alternative. In

addition, the one- and three-parameter logistic models do not incorporate findings from human

cognition studies (e.g.. Brown & Burton. 1978; Brown & VanLehn. 1980; Lane, Stone. & Hsu. 1990;

Tatsuoka, 1983). For instance. Tatsuoka's (1983) analysis of student misconception; in

performing mathematics problem showed that wrong responses could be of more than just one
kind. Fowever. dichotomous scoring uniformly assigned a score of zero to all the wrong

responses. In this regard, an itern's incorrect alternatives may augment our estimate of an

examinee's ability by providing information about the examinee's level of understanding (i.e.,
provide diagnostic information).

In contrast to binary models. polytomous models contain more item parameters to estimate.

Because of these additional parameters potentially larger sample sizes may be required for their

accurate estimation. For example. for Masters (1982) partial credit model (PCM) a 2 : 1 or larger

ratios of examinees to item parameters were needed to produce stable item and ability parameter

estimates, regardless of the number of categories (Walker-Bartnick. 1990). For Samejima's (1969)

graded response model (GRM). Reise and Yu (1990) recommended that at least 500 examinees arc
needed to achieve an adequate calibration with the ORM. Their study was conducted with a 25-

item test and therefore their guidelines may only be appropriate for tests of this length. (With
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longer tests it may be necessary to increase the sample size.) Similar findings were reported by

Ankenmann and Stone (1992).

One polytomous model for which item parameter recovery has not been studied is Bock's

(1972) nominal response model (NRM). The NRM is appropriate for items with unordered

responses. The NRM may be used in computerized adaptive testing (De Ayala. 1992), with testlets

(Wainztr & Kiely, 1987) to solve various testing issues, such as multidimensionality (Thissen,

Steinberg, & Mooney, 1989), with items that do not have a "correct" response, such as

demographic items (e.g., to provide ancillary information), and with items whose alternatives

provide educational diagnostic information. Moreover, the increasing popularity of

performance-based assessment, the use of po :tomous IRT models, in general, and the NRM in

particular, will more than likely see increase --.pplication.

The objective of this study was to establish guidelines for obtaining reasonably accurate item

parameter estimates for the NRM. Because it was believed that the ratio of the sample size to

number of parameters to be estimated is more useful than the actual sample size used, one factor

studied was the sample size ratio (SSR). For instance, simply because the use of 100 examinees

allows accurate Rasch parameter estimation with a 20 item test does not necessarily imply that

only 100 examinees are required to obtain good estimates with a 100 item test. In this study.

threc ratios of observations to number of item parametei to be estimated were investigated: 5 : 1.

10 : 1. and 20 : 1.

Previous parameter recovery studies (e.g.. Ankenmann & Stone. 1992; Reise & Yu. 1990) have

varied the discrimination parameter. For example, Reise and Yu classified item discrimination

into three ranges, high, medium, and low. However, because with the NRM there are multiple

discrimination parameters for each item such a scheme did not appear to be useful. Further

complicating the issue is the fact that when the number of categories is three or more, different

combinations of an item's slopes and intercepts can produce the same maximum amount of
information (Imax) value. Therefore, establishing guidelines in terms of the magnitude of the

slope vectors was not pursued. Rather, in order to establish a design with the characteristic of

"high", "medium", "low" discrimination, it was noted that the primary importance of the

discrimination parameter is its effect on item information. Therefore, one may re conceptualize

the Reise and Yu study as using items that are "high'', "medium''. and "low" in information rather

than in terms of discrimination parameters. As such, values for Imax were set a priori and a

slope vector to obtain a specific 'max ,was determined. The Imax valm.s studied were 0.25. 0.16.

and 0.09; for dichotomous models these im a x s are equivalent to items with discriminations of 1.0.

0.8. and 0.6. respectively.

Because the accuracy of estimating items located at various points along the ability al ) scale

may be affected by the latent 0 distribution (LID). a third factor investigated was the effect of the
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LD. Three distributions, normal, positively skewed, and uniform, were studied. An additional

factor used in the study was whether the item consisted of three or four options.

Model

The NRM assumes that item alternatives represent responses which arc unordered. The NRM

provides a direct expression for obtaining the probability of an examinee with ability

responding in the j-th category of item i as:

exp(cil + aye) exp(aii(0 - bo))
p(0) = mi

exp(cij + ao0) exp(ali(0 - bij))
h=1 h=1

(1 )

where ao and co are the slope and intercept parameters. respectively, of the nonlinear response

function associated with the j-th category of item i. and mi is the number of categories of item i

(i.e., j = 1, 2, mi). For convenience the slope and intercept parameters are sometimes

represented in vector notation, where a = (ail, ail, aim) and c = co, ..., cim). The ans are

analogous to and have an interpretation similar to traditional option discrimination indices. That

is, a crosstabulation of ability groups by item alternatives shows that a category with a large aij
reflects a response pattern in which as one progresses from the lower ability groups to the higher

ability groups there was a corresponding increase in the nuMber of persons who answered the
item in that category and for categories with negative aos this pattern is reversed. The intercept

parameters reflect the interaction between a category's difficulty and how well it discriminates.

It appears that, in general, large values of co are associated with categories with large

frequencies and as the value of co becomes increasingly smaller the frequencies for the

corresponding categories decrease.

Thc probability of responding in a particular category as a function of 8 may be depicted by

the option response function (ORF); other synonymous terms are category or option

characteristic curve and trace line. Figure 1 contains the ORFs for a three-category (m = :31

item with a = (-0.75, -0.25, 1.0) and c = (-1.5. -0.25, 1.75).

Insert Figure 1 about here

The intersection of the ORFs can be obtained by setting adjacent category multivariate logit equal

to one another and solving for 0. In general. for any item with In; > 2 and because 0 and h are on

the same scale:
( - 1 ) ck

bk-1 = (2)ak a(k-1 I
where k = and there are mj 1 ORF intersection points. This formulation is analogous to

the step difficulties in the PC mode).
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METHOD

Programs: MULTILOG (Thissen. 1988) was used to obtain item parameter estimates for the NRM

using default program parameters. A data generation program for generating responses according

to the NRM was also written.

Data: A series of data sets were created. Each data set consisted of responses to 28 items and the

data sets diffe-ed "from one another on the basis of Iraax, the number of item options, the form of

the ability crsuibution from which the simulees were sampled, and the SSR. The 28 item set was

created by determining for a given Imax level the c vector needed to locate the items location (the

average of the bjs) at one of the seven scale points between -3.0 to 3.0 in increments of 1 logit.

For example, for a four-option item for the 0.25 Imax condition a = (0.450. -0.150, -0.100.

-0.200) and to locate this item at -3.0 one would use c = (0.926. -0.275, -0.125.-0.525). (That is,

the item's location = (b + b2 + b3)/3 with bit = -2.00. b2 = -3.000, and b3 = -4.000 and the bjs

are always one logit apart.) In this fashion seven items were created that spanned the usual 0

range used in IRT and these items were replicated to produce the 28 item set.

For the three-option set of items the number of parameters to be estimated was 168 ((3 aijs +

3 cijs) X 28 items) and for the four-option item set there were 224 item parameters to estimate.

With SSRs of 5 : 1. 10 : 1, and 20 : 1 this produced, for the three-option items, sample sizes of

840. 1680. and 3360. respectively, and for the four-option items samples of 1120. 2240. and

4480, respectively, were needed. For a given LD condition. the appropriate numbei of zs was

sampled from a normal (0,1) distribution, a beta distribution (dfl = 1.25. df2 = 10). or a uniform

distribution [-4, 4]. These zs were considered to be the simulees' true Os and the Os plus the 28

item parameters were usei:' to Lcnerate polytomous response strings with a random error'

component for each simulated examinee. Generation of an examinee's polytomous response string

was accomplished by calculating the probability of responding to each alternative of an item

according to the NRM. Based on the probability for each alternative, cumulative probabilities

were obtained for each alternative. A random error component was incorporated into each

response by selecting a random number from a uniform distribution [0,1] and comparing it to the

cumulative probabilities. The ordinal position of the first cumulative probability which was

greater than the random number was taken as the examinee's response to the item.
For each of the (3 SSRs X 3 LDs X 3 Imaxs X 2 mis=) 54 conditions twenty-five replications

.vere performed. That is, for a given condition (e.g.. Int a x = 0.25. normal 0 distribution. 20 : 1 SSR.

4-option items), twenty-five unique response data sets were generated and each was calibrated

using MULTILOG. This produced twenty-fivc sets of item parameter estimates for each set of item

parameters. For a given combination of the LD and SSR factors, the same examinees were used for

cach of the Imax factor levels (i.e.. Ima x was a repeated measures factor).
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Equating: Because of the incl-Aerminacy of the ability scale, calibration programs define the scale

so that the mean and standard deviation of 0 (or b) are 0 and 1. respectively, for the calibration

group. Therefore, the use of scale dependent accuracy measures, such as RMSE and average

absolute deviation, require that the item parameter estimates be place on the parameter scale.

The relationship between the item parameter estimate metric and the item parameter metric is a

linear one. The basic transformation is:

0' = cd) + K (3)
aa .-a- (4)

b' =ccb +K (5)
where 8, a', and b' are the transformed parameters corresponding to 0, a, and b. and a and K are

the slope and intercept equating constants, respectively. In the context of the present discussion
0', a', and b' are on the parameter (target) metric, whereas 0, a. and b are on the estimate (base)

metric.

The determination of the a and lc may be accomplished in a number of ways. For instance,

Stocking and Lord (1983) have developed a procedure for obtaining the equating constants based

on test characteristic curves (TCCs): this procedure has been implemented in the EQUATE 2.0

program (Baker, 1993a) for the binary models, the GRM. and the NRM (Baker, 1992, Baker, 1993b,

Baker & Al-Karni, 1991). An alternative method using the mean difficulty and the mean
discrimination for obtaining a and x was presented by Loyd and Hoover (1980).

Because the Loyd and Hoover (LH) method is more parsimonious than the Stocking and Lord

approach, as well as for other pragmatic reasons1, the LH method was generalized to the nominal

response model and used for equating the NR item parameter estimates with the item parameters.

The LH method specifies that:

(6)

(7)

Given that the slope-intercept form of the NRM multivariate logit for item i category j may be
reparameterized as:

cij + ajj0 = ajj(0 130)

'.nd because cij = -aijbjj, one obtains across items that for category j:

aj

3
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Therefore, sums are taken across the common items and by substitution as well as by noting that

b.= - , one obtains:
aj

aj (8)
aj

_
ci cj

xj = bj- abj = bj - bj = - - bj (9)
j a j a j

Equations (8) and (9) are the EQ-NR method. The equating constants may then be applied to

transform one metric to another:

aij = aj (1 0)

cij = cij - aipcj ( 1 1 )

where ajj and cij are the equated (transformed) slope and intercept parameters. respectively, and

aij and cij are the untransformed slope and intercept parameters. respectively.

Table 1 contains an example of the application of the EQ-NR method. NRM item parameters for

four 4-option items were randomly generated and transformed to item parameter "estimates" by
, a;

applying the reparameterized forms of (4) and (5) (i.e., ajj = a and cij = cij Kaii). where a = 0.4

and K = 1.3. The estimates were then transformed back to the parameter metric by application of

the EQ-NR method: a = (2.5, 2.5. 2.5, 2.5) and x = (-3.25, -3.25. -3.25, -3.25). As can be seen, the

equated item parameter estimates are equal to the parameters. (The application of the LH method

to ordered polytomous models, such as the PCM and the GRM, is a (-1irect extension the binary

case.) The major advantages of the EQ-NR method are its simplicity and that no special software

is necessary for its

bc investigated.

implementation. However. its robustness in real-world applications needs to

Insert Table 1 about hcre

Analysis: The accuracy of item parameter estimation was assessed by root mean square error

(RMSE). RMSE was calculated according to:

RMSE(Aip=
n r

Ati
A II (Ai; - A jil-

(1 2)
A

A Awhere Ajj is the equated item parameter estimate (either aij or cij) for item i option j. Ajj is the

corresponding item parameter (either aij or cip. and nr. the number of replications, equaled 25.

The analysis of the 3- and 4-category cases were treated separately as were the slope and

intercept parameters. The basic design was a two-group repeated measures with LD and SSR as the
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rni m
between subjects factors and Imax as the within subjects factor. Because y, aj = 0 and ICJ = 0. a

and c do not consist of mj independent item parameter estimates and the RMSE for each item

option parameter estimate could not be used as the depezident variable. Therefore, the mean
RMSE( A) across item options and across yeplicates was use ¶ as the dependent variable.

It was expected that the accuracy of item parameter estimation would be related to the

distribution of responses across item options. A measure of the distribution of responses across

item options was obtained by Using the index of dispersion. D:
mi

mi(NT - nn)
j=1 .

D = (13)
NT ( m - 1)

where Ni is the number of examinees responding to item i and nij is the number of examinees

responding in option j for item i. D has a range from 0.0 to 1.0 (inclusive) with D = 0.0 indicating

that all responses to an item are in one option and D = 1.0 signifying that responses are evenly

distributed across all options.

RESULTS

Table 2 contains descriptive statistics on the latent ability distributirns for each SSR as well
as the mean correlation between the item parameter and its estimate (i.e., the average correlation

between the option parameter and its estimate across the number of item options, -iga and T-e : the

correlations were converted to zs before averaging). As can be seen for a given LD, increasing the

SSR was associated with an increase in -iga. regardless of the number of item options. Similarly.

increasing the SSR pi-oduced an increase "iec. however these increases were not as dramatic due to

the strong linear relationship between IC and c at the 5 : 1 SSR. For a given LD and SSR level the

Fgas were consistently larger for the three category condition than for the four-option category.

For a given SSR condition the -intas were largest for the uniform 0 distributions and smallest for

the positively skewed 8 distributions, regardless ef the number of item options.

Insert Table 2 about here

Figure 2 contains plots of D versus an item's average RMSE(a) for the 5 : 1 and 20 : 1 SSRs for

the three- and four-option item sets: the 10 : I SSR plot falls predictably between the 5 : 1 and 20

: 1 SSR plots. As can be seen there is an inverse relationship between D and the mean RMSE(a).

the average RMSE for an item decreased as the distribution of responses across an item's option
increased. Specifically, for the three-option item set the correlations between D and the mean

RMSE(a) wcrc -0.597. -0.647. 0.647, for the 5 : 1. 10 : 1. and 20 : 1 SSRs and the corresponding

correlations for the four-option items were -0.348. -0.438, and 0.485. For the intercepts le

ivJ
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correlations for the 5 ; 1, 10 : 1, and 20 : 1 SSRs/three-option items were -0.647, -0.569. and

-0.512 and for the four-option items -0.331. -0.324, and -0.303, respectively. In general. the

lowest RMSEs and larger Ds were associated with the uniform 0 distribution, whereas the highest

RMSEs and smaller Ds occurred with the positively skewed 0 distribution, regardless of SSR.

Moreover, for a given SSR level the mean D was less for the three-option item set (55 :1 = 0.863,

510:1 = 0.869. 17)20 :1 = 0.864) than for the four-option item set (55 :1 = 0.927. bl (::1 = 0.928,

D'q) 1 = 0.928). The uniform 8 distribution resulted in the greatest distribution of responses

across item options (54-option = 0.940, 53 -.o p ti on = 0.902), with the normal and positively

skewed 8 distributions having approximately the same average D values (normal: D4

-153-o

-opti on =

0.922. 53.. op ti r = 0.848; positively skewed: 54 -9nti on = 0.920, ption = 0.840).

Insert Figure 2 about here

The repeated measures analysis of the slope parameter (4-option items) is presented in Table
3. As can be seen. the accuracy of estimating the slope parameters was influenced by the

interacti on of the LD with the SSR and the Im a x . Post hoc comparisons for the Im a x factor showed

that the slope parameters for items with Im ax = 0.16 or the Im a x = 0.09 (mean RMSE(a) = 0.060

and mean RMSE( a) = 0.057, respectively) were estimated significantly more accurately than for
items with Im a x = 0.25 (mean RMSE(a) = 0.071).

Analysis of the LD X SSR interaction showed that the average RMSE( a ) for the uniform 0

distribution was significantly less than that for either the normal or positively skewed

distributions for all levels of the SSR factor and that the normal distribution mean RMSE( a ) was

significantly less that of the positively skewed ability distribution for the 5 : 1, 10 : 1. and 20 : 1

SSRs. Moreover, doubling the SSR led to significant reductions in the average RMSE(a) for the

normal and the positively skewed 8 distributions. Roughly speaking. quadrupling the sample size

led to a halving of the average RMSE(a) for the 5 : 1 ratio. However, despite the increase in

exam inees for the positively skewed 8 distribution the accuracy of estimation using the 20 : 1

rati o (mean RMSE(a ) = 0.0636) only approximated that for the normal 0 distributi on using a 10 : 1

ratio (mean RMSE(a) = 0.0629). In addition, it took a 20 : 1 ratio with the normal 0 distribution

to produce an average RMSE(a) (mean RMSE(a) = 0.0430) approaching that for a uniform 0

distribution based on a 5 : 1 SSR (mean RMSE( a) = 0.0427 ).

Insert Table 3 about here

Figure 3 contains the mean RMSE(a) for the SSR X LD interaction for the slope parameters fo'

the four-option item sets. As can be seen, when 0 is positively skewed twice as many subjects are

needed in order to estimate the slope parameters approximately as accurately as when B is
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normally distributed. For example, the mean RMSE(a) for the positive skewed LD condition using

a 20 : 1 SSR is comparable to that with normal distribution and a 10 : 1 SSR. Similarly, with the

positive skewed LD condition a 10 : 1 SSR results in a mean RMSE(a) that is slightly better than

obtained using half as many subjects from a normal distribution. With a uniform distribution of
ability even a 5 : 1 SSR provides more accurate estimation than can be obtained with four times as

many subjects from a positively skewed ability distribution and almost comparable to that

obtained when ability is normally distributed.

Insert Figure 3 about here

The analysis of the intercept parameters (4 option items) showed significant main effects fir

both the Imax and SSR factors (Table 4). Post hoc analyses showed that doubling the SSR did not

lead to a significant reduction in the mean accuracy with which the intercept parameters were

estimated. However, increasing the SSR from 5 : 1 to 20 : 1 led to almost halving the average

RMSE(c); mean RMSE(c) for the 5 : 1. 10 : 1, 20 : 1 levels were 0.085, 0.061. 0.044. respectively).

Similar to the case with RMSE(a). increasing Imax levels were associated ..ith increases in the

mean RMSE(c). As the item information increased from 0.09 to 0.16 to 0.25. there were

significant decreases in the accuracy with which the intercept parameters were estimated (for

Imax =0.09: mean RMSE(c) = 0.049. for 'max =0.16: mean RMSE(c) = (1.059, and for Imax =0.25:

mean MSE(c) = 0.081).

Insert Table 4 about here

Tables 5 and 6 contain the repeated measures analyses for the slope and intercept

parameters for the three-option item set, respectively. Analysis of the significant SSR main

effect for the slope parameter showed that doubling the SSR from 5 : 1 to 10 : 1 led to a
significant reduction in the. mean RMSE(a) (0.086 and 0.062. respectively), however, no

significant improvement was realized by doubling the 10 : 1 SSR; mean RMSE(a) for 20 : 1 level

was 0.047. Quadrupling the 5 : 1 SSR also led to significantly more accurate slope parameter

estimates, on average. However. given the above results this would appear to be thinecessary to
use an SSR greater than 10 : 1 with 3 option items. The significant Imax X LD interaction

showed that, regardless of Imax level, that the uniform LD resulted, on average, in the most

accurate RMSE(a) and the positively skewed LD the least accurate (Figure 4). In general. the

slope parameters for thc 'max = 0.25 level items were significantly more poorly estimated than

for the Ima x = 0.16 level items for all LDs and, except for the normal LD level, the average

RMSE(a)s for the 1m3 = 0.10 level items were significantly greater than for tlw 1m

Insert Table 5 and Figure 4 about here

12



Analysis of the RMSE(c) for the three-option items revealed results that paralleled those for

the four-option items. Specifically, increasing the SSR from 5 : 1 to 20 : 1 led to a significant

reduction in the average RMSE(c); the mean RMSE(c)s for the 5 : 1, 10 : 1, and 20 : 1 SSR levels

were 0.088, 0.062 and 0.045, respectively. As was the case with the four-option items, more

informative item sets were not as well estimated, on average, as the less informative item sets;

mean RMSE(c)s were 0.048, 0.063, and 0.083 for the 0.09, 0.16. and 0.25 'max levels.

respectively. The mean RMSE(a) and RMSE(c) for the three-option items were comparable in

magnitude to those of the four-option item set.

Insert Table 6 about here

DISCUSSION

The use of marginal maximum likelihood estimation allows one to obtain item parameter

estimates prior to estimating the examinees' Os. Obtaining the 6s may be performed using

maximum likelihood, expected a posteriori (EAP), or maximum a posteriori estimation techniques

and treating the item parameter estimates as known quantities. As such. SSR and LD's effect on

the 6s will be indirect (if at all) and only through their effect on the accuracy of estimating the

item parameters. For this reason this study focused only on the accuracy of estimation of NRM's

item parameters.

Results showed that as the latent 0 distribution departs from a uniform distribution the

accuracy of estimating the slope parameter decreases. In these cases, in order to increase the

accuracy of estimating the slope parameter one needs to increase the sample size. The effects of

the form of 0 distribution on RMSE may. in part, be related to the distribution of responses across

item options. It was found that the uniform LD produced the greatest dispersal of responses

across item options and that the positively skewed LD produced least variability in the examinees

responses. Therefore, if there are insufficient numbers of examinees responding to a particular

item option, then that option will not be as accurately estimated as other options that have

attracted more examinee responses. (It should be noted that poor estimation of an option's

paramete:., may affect the estimation of the other options' parameters.) Short of rewriting the

option, increasing the sample size is one means of increasing the number examinees responding to

a particularly unattractive option. Moreover, more informative items (i.e., items with larger slope

parameters) tended not to be as well estimated as less informative items. However, the RMSE(a)

observed for these informative items (e.g., -maI x = 0.25) may be considered adequate by some.

Similar findings were found with the intercept parameter. In particular, the more informative thc

items the greater the number of subjects required i:. order to estimate the intercepts with a

degree of accuracy comparable to that of less informative items. This was true for both three- and

four-option items.

13
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Given the magnitude of the average RMSEs observed, were the significantly more accurate item

parameter estimates obtained by increasing the SSR meaningfully more accurate? In a real world

application thcre could be substantial costs involved in doubling or quadrupling the SSR (if it

could be done at all). To answer this question an additional set of analyses based on confidence

intervals (CIs) were performed.

For each of the original six item parameter pools. a data set was generated according to the

NRM that contained the responses of 1100 simulees. These simulees were distributed such that

100 simulees were located at each of 11 0 points between -2.5 and 2.5 in 0.5 logit increments (i.e.,

100 simulees had 0 = -2.5, 100 simulees had 0 = -2.0, ..., 100 simulees had 8 = 2.5). For each of

these 1100 simulees the EAP 6 and its standard error of estimation were obtained using the item

parameter estimates from each replication as well as the item parameters used to generate the

data: for EAP estimation 80 quadrature points and a uniform prior 4,was used. Because there were

25 replications for each condition there were 25 6s for each simulee and for a given condition

there was a total of 1100 X 25 = 27.500 6s. For each of these 6s a 95% CI was calculated and for a

given condition the number of times the CI contained 0 was recorded. Table 7 contains the results

of these analyses.

Insert Table 7 about here

As can be seen from top half of Table 7. while there were diffei-ences in the proportion of 95%

CIs containing 8 across Im ax for a given LD and Im ax condition increasing the SSR did not appear

to result in meaningful differences in the proportion of CIs containing O. In general, the entries

approxiiated the expected value of 0.950. Alternatively, die CIs based on the item parameters

give an indication of how well one could expect to do given the sample size used. Thc differences

between the CIs calculated on the basis of the item parameters and their estimates are presented

in the bottom half of Table 7. These differences are typically on the order of one one thousandths.

Overall, the largest differences are found for the 5 : 1 SSRs. However, these are, small differences.

In this regard. it appears that if one's focus is to use item parameters for ability estimation. a 5 :

1 SSR may produce item parameter estimates that are reasonably accurate.

This CI approach (the top half of Table 7) may be used to compare different sets of item

parameter estimates for meaningful differences with respect to gs. (If competing models are to be

compared. then a model independent simulation data set would be used.) The CI method has the

advantages of simplicity, a clearly define and objective goal, an indication of how well or poorly

one is doing in ability estimation, and, if desired, the possibility of significance testing.
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Footnotes

1According to the documentation which accompanies EQUATE 2.0 (Baker, 1993a) the "nominally

scored test equating is quite sensitive to the values of the initial estimators [a and K]'. Moreover.

"the interaction among sample size, the estimation techniques employed in MULTILOG, and the

equating coefficients yielded by EQUATE are in need of ft.raer investigation" (Baker, 1993b. p

248).

-The application of the EQ-NR approach to ordered polytomous models (EQ-OR) is done

threshold-wise for obtaining the Ks for the thresholds (Kj = a-13j) and item-wise for

a
obtaining a (a = ). -The transformation of the item discrimination and the thresholds is

ai
performed by ai = and bi = ab + Ka J 1 .1 J
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Table 1: Example equating using EQ-NR method.

Parameter
Item al al a3 a4 c1 Ci c3 c4

1 -1.937 -0.702 0.516 2.113 -2.040 -0.781 1.333 1.488
-1.549 -1.361 1.039 1.870 -1.615 -0.913 0.719 1.809

3 -2.126 -0.829 1.216 1.739 -2.434 -1.185 0.949 2.670
4 -2.326 -1.155 1.131 2.350 -1.527 -1.379 0.527 2.378
Mean -1.984 -1.012 0.976 2.020 -1.904 -1.065 0.882 2.087

Estimates
1 -4.842 -1.755 1.289 5.308 4.255 1.500 -0.343 -5.412

-3.871 -3.402 2.598 4.675 3.418 3.509 -2.658 -4.269
3 -5.314 -2.073 3.040 4.347 4.475 1.510 -3.004 -2.981
4 -5.815 -2.887 2.828 5.874 6.033 2.375 -3.149 -5.258
Mean -4.961 -2.529 2.439 5.051 4.545 2.223 -2.289 -4.480

Equated
1 -1.937 -0.702 0.516 2.1'93 -2.040 -0.781 1.333 1.488

-1.549 -1.361 1.039 1.870 -1.615 -0.913 0.719 1.809
3 -2.126 -0.829 1.216 1.739 -2.434 -1.185 0.949 2.670
4 -2.326 -1.155 1.131 2.350 -1.527 -1.379 0.527 2.378
Mean -1.984 -1.011 0.976 2.020 -1.904 -1.065 0.882 2.087
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Table 2: Descriptive Statistics on Ability Distributions and Item Parametersa

Mean SD Skew 3-option itemsb 4-option itemsb

Distribution SSR 0 0 i7ga

Normal

PS

Uniform

5 : 1 0.001 1.001 -0.024 0.668
10 : 1 -0.003 0.999 -0.005 0.779
20 : 1 -0.002 0.998 -0.011 0.870

5 : 1 -0.001 0.731 1.291 0.529
10 : 1 -0.003 0.733 1.332 0.652
20 : 1 0.002 0.737 1.297 0.733

5 : 1 -0.024 2.308 0.011 0.862
10 : 1 0.002 2.315 0.004 0.920
20 : 1 -0.005 2.309 0.003 0.946

I7ec i7ga Fec

0.991 0.621 0.988
0.995 0.735 0.995
0.998 0.844 0.997
0.991 0.500 0.989
0.996 0.637 0.995
0.998 0.733 0.997
0.989 0.845 0.987
0.994 0.897 0.993
0.997 0.929 0.996

aSD: Standard Deviation. PS: Positively Skewed

bcorrelations converted to z-scores before taking the average

1;)
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Table 3: RMSE Repeated Measures Analyses for slope panmeters (4 options)a.

Source

Between Subjects

SS df MS

LD 0.099 0.049 70.389 0.000
SSR 0.050 0.025 35.836 0.000
LD X SSR 0.010 4 0.002 3.554 0.012
Subj w/i Groups 0.038 54 0.001

Within Subjects
'max 0.006 2 0.003 38.419 0.000
'max X LD 0.001 4 0.000 1.580 0.185
Imax X SSR 0.000 4 0.000 0.442 0.778
LD X SSR X 'max 0.000 8 0.000 0.355 0.942
Imax X Subj w/i Groups 0.009 108 0.000

19

Post Hoc Comparison ts for LD: Post Hoc Comparison ts for SSR:

SSR LD
Hypothesis 5 : 1 10 : 1 20 : 1 Hypothesis Normal PS Unif

limnj vs lips 4.240* 2.588* 2.522* P*5:1 v5 1.110:1 2.978* 4.630* 1.210
1-triml vs liunif 5.450* 3.682* 2.043* 115:1 v51110:1 5.415* 7.133* 2.008*
gps VS 1-1unif 9.690* 6.269* 4.565* g10: 1 v51120:1 2.437* 2.502* 0.798

Post Hoc Comparison ts for Imax:

Hypothesis

g009 vs P-0.16
P.0.09 vs 1'0.25

M0.16 vs P.0.25

2.391

11.730*

9339*

anml: Normal. ps: Positively Skewed, unif: Uniform



Table 4: RMSE Repeated Measures Analyses for intercept parameters (4 options)a.

Source

Between Subjects

SS df MS

LD 0.005 / 0.002 1.692 0.194
SSR 0.053 2 0.026 18.492 0.000
LD X SSR 0.001 4 0.000 0.164 0.956
Subj w/i Groups 0.077 54 0.001

Within Subjects
Imax 0.033 2 0.016 66.624 0.000
Imax X LD 0.001 4 0.000 1.524 0.200
'max X SSR 0.002 4 0.000 1.783 0.138
LD X SSR X Imax 0.001 8 0.000 0.386 0.926
'max X Subj w/i Groups 0.026 108 0.000

Post Hoc Comparison ts for SSR: Post Hoc Comparison ts for Imax:

Hypothesis Hypothesis

P.5:1 vs 1110:1 -2.966 110.09 vs P-0.16 4.891*
p.5 vs a -4.932* 110.09 vs P0.25 15.934*

1110:1 v51120:1 -1.966 110.16 vs110.25 11.042*

anml: Normal. ps: Positively Skewed. tin& Uniform

2.1
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Table 5: RMSE Repeated Measures Analyses for slope parameters (3 options)a.

Source

Between Subjects

SS df MS

LD 0.119 1 0.060 66.458 0.000
SSR 0.051 / 0.025 28.271 0.000
LD X SSR 0.007 4 0.002 1.889 0.126
Subj w/i Groups 0.048 54 0.001

Within Subjects
'max 0.013 2 0.006 75.923 0.000
Imax X LD 0.001 4 0.001 3.696 0.007
Imax X SSR 0.000 4 0.000 0.449 0.773
LD X SSR X Ima-: 0.000 8 0.000 0.299 0.965
Imax X Subj w/i Croups 0.109 108 0.000

Post Hoc Comparison ts for SSR:

Hypothesis

45:1 vs 410:1 -3.807*

45:1 vs 410:1 -6.075*

410:1 vs 410:1 -2.268

11

Post Hoc Comparison ts for LD: Post Hoc Comparison ts for Imax:

'max LD
Hypothesis 0.09 0.16 0.25 Hypothesis Normal PS Unif

P-nml vs tips 4.272* 5.023* 6.737* 40.09 vs 40.16 1.344 2.886* 2.738*

P-nml VS Punif 5.740* 5.061* 4,895* 40.09 vs 40.25 4.721* 9.779* 6.455*

li-ps vs 1-tunif 10.012* 10.084* 11.632* 40.16 vs 40.15 3.377* 6.893* 3.717*

anml: Normal. ps: Positively Skewed, unif: Uniform



Table 6: RMSE Repeated Measures Analyses for intercept parameters (3 options)a.

Source

Between Subjects

SS df MS

LD 0.007 1 0.003 2.278 0.112
SSR 0.059 1 0.030 19.720 0.000
LD X SSR 0.001 4 0.000 0.085 0.987
Subj w/i Groups 0,081 54 0.001

Within Subjects
'max 0.039 2 0.019 94.249 0.000
'max X LD 0.001 4 0.000 1.755 0.143
Imax X SSR 0.002 4 0.000 2.109 0.085
LD X SSR X 'max 0.000 8 0.000 0.245 0.981
Imax X Subj w/i Groups 0.022 108 0.000

Post Hoc Comparison ts for SSR: Post Hoc Comparison ts for Imax:

Hypothesis Hypothesis

45:1 vs 410:1 -3.017 40.09 vs 40.16 8.040*

115:1 vs 420:1 -5.099* 40.09 vs 40.25 19.326*

1110:1 vs 1120:1 -2.083 40.16 vs 40.25 11.285*

anml: Normal. ps: Positively Skewed. unif: Uniform
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Table 7: Proportion of times 95% confidence intervals contained 8.

Distribution SSR 0.09

3-options
Imax
0.16 0.25 0.09

4-options
1max
0.16 0.25

Normal parameters 0.952 0.956 0.943 0.946 0.936 0.952
5 : 1 0.950 0.956 0.941 0.943 0.931 0.952
10 : 1 0.952 0.957 0.942 0.945 0.935 0.952
20 : 1 0.952 0.956 0.944 0.944 0.935 0.952

PS parameters 0.952 0.956 0.943 0.946 0.936 0.952
5 : 1 0.944 0.952 0.938 0.936 0.933 0.946
10 : 1 0.952 0.954 0.941 0.945 0.937 0.950
20 : 1 0.953 0.955 0.942 0.948 0.937 0.951

Uniform parameters 0.952 0.956 0.943 0.946 0.936 0.952
5 : 1 0.951 0.957 0.939 0.941 0.929 0.947
10 : 1 0.952 0.957 0.941 0.942 0.931 0.947
20 : 1 0.952 0.958 0.941 0.941 0.931 0.947

Differences between CIs based on item parameter estimates and C1s based on item parameters

Normal 5 : 1 -0.002 0.000 -0.002 -0.003 -0.005 0.000
10 : 1 0.000 0.001 -0.001 -0.001 -0.001 0.000
20 : 1 0.000 0.000 0.001 -0.002 -0.001 0.000

PS 5 : 1 -0.008 -0.004 -0.005 -0.010 -0.003 -0.006
10 : 1 0.000 -0.002 -0.002 -0.001 0.001 -0.002
20 : 1 0.001 -0.001 -0.001 0.002 0.001 -0.001

Uniform 5 : 1 -0.001 0.001 -0.004 -0.005 -0.007 -0.005
10 : 1 0.000 0.001 -0.002 -0.004 -0.005 -0.005
20 : 1 0.000 0.002 -0.002 -0.005 -0.005 -0.005
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Figure Captions

Figure 1. Example ORFs for a three-category item. a = (-0.75. -0.25, 1.0) and c = (-1.5. -0.25.
1.75).

Figure 2a. D vs the mean RMSE(a)/item for 5:1 SSR. 3-option items.
Figure 2b, D vs the mean RMSE(a)/item for 20:1 SSR, 3-option items.
Figure 2c. D vs the mean RMSE(a)/item for 5:1 SSR. 4-option items.
Figure 2d, D vs the mean RMSE(a)/item for 20:1 SSR, 4-option items.

Figure 3, Mean RMSE(a) for the SSR and LD interaction, 4-option items.

Figure 4: Mean RMSE(a) for the 'max by LD interaction.
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