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Abstract

Multidimensional forced-choice formats can significantly reduce the impact of numer-

ous response biases typically associated with rating scales. However, if scored with
classical methodology, these questionnaires produce ipsative data, which lead to dis-

torted scale relationships and make comparisons between individuals problematic.

This research demonstrates how item response theory (IRT) modeling may be

applied to overcome these problems. A multidimensional IRT model based on Thur-

stone’s framework for comparative data is introduced, which is suitable for use with

any forced-choice questionnaire composed of items fitting the dominance response

model, with any number of measured traits, and any block sizes (i.e., pairs, triplets,

quads, etc.). Thurstonian IRT models are normal ogive models with structured factor
loadings, structured uniquenesses, and structured local dependencies. These models

can be straightforwardly estimated using structural equation modeling (SEM) soft-

ware Mplus. A number of simulation studies are performed to investigate how latent

traits are recovered under various forced-choice designs and provide guidelines for

optimal questionnaire design. An empirical application is given to illustrate how the

model may be applied in practice. It is concluded that when the recommended design

guidelines are met, scores estimated from forced-choice questionnaires with the pro-

posed methodology reproduce the latent traits well.

Keywords

forced-choice format, forced-choice questionnaires, ipsative data, comparative judg-

ment, multidimensional IRT

The most popular way of presenting questionnaire items is through rating scales (Lik-

ert-type scales), where participants are asked to rate a statement using some given
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categories (e.g., ranging from ‘‘strongly disagree’’ to ‘‘strongly agree’’ or from

‘‘never’’ to ‘‘always,’’ etc.). It is well known that such a format (single-stimulus for-

mat) can lead to various response biases, for instance, because participants do not

interpret the rating categories in the same way (Friedman & Amoo, 1999). One

way of dealing with some simpler biases is modeling them postcompletion (e.g., May-

deu-Olivares & Coffman, 2006); another way is to present questionnaire items in

a comparative or forced-choice fashion.

Typical multidimensional forced-choice (MFC) format questionnaires consist of

blocks of two or more statements from different dimensions, for example:

1. I manage to relax easily.

2. I am careful over details.

3. I enjoy working with others.

4. I set high personal standards.

Instead of evaluating each statement in relation to a rating scale, respondents have to

choose between statements according to the extent these statements describe their

preferences or behavior. When there are two statements in a block, respondents are

simply asked to select the statement that describes them better. For blocks of three,

four, or more statements, respondents may be asked to rank-order the statements or

select one statement that is ‘‘most like me’’ and one that is ‘‘least like me’’ (i.e., to

provide a partial ranking).

Because it is impossible to endorse every item, the forced-choice format eliminates

uniform biases such as acquiescence responding (Cheung & Chan, 2002) and can

increase operational validity by reducing ‘‘halo’’ effects (Bartram, 2007). However,

there are serious problems with the way the forced-choice questionnaires have been

scored traditionally. Typically, rank orders of items in a block are reversed and

then added to their respective scales to make up a scale score. Therefore relative posi-

tions of items are treated as absolute. Not only is this model inadequate for describing

the responses to forced-choice items (Meade, 2004), it also results in ipsative scale

scores. The term ipsative (from the Latin ipse: he, himself) was first used by R. B. Cat-

tell to name a type of scale where a score on one attribute is relative to scores on other

attributes for this individual. It is easy to see that regardless of choices made, the same

number of points is distributed between items in a block, and the total score on the

questionnaire is therefore the same (constant) for everyone. Therefore, although trait

scores will vary from individual to individual, their sum will remain constrained, mak-

ing it impossible to score above or below average on all scales. Ipsative scores present

a problem for score interpretation and for almost every conventional type of psycho-

metric analysis (for a discussion, see Baron, 1996).

Given the potential advantages of the forced-choice format, and the disadvantages

of the scoring methods associated with it, an alternative approach to modeling the

comparative responses arising from forced-choice items is needed. Thurstone’s

(1927, 1931) model provides a powerful framework for modeling comparative data

such as paired comparisons and rankings. Although typically used as a model to scale

stimuli (items), Maydeu-Olivares and Brown (in press) showed how Thurstonian
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models can be used also to scale individuals. Indeed, when used in a respondent-cen-

tered formulation, Thurstonian models are item response theory (IRT) models allow-

ing estimation of the individual trait scores. The aim of this article is to extend the

application of the Thurstonian IRT modeling from single ranking tasks measuring

one dimension described in Maydeu-Olivares and Brown (in press) to multiple rank-

ing tasks, thus providing a modeling framework for forced-choice questionnaires mea-

suring multiple dimensions. In what follows, we refer to ‘‘personality traits,’’ or

‘‘traits,’’ but of course the same approach applies to forced-choice questionnaires

measuring motivation, attitudes, and so on.

This article is structured into five sections. In the first section, we describe how to

code responses to forced-choice items using binary outcome variables. The second

section describes how to apply the Thurstonian factor model (see Maydeu-Olivares

& Böckenholt, 2005) to forced-choice questionnaires. This model relates the binary

outcomes obtained from the comparative responses to the unobserved utilities of items

(first-order factors), and the utilities in turn are related to a set of underlying person-

ality traits (second-order factors). Thus, the Thurstonian factor model is a second-

order factor model with binary indicators. In the third section, we introduce the Thur-

stonian IRT model. This is simply a Thurstonian factor model reparameterized as

a first order factor model. As we shall discuss, the reparameterization is needed to

obtain latent trait estimates from forced-choice tests. Simulation studies are presented

in the fourth section to illustrate the model properties, as well as item parameter recov-

ery and latent trait recovery. The fifth section includes a real-data application, where

a forced-choice test measuring the Big Five is estimated and participants are scored

using the Thurstonian IRT model. The popular statistical modeling program Mplus

(Muthén & Muthén, 1998-2007) is used in all analyses presented in this article. We

conclude with a discussion of the main points of the work presented here.

Binary Coding of Forced-Choice Responses

This section describes how to code responses to forced-choice blocks using binary

outcome variables, one for each pairwise comparison between the items within

a block. This is the standard procedure to code comparative data (see Maydeu-Oli-

vares & Böckenholt, 2005), but here we apply it specifically to forced-choice ques-

tionnaire blocks. In a forced-choice block, a respondent is asked to assign ranks to

n items according to the extent the items describe the respondent’s personality. For

instance, for n ¼ 4 items {A, B, C, D}, the respondent has to assign ranking

positions—numbers from 1 (most preferred) to 4 (least preferred).

Ranking

Item A __
Item B __
Item C __
Item D __
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Alternatively, the respondent might be asked to indicate only two items: one item

that most accurately describes their personality and one item that describes it least

accurately. It is easy to see that this format type provides an incomplete ranking,

because it only assigns the first and the last ranks.

Any ranking of n items can be coded equivalently using ~n ¼ nðn� 1Þ=2 binary

outcome variables. In a block of two items {A, B}, there is only one comparison to

be made between Items A and B. In a block of three items {A, B, C}, there are three

pairwise comparisons: between Items A and B, between A and C, and between B and

C. In a block of four items {A, B, C, D}, there are six comparisons to be made between

items: A is compared with B, C, and D; B is compared with C, and D; and C is com-

pared with D.

In each pair, either the first item is preferred to the second, or otherwise. Thus,

observed responses to the pairwise comparisons can be coded as binary outcomes:

yl ¼ 1 if item i is preferred over item k;
0 if item k is preferred over item i;

�
ð1Þ

where l indicates the pair {i, k}. For example, the ordering {A, D, B, C} can be coded

as follows:

In the case of partial rankings, such as ones observed using the ‘‘most like me’’–

‘‘least like me’’ format when n > 3, the information for some binary outcomes is miss-

ing by design. For instance, when items are presented in blocks of n ¼ 4 items, the

outcome of the comparison between the two items that are not selected either as

‘‘most’’ or ‘‘least’’ is unknown. Following the previous example, the resulting partial

ranking can be coded as follows:

Most Like Me Least Like Me

Item A � �

Item B � �

Item C � �

Item D � �

Ranking Binary Outcomes

A B C D {A, B} {A, C} {A, D} {B, C} {B, D} {C, D}
1 3 4 2 1 1 1 1 0 0

Partial Ranking Binary Outcomes

A B C D {A, B} {A, C} {A, D} {B, C} {B, D} {C, D}
Most Least 1 1 1 1 · 0
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One consequence of dealing with blocks of statements (each of which is a ranking

task) is that responses made within one block are always transitive. For example, if the

respondent rank-orders A above B, and B above C, it automatically follows that A is

ranked before C, and therefore the outcome for the {A, C} pair can be deducted from

pairs {A, B} and {A, C}. It then follows that only n! different binary patterns may be

observed for a block of n items.

Applying Thurstonian Factor Models to Forced-Choice

Questionnaires

Response Model for Rankings

Arguably, the best known model for describing comparative choices, such as ones

made in forced-choice blocks, is Thurstone’s Law of Comparative Judgment.

Although Thurstone (1927) focused initially on paired comparisons, he recognized

later (Thurstone, 1931) that many other types of choice data, including rankings,

could be modeled in a similar way. He argued that in a comparative task, (a) each

item elicits a utility as a result of a discriminal process, (b) respondents choose

the item with the largest utility value at the moment of comparison, and (c) the utility

is an unobserved (continuous) variable and is normally distributed in the population

of respondents.

According to Thurstone’s model, each of the n items to be ranked elicits a utility.

We shall denote by ti the latent utility associated with Item i. Therefore, there are

exactly n such latent variables when modeling n items. A respondent prefers Item i

over Item k if his or her latent utility for Item i is larger than for Item k and conse-

quently ranks Item i before Item k. Otherwise, he or she ranks Item k before Item i.

The former outcome is coded as ‘‘1’’ and the latter as ‘‘0.’’ That is,

yl ¼ 1 if ti � tk ;
0 if ti < tk ;

�
ð2Þ

where the equality sign is arbitrary as the latent utilities are assumed to be continuous,

and thus by definition two latent variables can never take on exactly the same value.

The response process can be alternatively described by computing differences

between the latent utilities. Let

y�l ¼ ti � tk ð3Þ

be a continuous variable that represents the difference between utilities of Items i and k.

Because ti and tk are not observed, y
�
l is also unobserved. Then, the relationship between

the observed comparative response yl and the latent comparative response y�l is

yl ¼
1 if y�l � 0;
0 if y�l < 0:

�
ð4Þ

464 Educational and Psychological Measurement 71(3)

 at BTCA Univ de Barcelona on May 9, 2011epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


Note that the difference of utilities determines the preference response, that is,

there is no error term in Equation (3). This is because here we consider ranking tasks,

for which responses are transitive (Maydeu-Olivares & Böckenholt, 2005).

It is convenient to present the response model in matrix form. Let t be the n 3 1

vector of latent utilities and y) be the ~n 3 1 vector of latent difference

responses, where ~n ¼ nðn� 1Þ=2. Then we can write the set of ~n equations (Equation

3) as

y� ¼ At; ð5Þ

where A is an ~n 3 n design matrix. Each column of A corresponds to one of the n

items, and each row ofA corresponds to one of the ~n pairwise comparisons. For exam-

ple, when n ¼ 2, A ¼ 1 �1ð Þ, whereas when n ¼ 3 and n ¼ 4,

A ¼
1 �1 0

1 0 �1

0 1 �1

2

4

3

5 and A ¼

1 �1 0 0

1 0 �1 0

1 0 0 �1

0 1 �1 0

0 1 0 �1

0 0 1 �1

2

6666664

3

7777775
;

respectively. For instance, in the design matrix for n ¼ 3 items, each column corre-

sponds to one of the three Items A, B, and C. Rows represent three possible pairwise

comparisons. Row 1 corresponds to the comparison {A, B}, and row 3 to the compar-

ison {B, C}.

Moving from one forced-choice block to multiple blocks, we let p be the number of

blocks, n the number of items per block, and the total number of items therefore is p3

n ¼ m. In this case, the design matrix will consist of m columns corresponding to all

items in the questionnaire, and p 3 ~n rows corresponding to the ~n pairwise compar-

isons made in all of p blocks. The design matrix A is then partitioned in correspon-

dence to the blocks. For instance, for a questionnaire with p ¼ 3 blocks of n ¼ 3

items in each block (9 items in total), the design matrix A is

A ¼

1 �1 0 0 0 0 0 0 0

1 0 �1 0 0 0 0 0 0

0 1 �1 0 0 0 0 0 0

0 0 0 1 �1 0 0 0 0

0 0 0 1 0 �1 0 0 0

0 0 0 0 1 �1 0 0 0

0 0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 0 �1

0 0 0 0 0 0 0 1 �1

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

:
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The Thurstonian Factor Model

Because questionnaire items are designed to measure some psychological constructs

(personality traits, motivation factors, attitudes, etc.), a set of d common factors (latent

traits) is introduced into the model. It is then assumed that the latent utilities t are a lin-

ear function of the traits, that is,

t ¼ lt þ Kgþ e: ð6Þ

In Equation (6), lt contains mmeans of the latent utilities t, K is an m3 dmatrix of

factor loadings, g is a d-dimensional vector of common factors (latent traits in IRT

terminology), and e is an m-dimensional vector of unique factors. We will assume

that every item measures one trait only, that is, K is an independent clusters solution.

As in a standard factor analytic model, the latent traits are uncorrelated with the

unique factors and their means are zero. The latent traits are freely correlated (their

covariance matrix is U), but their variances are fixed to one for identification. The

unique factors are uncorrelated, so that their covariance matrixW2 is diagonal. In addi-

tion, it is assumed that latent traits and unique factors are normally distributed.

This linear model describes a dominance response process. It is suitable for modeling

items written in such a way that the relationship between the item’s utility and the latent

trait monotonically increases for positively keyed items or monotonically decreases for

negatively keyed items. Examples of positively and negatively keyed dominance items

are ‘‘I keep my paperwork in order’’ and ‘‘I struggle to organize my paperwork,’’

respectively. For any two respondents, the utility for the first item will be higher for

the individual whose score on Conscientiousness is higher, and this will be reversed

for the second item. This is in contrast to ideal-point models (Coombs, 1964), where

the utility for an item has a peak at a certain level of the latent trait and decreases in

either direction of the latent trait from that point. An example of an item for which

an ideal-point model would be more suitable is: ‘‘My attention to detail is about aver-

age.’’ Clearly, utility for this item would be high for respondents with an average score

on Conscientiousness and be lower for respondents with very high or very low scores.

Dominance items are by far more prevalent in existing personality questionnaires,

either using Likert-type scales or the forced-choice formats (Stark, Chernyshenko,

Drasgow, & Williams, 2006). Given the absence of an adequate forced-choice model

using this popular type of item, we chose to deal only with the dominance items in this

article. There are alternative IRT approaches to creating and scoring forced-choice

questionnaires relying on an ideal-point response process (McCloy, Heggestad, &

Reeve, 2005; Stark, Chernyshenko, & Drasgow, 2005), and we refer readers to those

articles for modeling forced-choice tests with ideal-point items. Models throughout

this article assume that only dominance items are used.

To illustrate how binary outcomes, their underlying utilities, and their traits are

modeled, in Figure 1, a Thurstonian factor model is depicted for a very short

forced-choice questionnaire. The questionnaire measures d ¼ 3 correlated traits;

each trait is measured by three items. The nine questionnaire items (m ¼ 9) are
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Figure 1. Thurstonian factor model for a short questionnaire with three traits and three
blocks of three items
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presented in triplets (blocks of n ¼ 3 items) so that there are no two items within

a block measuring the same trait. There are p ¼ 3 such blocks in this simple example.

Trait 1 is measured by Items 1, 4, and 7; Trait 2 is measured by Items 2, 5, and 8; and

Trait 3 is measured by Items 3, 6, and 9. Respondents are asked to rank-order the items

within each block. The resulting rankings are transformed into three binary outcomes

per block (nine outcomes in total), which are modeled as differences of underlying

utilities using Equation (5). Because each binary outcome is the result of comparing

two items, it depends on two latent utilities. Utilities, in turn, are functions of the three

personality traits. The nine binary outcomes are measured without error (because

responses to ranking blocks are transitive). However, the nine utilities have unique-

ness parameters to be estimated, that is, the variance of the unique factors in each

item’s utility.

Thurstonian IRT Model for Forced-Choice Questionnaires

In this section, we show how the Thurstonian factor model, which is a second-order

factor model for binary data with some special features, can be equivalently expressed

as a first-order model, again, with some special features. To distinguish both models,

we refer to the first-order model as to the Thurstonian IRT model. We provide the item

characteristic and information function for the latter and discuss item parameter esti-

mation, latent trait estimation, and reliability estimation.

Reparameterized Model

There are several reasons for reparameterizing the Thurstonian factor model for

forced-choice presented above as a first-order model. First, in psychometric testing

applications, the first-order factors (the latent utilities) are not of interest. Rather,

interest lies in estimating the second-order factors (the latent traits). Second, the

use of the Thurstonian IRT model instead of the Thurstonian factor model speeds

up computations considerably in the case of large models. Third, and most important,

because the residual error variances of the latent response variables y) are zero in the

Thurstonian factor model (see Figure 1), latent trait estimates cannot be computed (see

Maydeu-Olivares, 1999; Maydeu-Olivares & Brown, in press). When the model is

reparameterized as a first order model, the residual error variances of the latent

response variables are no longer zero (see Figure 2), enabling latent trait estimation.

In addition, the reparameterization provides some valuable insights into the character-

istics of the model and facilitates the formulation of important descriptors of any IRT

model, such as item characteristic functions (ICFs) and information functions.

The reparameterization involves writing the second-order factor model obtained

from Equations (5) and (6),

y� ¼ A lt þ Kgþ eð Þ ¼ Alt þ AKgþ Ae; ð7Þ

as the first-order model,
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Figure 2. IRT representation of a Thurstonian model for a short questionnaire with three
traits and three blocks of three items
Note. IRT ¼ item response theory.
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y� ¼ �cþ K
^

gþ e
^
: ð8Þ

The reparameterized model (8) involves

1. A structured (p 3 ~n)3 d matrix of factor loadings

K
^

¼ AK ð9Þ

2. A structured (p 3 ~n) 3 (p 3 ~n) covariance matrix of the unique pairwise

errors e
^ ¼ Ae with covðe^Þ ¼ W

^ 2

; where

W
^ 2

¼ AW2A0 ð10Þ

3. An unrestricted (p 3 ~n) 3 1 vector of thresholds

c ¼ �Alt ð11Þ

That is, we do not impose the restriction (11) on c. This is because in IRT applications,

the means lt of the latent utilities are not of interest. We will therefore be estimating

an unrestricted vector of thresholds c leading to a considerably less constrained model.

To illustrate the structure imposed by the model on the matrices K
^

and W
^ 2

, we

return to our previous example of a very short forced-choice questionnaire measuring

d ¼ 3 latent traits with p ¼ 3 blocks of n ¼ 3 items. For this example,

K
^

¼

k1 �k2 0

k1 0 �k3

0 k2 �k3

k4 �k5 0

k4 0 �k6

0 k5 �k6

k7 �k8 0

k7 0 �k9

0 k8 �k9

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

; ð12Þ

whereas

W
^2

¼

w
2

1 þw
2

2

w2

1 w2

1þw2

3

�w2
2 w2

3 w2
2 þw2

3

0 0 0 w2
4 þw2

5

0 0 0 w2
4 w2

4þw2
6

0 0 0 �w2
5 w2

6 w2
5 þw2

6

0 0 0 0 0 0 w2
7þw2

8

0 0 0 0 0 0 w
2

7 w
2

7 þw
2

9

0 0 0 0 0 0 �w
2

8 w
2

9 w
2

8 þw
2

9

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

: ð13Þ
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It can be seen in Equation (12) that pairs involving the same item share a factor

loading of the same magnitude on the respective trait. As forW
^ 2

, it is a block diagonal

matrix: Unique errors of pairs related to the same item within a block are correlated.

The pattern of within-block covariances does not depend on the number of latent traits

but on the number of items in the block. Importantly, not all uniquenesses are inter-

correlated but only those related to the same items. This becomes apparent in blocks

of four or more items where, for example, unique error of binary outcome {A, B} is

not correlated with the error of outcome {C, D}.

Figure 2 shows the reparameterized model for our example with three traits and

nine binary outcomes. There are no latent utilities, and the traits are linked directly

to the latent response variables underlying the binary outcomes. Because, by construc-

tion, each binary outcome is the result of comparing two items from different dimen-

sions and because each item is assumed to measure only one trait, the model implies

that each binary outcome depends only on two traits. This is true regardless of the

number of items per block, the number of blocks, or the number of latent traits

involved in any given forced-choice test.

It can be seen that there are nine binary outcomes in Figure 2, each depending on

two traits; therefore, 18 factor loadings are involved. However, nine constraints are

imposed on these factor loadings. For example, the loading involving binary outcome

{i2, i3} on Trait 2 is constrained to be equal to the loading of outcome {i1, i2} on Trait

2, but with the signs reversed. These two loadings are of opposite signs because Item 2

is the first element of the directional pair {i2, i3}, whereas it is the second element of

the directional pair {i1, i2}.

Furthermore, the residual errors of the latent response variables y) are structured.

The residual error variance associated with a binary outcome equals the sum of resid-

ual error variances of utilities of the two items involved in the pair. The residual errors

of latent response variables involving the same item are correlated. For instance, there

are correlated errors between latent response variables {i1, i2} and {i1, i3} because

these are pairs obtained by comparing Item 1 to other items in the block. Both of these

outcomes will be influenced by the unique factors of the utility of Item 1, sharing com-

mon variance that is not accounted for by the latent trait.

To summarize, for MFC questionnaires measuring d traits using p blocks of n items

each, the model presented here involves d first-order common factors (the latent traits)

and p3 ~n binary outcomes, and each binary outcome depends on two traits. In contrast,

when expressed as a second-order Thurstonian factor model, it involves m ¼ p 3 n

first-order factors (the utilities) and d second-order factors (the latent traits).

Identification of Thurstonian IRT Models for Forced-Choice Questionnaires

The reparameterized IRT model is algebraically equivalent to the Thurstonian factor

model, thus yielding the same number of parameters and requiring exactly the same

identification constraints. For a single ranking task, Maydeu-Olivares and Böckenholt

(2005) suggested the following constraints to identify the model: (a) fixing all factor

loadings involving (arbitrarily) the last item to 0 (kni ¼ 0 for all i ¼ 1, . . ., d) and (b)
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fixing the unique variance of the last item to 1, w2
n ¼ 1. These identification con-

straints are needed to set the scale origin for factor loadings and for the uniquenesses

because of the comparative nature of the data. To set the scale for the latent traits, their

variances are simply set equal to one.

In the case of a multidimensional model involving several blocks of items each

measuring a single trait (i.e., forced-choice questionnaire model), the identification

constraints are simpler than in the case of a single block. The model is identified sim-

ply by imposing a constraint among the uniquenesses within each block. Arbitrarily,

we suggest fixing the uniqueness of the last item in each block to 1. For example, to

identify the Thurstonian IRT model depicted in Figure 2, we impose the following

constraints: w2
3 ¼ 1; w2

6 ¼ 1, and w2
9 ¼ 1:

This general identification rule is valid in all but two special cases: (a) when n ¼ 2

and d > 2 (i.e., items presented in pairs measuring more than 2 traits) and (b) when

d ¼ n ¼ 2 (only two traits are measured using pairs of items). In Case (a), no

item uniqueness w2
i can be identified. They can be set equal to 0.5, so that

w
^2

l ¼ w2
i þ w2

k ¼ 1: Case (a) is discussed in more detail in Appendix A. Regarding

Case (b), all item uniquenesses need to be fixed as in the case above. In addition,

each binary outcome will depend on both traits involved, the factor loading matrix

contains no zero elements, and the model is essentially an exploratory factor model.

To avoid the indeterminacy problem in this case, it is sufficient to fix the two factor

loadings of the first pair. For a model with three or more traits, no such constraints are

needed because there are sufficient numbers of zero elements in each column and row

of the factor loading matrix.

Item Characteristic Function

Because the latent traits g and the unique factors e are normally distributed, the latent

response variables y) are also normally distributed, and the ICF is that of a normal

ogive model with some special features. Indeed, it follows from Equation (4) and

Equation (8) that the conditional probability of preferring Item i over Item k is

Pr yl ¼ 1 gjð Þ ¼ U
�cl þ k

^
9

lgffiffiffiffiffi
w
^2

l

q

0

B@

1

CA; ð14Þ

whereU xð Þ denotes the cumulative standard normal distribution function evaluated at

x, cl is the threshold for binary outcome yl, k
^
9

l is the 1 3 d vector of factor loadings,

and w
^2

l ¼ w2
i þ w2

k is the uniqueness of the latent response variable y�l : Because we

assume that each item only measures one trait (K is an independent clusters solution),

each binary outcome only depends on two traits. As a result, the ICF for the binary

outcome variable yl, which is the result of comparing Item i measuring Trait ha and

item k measuring trait hb, is
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Pr yl ¼ 1 ga;j gbð Þ ¼ U
�cl þ kiga�kkgbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
i þ w2

k

q

0

B@

1

CA: ð15Þ

Equation (15) describes the ICF using a threshold/loading parameterization. This is

simply a standard two-dimensional normal ogive IRT model for binary data except

that (a) factor loadings are structured so that every binary outcome yl involving the

same item will share the same factor loading, (b) uniquenesses of latent response var-

iables are structured so that they equal the sum of uniquenesses of the two items

involved, and (c) the ICFs are not independent (local independence conditional on

the latent traits does not hold). Rather, there are patterned covariances among the

errors e
^
—see matrix (13).

Now, letting

al ¼
�clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

i þ w2

k

q ; bi ¼
kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2

i þ w2

k

q ; bk ¼
kkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2

i þ w2

k

q ; ð16Þ

the ICF (Equation 15) can be written in an intercept/slope form as

Pr yl ¼ 1 ga;gbjð Þ ¼ U al þ biga � bkgbð Þ: ð17Þ

Information functions can be more easily expressed as a function of intercepts (a)

and slopes (b) than as a function of thresholds (c), factor loadings (k), and unique-

nesses (w2), and we do so in this article. However, the reader must bear in mind

that the intercepts and slopes are not mathematically independent parameters (except

in the case of n ¼ 2). Rather, they are functions of the smaller set of thresholds, factor

loadings, and uniquenesses parameters.

Estimation of Thurstonian IRT Models for Forced-Choice Questionnaires

IRT models are most often estimated using full information maximum likelihood

(ML). For models describing forced-choice questionnaires, such estimation is not fea-

sible because of the presence of local dependencies (when n > 2). However, the Thur-

stonian IRT model described here can be straightforwardly estimated using limited

information methods. First, the sample thresholds and tetrachoric correlations are esti-

mated. Then, the model parameters are estimated from the first stage estimates by

unweighted least squares (ULS) or diagonally weighted least squares (DWLS). In

practice, differences between using ULS or DWLS in the second stage of the estima-

tion procedure are negligible (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). All

models in this article are estimated with Mplus using the DWLS estimator with mean

corrected Satorra–Bentler goodness-of-fit tests. Note that this estimation procedure is

denoted as WLSM estimation in Mplus.

When the number of items per block is greater than two, a correction to degrees of

freedom is needed when testing model fit. This is because for a ranking block there are
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r ¼ n(n – 1)(n – 2)/6 redundancies among the thresholds and tetrachoric correlations

estimated from the binary outcome variables (Maydeu-Olivares, 1999). For instance,

there is r ¼ 1 redundancy in every block of three items, and there are r ¼ 4 redun-

dancies in every block of four items. With p ranking blocks in the questionnaire, the

number of redundancies is p 3 r. Thus, when n > 2, one needs to subtract p 3 r from

the degrees of freedom given by the modeling program to obtain the correct p value

for the test of exact fit. Goodness-of-fit indices involving degrees of freedom in their

formula, such as the root mean square error of approximation (RMSEA), also need to

be recomputed using the correct number of degrees of freedom. When n ¼ 2, no

degrees of freedom adjustment is needed; the p value and RMSEA printed by the pro-

gram are correct.

Latent Trait Estimation

Once the IRT model parameters have been estimated, scores on the latent traits for

individuals can be estimated using their pattern of binary outcome responses. There

are three popular procedures for latent trait estimation: ML, expected a posteriori

(EAP), and maximum a posteriori (MAP) estimation (Embretson & Reise, 2000).

Our focus will be on the MAP estimator, which maximizes the mode of the posterior

distribution of the latent traits, as it is the method implemented in Mplus, the software

used throughout this article. The posterior distribution is obtained by multiplying the

joint likelihood of the binary outcome responses by the density of the population dis-

tribution, which is standard multivariate normal in the model considered here. The

MAP estimator exists for all response patterns, is more efficient than the ML estimator

when a small number of items is involved (and in personality questionnaires the num-

ber of items per trait is generally small), but is known to produce estimates biased

toward the population mean (see Embretson & Reise, 2000).

To evaluate the joint likelihood of the binary outcomes pattern, it is assumed that

the binary outcomes are independent given the latent traits. We know, however, that in

Thurstonian IRT models structured dependencies exist between the error terms within

blocks of three or more items. Effects of ignoring these dependencies on the latent trait

estimates have been shown to be negligible in applications involving a single ranking

task (Maydeu-Olivares & Brown, in press), and they are likely to be even smaller in

forced-choice questionnaires where blocks are smaller and there are fewer local

dependencies per item. Throughout this article, we will use the simplifying assump-

tion that the ICFs for the binary outcomes are locally independent. Note that this sim-

plifying assumption is only employed for latent trait estimation, not for item

parameter estimation.

Information Functions and Reliability Estimation

In IRT, unlike in classical scoring, the precision of measurement depends on the latent

traits and therefore is not the same for all respondents. The precision of measurement

is provided by the test information function IðgÞ, which is computed from item
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information functions Il gð Þ: Recall that in forced-choice questionnaires, the ‘‘items’’

referred to when describing item information are the binary outcomes of pairwise

comparisons between the questionnaire items.

The item information function is computed in a manner similar to its one-dimen-

sional IRT counterpart, except that because each binary outcome depends on two

dimensions, the direction of the information must be also considered (Ackerman,

2005; Reckase, 2009). Let Pl gð Þ ¼ Pr yl ¼ 1 ga;gbjð Þ; a be a vector of angles to all

d axes that defines the direction from a point g, and raPl gð Þ be the gradient

(directional derivative) in direction a, which is given by the following (Reckase,

2009):

raPl gð Þ ¼ qPl gð Þ
qg1

cos a1 þ
qPl gð Þ
qg2

cos a2 þ � � � þ qPl gð Þ
qgd

cos ad : ð18Þ

Then, the definition of item information in the multidimensional case is generalized

to accommodate the change in slope with direction taken from a point in the latent trait

space:

Ia
l
gð Þ ¼ raPl gð Þ½ �2

Pl gð Þ 1� Pl gð Þ½ � : ð19Þ

Because each binary outcome depends on two latent traits, in the above expression

directional derivatives for all but the two relevant dimensions will be 0. Therefore, for

each binary outcome, we consider two directions of information: one along the axis ha

and another along the axis hb. When computing the information in direction ha, the

angle to ha is 08 and therefore cos(aa) ¼ 1, whereas the angle to hb is determined

by the correlation between ha and hb so that cos(ab) ¼ corr(ha, hb)—see Bock

(1975).

Using the intercept/slope parameterization of Equation (17), the directional deriv-

atives with respect to ha and hb are simply

qPl ga;gbð Þ
qga

¼ bi/ al þ biga � bkgbð Þ and

qPl ga;gbð Þ
qgb

¼ �bk/ al þ biga � bkgbð Þ;
ð20Þ

where / zð Þ denotes a standard normal density function evaluated at z (McDonald,

1999). It follows from Equations (19) and (20) that the information provided by

one binary outcome about traits ha and hb are, respectively,

Ial ga;gbð Þ ¼ bi � bkcorr ga;gbð Þ½ �2 / al þ biga � bkgbð Þ½ �2
Pl ga;gbð Þ 1� Pl ga;gbð Þ½ � ð21Þ

and
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Ibl ga;gbð Þ ¼ �bkþbicorr ga;gbð Þ½ �2 / al þ biga � bkgbð Þ½ �2
Pl ga;gbð Þ 1� Pl ga;gbð Þ½ � : ð22Þ

Equations (21) and (22) describe the item information surfaces (IISs). Figure 3A and B

displays the item characteristic surface (ICS) for a binary outcome, along with its IISs.

Now, Equations (21) and (22) show that, for binary outcomes involving uncorre-

lated traits, only the derivative in the direction of the trait itself contributes to the

information. However, for binary outcomes involving correlated traits, derivatives

in directions of both traits involved will contribute. For positively keyed items, binary

Figure 3. Item characteristic and item information functions for the binary outcome of com-
parison {i5, i6} for the simulation study with two uncorrelated traits: (A) Item characteristic sur-
face (ICS); (B) Item information surfaces (IIS) in directions of Trait 1 and Trait 2
Note. Item parameters for the binary outcome {i5, i6} in the intercept/slope form: a ¼ .72; b1 ¼ .90;

b2 ¼ .72 (see Table 1).
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outcomes involving positively correlated traits will provide less information than if the

traits were orthogonal. And, for positively keyed items, binary outcomes involving

negatively correlated traits will provide more information than if the traits were

orthogonal. These properties, as we will see, have important implications for test

design.

Assuming local independence, the total information about trait ha is a sum of all

information functions from binary outcomes independently contributing to the mea-

surement of this trait:

Ia gð Þ ¼
X

l

Ial gð Þ: ð23Þ

All the above applies to IRT scores estimated by the ML method. When Bayes

MAP estimation of the latent traits is used, the information given by the prior distri-

bution is added to the ML test information yielding the posterior test information IP gð Þ
(see Du Toit, 2003). In the Thurstonian IRT model, because the latent traits are

assumed to be normally distributed,

IaP gð Þ ¼ Ia gð Þ � q2 ln / gð Þð Þ
q2ga

¼ Ia gð Þ þ -
a
a; ð24Þ

where -
a
a is the diagonal element of the inverted latent trait covariance matrix

U21related to the dimension of interest, ha (see Appendix B for a proof). The standard

Table 1. True Item Parameters for the Short Questionnaire (12 Item Pairs) Using Both Posi-
tively and Negatively Keyed Items: Simulated Example With Two Traits

Threshold/Factor Loading Parameterization Intercept/Slope Parameterization

i mi li c2
i k mk lk c2

k l ¼ i, k αl bi bk

1 −0.44 0.91 0.17 2 −0.1 0.81 0.35 1, 2 −0.47 1.26 1.12
3 −0.77 0.75 0.44 4 0.21 0.73 0.47 3, 4 −1.03 0.79 0.77
5 0.02 0.83 0.31 6 −0.65 0.67 0.55 5, 6 0.72 0.90 0.72
7 0.64 0.94 0.12 8 0.71 0.66 0.57 7, 8 −0.08 1.13 0.79
9 −0.2 0.8 0.36 10 0.69 −0.7 0.51 9, 10 −0.95 0.86 −0.75
11 0.3 −0.72 0.49 12 0.68 0.88 0.23 11, 12 −0.45 −0.85 1.04
13 0.03 0.91 0.17 14 −0.5 −0.79 0.37 13, 14 0.72 1.24 −1.08
15 −0.57 −0.84 0.29 16 −0.57 0.7 0.51 15, 16 0.00 −0.94 0.78
17 0.77 −0.87 0.24 18 0.36 0.79 0.37 17, 18 0.52 −1.11 1.01
19 0.65 0.79 0.38 20 −0.25 −0.7 0.51 19, 20 0.95 0.84 −0.74
21 −0.47 −0.68 0.54 22 −0.62 0.72 0.48 21, 22 0.15 −0.67 0.71
23 −0.21 0.7 0.51 24 0.28 −0.66 0.56 23, 24 −0.47 0.68 −0.64

Note. The order of traits is alternated in the questionnaire to avoid carryover effect, so that in odd pairs the

first item measures Trait 1 and the second measures Trait 2 and in even pairs this order is reversed.
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error (SE) of the MAP-estimated score bga is the reciprocal of the square root of the

posterior test information (in direction of the trait ha),

SE bgað Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
IaP gð Þ

p : ð25Þ

The precision of measurement in IRT, as we can see, is indeed a function of the

latent trait and therefore varies for each respondent. Nevertheless, providing a sum-

mary index of the precision of measurement can be useful, particularly for compar-

ison with classical test statistics and also for predicting expected levels of recovery

of the true latent trait. After the trait scores have been estimated for a sample, these

scores are used as empirical values at which the test information function is evalu-

ated and the SEs are computed. The reliability index based on the estimated scores

for a sample is referred to as empirical reliability (Du Toit, 2003) and is obtained by

computing the observed score variance and the error variance for the sample. Impor-

tantly, estimates of empirical reliability depend on the method by which scores were

computed.

When IRT scores are obtained by the MAPmethod, the posterior test information is

evaluated at the point MAP estimates ðbg1; bg2; . . . ; bgdÞ for each respondent j in a sam-

ple of size N, and the squared SEs are computed as the reciprocal of the test informa-

tion. To compute the sample error variance (related to the precision of measurement of

trait ha), the squared SEs (reciprocals of the posterior test information) are averaged

across the sample

�r2
error

bgð Þ ¼ 1

N

XN

j¼1

1

IaP bgj

� �: ð26Þ

Because the observed score variance is known for the sample (it is simply the variance

of the MAP scores), the true score can be computed as the observed score variance

minus error variance. Therefore, the empirical reliability for the MAP estimated

scores is computed as follows (Du Toit, 2003):

q ¼ r2 � �r2
error

r2
; ð27Þ

where r2 is estimated using the sample variance of the estimated MAP scores, and

r2
error is estimated using Equation (26). Finally, the correlation between the true latent

trait and the estimated latent trait can be estimated as follows:

corr ga;bgað Þ ¼ ffiffiffi
q

p
: ð28Þ

It is important to emphasize that because the classical concept of test reliability has

no direct correspondence in IRT, any estimate of reliability obtained from the test

information is only an approximation. Strictly speaking, the reliability will vary for
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different levels of the latent trait. Reliability estimates would be more accurate and

more descriptive of the sample as a whole when the test information function is rel-

atively uniform.

Simulation Studies

In this section, we report a number of simulation studies performed to investigate how

well item parameters and latent trait scores can be recovered. This is necessary to pro-

vide benchmarks to which similar real-world applications can be compared. First, we

consider an extremely simplified questionnaire with two traits measured by item pairs.

This low-dimensionality example provides an opportunity to look at the graphical

illustrations of ICS and test information functions. Most important, it provides

a benchmark for the precision of the latent trait estimation when no local dependencies

exist. Then, a more realistic model will be considered measuring five traits. For this

model, we manipulate the block size, that is, blocks of two, three, and four items

will be considered.

Simulation 1. A Forced-Choice Questionnaire Measuring Two Traits Using

Item Pairs

The purpose of this simulation study is to show the empirical behavior of the multi-

dimensional Thurstonian IRT model with the smallest number of traits, two. For

example, one can think of measuring global personality factors, such as ‘‘Dynamism’’

and ‘‘Social Propriety,’’ also referred to as ‘‘Getting Ahead’’ and ‘‘Getting Along’’

(Hogan, 1983). Alternatively, any narrow traits can also be measured in this fashion.

Twelve conditions were examined in this simulation study by crossing the follow-

ing factors: (a) keyed direction of items (all positively worded in one condition, or

a mixture of positively and negatively worded items in the other condition—items

are combined in pairs so that half of the comparisons are between items keyed in

the same direction, and half are between items keyed in the opposite directions);

(b) items per trait (12 or 24); and (c) correlation among traits (0, .5, or 2.5). Items

were presented in pairs, so there are p 3 ~n ¼ 12 or 24 binary outcome variables in

the short and long questionnaires, respectively. A total of 1,000 replications were

obtained for each condition. Sample size was 1,000 observations in all conditions.

Table 1 shows the true item intercepts, factor loadings, and uniquenesses for con-

ditions with 12 items per trait (uniquenesses are fixed when only two traits are

involved). The true item parameters were drawn from a uniform distribution: between

.65 and .95 for factor loadings, and between 21 and 1 for thresholds. True unique-

nesses were specified to be w2
i ¼ 1� k

2
i : Such parameters would be typical for stan-

dardized continuous utilities of good items measuring a common factor. For the 24

items per trait, these item parameters are simply duplicated.

To estimate these models, we fixed the loadings for the first two items as well as all

uniquenesses (see the discussion above on identification). These parameters were

Brown and Maydeu-Olivares 479

 at BTCA Univ de Barcelona on May 9, 2011epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


fixed to their true values to compute the bias of the estimates more easily. For com-

pleteness, Table 1 also includes the model parameters in the intercept/slope

parameterization.

Item parameter recovery. For all conditions investigated, Table 2 provides the aver-

age relative bias across the estimated thresholds and factor loadings, as well as the aver-

age relative bias of their SEs. For the intertrait correlations, because some of the

conditions involve true values of 0, we provide instead the mean and standard deviation

of the parameter estimates and the mean of the estimated SEs. It can be seen that item

parameters and their SEs are very accurately estimated when positively and negatively

keyed items are intermixed in a questionnaire. Thresholds are estimated with a relative

bias of about 1%, and factor loadings’ relative bias is smaller than 3%. Also, their SEs

are estimated with a relative bias smaller than 1% and smaller than 3%, respectively.

Similar results are obtained for all values of correlations among the traits.

When only positively keyed items are employed, parameter estimates are unaccept-

able for some conditions, using a cutoff of 10% for relative bias. Particularly, SEs are

unacceptable for all conditions with positive items (although they are considerably

better in the conditions involving the long test). In fact, the number of converged rep-

licas, also reported in Table 2, immediately reveals that there are estimation problems

when all the items are positively keyed.

Latent trait score recovery.We used the first replication in each condition to evaluate

the trait recovery. MAP scores for each latent trait were obtained using Mplus, and

they were correlated with the true latent trait scores. The square of this correlation pro-

vides us an estimate of the actual reliability of the MAP scores for each latent trait—

see Equation (28). These are presented in Table 3 along with the empirical reliability

estimates computed using Equation (27).

The estimated reliabilities are just an averaged result; a more accurate view of the

error of measurement obtained is procured by examining the MAP information func-

tion. Figure 4 provides the MAP test information functions computed in directions of

Traits 1 and 2 for the questionnaires with uncorrelated traits and positively and neg-

atively keyed items.

We see in Table 3 that the actual reliabilities obtained (or equivalently, the latent trait

recoveries, which are the square root of the actual reliabilities) depend clearly on the three

factors experimentally manipulated in this simulation study. For positively keyed items,

none of the latent trait recoveries (and hence actual reliabilities) obtained are acceptable.

Indeed, correlations between MAP scores and true scores are around .35 when the traits

correlate positively, around .6 when they are uncorrelated, and around .79 when they are

negatively correlated. Also, the effect of test length on latent trait recovery is small.

When positively and negatively keyed items are combined in blocks, latent trait

recovery is much more accurate. It is around .87 for the short questionnaire, and

around .92 for the long questionnaire. Figure 5 explains this difference. It shows plots

of the true trait scores versus the estimated MAP scores for the short and the long

questionnaires. There are clear floor and ceiling effects in the case of the short ques-

tionnaire, but these effects disappear in the case of the longer questionnaire. Convert-

ing these correlations into the actual reliabilities shown in Table 3 reveals that in this
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case 12 item pairs provide reliability levels that are considered just acceptable for

a personality questionnaire, and 24 item pairs provide very good reliability indeed.

In applications, true latent traits are not known, and one needs to resort to the

empirical reliability estimate to infer latent trait recovery. Hence, it is of interest to

compare the empirical reliabilities and the actual test reliabilities shown in Table 3.

It can be seen that empirical reliabilities are fairly accurate for the long test, but

they underestimate the true reliability by about .07 or 10% in the short test. This is

most likely because of the variance of the observed score being low—see Equation

(27), which is typical when the MAP estimator is used with a small number of items

(it is biased toward the population mean).

Goodness-of-fit tests. The estimation method used also yields a goodness-of-fit test of

the model to the estimated tetrachoric correlations. Results for these tests are shown in

Table 4. Given that model parameters are poorly estimated when only positively

keyed items are employed, it is not surprising that goodness-of-fit tests in this case

are off as well. The test statistic retains the model more often than it should. The

results for the conditions where positively and negatively keyed items are combined

in blocks are, not surprisingly, much better. For small models, the test statistic main-

tains its nominal rates. For the larger models, it tends to overreject the model, although

very slightly. Interestingly, the condition with 12 pairs and negatively correlated traits

behaves very much like the conditions involving 24 pairs.

Discussion. To understand why the results obtained when all the items are positively

keyed are so poor, we turn to Figure 3A, which depicts the ICS for the binary outcome

involving two positively keyed items from this example. We see in this figure that the

change in the surface’s slope depends on the direction in the trait space. The slope is

Table 3. Test Reliabilities in the Simulation Studies With Two Traits

Keyed Direction Number of True Trait
Actual Reliability Empirical Reliability

of Items Items Per Trait Correlation Trait 1 Trait 2 Trait 1 Trait 2

+ 12 .00 .385 .386 — —
+ 12 .5 .171 .107 — —
+ 12 −.5 .627 .568 — —
+ 24 .00 .402 .438 — —
+ 24 .5 .256 .209 — —
+ 24 −.5 .637 .621 — —
+/2 12 .00 .760 .740 .691 .674
+/2 12 .5 .780 .779 .739 .756
+/2 12 −.5 .747 .725 .665 .645
+/2 24 .00 .842 .843 .842 .840
+/2 24 .5 .851 .859 .871 .877
+/2 24 −.5 .819 .820 .822 .812

Note. The actual test reliability is computed as squared correlation between true scores and maximum

a posteriori score estimates; the empirical reliability is calculated using Equation (26). For the questionnaires

with positive items, the information method is not recommended (see text).
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Figure 4. MAP test information function for the simulation study with two uncorrelated traits.
Information is computed in direction of Trait 1: (A) Short questionnaire with positively and neg-
atively keyed items; (B) Long questionnaire with positively and negatively keyed items
Note. MAP ¼ maximum a posteriori. Darker shading on the graphs signifies the information values more

than 4, corresponding to the test reliability more than .75.

Brown and Maydeu-Olivares 483

 at BTCA Univ de Barcelona on May 9, 2011epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


high in the direction taken from an angle of about 458 toward the positive end of the first

trait (h1) and toward the negative end of the second trait (2h2). It means this binary out-

come contributes a sizeable amount of information to the trait difference score (h1 2

h2). Therefore, pairs where one has to chose between two positively keyed items will

highlight differences in the two latent traits. At the same time, the ICS appears essen-

tially flat in the direction taken from an angle of about 458 toward the positive ends

of both traits. The same pair of items would provide virtually no information on the

a. Short questionnaire with positively and negatively keyed items
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b. Long questionnaire with positively and negatively keyed items
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Figure 5. Scatterplot of MAP estimated trait scores versus true latent trait scores for the sim-
ulation study with two uncorrelated traits: (A) Short questionnaire with positively and nega-
tively keyed items; (B) Long questionnaire with positively and negatively keyed items.
MAP ¼ maximum a posteriori.
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sum score (h1 + h2) of the two latent traits. Therefore, this binary outcome provides

information on the relative position of the two underlying trait scores but not on their

absolute locations. When all binary outcomes provide information on the relative posi-

tion of the traits but no binary outcome provides information toward their absolute loca-

tion, trait recovery score is poor, and item parameter recovery is poor as well. This

problem is aggravated even further when the measured traits are positively related to

each other. This is because the information provided by the binary outcome is lower

in this situation, as can be seen from Equations (21) and (22). On the other hand, in

the case of negatively correlated traits, binary outcomes provide more information.

In contrast, pairs including items keyed in opposite directions add information

about the traits’ sum. Thus, in the conditions marked as +/2 in Tables 2 to 4 in which

some pairs consist of positively keyed items and some pairs of items keyed in opposite

directions, we obtain information about the traits’ difference and their sum, thus being

able to locate both traits. This is why latent trait recovery and item parameter recovery

are so much better in these conditions.

We have to conclude that when measuring two traits, the forced-choice design with

items keyed in the same direction is not recommended. When traits are negatively cor-

related, the recovery of scores is better but still falls short of acceptable levels. In con-

trast, latent trait estimation can be precise when both positively and negatively keyed

items are combined in the same blocks. Relationships between the traits do not affect

the effectiveness of the IRT score estimates in this case. We suggest combining pos-

itive and negative items (making positive–positive item pairs, positive–negative item

pairs, and negative–positive item pairs) to locate the absolute trait scores in all appli-

cations with two dimensions. Combining negative items with negative should be

avoided because it provides the same information as positive items, but can be confus-

ing for respondents. Finally, when combining positively and negatively keyed items,

Table 4. Goodness-of-Fit Results for the Simulation Studies With Two Traits

Keyed
Direction
of Items

Number of
Items

Per Trait

Correlation
Between
Traits

Degrees
of

Freedom
c
2

Mean c
2SD .01 .05 .10 .20

+ 12 .00 43 36.88 7.73 .000 .009 .018 .050
+ 12 .5 43 38.26 8.16 .004 .012 .034 .076
+ 12 −.5 43 36.39 7.91 .000 .005 .016 .043
+ 24 .00 229 217.84 20.36 .001 .012 .033 .093
+ 24 .5 229 221.93 20.55 .006 .021 .049 .115
+ 24 −.5 229 215.18 20.44 .000 .011 .027 .071
+/2 12 .00 43 43.37 9.51 .016 .049 .105 .206
+/2 12 .5 43 42.66 9.32 .010 .041 .093 .185
+/2 12 −.5 43 44.00 10.19 .018 .079 .146 .260
+/2 24 .00 229 232.09 24.57 .026 .078 .150 .261
+/2 24 .5 229 233.09 25.25 .032 .074 .137 .261
+/2 24 −.5 229 232.51 23.01 .027 .071 .134 .240

c
2 Rejection Rates
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as few as 12 item pairs can be used to obtain reliability levels of around .75. If higher

precision of measurement is required, more item pairs should be used. Also, on the

basis of this example, we tentatively conclude that the empirical reliability estimates

give fairly accurate results, more so for longer questionnaires.

Simulation Study 2. A Forced-Choice Questionnaire Measuring Five Traits

Using Blocks of Different Sizes

The main purpose of this simulation is to investigate the effect of using different block

sizes. Six conditions were investigated by crossing (a) keyed direction of items (all

positively worded or both positively and negatively worded so that there are equal

numbers of outcomes of each type) and (b) block size (two, three, or four items per

block). For each condition 1,000 replications were obtained. Sample size was 1,000

observations in all conditions. Twelve items were used per dimension. The same val-

ues used in the previous simulation (shown in Table 1) were also used here. The true

correlations among the latent traits were set to values reported for the Big Five factors

measured in the Neuroticism, Extraversion, Openness to Experience Personality

Inventory–Revised (NEO PI-R; Costa & McCrae, 1992): 2.21, 0, 2.25, 2.53, .40,

0, .27, 0, 0, .24 for Traits 1 and 2, Traits 1 and 3, and so on.

The number of traits in this example allows combining various numbers of items in

each block, still keeping the pure MFC design. We will investigate the three most pop-

ular forced-choice formats: blocks of 2 items (pairs), blocks of 3 items (triplets), and

blocks of 4 items (quads). For each of these formats, a questionnaire was designed

where no items from the same dimension were presented in the same block, using

all 12 items per trait, 60 items in total. The questionnaire with pairs consisted of

60/2 ¼ 30 blocks, the questionnaire designed with triplets consisted of 60/3 ¼ 20

blocks, and the questionnaire designed with quads consisted of 60/4 ¼ 15 blocks.

Design 1: Blocks of two items (pairs). In the first questionnaire design with blocks of

n ¼ 2 items, we measure d ¼ 5 traits with m ¼ 60 items (12 items per trait), and the

number of blocks is p ¼ 30. Each block produces ~n ¼ 1 binary outcome, therefore

the total number of binary outcomes is p 3 ~n ¼ 30, and each trait is measured by 12

binary outcomes. To identify this model, all uniquenesses have to be fixed, but no

equality constraints on factor loadings are required (see the section on identification

of Thurstonian IRT models above). The degrees of freedom do not need to be adjusted

as there are no redundancies in blocks of 2 items.

The model estimation proceeded successfully for 954 replications when positive

items only were used and for all 1,000 replications when both positive and negative

items were combined in blocks. Both versions yielded correct empirical rejection rates

for the chi-square tests (see Table 5 for goodness-of-fit statistics results). Item param-

eters and trait correlations were estimated accurately (see Table 6 for parameter esti-

mation statistics). The correlations between traits were positively biased by about 12%

for the model with all positive items, but for the model with both positive and nega-

tively keyed items they were recovered to a very high degree of accuracy. In the ques-

tionnaire with all items being positively keyed, the SEs of correlations were negatively
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biased by about 30%, the item loadings’ SEs were negatively biased by about 20%,

and the item thresholds’ SEs were negatively biased by about 10%. In the question-

naire with positive and negatively keyed items SEs had negligible bias.

We consider the first replication to evaluate how well the true scores were recov-

ered in this example. The true scores and MAP scores correlated on average at .822 for

the questionnaire with all positive items and at .889 for the questionnaire combining

both positive and negative items. When these correlations are converted into estimates

of reliability using Equation (28), they yield reliabilities just less than .7 for the pos-

itively keyed items design and at around .79 for the positive/negative item design (all

reliabilities are reported in Table 7).

Table 6. Average Relative Bias for Parameter Estimates and Standard Errors in the Simulation
Studies With Five Traits

Block Keyed Direction
Correlations Loadings Thresholds Uniquenesses

Size of Items Estimate SE Estimate SE Estimate SE Estimate SE

2 + .117 −.306 .011 −.212 .013 .131 Fixed Fixed
+/− .006 −.012 .020 −.027 .014 −.015 Fixed Fixed

3 + .102 −.153 −.001 −.103 .007 .000 .018 −.024
+/− .006 −.018 .015 −.015 .008 −.004 .020 −.022

4 + .095 −.141 −.004 −.107 .001 −.010 .006 −.026
+/− .006 −.015 .011 −.010 .005 −.007 .010 −.023

Note. Uniquenesses are fixed for the design with pairs to identify the model.

Table 7. Test Reliabilities in the Simulation Studies With Five Traits

Keyed Direction
Dimension

Block Size of Items Reliability 1 2 3 4 5

2 + Actual .698 .664 .648 .689 .683
Empirical .717 .603 .576 .707 .663

+/− Actual .772 .811 .783 .798 .786
Empirical .709 .771 .747 .754 .761

3 + Actual .767 .752 .710 .735 .762
Empiricala .904 .862 .852 .879 .875

+/− Actual .849 .872 .859 .872 .863
Empiricala .885 .878 .873 .880 .878

4 + Actual .767 .744 .710 .764 .774
Empiricala .922 .892 .880 .917 .915

+/− Actual .878 .889 .880 .894 .895
Empiricala .920 .918 .914 .917 .918

Note. The actual test reliability is computed as squared correlation between true scores and maximum

a posteriori score estimates; the empirical reliability is calculated using Equations (27) and (26).

a. For blocks of three or four items, empirical reliability is computed using a simplifying assumption of local

independence.
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The test information functions and the average squared errors were also computed

for this replication and turned into the reliability estimates using Equation (27). Com-

paring these empirical reliability estimates presented in Table 7 with the actual reli-

abilities, we can see that for both designs the information method slightly

underestimates the reliability, on average, by about 5%. This is likely because of

the relatively small number of binary outcomes per trait (Equation 12), leading to

a substantial ‘‘compression’’ of the MAP score and consequently small observed score

variance.

We conclude that in a forced-choice application with five traits, the design with 30

positively keyed item pairs would fall slightly short of the measurement precision that

is typically required. However, the questionnaire can be sufficiently precise when both

positive and negative items are combined in blocks. In this design with pairs, we also

note that only 12 binary outcomes per trait are produced. Increasing the number of

binary outcomes should lead to a higher measurement precision. This can be achieved

in two ways: by increasing the number of items per trait or by simply changing the

questionnaire format to blocks of 3 or 4 items, drawing them from the same item

pool. Next, we turn to the design using the same 60 items combined in blocks of 3.

Design 2: Blocks of three items (triplets). In this case, the questionnaire consists of the

same m ¼ 60 items used in the previous design but presented in p ¼ 20 triplets (n ¼
3). The items are arranged into triplets so that all 10 permutations of three out of five

traits are equally represented. This makes each subset of three traits appear exactly

two times in the questionnaire. Each block produces ~n ¼ 3 binary outcomes, therefore

the total number of binary outcomes in this model is p 3 ~n ¼ 60, and each trait is

measured by 24 binary outcomes.

To identify this model, one item’s uniqueness per block has to be fixed, but no con-

straints on factor loadings are required. The degrees of freedom in this case need to be

adjusted because there are 20 redundancies in 20 blocks of three items (1 redundancy

per block).

The estimation proceeded successfully for both versions (with positively keyed

items only and with positively and negatively keyed items) for all replications. Empir-

ical rejection rates for the chi-square, however, are much higher than expected (see

Table 5); therefore models of this kind will be rejected more often than they should

based on the test of exact fit. All item parameters were estimated very accurately,

with negligible bias (see Table 6). The correlations between traits were positively

biased by about 10% for the questionnaire with positive items, but they were recov-

ered very accurately for the questionnaire with positive/negative items. In the ques-

tionnaire with all positive items the SEs of correlations were negatively biased by

about 15%, and the SEs of item loadings were negatively biased by about 10%.

We consider the first replication to evaluate how well the true scores were recov-

ered for both versions of the questionnaire. It has been shown that MAP estimation

using the simplifying assumption of local independence provides very accurate results

even when this assumption is violated in blocks of three or more items (Maydeu-

Olivares & Brown, in press). In the current design, the true scores and MAP scores

correlated on average at .863 for the questionnaire with all positive items and at .929
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for the questionnaire combining positive and negative items. Converting these correla-

tions into estimates of reliability using Equation (28), we obtain reliabilities of about .75

for the positive items design and of about .86 for the positive/negative items design (see

Table 7). The test information functions and the average squared errors were turned into

the reliability estimates using Equation (27), yielding figures of about .87 for the pos-

itively keyed items design and of about .88 for the positive/negative items design.

We can see that the information method is very accurate in estimating the reliabilities

for the questionnaire with positive and negative items, despite ignoring the correlated

uniquenesses in this triplet forced-choice design and making a simplifying assumption

of local independence. The very minor overestimation of about 2% is totally acceptable

in practice.

However, the information method overestimates the reliability by about 17% for

the design with positive items only. This is because positively keyed items on their

own, as was explained above, are good at recovering the differences between the traits

but not their sums and therefore have limits in recovering the traits’ absolute locations.

There is a clear improvement in the trait recovery compared with the example with

two traits; however, this improvement is because of the increased number of traits

(we will expand this point in the discussion) and not the increased number of binary

outcomes. Adding binary outcomes of comparisons between positively keyed items is

unlikely to improve the trait recovery further, as we will see in the design with quads.

We conclude that in a forced-choice application with five traits, 20 triplets can pro-

vide sufficient measurement precision. Particularly, the questionnaire combining both

positive and negative items within blocks provides very good levels of measurement

accuracy.

Design 3: Blocks of four items (quads). Our next design consists of p ¼ 15 blocks of

n ¼ 4 items (quads), using the same 60 items as in the previous examples. The items

are arranged into quads so that all five permutations of four out of five traits are

equally represented. This makes each subset of four traits appear exactly three times

in the questionnaire. Each block produces ~n ¼ 6 binary outcomes, therefore the total

number of binary outcomes in this model is p3 ~n ¼ 90, and each trait is measured by

36 binary outcomes. Note that here we assume that full rankings are performed in each

block (not the ‘‘most’’–‘‘least’’ incomplete ranking), and therefore there are no miss-

ing data involved.

To identify this model, one item’s uniqueness per block has to be fixed, but no con-

straints on factor loadings are required. The degrees of freedom in this case need to be

adjusted because there are 60 redundancies in 15 blocks of four items (4 redundancies

per block). The estimation proceeded successfully for both positive and positive/neg-

ative questionnaire versions for all 1,000 replications. Similarly to the model with trip-

lets, empirical rejection rates for the chi-square are much higher than expected (see

Table 5). All item parameters were estimated very accurately (see Table 6). The trait

correlations were positively biased by about 10% for the questionnaire with positive

items, but they were recovered very accurately for the questionnaire with positive/

negative items. In the questionnaire with all positive items, the SEs of correlations
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were negatively biased by about 14%, and the SEs of item loadings were negatively

biased by about 10%.

Again, we consider the first replication to evaluate how well the true scores were

recovered. Although the trait recovery has not improved compared with the triplet

design for the questionnaire with all positive items (the true scores and MAP scores

correlated on average at .87), it has improved even further to the impressive average

of .94 for the questionnaire combining both positive and negative items. Converting

these correlations into estimates of reliability using Equation (28), we obtain reliabil-

ities of about .75 for the positively keyed items design and of about .89 for the posi-

tive/negative item design (see Table 7). The empirical reliability estimates were .91

for the positively keyed items design and .92 for the positive/negative item design.

Thus, the information method is again accurate in estimating the empirical reliabilities

for the questionnaire with positive and negative items, despite ignoring correlated

errors in this forced-choice design with quads and making a simplifying assumption

of local independence. The information method makes a very minor overestimation

of around 3%, which would be considered acceptable in practice.

We conclude that in a forced-choice application with five traits, the design with 15

quads can provide sufficient measurement precision, particularly for the questionnaire

combining both positive and negative items within blocks.

An Empirical Application: A Big Five Questionnaire Con-

structed From International Personality Item Pool (IPIP)

Items

To create a real forced-choice questionnaire, we used one of the designs described in

the simulated Big Five example above as a template. Items were drawn from the IPIP

(n.d.), more specifically from its subset of 100 items measuring the Big Five factor

markers (Goldberg, 1992). Note that constructs measured by this questionnaire are

not the same as in the NEO PI-R, and therefore correlations between the five traits

are expected to be different from those used in the simulation study with five traits.

We selected 60 items so that 12 items would measure each of the five marker traits.

We chose the triplet design from the simulation study above, with 8 positively and 4

negatively keyed items per trait combined in a way that equal number of pairwise

comparisons occur between items keyed in the same direction and items keyed in

opposite directions.

Each block of the questionnaire was presented in two formats. First, participants

rated the three items using a 5-point rating scale suggested by Goldberg (1992), rang-

ing from ‘‘very accurate’’ to ‘‘very inaccurate.’’ This single-stimulus presentation was

immediately followed by the forced-choice presentation, where the participants were

asked to select one ‘‘most like me’’ item and one ‘‘least like me’’ out of the same

block of three items. Two formats were used to compare trait scores as estimated

from the single-stimulus and forced-choice formats.
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A total of 438 volunteers from the United Kingdom completed the questionnaire

online in return for a feedback report. Out of 433 participants who provided demo-

graphic information, 48.4% were male and 51.6% were female. Age ranged from

16 to 59 years with a mean of 33.3 and a standard deviation of 10.37 years. The largest

ethnic group was White (64%), followed by Asian (18%) and Black (6.6%). Most par-

ticipants were employed (55%), 23% were students, and 14% were unemployed.

First, the single-stimulus version of the questionnaire was analyzed. We fitted the

multidimensional version of the normal ogive graded response model (Samejima,

1969) to the item responses for all five traits simultaneously, using the ULS estimation

in Mplus. The five latent traits were allowed to correlate freely. The model fit was rel-

atively poor with c
2 3621.59 on 1,700 degrees of freedom (p < .001), RMSEA ¼

.051. Fitting the model one scale at a time revealed that the scale Openness had its

items loading on two dimensions (namely, imagination and preference for complex

and abstract material). The scale Conscientiousness had two items with highly similar

content (preference for order) that shared common variance not explained by the main

factor. Other scales were broadly one dimensional and showed good fit indices when

tested on their own. However, we chose to proceed with the Big Five model without

any modifications to estimate the model parameters and compute the MAP scores for

individuals. The estimated correlations between the five traits are given in Table 8

(above the diagonal).

Next, the forced-choice questionnaire was analyzed. After coding the forced-

choice rankings as binary outcomes, the five-dimensional IRT model with freely cor-

related latent traits was fitted to these data in Mplus, also using the ULS estimation.

One item’s uniqueness per block was fixed for identification. The forced-choice

model yielded a better fit than the single-stimulus model: a c
2 of 2106.06 on 1,640

degrees of freedom, RMSEA ¼ .025 (degrees of freedom and RMSEA are corrected

for the number of redundancies in the model, i.e., 20). The estimated correlations

between the five dimensions in this model are given in Table 8 (below the diagonal).

It can be seen that these correlations are very similar to the trait correlations estimated

from the single-stimulus data for all but one correlation. The correlation between traits

Agreeableness and Openness is higher for the single-stimulus version (.41) than for

the forced-choice version (.15).

The MAP estimated trait scores for individuals based on single-stimulus and

forced-choice responses correlated strongly, with correlations ranging from .69 for

Agreeableness to .82 for Extraversion (see Table 9). Scale empirical reliability esti-

mates for the forced-choice data were computed based on the IRT information method

described above. Reliability estimates for the single-stimulus data were also computed

using Equations (26) and (27). The reliability estimates ranged from .775 to .844 for

the single-stimulus data and from .601 to .766 for the forced-choice data (see Table 9).

It can be seen that the rank order of scales in terms of their reliability is the same for

both formats, however, the reliabilities are lower by about .1 for the forced-choice for-

mat. Clearly, responses to 60 items using the ordinal 5-point scale provided more

information than 60 binary outcomes of rankings.
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Also, the reliability estimates in this application are lower than those obtained in

the simulation study with five traits and the same triplet design. This is because of gen-

erally lower item loadings found in this application than those used in the simulation.

For most items, standardized factor loadings found in the single-stimulus version of

the IPIP Big Five questionnaire were between .5 and .7, whereas they were between

.65 and .95 in the simulated examples. The nature of the broad marker traits in this

application meant that the factor loadings were lower than would be typically found

in a questionnaire with more narrowly defined traits.

Discussion

In this article, we introduced a Thurstonian IRT model suitable for modeling

responses to MFC questionnaires with dominance items. The model proposed here

is an IRT formulation of the Thurstonian second-order factor model for comparative

data introduced in Maydeu-Olivares and Böckenholt (2005) applied to the problem at

hand. The model enables straightforward estimation of individual trait scores and test

information functions. The proposed estimation method is extraordinarily fast and

capable of handling models of any size. As such, we have successfully managed to

estimate models with 32 traits. Provided the model is not too large (15 traits each

Table 8. Estimated Correlations Between the Big Five Markers Based on the Single-Stimulus
and Forced-Choice Questionnaires in the Empirical Example, N ¼ 438

N E O A C

Neuroticism (N) 1 −.44 (.04) −.49 (.04) −.37 (.05) −.33 (.05)
Extraversion (E) −.40 (.06) 1 .52 (.04) .49 (.04) .29 (.05)
Openness (O) −.48 (.07) .48 (.06) 1 .41 (.05) .31 (.05)
Agreeableness (A) −.40 (.08) .41 (.07) .15 (.08) 1 .30 (.05)
Conscientiousness (C) −.30 (.07) .23 (.07) .35 (.07) .31 (.08) 1

Note. The single-stimulus correlation estimates are above the diagonal, the forced-choice estimates are

below the diagonal, the standard errors are in parentheses.

Table 9. Reliabilities and Correlations Between the Single-Stimulus and Forced-Choice Big Five
Trait Scores in the Empirical Example, N ¼ 438.

N E O A C

SS reliability .825 .844 .824 .775 .802
FC reliability .704 .766 .729 .601 .685
Corr (SS, FC) .804 .817 .772 .692 .764

Note.N ¼ Neuroticism; E ¼ Extraversion; O ¼ Openness; A ¼ Agreeableness; C ¼ Conscientiousness;

SS ¼ single-stimulus questionnaire; FC ¼ forced-choice questionnaire. The reliability estimates are

computed by the sample-evaluated information method.
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measured by at most 10 items appears to be the limit with current computing capabil-

ities), SEs and fit indices can be obtained as well.

Simulation studies were performed to investigate the performance of the model

across a variety of forced-choice designs. The simulation studies show that the model

parameters (trait correlations, factor loadings, thresholds, and uniquenesses) are

recovered very accurately from the binary outcomes in all reasonable designs.

Some designs are simply not recommended, such as an unrealistic design involving

exactly two traits using positively keyed items only. The poor results obtained in these

designs do not reflect the limitations of the model or estimation method employed but,

rather, the limitations of the forced-choice format.

The simulation studies also provide important information about the assessment of

model fit. The chi-square statistic provides reasonable empirical rejection rates in all

models where item parameters are accurately estimated, provided the model is not too

large. In models with more than 1,000 degrees of freedom, the chi-square statistic

grossly underestimates the degree of model fit even though item parameters and their

SEs are very accurately estimated. For instance, around 27% of models would be

empirically rejected in the five-factor designs with triplets and around 37% of models

with quads, where only 5% should be rejected.

The designs used in the simulation studies were chosen to answer important ques-

tions about strengths and limitations of forced-choice questionnaires with dominance

items. Despite many discussions in the literature, many of these questions remain con-

troversial as the evidence is largely based on inadequate scoring schemes that assign

consecutive integers to the subjects’ responses leading to ipsative scores on the mea-

sured traits. In addition, much of past research is based on specific questionnaires with

very different properties that preclude meaningful generalization. Results of the sim-

ulation studies in this article have important implications on how forced-choice tests

should be designed and used in the future. We will discuss the most important points

here.

Perhaps the most interesting and much debated question is whether scores based on

relative forced-choice responses can resemble the absolute trait scores. Our research

shows that the true trait scores can be recovered to a high degree of accuracy under

certain conditions. Certainly more items with higher discriminations will, generally

speaking, improve the latent trait recovery, just as it is the case with single-stimulus

questionnaires. However, there are additional important factors specific to the forced-

choice format. These are the following: keyed direction of items, the number of mea-

sured traits, the trait correlations, and block size. We discuss each of these factors in

turn.

Keyed Direction of Items

When the forced-choice design produces binary outcomes from comparing items from

different traits keyed in the same direction and approximately the same number of

binary outcomes from comparing items keyed in opposite directions, the trait recovery

can be good with any number of traits and any trait correlations. This is because items
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keyed in the same direction contribute to the measurement of the difference between

two trait scores, and items keyed in opposite directions contribute to the measurement

of the sum of the two traits involved. When information on the sums and differences of

the traits involved is available, trait scores can be determined accurately because their

absolute value can be located in the traits’ continuum. However, when only differen-

ces between traits are estimated, which is the case in forced-choice designs with items

keyed in the same direction, latent trait and item parameter recovery largely depends

on the number of traits assessed—and this is the next factor in our discussion.

Alternatively, items that measure the same trait can be used together in blocks to

provide information on the latent trait directly, as the binary outcomes of such com-

parisons will depend on only one trait. However, the comparative nature of the forced-

choice format means that the dominance items measuring the same trait will only pro-

vide a sizeable amount of information when their factor loadings are very different

(Maydeu-Olivares & Brown, in press), as it is the case with items keyed in opposite

directions.

One last comment on using negatively keyed items in forced-choice questionnaires

concerns the use of negation. In our experience, responding to forced-choice blocks

involving items with negation can be confusing for respondents; therefore, straight

negation should be avoided and replaced wherever possible with appropriate

synonyms.

Number of Traits

When the number of traits is large, and traits are not strongly positively correlated

overall, any forced-choice designs will reliably locate trait scores provided that suffi-

cient numbers of good quality items are used. That is, it is possible to locate absolute

trait scores using only positively keyed items when the number of traits assessed is

large. Baron (1998) shows that even questionnaires scored using classical methods

leading to ipsative data with all positive items measuring many relatively independent

traits (30 or more) correlate strongly with their single-stimulus counterparts. Why it is

important that traits are relatively independent will be the next point of our discussion.

Our simulation studies show that when assessing only two traits, positively keyed

items on their own cannot recover the absolute latent trait scores. In simulations

involving five factors, where positive and negative correlations between traits were

balanced bringing the average intertrait correlation close to 0, the true score recovery

was good for designs with positive items only (except when blocks of two items were

used, where the number of binary outcomes was not sufficient). How do binary out-

comes measuring only differences between traits provide information on absolute trait

scores when the number of traits is large?

When only two traits are measured, the information about the first trait is condi-

tional only on the second trait (and vice versa). As we can see from Figures 3B, there

is a sizeable amount of information for scores that are similar, for example, (22, 22)

or (2, 2), but virtually no information for scores that are different, for example, (2,22).

There are many combinations of two scores possible that are very different from each
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other. For instance, assuming normally distributed traits that are uncorrelated with unit

variance, trait scores are different by more than 0.5 standard deviation for around 75%

of cases. Therefore for most combinations of latent scores, the test information pro-

vided by such a questionnaire will be very low.

There are much fewer ways in which five trait scores can be different from each

other. Again, assuming uncorrelated normally distributed traits with unit variances,

only 3% of the cases can be expected to have differences greater than 0.5 standard

deviation between all five trait scores. Because the test information about one trait

will be conditional on the other four traits in the five-dimensional case, and because

it is more likely that at least one of those traits will be similar to the target trait, it is

more likely that the information on the target trait will be higher overall. Extending

this logic further, for 30 independent traits, there is less than 0.03% chance that all trait

scores will be different by 0.5 standard deviation or more. In this case, the information

about one trait is conditional on 29 other traits, and because many of them will be sim-

ilar to the target trait, the information will be high for most combinations of scores.

Correlations Between Traits

For a given set of item parameter values, comparing items keyed in the same direction is

more effective when the traits are uncorrelated than when they are positively correlated,

and it is even more effective when they are negatively correlated. This is apparent from

the information functions provided by Equations (21) and (22). For binary outcomes of

comparisons between items measuring uncorrelated traits, only the focus trait contrib-

utes to the information. However, for pairs involving correlated traits, the other trait

involved will also contribute to the information. It will increase the information if cor-

related negatively with the target trait and reduce it if correlated positively.

The intertrait correlations have a major impact on the effectiveness of any forced-

choice questionnaire with positively keyed items. Given the same number of traits, the

lower the average correlation between them the better the true scores are recovered.

For example, in the simulation study with five traits the average off-diagonal trait cor-

relation was 0. In the design with positive items only, reversing the first scale, which

negatively correlated with the rest (imagine turning Neuroticism into Emotional Sta-

bility in the context of the Big Five), would turn the average correlation positive and

significantly worsen the trait recovery.

Block Size

By using blocks of different sizes in the five-factor-model simulation studies, we show

that the same items provide more information by simply combining them in larger

blocks. This is because, given the same number of items, the number of binary out-

comes will increase when the block size increases. For example, 60 items will produce

only 30 binary outcomes when put in blocks of 2, but produce 60 binary outcomes

when put in blocks of 3, and produce 90 binary outcomes when put in blocks of 4.

In other words, using larger blocks is attractive because it saves producing and trialing
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new items, which can be time consuming and expensive. However, increasing block

size increases respondents’ cognitive load as there are ~n ¼ nðn� 1Þ=2 binary compar-

isons to be performed in a block of n items. In practice, blocks of 4 items are probably

the upper limit for forced-choice tests.

To summarize, adhering to the above recommendations (i.e., balancing the number

of traits and their correlations, the direction of items, the number of items, and the

block size) is important for the quality and usefulness of the resulting questionnaire.

Provided these factors have been taken into account, most personality items can be

used in forced-choice questionnaires. Thousands of dominance personality items

have been written and translated to different languages over years. We have shown

how these simple items can be used effectively.

The usefulness of the IRT model proposed here was illustrated in an empirical

study involving a questionnaire measuring the broad Big Five markers, using both rat-

ings and rankings (forced-choice blocks). In applications, results from single-stimulus

questionnaires (i.e., using ratings) are often used as a benchmark to compare with

results obtained from forced-choice questionnaires. However, doing so assumes that

that no systematic biases affect the ratings. Yet extant research (e.g., Bartram,

2007; Van Herk, Poortinga, & Verhallen, 2004) shows that different types of biases

can be present when responses are obtained using ratings. The fact that we obtained

a better model fit in the forced-choice version of the Big Five questionnaire than in

the single-stimulus version might be an indication of some reduction in response

biases when a comparative response format is used. Responding in a socially desirable

manner is often associated with personality traits such as Openness and particularly

Agreeableness. It is possible that inflation of responses to these traits by some individ-

uals is responsible for the much higher correlation between Openness and Agreeable-

ness observed in the single-stimulus version of the IPIP questionnaire application.

We also described a method of estimating the empirical test reliability based on com-

puting MAP information and the average error variance for a scored sample. Reliability

estimates produced by this information method were compared with reliabilities derived

from the correlations between estimated and the true trait scores. In general, our pro-

posed method provides accurate estimates of the reliability coefficients in designs where

increasing the number of binary outcomes improves the latent trait estimation accuracy.

This was the case in the simulation studies with two and five traits where positively and

negatively keyed items were combined together in blocks. In these studies, the informa-

tion method provided sufficiently accurate estimates of test reliability even for triplets

and quads, where the local independence does not hold and the simplifying assumption

of local independence is made for estimating the test information. Ignoring correlated

errors led to a very minor overestimation of reliability—for blocks of three the reliabil-

ity was overestimated by about 2% and for blocks of 4 by about 3%. The reader must

also be aware that for very short questionnaires, the information method might under-

estimate the reliability when the MAP latent trait estimator is used because of the fact

that this estimator ‘‘compresses’’ the scores.

In questionnaires using only positively keyed items, as is shown earlier, the accu-

racy of the latent trait recovery depends heavily on the number of traits assessed. In
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such questionnaires, after a certain precision of latent trait recovery has been reached,

increasing the number of binary outcomes will not improve latent trait recovery fur-

ther. In this case, the information method might overestimate the reliability for blocks

of any size. This is because the addition of binary outcomes does not increase infor-

mation uniformly across the latent trait distribution. Rather, the information function

becomes very picked in areas where latent trait scores are very similar to each other

and is almost zero elsewhere. In this situation, the information method to estimate the

reliability fails to reflect very varied levels of test information at different trait scores.

Thus, the information method of computing reliability is recommended only when the

information function is relatively uniform.

Conclusions

The Thurstonian IRT model introduced in this article describes the decision process of

responding to forced-choice personality questionnaires measuring multiple traits. This

model can be used with any forced-choice instrument composed of items fitting the

dominance response model, with any number of measured traits and any block sizes

(i.e., pairs, triplets, quads, etc.). This makes it widely applicable to many existing

forced-choice questionnaires such as the Occupational Personality Questionnaire

(SHL, 2006), the Customer Contact Styles Questionnaire (SHL, 1997), and the Survey

of Interpersonal Values (Gordon, 1976) and useful in designing future questionnaires.

The Thurstonian IRT model can be embedded within a familiar SEM framework to be

estimated and scored by general-purpose software (we used Mplus throughout this

article). The model also provides means of estimating reliability for forced-choice

questionnaires, which has been problematic under the classical scoring schemes

(Baron, 1998; Tenopyr, 1988).

The proposed IRT approach allows using the forced-choice format, which reduces

certain response biases, while getting the benefits of standard data analysis techniques

that users of single-stimulus questionnaires have enjoyed. The forced-choice format

itself, of course, cannot correct faults in test construction and sometimes might

make them even more apparent. As we have shown, creating a forced-choice question-

naire requires consideration of many more factors than a single-stimulus question-

naire. Provided these factors are carefully taken into account, and sufficient work

has been put into combining suitable statements together in forced-choice blocks,

the format can deliver significant advantages. By removing the peculiar properties

of ipsative data, we hope that the theoretical barriers against the use of the forced-

choice format will start to fall.

Appendix A

Designs Involving Blocks of Two Items (Pairs)

In designs involving blocks of n ¼ 2 items (pairs), there is only one binary outcome

per block, and both uniquenesses involved cannot be identified. Without loss of
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generality, they can be fixed to .5. This is equivalent to setting the error variance of the

latent response variable to 1. To illustrate, consider a short test measuring d ¼ 3 traits

using pairs. Each trait is measured by four items. The contrast matrix A and a typical

factor loadings matrix K are

A ¼

1 �1 0 0 � � � 0 0

0 0 1 �1 0 0

..

. . .
. ..

.

0 0 0 0 � � � 1 �1

0

BB@

1

CCA;

K0 ¼
k1 0 0 0 0 k6 0 0 k9 0 0 k12

0 k2 0 k4 0 0 0 k8 0 k10 0 0

0 0 k3 0 k5 0 k7 0 0 0 k11 0

0

@

1

A:

With W ¼ 0:5 I (for identification), the parameter matrices of the Thurstonian IRT

model are W
^

¼ AWA0 ¼ I and

K
^

¼ AK ¼

k1 �k2 0

0 �k4 k3

�k6 0 k5

0 �k8 k7

k9 �k10 0

�k12 0 k11

0

BBBBBB@

1

CCCCCCA
:

As this example illustrates, designs involving pairs are very special because (a)

item responses are locally independent under the Thurstonian IRT model (W
^

is diag-

onal), (b) the model contains much fewer parameters (W
^

is a fixed matrix), and (c) no

constraints among the model parameters need to be enforced (each factor loading ki

only appears once in the factor loading matrix K
^

). Modeling forced choice tests is

much easier when items are presented in blocks of two (pairs), than in blocks of three

or more items (triplets, quads, etc.).

Appendix B

Posterior MAP Information for a Trait in a Forced-Choice Questionnaire

The posterior MAP test information in direction a (direction in the factor space that

coincides with the trait ha) is the sum of the ML information and the additional com-

ponent provided by the prior distribution (Du Toit, 2003):

IaP gð Þ ¼ Ia gð Þ � q2 ln / gð Þð Þ
q2ga

: ðB:1Þ

For the d variate standard normal distribution with means 0 and the covariance matrix

U, the density function /(g) is
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/ðgÞ ¼ 1

ð2pÞd=2 Uj j1=2
exp � 1

2
g0U�1g

� �

and

ln /ðgÞð Þ ¼ � ln ð2pÞd=2 Uj j1=2
� 	

� 1

2
g0U�1g:

Computing the first derivative by ha of the expression above, we notice that

because the first part of the sum does not depend on ha (it is constant), its derivative

is 0. Thus,

q ln /ðgÞð Þ
qga

¼ q

qga

� 1

2
g0U�1g

� �
¼ � 1

2
� q

qga

g0U�1g
� �

: ðB:2Þ

Let -
j
i be an element of the inverted trait covariance matrix U21 in ith row and jth

column:

q

qga

g0U�1g
� �

¼ q

qga

g1

Xd

j¼1

gj-
1
j

 !

þ � � � þ ga

Xd

j¼1

gj-
a
j

 ! 

þ � � � þ gd

Xd

j¼1

gj-
d
j

 !!

¼

g1-
1
a þ � � � þ

Xd

j¼1;j 6¼a

gj-
a
j þ 2ga-

a
a

þ � � � þ gd-
d
a ¼ 2

Xd

j¼1

gj-
a
j :

ðB:3Þ

Now, it follows from Equations (B.2) and (B.3) that the second derivative by ha of

ln /ðgÞð Þ is

q2 ln /ðgÞð Þ
q2ga

¼ � 1

2
� q

qga

2
Xd

j¼1

gj-
a
j

 !

¼ � 1

2
� 2 q

qga

Xd

j¼1

gj-
a
j

 !

¼ �-
a
a; ðB:4Þ

and we can substitute the above expression into Equation (B.1), arriving at

Equation (24).
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