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ABSTRACT

This swdy extended item parameter recovery studies in item response theory to the nominal
response model (NRM). The NRM may be used with computerized adaptive testing. testlets.
demographic items, and items whose alternatives provide educational diagnostic information.
Moreover, with the increasing popularity of performance-based assessment, the use of polytomous
item response theory models, in general, and the NRM in particular, will more than likely see
increase application.  Establishing guidelines for reasonable item parameter estimation was seen
as fundamental to the the use of the NRM. Factors studied were the sample size ratio, the latent
ability distribution, and item information level. Results showed that as the latent ability
distribution departs from a uniform distribution the accuracy of estimating the slope parameter
decreased. This decrease in accuracy may be compensated for. in part. by increasing the sample
size. Moreover, more informative items tended not to be as well estimated as less informative
items. The results appear to indicate that if one is interested in estimating ability, a sample size
ratio of 5 : 1 can produce reasonably accurate item parameter estimates for this purpose.
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Item response theory (IRT) has emerged as a popular approach fo; solving various

measurement problems. IRT is used in state testing programs such as the Maryland State
Department of Education's High School Functional Assessment program as well as in municipal
programs, such as the Portland School district. Both of these programs use IRT for test equating
and the Portland program also uses IRT for test design (Ferrara, personal communication. October
4, 1991; Kingsbury, personal communication, Nov. 19. 1991: Forster, 1987). The nationally
available California Achievement Test and the California Test of Basic Skills (Fourth Edition) are
designed and equated using IRT (CTB/McGraw-Hill. 1987; CTB/MacMillan/McGraw-Hill. 1991).
Moreover, certification boards such as the Am rican Society of Clinical Pathologists have an IRT-
based adaptive testing program for certification (Bergstrom & Lunz. 1991).

Most IRT work has been based on binary models such as the one- and three-parameter logistic
models. With these models an individual's response is categorized as either correct or incorrect.
However. not all examinee-item interactions may be appropriately modeled by binary models. For
instance. to capture the information in a Likert item or to assign credit for a partially correct
answer requires a model that contains more than two categories. Moreover. becau_se the
distributions of wrong answers over the options of multiple-choice items differ across ability
levels (Nedelsky, 1954; Levine & Drasgow. 1983). it is possible and may be desirable to use a
model that can assess information f{rom ali ilem options rather than to use a model which assunies
an examinee either knows the correct answer or randomly selects an incorrect alternative. In
addition. the one- and three-parameter logistic models do not incorporate findings from human
cognition studies (e.g.. Brown & Burton. 1978: Brown & Vanlehn. 1980; Lane. Stonc. & Hsu. 1990;
Tatsuoka., 1983).  For instance. Tatsuoka's (1983) analysis of swudent misconceptions in
performing mathematics problem showed that wrong responses could be of more than just one
kind. Fowever, dichotomous scoring uniformly assigned a score of zero to all the wrong
responses. In this regard. an item's incorrect alternatives may augment our estimate of an
examinee’s ability by providing information about the examinee's level of understanding (i.e..
provide diagnostic information).

In contrast to binary models. polytomous models contain more item parameters to estimate.
Because of these additional parameters potentially larger sample sizes may be required for their
accurate estimation. For example. for Masters (1982) partial credit model (PCM) a 2 : | or larger
ratios of examinees to item parameters were needed to produce stable item and ability parameter
cstimates. regardless of the number of categories (Walker-Bartnick. 1990). For Samejima's (1969)
graded response model (GRM). Reisc and Yu (1990) recommended that at least 500 examinees arc
nceded to achieve an adequate calibration with the GRM. Their study was conducted with a 25-

item test and therefore their guidelines may only be appropriate for tests of this length. (With
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longer tests it may be necessary to increase the sample size.) Similar findings were reported by
Ankenmann and Stone (1992). .

One polytomous model for which item parameter recovery has not been studied is Bock's
(1972} nominal response model (NRM). The NRM is appropriate for items with unordered
resnonscs. The NRM may be used in computerized adaptive testing (De Ayala. 1992), with testlets
(Wainer & Kiely, 1987) 1o solve various testing issues. such as multidimensionality (Thissen.
Steinberg, & Mooney, 1989), with items that do not have a “correct” response, such as
demographic items (e.g., to provide ancillary information), and with items whose alternatives
provide educational diagnostic information. Moreover. with the increasing popularity of
performance-based assessment. the use of po :tomous IRT models. in general. and the NRM in
particular, will more than likely see increase =pplication.

The objective of this study was to establish guidelines for obtaining reasonably accurate item
parameter estimates for the NRM. Because it was believed that the ratio of the sample size to
number of parameters 10 be estimated is more useful than the actual sample size used, one factor
studied was the sample size ratio (SSR). For instance, simply because the use of 100 examinees
allows accurate Rasch parameter estimation with a 20 item test does not necessarily imply that
only 100 examinees are required to obtain good estimates with a 100 item test. In this study.
threc ratios of observations to number of item parameter to be estimated were investigated: 5 : 1,
10 : 1. and 20 : 1.

Previous parameter recovery studies (e.g.. Ankenmann & Stone. 1992; Reise & Yu. 1990) have
varied the discrimination parameter. For example, Reise and Yu classified item discrimination
into three ranges, high, medium, and Jow. However, because with the NRM there are muliiple
discrimination parameters for each item such a scheme did not appear to be useful. Further
complicating the issue is the fact that when the number of categories is three or more. different

combinations of an item's slopes and intercepts can produce the same maximum amount of

information (Iyax) value. Therefore, establishing guidelines in terms of the magnitude of the
slope vectors was not pursued. Rather. in order 1o establish a design with the characteristic of
"high", "medium”, "low" discrimination. it was noted that the primary importance of the
discrimination parameter is its effect on item information. Therefore. one may re conceptualize
the Reise and Yu study as using items that are "high", "medium". and "low" in information rather
than in terms of discrimination parameters. As such. values for Ipax were set a priori and a
slope vector to obtain a specific Ijmyx .was determined. The Ipax values swudied were 0.25. 0.16.
and 0.09; for dichotomous models these Ipmaxs are equivalent to items with discriminations of 1.0.
0.8. and 0.6. respectively.

Because the accuracy of estimating items Jocated at various points along the ability (8) scale

may be affected by the latent 6 distribution (LD), a third factor investigaled was the effect of the
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LD. Three distributions. normal, positively skewed, and uniform, were studied. An additional

factor used in the study was whether the item consisied of three or four options.
Model
The NRM assumes that item alternatives represent responses which are unordered. The NRM
provides a direct expression for obtaining the probability of an examinee with ability 6

responding in the j-th category of item i as:

- exp(cij + aii8) _ _¢exp(ajj(8 - bii)) ,
pij(8) = m : = . (1)
X exp(cij + ajj8) 3 exp(ajj(® - bij))
h=1 h=1

where ajj and cij are the slope and intercept parameters. respectively. of the nonlinear response
function associated with the j-th category of item i. and mj is the number of categories of item i
(e, j =1, 2, ... mj). For convenience the slope and intercept parameters are sometimes
represented in veclor notation, where a = (aj], aj2. ... aim) and € = (¢j]. €2, ..., Cim). The ajjs are
analogous to and have an interpretation similar to traditional option discrimination indices. That
is, a crosstabulation of ability groups by item alternatives shows that a category with a iarge ajj
reflects a response patiern in which as one progresses from the lower ability groups to the higher
ability groups there was a corresponding increase in the number of persons who answered the
item in that calcgory and for categories with negative ajjs this pattern is reversed. The intercept
parameters reflect the interaction between a category's difficulty and how well it discriminates.
It appears that. in general. large values of cij are associated with categories with large
frequencies and as the value of cij becomes increasingly smaller the frequencies for the
corresponding categories decrease.

The probability of responding in a particular category as a function of  may be depicted by
the option response function (ORF); other synonymous terms are category or option
characteristic curve and trace line. Figure 1 contains the ORFs for a three-category (m = 3)

item with a = (-0.75, -0.25, 1.0) and ¢ = (-1.5. -0.25. 1.75).

The intersection of the ORFs can be obtained by setting adjacent category multivariate logit equal
to one another and solving for 8. In general. for any itcm with mj > 2 and because 8 and b are on

the same scale:

_C(k-1) - Ck

b _ =
T

()

where k = 2..mj and there are mj - 1 ORF intersection points. This formulation is analogous to

the step difficulties in the PC model.



METHOD

Programs: MULTILOG (Thissen, 1988) was used to obtain item parameter estimates for the NRM
using default program parameters. A data generation program for generating responses according
to the NRM was also written.
Data: A series of data sets were created. Each data set consisted of responses to 28 items and the
data sets differed from one another on the basis of Irjax, the number of item options, the form of
the ability disuibution from v-hich the simulees were sampled, and the SSR. The 28 item set was
created by determining for a given Imax level the ¢ vector needed to locate the items' location (the
average of the bjs) at one of the seven scale points between -3.0 to 3.0 in increments of 1 logit.
For example, for a four-option item for the 0.25 Ijax condition a = (0.450. -0.150, -0.100.
-0.200) and to locate this item at -3.0 one would use ¢ = (0.926. -0.275, -0.125.-0.525). (That is,
the item's location = (bj + b2 + b3)/3 with b1 = -2.00. b2 = -3.000, and b3 = -4.000 and the bjs
are always one logit apart.) In this fashion seven items were created that spanned the usual 8
range used in IRT and these items were replicated to produce the 28 item set.

For the three-option set of items the number of parameters to be estimated was 168 ((3 ajjs +
3 ¢cjjs) X 28 items) and for the four-option item set there were 224 item parameters o estimate.
With SSRs of S : 1. 10 : 1. and 20 : 1 this produced, for the three-option items. sample sizes of
840. 1680. and 3360. respectively. and for the four-option items samples of 1120. 2240, and
4480, respectively. were needed. For a given LD condition. the appropriate numbe: of zs was
sampled from a normal (0.1) distribution, a beta distribution (df] = 1.25. df2 = 10). or a uniform
distribution [-4, 4]. Thesc zs were considered to be the simulees' true 9s and the 8s pius the 28
item parameters were used 10 gcnerate polytomous response strings with a random error’
component for each simulated examinee. Generation of an examinee's polytomous response siring
was accomplished by calculating the probability of responding to each alternative of an item
according to the NRM. Based on the probability for each alternative. cumulative probabilities
were obtained for each alternative. A random error component was incorporated into each
response by selecting a random number from a uniform distribution (0.1] and comparing it to the
cumulative probabilities. The ordinal position of the first cumulative probability which was
greaier than the random number was taken as thc examinee's response to the item.

For each of the (3 SSRs X 3 LDs X 3 Ijmaxs X 2 mjs=) 54 condidons twenty-five replications

‘vere performed. That is. for a given condition (e.g.. Ijax = 0.25, normal € distribution. 20 : 1 SSR.

4-option items), twenty-five unigue response data sets were gencrated and each was calibrated
using MULTILOG. This produced twenty-five sets of item parameter estimates for cach set of item
parameters.  For a given combination of the LD and SSR factors. the same examinces were used for

cach of the Imgx factor levels (e Imax was a repeated measures factor).




Equating: Because of the induierminacy of the ability scale. calibration programs define lhe.scale
so that the mean and standard deviation of 6 (or b) are 0 and 1. respectively. for the calibration
group. Therefore. the use of scale dependent accuracy measures, such as RMSE and average
absolute deviation, require that the item parameter estimates be place on the parameter scale.
The relationship between the item parameter estimate metric and the itlem parameter metric is a

linear one. The basic transformation is:

9'=0a0 +x (3)
,_@a

a= (4)
b'=ab +x (5)

where 6'. a’, and b’ are the transformed parameters corresponding to 8, a, and b. and « and x are
the slope and intercept equating constants, respectively. In the context of the present discussion
8, a’, and b are on the parameter (target) metric, whereas 6, . and b are on the estimate (base)
metric. _

The determination of the o and x may be accomplished in a number of ways. For instance.
Stocking and Lord (1983) have developed a procedure for obtaining the equating constants based
on test characteristic curves (TCCs): this procedure has been implemented in the EQUATE 2.0
program (Baker. 1993a) for the binary models, the GRM. and the NRM (Baker. 1992. Baker. 1993b.
Baker & Al-Karni. 1991). An aliernative method using the mean difficulty and the mean
discrimination for obtaining o and x was presented by Loyd and Hoover (1980).

Because the Loyd and Hoover (LH) method is more parsimonious than the Stocking and Lord
approach. as well as for other pragmatic reasons!, the LH method was generalized to the nominal

response model and used for equating the NR item parameter estimates with the item parameters.

The LLH method specifies that:

a

oa="" (6)
E:

x=0'-0ab (7)

Given that the slope-intercept form of the NRM multivariate logit for item i category j may be
reparameterized as:
Cij + ajj8 = ajj(6 - byj)

~nd because cij = -ajjbjj. onc obtains across items that for catcgory j:

[ot

bj=-_
aj




Therefore, sums are taken across the common ilems and by substitution as well as by noting that

_. c
bj=~—l, one obtains: "

aj: . (8)

— - —_ —_

. Coaj ci a; c: - Cj
R SR O Ot vt Nt B wS -l B ¥
KJ—b_]-ozbJ—J~_'bJ—~ .'_.bj_ (9)

aj aj 3 aj
Equations (8) and (9) are the EQ-NR method. The equating constants may then be applied 1o

transform one metric to another:

.4

aij=';',l (10)
J

cij = cjj - aijxj (11)

where a{j and cij are the equated (transformed) slope and intercept parameters. respectively, and
ajj and cjj are the untransformed slope and intercept parameters. respectively.
Table 1 contains an example of the application of the EQ-MR method. NRM item parameters for

four 4-option items were randomly generated and transformed to item parameter “estimates” by

« o ajg . .
applying the reparameterized forms of (4) and (5) (i.e., ajj =j“ and c¢ij = ¢jj - xajj). where a = 0.4

and x = 1.3, The estimales were then transformed back to the parameter metric by application of
the EQ-NR method: o = (2.5, 2.5. 2.5, 2.5) and x = (-3.25, -3.25. -3.25. -3.25). As can be seen. the
cquated ilem parameter estimates are equal to the parameters. (The application of the LH method
to ordered polytomous models, such as the PCM and the GRM. is a direct extension the binary

case2.) The major advantages of the EQ-NR method are its simplicity and that no special software

is necessary for its implementation. However. its robustness in rcal-world applications needs 1o

be investigated.

Insert Table 1 about here

Analysis: The accuracy of itlem parameter estimation was assessed by root mean square error

(RMSE). RMSE was calculated according 1o:

A "

- (A.- - A.-).—

RMSE(Ajj) = L (Aij- A= ’n !
r

(12y
A : . . . I A . . . . .
where Ajj is the equated item parameter estimate (either ajj or cjj) for item i option j. Ajj is the
corresponding item parameter (cither ajj or cij). and np, the number of replications. equaled 25.
The analysis of the 3- and 4-category cases were treated separately as were the slope and

intercept parameters.  The basic design was a two-group repeated measures with LD and SSR as the
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mj mj
between subjects factors and Imax as the within subjects factor. Because Y.aj=0and Ycj=0.a

and ¢ do not consist of mj independent ilem parameter estimates and the RMSE for each item

option parameter estimate could not be used as the dependent variable. Therefore, the mean

RMSE(A) across item options and across replicates was use! as the dependent variable.
It was expected that the accuracy of itlem parameter estimation would be related to the
distribution of responses across item options. A measure of the distribution of responses across

item options was obtained by usirg the index of dispersion. D:
mj
2 2
mi(Nj - X nij)
i=1 . .
D=—"F—" (13)
Ni(mj - 1)

where Nj is the number of examinees responding to item i and njj is the number of examinees

responding in option j for item i. D has a range from 0.0 to 1.0 (inclusive) with D = 0.0 indicating
that all responses to an item are in one option and D = 1.0 signifying that responses are evenly

distributed across all options.

RESULTS
Table 2 contains descriptive statistics on the latent ability distributirns for each SSR as well

as the mean correlation between the item parameter and its estimate (i.e.. the average correlation

between the option parameter and its estimate across the number of item options, T, and Tp o the

correlations were converted to zs before averaging). As can be sccn for a given LD, increasing the

SSR was associated with an increase in 'rsa. regardless of the number of item options. Similarly.

increasing the SSR produced an increase _rec. however these increases were not as dramatic due to
. . . A .

the strong linear rclationship between ¢ and ¢ at the 5 : 1 SSR. For 4 given LD and SSR level the

Fﬁas were consistently larger for the threc category condition than for the four-option category.

For a given SSR condition the 'rgas were largest for the uniform 6 distributions and smallest for
the positively skewed 6 distributions. regardless of the number of item options.

Insert Table 2 about here

Figure 2 contains plots of D versus an item's average RMSE(a) for the 5 : 1 and 20 : 1 SSRs for

the three- and four-option item sets: the 10 : I SSR plot falls predictably between the § : | and 20
I SSR plots. As can be seen there is an inverse relationship between D and the mean RMSE(a).
the average RMSE for an item decrcased as the distribution of responses across an item's option
increased.  Specifically, for the threc-option item set the correlations between D and the mean
RMSE(a) were -0.597. -0.647. 0.647. for the 5 : 1. 10 : 1. and 20 : | SSRs and the corresponding

correlations for the four-option items were -0.348. -0.438. and 0.485. For the intercepts 1c
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correlations for the 5 : 1, 10 : 1, and 20 : 1 SSRs/threc-option items were -0.647. -0.569. and
-0.512 and for the four-option items -0.331. -0.324, and -0.303, respectively. In general. the
lowest RMSEs and larger Ds were associated with the uniform 8 distribution, whereas the highest

RMSEs and smaller Ds occurred with the positively skewed 8 distribution. regardless of SSR.
Moreover, for a given SSR level the mean D was less for the three-option item set (55;1 = (0.863.
_DlO:l = 0.869. 1_320:1 = 0.864) than for the four-option item set (_DS:I = 0.927. 1_31(::1 = (.928,
_Dzo;1 = 0.928). The uniform 0 distribution resulted in the greatest djstribution of responses
across item options (54-option = 0.940. ﬁ3-0pti0n = 0.902). with the normal and positively
skewed 6 distributions having approximately the same average D values (normal: _D4-option =

0.922. D3.optir, = 0.848: positively skewed: D4-aption = 0.920, D3.option = 0.840).

Insert Figure 2 about here

The repeated measures analysis of the slope parameter (4-option items) is presented in Table
3. As can be seen. the accuracy of estimating the slope parameters was influenced by the
interaction of the LD with the SSR and the Ipax. Post hoc comparisons for the Ijax factor showed
that the slope parameters for items with Imax = 0.16 or the Imax = 0.09 (mean RMSE(a) = 0.060

and mean RMSE(a) = 0.057, respectively) were estimated significantly more accurately than for
items with Ijax = 0.25 (mean RMSE(a) = 0.071).

Analysis of the LD X SSR interaction showed that the average RMSE(a) for the uniform 6
distribution was significantly less than that for either the normal or positively skewed
distributions for all levels of the SSR factor and that the normal distribution mean RMSE(a) was
significantly less that of the positively skewed ability distribution for the 5§ : 1, 10 : 1. and 20 : 1
SSRs.  Moreover. doubling the SSR led to significant reductions in the average RMSE(a) for the
normal and the positively skewed © distributions. Roughly speaking. quadrupling the sample size
led to a halving of the average RMSE(a) for the 5 : 1 ratio. However. despite the increase in
cxamineces for the positively skewed 6 distribution the accuracy of estimation using the 20 : 1
ratio (mcan RMSE(a) = 0.0636) only approximated that for the normal 6 distribution using a 10 : 1
ratio (mean RMSE(a) = 0.0629). In addition. it took a 20 : 1 ratio with the normal 8 distribution
to produce an average RMSE(a) (mean RMSE(a) = 0.0430) approaching that for a uniform 8
distribution based on a 5 : 1 SSR (mean RMSE(a) = 0.0427),

Figure 3 containe the mean RMSE(a) for the SSR X LD interaction for the slope parameters for
the four-option item sets. As can be seen. when 8 is positively skewed twice as many subjects are

necded in order to cestimate the slope parameters approximately as accurately as when 8 is
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normally distributed. For example. the mean RMSE(a) for the positive skewed LD condition using
a 20 : 1 SSR is comparable to that with normal distribution and a 10 : I SSR. Similarly, with the
positive skewed LD condition a 10 : 1 SSR results in a mean RMSE(a) that is slightly better than
obtained using half as many subjects from a normal distribution. With a uniform distribution of
ability even a 5 : 1 SSR provides more accurate estimation than can be obtained with four times as
many subjects from a positively skewed ability distribution and almost comparable to that

obtained when ability is normally distributed. !

The analysis of the intercept parameters (4 option items) showed significant main effects for
both the Imax and SSR factors (Table 4). Post hoc analyses showed that doubling the SSR did not
lead to a significant reduction in the mean accuracy with which the intercept parameters were
estimated. However. increasing the SSR from 5 : 1 10 20 : 1 led to almost halving the average
RMSE(c). mean RMSE(c) for the 5 : 1. 10 : 1. 20 : 1 levels were 0.085. 0.061. 0.044. respectively).
Similar 10 the case with RMSE(a). increasing Imax levels were asscciated v.ith increases in the
mean RMSE(c). As the item informatica increased from 0.09 to 0.16 to 0.25. there were
significant decreases in the accuracy with which the intercept parameters were estimated (for
Imax =0.09: mean RMSE(c) = 0.049. for Imax =0.16: mean RMSE(c) = 0.059. and for Ipax =0.25:
mean  MSE(c) = 0.081).

Tables 5 and 6 contain the repcated measures analyses for the slope and intercept
parameters for the three-option item set, respectively. Analysis of the significant SSR main
effect for the slope parameter showed that doubling the SSR from 5 : 1 10 10 : 1 led 1o a
significant reduction in the. mean RMSE(a) (0.086 and 0.062. respectively). however. no
significant improvement was realized by doubling the 10 : 1 SSR: mecan RMSE(a) for 20 : 1 level
was 0.047. Quadrupling the 5 : 1 SSR also led to significantly more accurate slope parameter
estimates, on average. However. given the above results this would appear to be u.anecessary to
use an SSR greater than 10 : 1 with 3 option items. The significant Izx X LD interaction
showed that. regardless of Ipax level. that the uniform LD resulted. on average. in the most
accurate RMSE(a) and the positively skewed LD the least accurate (Figurc 4). In general. the
slope parameters for the Imax = 0.25 level items were significantly more poorly estimated than
for the Imyx = 0.16 level items for all LDs and. except for the normal LD level, the average
RMSE(ais for the Iymay = 0.16 level items were significantly greater than for the Iymax = 0.00.
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Analysis of the RMSE(c) for the threc-option items revealed results that paralicled those for
the four-option items. Specifically, increasing the SSR from § : 1 to 20 : | led to a significant
reduction in the average RMSE(c); the mean RMSE(c)s for the 5 : 1, 10 : 1, and 20 : 1 SSR levels
were 0.088. 0.062 and 0.045, respectively. As was the case with the four-option items, more
informative item sets were not as well- estimated, on average, as the less informative item sels:
mean RMSE(c)s were 0.048, 0.063, and 0.083 for the 0.09, 0.16, and 0.25 Ipax levels,
respectively.  The mean RMSE(a) and RMSE(c) for the three-option items were comparable in

magnitude to those of the four-option item set.

DISCUSSION

The use of marginal maximum likelihood estimation allows one to obtain ilem parameter
estimates prior to estimating the examinees’ 6s. Obtaining the 8s may be performed using
maximum likelihood, expected a posteriori (EAP), or maximum a posteriori estimation techniques
and treating the item parameler estimates as known quantities. As such, SSR and LD's effect on
the s will be indirect (if at all) and only through their effect on the accuracy of estimating the
item parameters. For this reason this study focused only on the accuracy of estimation of NRM's
item parameters.

Results showed that as the latent 8 distribution departs from a uniform distributicn the
accuracy of estimating the slope parameter decreases. In these cases, in order to increase the

accuracy of estimating the slope parameter one needs to increase the sample size. The effects of

the form of 6 distribution on RMSE may, in part, be related to the distribution of responses across
item options. It was found that the uniform LD produced the greatest dispersal of responses
across item options and that the positively skewed LD produced least variability in the examinees
responses. Therefore, if there are insufficient numbers of examinees responding to a particular
item opticn, then that option will not be as accurately estimated as other options that have
attracted more examinee responses. (It should be noted that poor estimation of an option's
parametes, may affect the estimation of the other options’ parameters.) Short of rewriting the.
option, increasing the sample size is one means of increasing the number examinees responding to
a particularly unattractive option. Moreover, more informative items (i.e.. items with larger slope
parameters) tended not to be as well estimated as less informative items. However, the RMSE(a)
observed for these informative items (e.g.. Ijmax = 0.25) may be considered adequate by some.
Similar findings were found with the intercept parameter. In particular, the more informative the
items the greater the number of subjects required i order to estimate the intercepts with a
degree of accuracy comparable to that of less informative items. This was true for both three- and

four-option items.
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Given the magnitude of the average RMSEs observed, were the significantly more accurate item
parameter estimates obtained by increasing the SSR meaningfully more accurate? In a real world
application there could be substantial costs involved in doubling or quadrupling the SSR (if it
could be done at all). To answer this question an additional set of analyses based on confidence
intervals (Cls) were performed.

For each of the original six item parameter pools. a data set was generated according to the
NRM that contained the responses of 1100 simulees. These simulees were distributed such that
100 simulees were located at each of 11 6 points between -2.5 and 2.5 in 0.5 logit increments (i.e.,
100 simulees had 6 = -2.5. 100 simulees had 6 = -2.0, ... 100 simuieces had 8 = 2.5). For each of
these 1100 simulees the EAP 8 and its standard error of estimation were obtained using the item
parameter estimates from each replication as well as the item parameters used to generate the
data: for EAP estimation 80 quadrature points and a uniform prior \was used. Because there were
25 replications for each condition there were 25 6s for each simulee and for a given condition
there was a total of 1100 X 25 = 27.500 fs. For each of these 8s a 95% CI was calculated and for 2
given condition the number of times the CI contained 6 was recorded. Table 7 contains the results
of these analyses.

As can be seen from top half of Table 7. while there were differences in the proportion of 95%
Cls containing © across Ipax. for a given LD and Imjax condition increasing the SSR did not appear
to result in meaningful differences in the proportion of Cls containing 6. In general. the cntries
approxiw.ated the expected value of 0.950. Alternatively, the Cls based on the item parameters
give an indication of how well one could expect to do given the sample size used. The differences
between the Cls calculated on the basis of the item parameters and their estimates are presenied
in the bottom half of Table 7. These differences are typically on the order of one one thousandths.
Overall. the largest differences are found for the 5 : 1 SSRs. However. these are small differences.
In this regard. it appears that if one's focus is to use item parameters for ability estimation. a § :
1 SSR may produce item parameter estimates that are reasonably accurate.

This CI approach (the top half of Table 7) may be used to compare different scts of item
paramecter cstimates for meaningful differences with respect to bs. ar competing models are to be
compared, then a model independent simulation data set would be used.) The CI method has the
advantages of simplicity. a clearly define and objective goal. an indication of how well or poorly

once is doing in ability estimation. and. if desired. the possibility of significance testing.

BEST COPY AVAILABLE
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Footnotes

1According to the documentation which accompanies EQUATE 2.0 (Baker. 19934) the “"nominally
scored test equating is quite sensitive to the values of the initial estimators [o and x]}". Moreover.
"the interaction among sample size. the estimation techniques employed in MULTILOG, and the
equating coefficients yielded by EQUATE are in need of furtker investigation" (Baker, 1993b. p
248).

2The application of the EQ-NR approach to ordered polytomous models (EQ-OR) is done

threshold-wise for obtaining the xs for the thresholds (k;j =Bj- abj) and item-wise for

.. a . . e .
obtaining a (& = 7" ). -The transformation of the item discrimination and the thresholds is

™

C 4 .
performed by g =;1 and bjj = abjj + xj.

a i P . o R A T k0 PO



Table 1: Example equating using EQ-NR method.
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Parameter
Item a1
1 -1.937
2 -1.549
3 -2.126
4 -2.326
Mean -1.984
Estimates
1 -4.842
2 -3.871
3 -5.314
4 -5.815
Mean -4.961
Equated

-1.937
2 -1.549
3 -2.126
4 -2.326
Mean -1.984

[
9 19 to L —

.755
.402
073
.887
.529

(LS (O R G I (S

|9 T SN SR )

w

o 1o — = 19

.308
675
.347
874
.051

4.255
3.418
4.475
6.033
4.545

9 o — Lo —

0.343
-2.658
3.004
-3.149
2.289

412
269
.981
258
480
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Table 2: Descriptive Statistics on Ability Distributions and Item Parameters?

Mean SD Skew 3-option itemsb 4-option itemsb

Distribution SSR 8 8 8 T4, Fec Fﬁa Fé‘c
Normal 5:1 0.001 1.001 -0.024 0.668 0.991 0.621 0.988
10:1 -0.003 0.999 -0.005 0.779 0.995 0.735 0.995
20: 1 -0.002 0.998 -0.011 0.870 0.998 0.844 0.997
PS 5:1 -0.001 0.731 1.291 0.529 0.991 0.500 0.989
10:1 -0.003 0.733 1.332 0.652 0.996 0.637 0.995
20: 1 0.002 0.737 1.297 0.733 0.998 0.733 0.997
Uniform 5:1 -0.024 2.308 0.011 0.862 0.989 0.845 0.987
10:1 0.002 2.315 0.004 0.920 0.994 0.897 0.993
2:1 -0.005 2.309 0.003 0.946 0.997 0.929 0.996

4SD: Standard Deviation. PS: Positively Skewed

beorrelations converted to z-scores before taking the average

h
-
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Table 3: RMSE Repeaied Measures Analyses for slope paremeters (4 options)?.

Source SS df
Between Subjects
LD 0.099 2
SSR 0.050 2
LD X SSR 0.010 4

Subj w/i Groups 0.038 =4
Within Subjects

Imax 0.006 2

Imax X LD 0.001 4

Imax X SSR 0.000 4

LD X SSR X Iax 0.000 8

Imax X Subj w/i Groups 0.009 108
Post Hoc Comparison ts for LD:

SSR

Hypothesis 5:1 10 : 1 20 : 1
Hnml v Bps  4.240% 2.588% 2.520%
Hnmli VS Hunif 5.450* 3.682% 2.043*
Hps ¥$ Hunif 9.690% 6.269% 4.565*

Post Hoc Comparison ts for Imax:

Hypothesis

Ho.09 VSHo.16 2391
H0.09 VS Ko 25
Ho.16 VS H0.25

gt

<

MS P
0.049 70.389  0.000
0.025 35.836  0.000
0.002 3.554 0.012
0.001
0.003 38.419  0.000
0.000 1.580 0.185
0.000 0.442 0.778
0.000 0.355  0.942
0.000

Post Hoc Comparison ts for SSR:

LD
Hypothesis Normal PS Unif
Ms. VSHig.  2.978%  4.630* 1.210
Hg.1 VS Hu(g.q 5.415% 7.132% 2.008*
H10:1 VS HaQ:] 2.437% 2.502% 0.798

anml: Normal. ps: Positively Skewed. unif: Uniform




Table 4: RMSE Repeated Measures Analyses for intercept parameters (4 options)d.

Source SS df MS F p

Between Subjects

LD 0.005 2 0.002 1.692  0.194
SSR 0.053 2 0.026 18.492  0.000
LD X SSR 0.001 4 0.000 0.164 0.956
Subj w/i Groups 0.077 354 0.001
Within Subjects
Imax 0.033 2 0.016 66.624  0.000
Imax X LD 0.001 4 0.000 1.524 0.200
Imax X SSR 0.002 4 0.000 1.783 0.138
LD X SSR X Imax 0.001 8 0.000 0.386 0.926
Imax X Subj w/i Groups 0.026 108 0.000
Post Hoc Comparison ts for SSR: Post Hoc Comparison ts for Igax:
Hypothesis Hypothesis
hs:p VSHpop 2966 H0.09 VS 0.16 4.891*
Ms:p VSMg0; 4932 H0.09 VS Ho.25  13.934*
M10:1 VS H20:1 1966 Ho.16 VS Ho.25  11.042%

d4nml: Normal. ps: Positively Skewed. unif: Uniform




Table 5: RMSE Repeated Measures Analyses for slope parameters (3 options)d.

Source SS df MS F )
Between Subjects

LD 0.119 2 0.060 66.458 0.000

SSR 0.051 2 0.025 28.271 0.000

LD X SSR 0.007 4 0.002 1.889  0.126

Subj w/i Groups 0.048 54 0.001
Within Subjects

Imax 0.013 2 0.006 75.923 0.000

Imax X LD 0.001 4 0.001 3.696  0.007

Imax X SSR 0.000 4 0.000 0.449 0.773

LD X SSR X Ime: 0.000 8 0.000 0.299  0.965

Imax X Subj w/i Groups 0.709 108 0.000
Post Hoc Comparison ts for SSR:
Hypothesis
Mo.p ViHig  -3807%
Hg.1 VS Ha0:1 -6.075*
H10:1 VS Ha0:p  -2.268
Post Hoc Comparison ts for LD: Post Hoc Comparison ts for Iyax:

Imax LD

Hypothesis 0.09 0.16 0.25 Hypothesis Normal PS Unif
Moml Vs Hps  4.272%  5.023% 6.737% hooo VSHp 16 1344 2886%  2.738*
Hnml VS Hunif 5.740% 5.061% 4.895% LL0.0g \&3 “025 4.721% 9.779* 6.455%
Bps VS Hunif 10.012* 10.084* 11.632* Ho.16 VS H0.25 3.377* 6.893% 3.717%

nml: Normal. ps: Positively Skewed. unif: Uniform
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Table 6: RMSE Repeated Measures Analyses for intercept parameters (3 options)2.

Source S df MS F P
Between Subjects T
LD 0.007 2 0.003 2.278 0.112

SSR 0.059 2 0.030 19.720  0.00
LD X SSR 0.001 4 0.000 0.085 0.987
Subj w/i Groups 0.081 54 0.001
Within Subjects
Imax 0.039 2 0.019 94.249 0.000
Imax X LD 0.001 4 0.000 1.755 0.143
Imax X SSR 0.002 4 0.000 2.109 0.085
LD X SSR X Imay: 0.000 8 0.000 0.245 0.981
Imax X Subj wfi Groups 0.022 108 0.000
Post Hor Companson ts for SSR: Post Hoc Comparison ts for Imax:
Hypotihesis Hypothesis
ks vskponp 3017 ko.09 VS Ho.16 80407
Ms:p VSHapip 309 Ro.09 VS Hp.25  19.326
B10:1 VS K0 -2:083 Ho.16 VS Ho.05  11.2857

dnml: Normal. ps: Positively Skewed. unif: Uniform
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Table 7: Proportion of times 95% confidence intervals contained 6.

Distribution

3-options
Imax

4-options
Imax

Normal

PS

Uniform

parameters
5:1
10 : 1
20 : 1
parameters
5:1
10 : 1
20 : 1
parameters
5:1
10 :1
20 : 1

o0
\O O
L L
[SS IS

coococoocococoooO
N e

wh

o

Differences between Cls based on item

parameter estimates and Cls based on item parameters
Normal 5:1 -0.002 0.000 -0.002 -0.003 -0.005 0.000
10 : 1 0.000 0.001 -0.001 -0.001 -0.001 0.000
20 : 1 0.000 0.000 0.001 -0.002 -0.001 0.000
PS 5:1 -0.008 -0.004 -0.005 -0.010 -0.003 -0.006
10 : 1 0.000 -0.002 -0.002 -0.001 0.001 -0.002
2001 0.001 -0.001 -0.001 0.002 0.001 -0.601
Uniform 5:1 -0.001 0.001 -0.004 -0.005 -0.007 -0.005
10 : 1 0.000 0.001 -0.002 -0.004 -0.005 -0.005
20 : 1 0.000 0.002 -0.002 -0.005 -0.005 -0.005
0)4




Figure Captions

Figure 1. Example ORFs for a threc-category item. a = (-0.75. -0.25. 1.0)
1.75).

Figure 2a. D vs the mean RMSE(a)/item for 5:1 SSR. 3-option items.
Figure 2b, D vs the mean RMSE(a)/item for 20:1 SSR, 3-option items.
Figure 2¢, D vs the mean RMSE(a)/item for 5:1 SSR. 4-option items.

Figure 2d. D vs the mean RMSE(a)/item for 20:1 SSR, 4-option items.
Figure 3. Mean RMSE(a) for the SSR and LD interaction, 4-option items.

Figure 4. Mean RMSE(a) for the I;ax by LD interaction.
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