
Item Response Theory and Health Outcomes Measurement in
the 21st Century

RON D. HAYS, PHD,*† LEO S. MORALES, MD, MPH,*† AND STEVE P. REISE, PHD*‡

Item response theory (IRT) has a number of
potential advantages over classical test theory
in assessing self-reported health outcomes.
IRT models yield invariant item and latent
trait estimates (within a linear transformation),
standard errors conditional on trait level, and
trait estimates anchored to item content. IRT
also facilitates evaluation of differential item
functioning, inclusion of items with different
response formats in the same scale, and assess-
ment of person fit and is ideally suited for

implementing computer adaptive testing. Fi-
nally, IRT methods can be helpful in develop-
ing better health outcome measures and in
assessing change over time. These issues are
reviewed, along with a discussion of some of
the methodological and practical challenges in
applying IRT methods.
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Classical test theory (CTT) partitions observed
item and scale responses into true score plus error.
The person to whom the item is administered and
the nature of the item itself influence the proba-
bility of a particular item response. A major limi-
tation of CTT is that person ability and item
difficulty cannot be estimated separately. In addi-
tion, CTT yields only a single reliability estimate
and corresponding standard error of measure-
ment, but the precision of measurement is known
to vary by ability level.

Item response theory (IRT) comprises a set of
generalized linear models and associated statisti-
cal procedures that connect observed survey re-
sponses to an examinee’s or a subject’s location on
an unmeasured underlying (“latent”) trait.1 IRT
models have a number of potential advantages
over CTT methods in assessing self-reported
health outcomes. IRT models yield item and latent
trait estimates (within a linear transformation) that
do not vary with the characteristics of the popu-
lation with respect to the underlying trait, standard

errors conditional on trait level, and trait estimates
linked to item content. In addition, IRT facilitates
evaluation of whether items are equivalent in
meaning to different respondents (differential
item functioning) and inclusion of items with
different response formats in the same scale, as-
sessing person fit, and it is ideally suited for
implementing computerized adaptive testing. IRT
methods can also be helpful in developing better
health outcome measures over time. After a basic
introduction to IRT models, each of these issues is
discussed. Then we discuss how IRT models can
be useful in assessing change. Finally, we note
some of the methodological and practical prob-
lems in applying IRT methods.

To illustrate results from real data, we refer to
the 9-item measure of physical functioning ad-
ministered to participants in the HIV Cost and
Services Utilization Study (HCSUS).2–4 Study par-
ticipants were asked to indicate whether their
health limited them a lot, a little, or not at all in
each of the 9 activities during the past 4 weeks (see
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Appendix). The items were selected to represent a
range of functioning, including basic activities of
daily living (feeding oneself, bathing or dressing,
preparing meals, or doing laundry), instrumental
activities of daily living (shopping), mobility (get-
ting around inside the home, climbing stairs,
walking 1 block, walking .1 mile), and vigorous
activities. Five items (vigorous activities, climbing 1
flight of stairs, walking .1 mile, walking 1 block,
bathing or dressing) are identical to those in the
SF-36 health survey.5

Item means, standard deviations, and the per-
centage not limited in each activity are provided in
Table 1. The 9 items are scored on the 3-point
response scale, with 1 representing limited a lot, 2
representing limited a little, and 3 representing not
limited at all. Items are ordered by their means,
which range from 1.97 (vigorous activities) to 2.90
(feeding yourself). These data will be used to
provide an example of estimating item difficulty
and discrimination parameters, category thresh-
olds, model fit, and the unidimensionality as-
sumption of IRT.

IRT Basics

IRT models are mathematical equations de-
scribing the association between a respondent’s
underlying level on a latent trait and the probabil-
ity of a particular item response using a nonlinear
monotonic function.6 The correspondence be-
tween the predicted responses to an item and the
latent trait is known as the item-characteristic
curve (ICC). Most applications of IRT assume
unidimensionality, and all IRT models assume
local independence.7 Unidimensionality means
that only 1 construct is measured by the items in a
scale. Local independence means that the items
are uncorrelated with each other when the latent
trait or traits have been controlled for.8 In other
words, local independence is obtained when the
complete latent trait space is specified in the
model. If the assumption of unidimensionality
holds, then only a single latent trait is influencing
item responses and local independence is ob-
tained.

Item-Characteristic Curves

With dichotomous items, there tends to be an
s-shaped relationship between increasing respon-

dent trait level and increasing probability of en-
dorsing an item. As shown in Figure 1, the ICC
displays the nonlinear regression of the probability
of a particular response (y axis) as a function of
trait level (x axis). Items that produce a nonmono-
tonic association between trait level and response
probability are unusual, but nonparametric IRT
models have been developed.9 The middle of the
ICC is steeper in slope, implying large changes in
probability of an endorsement with small changes
in trait level. Item discrimination corresponds to
the slope of the ICC. The ICC for items with a
higher probability of endorsement (easier items)
are located farther to the left on the trait scale, and
those with a lower probability of endorsement
(harder items) are located further to the right
(Figure 1). For example, Figure 1 shows ICCs for 3
items, each having 2 possible responses (dichoto-
mous): (1) no and (2) yes. Item 1 is the “easiest”
item because the probability of a “yes” response
for a given trait level tends to be higher for it than
for the other 2 items. Item 3 is the “hardest” item
because the probability of a “yes” response for a
given trait level tends to be lower than for the
other 2 items.

Dichotomous IRT Models

The different kinds of IRT models are distin-
guished by the functional form specified for the

TABLE 1. Item Means, Standard Deviations, and
Percent Not Limited for 9 Physical

Functioning Items

Item Mean (SD)

Not
Limited,

%

Vigorous activities 1.97 (0.86) 45

Walking .1 mile 2.22 (0.84) 49

Climbing 1 flight of stairs 2.37 (0.76) 55

Shopping 2.61 (0.68) 72

Walking 1 block 2.63 (0.64) 72

Preparing meals or doing
laundry

2.67 (0.63) 75

Bathing or dressing 2.80 (0.49) 84

Getting around inside
your home

2.81 (0.47) 84

Feeding yourself 2.90 (0.36) 91

Items are scored 1 5 yes, limited a lot; 2 5 yes,
limited a little; and 3 5 no, not limited at all.
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relationship between underlying ability and item
response probability (ie, the ICC). For simplicity,
we focus on dichotomous item models here and
briefly describe examples for polytomous items
(items with multiple response categories). Polyto-
mous models are extensions of dichotomous IRT
models. The features of the 3 main types of
dichotomous IRT models are summarized in Table
2. As noted, each of these models estimates an
item difficulty parameter. The 2- and 3-parameter
models also estimate an item discrimination pa-
rameter. Finally, the 3-parameter model includes a
“guessing” parameter.

This article takes the position that the Rasch
model is nested within the 2- and 3-parameter
models. We do not address the side debate in the
literature about whether the Rasch model should
be referred to as distinct rather than a special case
of IRT models.

One-Parameter Model

The Rasch model specifies a 1-parameter logis-
tic (1-PL) function.10,11 The 1-PL model allows

items to vary in their difficulty level (probability of
endorsement or scoring high on the item), but it
assumes that all items are equally discriminating
(the item discrimination parameter, a, is fixed at
the same value for all items). Observed dichoto-
mous item responses are a function of the latent
trait (u) and the difficulty of the item (b):

P(uI) 5 eDa(u 2 b)/[1 1 eDa(u 2 b)]

5 1/[11 e2Da(u 2 b)]

D is a scaling factor that can be used to make the
logistic function essentially the same as the nor-
mal ogive model (ie, setting D 5 1.7). Latent trait

FIG. 1. Item characteristic curves for 3 dichotomous items.

TABLE 2. Features of Different Types of
Dichotomous IRT Models

Item
Difficulty

Item
Discrimination

Guessing
Parameter

1-Parameter
(Rasch)

X

2-Parameter X X

3-Parameter X X X
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scores and item difficulty parameters are estimated
independently, and both values are on the same
z-score metric (constrained to sum to zero). Most
trait scores and difficulty estimates fall between
22 and 2.

The difficulty parameter indicates the ability
level or trait level needed to have a 50% chance of
endorsing an item (eg, responding “yes”to a “yes
or no”item). In the Rasch model, the log odds of a
person endorsing or responding in the higher
category is simply the difference between trait
level and the item difficulty. A nice feature of the
Rasch model is that observed raw scores are
sufficient for estimating latent trait scores using a
nonlinear transformation. In other IRT models, the
raw score is not a sufficient statistic.

Figure 1 presents ICCs for 3 dichotomous items,
differing in their degree of difficulty on the z-score
metric from 21, 0, to 1. Note that the s-shaped
curves are parallel (have the same slope) because
only item difficulty is allowed to vary in the 1-PL
model. The probability of a “yes” response to the
easiest item (b1 5 21) for someone of average
ability (u 5 0) is ;0.73, whereas the probability for
the item with the intermediate difficulty level
(b2 5 0) is 0.50 (this is true by definition given its
difficulty level), and the probability for the hardest
items (b3 5 1) is 0.27. The discrimination param-
eter of each item was set to 1.0.

For purposes of illustration of the Rasch model,
we dichotomized the items by collapsing the “yes,
limited a lot”and the “yes, limited a little”response
options together and coding this 0. The “no, not
limited”at all response was coded 1. We fit a 1-PL
model to these data using MULTILOG12 (see Table
3). Slope (discrimination) estimates are typically
fixed at 1.0 in the absence of any information. In
this example, the slopes were fixed at 3.49 by
MULTILOG on the basis of the generally high
level of discrimination for this set of items.

Item difficulty estimates (Table 3) ranged from
21.60 (feeding yourself) to 0.46 (vigorous activi-
ties). The second hardest item was walking .1
mile, followed by climbing 1 flight of stairs, shop-
ping, walking 1 block, bathing or dressing, and
getting around inside the home.

Two-Parameter Model

The 2-parameter (2-PL) IRT model extends the
1-PL Rasch model by estimating an item discrim-
ination parameter (a) and an item difficulty pa-

rameter. The discrimination parameter is similar to
an item-total correlation and typically ranges from
;0.5 to 2. Higher values of this parameter are
associated with items that are better able to dis-
criminate between contiguous trait levels near the
inflection point. This is manifested as a steeper
slope in the graph of the probability of a particular
response (y axis) by underlying ability or trait level
(x axis). An important feature of the 2-PL model is
that the distance between an individual’s trait level
and item difficulty has a greater effect on the
probability of endorsing highly discriminating
items than on less discriminating items. Thus,
more discriminating items provide greater infor-
mation about a respondent than do less discrimi-
nating items. Unlike the Rasch model, discrimina-
tion needs to be incorporated, and the raw score is
not sufficient for estimating trait scores.

We also fit a 2-PL model for the dichotomized
physical functioning items (Table 4). Difficulty
estimates were similar to those reported above for
the 1-PL model, ranging from 21.62 (feeding
yourself) to 0.49 (vigorous activities). Thus, diffi-
culty estimates were robust to whether or not the
item discrimination parameter was estimated.
Item discriminations (slopes) ranged from 2.51
(vigorous activities) to 4.09 (walking .1 mile).
These slopes are very high; each one exceeds the
upper value (2.00) of the typical range noted
above.

Three-Parameter Model

The 3-parameter (3-PL) model includes a
pseudo-guessing parameter (c), as well as item

TABLE 3. Item Difficulty Estimates for Physical
Functioning Items: Rasch Model

Item Item Difficulty (SE)

Vigorous activities 0.46 (0.02)

Walking .1 mile 0.06 (0.03)

Climbing 1 flight of stairs 20.14 (0.02)

Shopping 20.65 (0.02)

Walking 1 block 20.67 (0.02)

Preparing meals or doing laundry 20.78 (0.03)

Bathing or dressing 21.18 (0.03)

Getting around inside your home 21.19 (0.03)

Feeding yourself 21.60 (0.04)

Items are ordered by difficulty level. Estimates were
obtained from MULTILOG, version 6.30. Slopes were
fixed at 3.49.
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discrimination and difficulty parameters: P(uI) 5
c 1 (12c)eDa(u2b)/(1 1eDa(u2b)). This additional
parameter adjusts for the impact of chance on
observed scores. In the 3-PL model, the probabil-
ity of the response at u 5 b 5 (1 1 c)/2. In ability
testing, examinees can get an answer right by
chance, raising the lower asymptote of the func-
tion. The relevance of this parameter to HRQOL
assessment remains to be demonstrated. Re-
sponse error, rather than guessing, is a plausible
third parameter for health outcomes measure-
ment.

Examples of Polytomous IRT Models

Graded Response Model

The graded response model,13 an extension of
the 2-PL logistic model, is appropriate to use
when item responses can be characterized as
ordered categorical responses. In the graded re-
sponse model, each item is described by a slope
parameter and between category threshold pa-
rameters (one less than the number of response
categories). For the graded response model, 1
operating characteristic curve needs to be esti-
mated for each between category threshold. In the

graded response model, items need not have the
same number of response categories. Threshold
parameters represent the trait level necessary to
respond above threshold with 0.50 probability.
Category response curves represent the probability
of responding in a particular category conditional
on trait level. Generally speaking, items with
higher slope parameters provide more item infor-
mation. The spread of the item information and
where on the trait continuum information is
peaked are determined by the between-category
threshold parameters.

We fit the graded response model to the HCSUS
physical functioning items, preserving the original
3-point response scale. Responses were scored as
shown in the Appendix: 1 5 yes, limited a lot;
2 5 yes, limited a little; and 3 5 no, not limited at all.
In running the model, 2 category threshold param-
eters and 1 slope parameter were estimated for each
item.

Table 5 shows the category threshold parame-
ters and the slope parameter for each of the 9
physical functioning items. The category threshold
parameters represent the point along the latent
trait scale at which a respondent has a 0.50
probability of responding above the threshold.
Looking at the first row of Table 5, one can see that
a person with a trait level of 0.62 has a 50/50
chance of responding “not limited at all” in vigor-
ous activities. Similarly, a person with a trait level
of 20.31 has a 50/50 chance of responding “lim-
ited a little” or “not limited at all” in vigorous
activities. The trait level associated with a 0.50
probability of responding above the 2 thresholds is
higher for the vigorous activities item than for any
of the other 8 physical functioning items. This is
consistent with the fact that more people reported
limitations in vigorous activities than on any of the
other items. For example, 65% of the sample
reported being limited in vigorous activities com-
pared with only 9% for feeding.

Partial Credit Model

The partial credit model14 is an extension of the
Rasch model to polytomous items. Thus, item slopes
are assumed to be equal across items. The model
depicts the probability of a person responding in
category x as a function of the difference between
their trait level and a category intersection parameter.
These intersection parameters represent the trait
level at which a response in a category becomes

TABLE 4. Item Difficulty and Discrimination
Estimates for Physical Functioning Items:

Two-Parameter Model

Item

Item
Difficulty

(SE)
Discrimination

(SE)

Vigorous activities 0.49 (0.03) 2.51 (0.12)

Walking .1 mile 0.06 (0.02) 4.09 (0.19)

Climbing 1 flight
of stairs

20.14 (0.03) 3.46 (0.15)

Shopping 20.64 (0.02) 3.74 (0.26)

Walking 1 block 20.66 (0.02) 3.69 (0.26)

Preparing meals or
doing laundry

20.76 (0.03) 3.83 (0.25)

Bathing or
dressing

21.18 (0.03) 3.52 (0.21)

Getting around
inside your
home

21.18 (0.03) 3.59 (0.21)

Feeding yourself 21.62 (0.05) 3.21 (0.25)

Items are ordered by difficulty level. Estimates were
obtained from MULTILOG, version 6.30.
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more likely than a response in the previous category.
The number of category intersection parameters is
equal to one less than the number of response
options. The partial credit model makes no assump-
tion about rank ordering of response categories on
the underlying continuum.

Rating Scale Model

The rating scale model15 assumes that the re-
sponse categories are ordered. Response catego-
ries are assigned intersection parameters that are
considered equal across items, and item location is
described by a single scale location parameter. The
location parameter represents the average diffi-
culty for a particular item relative to the category
intersections. Each item is assumed to provide the
same amount of information and have the same
slope. Therefore, the rating scale model is also an
extension of the Rasch model.

Assessing Model Fit

Choosing which model to use depends on the
reasonableness of the assumptions about the scale
items in the particular application.16 Unlike CTT,
the reasonableness of the IRT model can be eval-
uated by examining its fit to the data. Dimension-
ality should be evaluated before choosing an IRT
model. Tests of equal discrimination should be
conducted before choosing a 1-PL model, and
tests of minimal guessing, if relevant, should be

conducted before choosing a 2-PL model. Finally,
item fit x2 statistics17 and model residuals can be
examined as a means of checking model predic-
tions against actual test data (Table 6). The mean
discrepancy (absolute values) across the 9 items
and 3 response categories was 0.1 (SD 5 0.01).
The item fit x2 statistics were significant (P ,0.05)
for all items. Because statistical power increases
with sample size, larger samples lead to a greater
likelihood of significant x2 differences. Appropri-
ate caution is needed in interpreting x2 statistics.
The results in Table 6 suggest minimal practical
differences between observed and expected re-
sponse frequencies.

Potential Advantages of Using IRT in
Assessing Health Outcome Assessment

Table 7 lists some of the advantages of using IRT
in health outcome assessment. This section sum-
marizes these potential advantages.

More Comprehensive and Accurate
Evaluation of Item Characteristics

Invariant Item and Latent Trait Estimates.
In CTT, item means are confounded by valid group
differences, and item-scale correlations are af-
fected by group variability on the construct. When
an IRT model fits the data exactly in the popula-
tion, sample invariant item and latent trait esti-
mates are possible.18,19 Within sampling error, the

TABLE 5. Category Thresholds and Slope Estimates for HCSUS Physical Functioning Items:
Graded Response Model

Item

Category Threshold
Parameter—Between “A Lot”

and “A Little” (SE)

Category Threshold
Parameter—Between “A Little”

and “Not at All” (SE)

Slope
Parameter

(SE)

Vigorous activities 20.31 (0.03) 0.62 (0.04) 2.22 (0.09)

Climbing 1 flight of stairs 21.09 (0.04) 20.05 (0.03) 2.77 (0.10)

Walking .1 mile 20.65 (0.03) 0.17 (0.03) 3.28 (0.13)

Walking 1 block 21.56 (0.04) 20.62 (0.03) 3.27 (0.19)

Bathing or dressing 22.03 (0.07) 21.13 (0.03) 3.25 (0.20)

Preparing meals or doing laundry 21.59 (0.04) 20.73 (0.03) 3.27 (0.19)

Shopping 21.41 (0.04) 20.59 (0.03) 3.39 (0.16)

Getting around inside your home 22.14 (0.07) 21.14 (0.04) 3.18 (0.18)

Feeding yourself 22.73 (0.12) 21.71 (0.06) 2.35 (0.18)

Estimates were obtained from MULTILOG, version 6.30.
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ICC should be the same regardless of what sample
it was derived from (within a linear transforma-
tion), and the person estimates should be the
same regardless of what items they are based on.

Invariance is a population property that cannot
be directly observed but can be evaluated within a
sample. For instance, one can look to see if
individual scores are the same regardless of what
items are administered or whether item parame-
ters are the same across subsets of the sample.
Embretson20 illustrated with simulations that CTT
estimates of item difficulty for different subgroups
of the population can vary considerably and the
association between the estimates can be nonlin-
ear. In contrast, difficulty estimates derived from
the Rasch model were robust and very highly
correlated (r 5 0.997).

Item and Scale Information Conditional on
Trait Level. Any ICC can be transformed into an
item information curve (utility of information curves

is dependent on how well the ICC fits the data).19

Information curves are analogous to reliability of
measurement and indicate the precision (reciprocal
of the error variance) of an item or test along the
underlying trait continuum. An item provides the
most information around its difficulty level. The
maximum information lies at b in the 1-PL and 2-PL
models. In a 3-PL model, the maximum information
is not quite at b because as c decreases information
increases (all else being equal). The steeper the slope
in the ICC and the smaller the item variance, the
greater the item information.

Scale information depends on the number of
items and how good the items are. The informa-
tion provided by a multi-item scale is simply the
sum of the item information functions. Standard
error of measurement in IRT models is inversely
related to information and hence is conditional on
trait level: SE 5 1/(informationuu)1/2. Because in-
formation varies by trait level, a scale may be quite
precise for some people and not so precise for
others. It is also possible to average the individual
standard errors to obtain a composite estimate for
the population.20 This means that items can be
selected that are most informative for specific
subgroups of the population.

To illustrate the information function, the for-
mula for the 3-PL logistic model is given below:

I~uI) 5 2.89ai
2(1 2 ci)/[cI 1 e1.7a(u 2 bi)]

3 @1 1 e21.7a(u 2 bi)]2

TABLE 6. Difference Between Observed and Expected Response Frequencies (Absolute Values) by Item
and Response Category

Yes, Limited
a Lot

Yes, Limited
a Little

No, Not Limited
at All P

Vigorous activities 0.01 0.02 0.02 ,0.05

Walking .1 mile 0.01 0.02 0.02 ,0.05

Climbing 1 flight of stairs 0.01 0.03 0.03 ,0.05

Shopping 0.01 0.01 0.01 ,0.05

Walking 1 block 0.01 0.01 0.01 ,0.05

Preparing meals or doing laundry 0.01 0.00 0.01 ,0.05

Bathing or dressing 0.01 0.01 0.00 ,0.05

Getting around inside your home 0.00 0.00 0.02 ,0.05

Feeding yourself 0.01 0.01 0.01 ,0.05

The mean difference (absolute values) between the observed and expected response frequencies across all items
and all response categories was 0.01 (SD 5 0.01). The reported P values are based on the item-fit x2 reported by
Parscale 3.5.

TABLE 7. Potential Advantages of Using IRT in
Health Outcomes Assessment

● More comprehensive and accurate evaluation of
item characteristics

● Assess group differences in item and scale
functioning

● Evaluate scales containing items with different
response formats

● Improve existing measures
● CAT
● Model change
● Evaluate person fit
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Working through this equation shows that infor-
mation is higher when the difficulty of the item is
closer to the trait level, when the discrimination
parameter is higher, and when the pseudo-
guessing parameter, c, is smaller. Figure 2 plots
item information curves for 3 items that vary in the
3-PL parameters: item 1 (c 5 0.0; b 5 21.5;
a 5 1.8), item 2 (c 5 0.1; b 5 20.5; a 5 1.2), and
item 3 (c 5 0.0; b 5 1.0; a 5 1.8). Note that the
information peaks at the difficulty level for items 1
and 3, because c 5 0.0 for both of these items. For
item 2, information peaks close to its difficulty
level, but the peak is shifted a little because of the
0.1 c parameter.

Trait Estimates Anchored to Item Content.
In CTT, the scale score is not typically informative
about the item response pattern. However, if di-
chotomous items are consistent with a Guttman
scale,21 then they are ordered along a single
dimension in terms of their difficulty, and the
pattern of responses to items is determined by the
sum of the endorsed items. The linkage between
trait level and item content in IRT is similar to the
Guttman scale, but IRT models are probabilistic
rather than deterministic.

In IRT, item and trait parameters are on the
same metric, and the meaning of trait scores can
be related directly to the probability of item re-
sponses. Hence, it is possible to obtain a relatively

concrete picture of response pattern probabilities
for an individual given the trait score. If the
person’s trait level exceeds the difficulty of an item,
then the person is more likely than not to “pass”
or endorse this item. Conversely, if the trait level is
below the item difficulty, then the person is less
likely to endorse than not endorse the item.

Assessing Group Differences in Item and
Scale Functioning

IRT methods provide an ideal basis for assess-
ing differential item functioning (DIF), defined as
different probabilities of endorsing an item by
respondents from 2 groups who are equal on the
latent trait. When DIF is present, scoring respon-
dents on the latent trait using a common set of
item parameters causes trait estimates to be too
high or too low for those in 1 group relative to the
other.22,23 DIF is identified by looking to see if item
characteristic curves differ (item parameters differ)
by group.24

One way to assess DIF is to fit multigroup IRT
models in which the slope and difficulty parame-
ters are freely estimated versus constrained to be
equal for different groups. If the less constrained
model fits the data better, this suggests that there
is significant DIF. For example, Morales et al25

FIG. 2. Item information functions for 3 polytomous items: 3-PL model.
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compared satisfaction with care responses be-
tween whites and Hispanics in a study of patients
receiving medical care from an association of 48
physician groups.26 This analysis revealed that 2 of
9 items functioned differently in the 2 groups but
that the DIF did not have meaningful impact on
trait scores. When all 9 items were included in the
satisfaction scale, the effect size was 0.27, with
whites rating care significantly more positively
than Hispanics. When the biased items were
dropped from the scale, the effect size became 0.26
and the mean scale scores remained significantly
different. Thus, statistically significant DIF does
not necessarily invalidate comparisons between
groups.

Evaluating Scales Containing Items With
Different Response Formats

In CTT, typically one tries to avoid combining
items with different variances because they have
differential impact on raw scale scores. It is possi-
ble in CTT to convert items with different response
options to a common range of scores (eg, 0 to 100)
or to standardize the items so that they have the
same mean and standard deviation before com-
bining them. However, these procedures yield
arbitrary weighting of items toward the scale
score. IRT requires only that item responses have a
specifiable relationship with the underlying con-
struct.27 IRT models, such as the graded response
model, have been developed that allow different
items to have varying numbers of response cate-
gories.13

Improving Existing Measures

One possible benefit of IRT is facilitation of the
development of new items to improve existing
measures. Because standard errors of measure-
ment are estimated conditional on trait level, IRT
methods provide a strong basis for identifying
where along the trait continuum the measurement
provides little information and is in need of im-
provement. The ideal measure will provide high
information at the locations of the trait continuum
that are important for the intended application.
For example, it may be necessary to identify only
people who score so high on a depression scale
that mental health counseling is needed to prevent
a psychological crisis from occurring. The desired

information function would be one that is highly
peaked at the trait level associated with the de-
pressive symptom threshold.

IRT statistics cannot tell the researcher how to
write better items or exactly what items will fill an
identified gap in the item difficulty range. Poorly
fitting items can provide a clue to the types of
things to avoid when writing new items. An item
with a double negative may not fit very well
because of respondent confusion. Items bounding
the target difficulty range can provide anchors for
items that need to be written.

For example, a Rasch analysis of the SF-36
physical functioning scale resulted in log-odds
(logits) item location estimates of 21.93 for walk-
ing 1 block compared with 23.44 for bathing or
dressing.28 To fill the gap between these difficulty
levels, one might decide to write an item about
preparing meals or laundry. This could be based
on intuition about where the item will land or on
existing data including CTT estimates of item
difficulty.

Computerized Adaptive Testing

CTT scales tend to be long because they are
designed to produce a high coefficient a.29,30 But
most of the items are a waste of time for any
particular respondent because they yield little in-
formation. In contrast, IRT methods make it pos-
sible to estimate person trait levels with any subset
of items in an item pool. Computerized adaptive
testing (CAT) is ideally suited to IRT. Traditional,
fixed-length tests require administering items that
are high for those with low trait values and items
that are too low for those with high trait values.

There are multiple CAT algorithms.31 We de-
scribe one example here to illustrate the general
approach. First, an item bank of highly discrimi-
nating items of varying difficulty levels is devel-
oped. Then each item administered is targeted at
the trait level of the respondent. Without any prior
information, the first item administered is often a
randomly selected item of medium difficulty. After
each response, examinee trait level and its stan-
dard error are estimated. If maximum likelihood is
used to estimate trait level, step-size scoring (eg,
0.25 increment up or down) can be used after the
first item is administered. The next item adminis-
tered to those not endorsing the first item is an
easier item located the specified step away from
the first item. If the person endorses the item, the
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next item administered is a harder item located the
specified step away. After 1 item has been en-
dorsed and 1 not endorsed, maximum likelihood
scoring is possible and begun. The next item
selected is an item that maximizes the likelihood
function (ie, item with a 50% chance of endorse-
ment in the 1- and 2-PL models). CAT is termi-
nated when the standard error falls below an
acceptable value. Note that CAT algorithms can be
designed for polytomous items as well.

Modeling Change

IRT models are well suited for tracking change
in health. IRT models offer considerable flexibility
in longitudinal studies when the same items have
not been administered at every data collection
wave. Because trait level can be estimated from
any subset of items, it is possible to have a good
trait estimate even if the items are not identical at
different time points. Thus, the optimal subset of
items could be administered in theory to different
respondents, and this optimal subset would vary,
depending on their trait level at each time point.
This feature of IRT models means that respondent
burden is minimized. Each respondent can be
administered only the number of items that are
needed to establish a satisfactory small enough
standard error of measurement. This feature of IRT
also will help to ensure that the reliability of
measurement is sufficiently high to allow for mon-
itoring individual patients over time.

IRT can also help address the issue of clinically
important difference or change (see the article by
Testa et al32 in this issue). Anchor-based ap-
proaches have been proposed that compare pro-
spectively measured change in health to change
on a clinical parameter (eg, viral load) or to
retrospectively reported global change.33 For ex-
ample, the change in a health-related quality of
life scale associated with going from detectable to
undetectable levels of viral load in people with
HIV disease might be deemed clinically important.
Because IRT trait estimates have direct implica-
tions for the probability of item responses and
items are arrayed along a single continuum, sub-
stantive meaning can be attached to point-in-time
and change scores. Trait level change can therefore
be cast in light of concrete change in levels of
functioning and well-being to help determine the
threshold for clinically meaningful change.

One suggested advantage of IRT over CTT is
interval level as opposed to ordinal level measure-

ment. Although interval level and even ratio level
measurement has been argued for Rasch models34

and a nonlinear transformation of trait level esti-
mates can provide ratio-scale type of interpreta-
tion,35 the trait level scale is not strictly an interval
scale. However, it has been noted that assessing
change in terms of estimated trait level rather than
raw scores can yield more accurate estimates of
change.36 Ongoing work directed at item response
theory models of change for within-subject
change that can be extended to group level change
offers exciting possibilities for longitudinal analy-
ses.37

Evaluating Person Fit

An important development in the use of IRT
methods is detection of the extent to which a
person’s pattern of item responses is consistent
with the IRT model.38–40 Person fit indexes have
been developed for this purpose. The standardized
ZL Fit Index is one such index: ZLuuI 5 S[ln LuuI 2
SE(ln LuuI]/(SV[ln LuuI)),

1/2 where ln 5 natural
logarithm. Large negative ZL values (ZL, 5 22.0)
indicate misfit. Large positive ZL values indicate
response patterns that are higher in likelihood
than the model predicts.

Depending on the context, person misfit can be
suggestive of an aberrant respondent, response
carelessness, cognitive errors, fumbling, or cheat-
ing. The bottom line is that person misfit is a red
flag that should be explored. For example, unpub-
lished baseline data from HCSUS revealed a large
negative ZL index41 for a respondent who reported
that he was “limited a lot” in feeding, getting
around inside his home, preparing meals, shop-
ping, and climbing 1 flight of stairs but only
“limited a little” in vigorous activities, walking .1
mile, and walking 1 block. The apparent inconsis-
tencies in this response pattern suggests the pos-
sibility of carelessness in answers given in this
face-to-face interview.

Methodological and Practical
Challenges in Applying IRT Methods

Unidimensionality

In evaluations of dimensionality in the context
of exploratory factor analysis, it has been recom-
mended that one examine multiple criteria such as
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the scree test,42 the Kaiser-Guttman eigenvalues
.1.00 rule, the ratio of first to second eigenvalues,
parallel analysis,43 the Tucker-Lewis44 reliability
coefficient, residual analysis,45 and interpretability
of resulting factors.46 Determining the extent to
which items are unidimensional is important in
IRT analysis because this is a fundamental as-
sumption of the method. Multidimensional IRT
models have been developed.7

It is generally acknowledged that the assump-
tion of unidimensionality “cannot be strictly met
because several cognitive, personality, and test-
taking factors always affect test performance, at
least to some extent.”19 As a result, there has been
recognition that establishing “essential unidimen-
sionality” is sufficient for satisfying this assump-
tion. Stout47,48 developed a procedure by which to
judge whether or not a data set is essentially
unidimensional. In short, a scale is essentially
unidimensional when the average between-item
residual covariances after fitting a 1-factor model
approaches zero as the length of the scale in-
creases.

Essential unidimensionality can be illustrated
conceptually by use of a previously published
example. In confirmatory factor analysis, it is pos-
sible that multiple factors provide a better fit to the
data than a single dimension. Categorical confir-
matory factor analytic models can now be estimat-
ed.49,50 The estimated correlation between 2 fac-
tors can be fixed at 1.0, and the fit of this model
can be contrasted to a model that allows the factor
correlation to be estimated. A x2 test of the
significance of the difference in model fit (1 df) can
be used to determine whether 2 factors provide a
better fit to the data. Even when 2 factors are
extremely highly correlated (eg, r 5 0.90), a
2-factor model might provide better fit to the data
than a 1-factor model.51 Thus, statistical tests
alone cannot be trusted to provide a reasonable
answer about dimensionality. This is a case in
which, even though unidimensionality was not
fully satisfied, the items may be considered to have
essential unidimensionality.

The 9 physical functioning items described ear-
lier are polytomous (ie, have 3 response choices).
We tested the unidimensionality assumption of
IRT by fitting 1-factor categorical confirmatory
factor analysis.49 The model was statistically re-
jectable because of the large sample size
(l2 5 1,059.29, n 5 2,829, df 5 27, P ,0.001), but
it fit the data well according to practical fit indexes
(comparative fit index 5 0.99). Standardized factor

loadings ranged from 0.72 to 0.94, and the average
absolute standardized residual was 0.05.

When Does IRT Matter?

Independent of whether IRT scoring improves
on classic approaches to estimating true scores,
IRT is likely to be viewed as a better way of
analyzing measures. Nonetheless, there is interest
in the comparability of CTT and IRT-based item
and person statistics. Recently, Fan52 used data
collected from 11th graders on the Texas Assess-
ment of Academic Skills to compare CTT and IRT
parameter estimates. The academic skills assess-
ment battery included a 48-item reading test and a
60-item math test, with each of the multiple
choice items scored correct or incorrect. Twenty
random samples of 1,000 examinees were drawn
from a pool of more than 193,000 participants.

CTT item difficulty estimates were the propor-
tion of examinees passing each item, transformed
to a the (1-p)th percentile from the z distribution.
This transformation assumed that the underlying
trait measured by each item was normally distrib-
uted. CTT item discrimination estimates were ob-
tained by taking the Fisher z transformation of the
item-scale correlation: z 5 [ln(1 1 r) 2 ln(1-r)]/2.
Fan52 found that the CTT and IRT item difficulty
and discrimination estimates were very similar. In
this particular application, the resulting estimates
did not change as a result of using the more
sophisticated IRT methodology.

In theory, there are many possibilities for iden-
tifying meaningful differences between CTT and
IRT. Because IRT models may better reflect actual
response patterns, one would expect IRT estimates
to be more accurate reflections of true status than
CTT estimates. As a result, IRT estimates of health
outcomes should be more sensitive to true cross-
sectional differences and more responsive to
change in health over time. Indeed, a recent study
found that the sensitivity of the SF-36 physical
functioning scale to differences in disease severity
was greater for Rasch model–based scoring than
for simple summated scoring.53 Similarly, a study
of 194 individuals with multiple sclerosis54 re-
vealed that the RAND-36 HIS mental health
composite score, an IRT-based summary mea-
sure,55 correlated more strongly with the Ex-
panded Disability Status Scale than did the SF-36
mental health summary score, a CTT-based mea-
sure. Moreover, the RAND-36 scores were found
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to be more responsive to change in seizure fre-
quency than the SF-36 scores in a sample of 142
adults participating in a randomized controlled
trial of an antiepileptic drug.56

Because nonlinear transformations of depen-
dent variables can either eliminate or create inter-
actions between independent variables, apparent
interactions in raw scores may vanish (and vice
versa) when scored with IRT.57 Given the greater
complexity and difficulty of IRT model–based es-
timates, it is important to document when IRT
scoring (trait estimates) makes a difference.

Practical Problems in Applying IRT

There are a variety of software products avail-
able that can be used to analyze health outcomes
data with IRT methods, including BIGSTEPS/
WINSTEPS,58 MULTILOG,12 and PARSCALE.59

BIGSTEPS implements the 1-PL model. MUL-
TILOG can estimate dichotomous or polytomous
1-, 2- and 3-PL models; Samejima’s graded re-
sponse model; Master’s partial credit model; and
Bock’s nominal response model. Maximum likeli-
hood and marginal maximum likelihood estimates
can be obtained. PARSCALE estimates 1-, 2-, and
3-PL logistic models; Samejima’s graded response
model; Muraki’s modification of the graded re-
sponse model (rating scale version); the partial
credit model; and the generalized partial credit
model.

None of these programs are particularly easy to
learn and implement. The documentation is often
difficult to read, and finding out the reason for
program failures can be time consuming and
frustrating. The existing programs have a striking
similarity to the early versions of the LISREL
structural equation-modeling program.60 LISREL
required a translation of familiar equation lan-
guage into matrixes and Greek letters. Widespread
adoption of IRT in health outcome studies will be
facilitated by the development of user-friendly
software.

Conclusions

IRT methods will be used in health outcome
measurement on a rapidly increasing basis in the
21st century. The growing experience among

health services researchers will lead to enhance-
ments of the method’s utility for the field and
improvements in the collective applications of the
methodology. We look forward to a productive 100
years of IRT and health outcomes measurement.
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FIG. 3. Physical functioning items in HCSUS. R indicates respondent.
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