
Article

Educational and Psychological
Measurement

2019, Vol. 79(2) 335–357
� The Author(s) 2018

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0013164418790634

journals.sagepub.com/home/epm

Item Selection Criteria
With Practical Constraints
in Cognitive Diagnostic
Computerized Adaptive
Testing

Chuan-Ju Lin1 and Hua-Hua Chang2

Abstract

For item selection in cognitive diagnostic computerized adaptive testing (CD-CAT),
ideally, a single item selection index should be created to simultaneously regulate pre-
cision, exposure status, and attribute balancing. For this purpose, in this study, we first
proposed an attribute-balanced item selection criterion, namely, the standardized
weighted deviation global discrimination index (SWDGDI), and subsequently formu-
lated the constrained progressive index (CP_SWDGDI) by casting the SWDGDI in a
progressive algorithm. A simulation study revealed that the SWDGDI method was
effective in balancing attribute coverage and the CP_SWDGDI method was able to
simultaneously balance attribute coverage and item pool usage while maintaining
acceptable estimation precision. This research also demonstrates the advantage of a
relatively low number of attributes in CD-CATapplications.
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Introduction

In recent years, cognitive diagnostic computerized adaptive testing (CD-CAT) has

received much attention because it involves two popular psychometric aspects,

namely, cognitive diagnosis and computerized adaptive testing. Interest in cognitive
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diagnosis is motivated by the increasing frequency of requests for diagnostic feed-

back to students, parents, educators, and administrators. A cognitive diagnostic test

generates an attribute profile rather than a summative score for each examinee; the

attribute profile identifies the concepts and areas that the examinee in question has

mastered and skills for which remedial instruction could facilitate improvement by

generating data necessary for continuous improvement of teaching and learning.

Computerized adaptive testing (CAT) has been a popular research topic for decades

because of its individualized and efficient features. Under CAT, a test is tailored to

an examinee’s latent trait levels, and thus CAT may provide an efficient latent trait

estimate compared with fixed form testing (Weiss, 1982). Thus, future administration

of a cognitive diagnostic test tailored to an examinee’s mastery status appears

inevitable.

Because the objective of CAT is to sequentially select items matching a latent

estimate, the optimal method of item selection is the core consideration. Although

effective item selection methods for item response theory-based CAT have been

developed, few have been developed for CD-CAT. Therefore, developing item selec-

tion criteria suitable for CD-CAT is a crucial goal to pursue. Several item selection

indices have been proposed in CD-CAT studies. Criteria concerning an item’s level

of attractiveness in relation to its psychometric properties were initially proposed;

examples include the Kullback–Leibler (KL)-based global discrimination index

(GDI) and Shannon entropy procedure (Xu, Chang, & Douglas, 2003) and posterior-

weighted KL information (PWKL) (Cheng, 2009). However, as detailed in this arti-

cle, the focus of these criteria on maximizing psychometric information on tests

without concern for attribute balancing or exposure control may lead to two prob-

lems. The first problem is unbalanced attribute coverage, which calls a test’s validity

into question. For example, valid or reliable inferences regarding whether a student

has mastered converting imperial units into metric units cannot be drawn when a

CD-CAT measurement procedure involves fewer items than required or even no

items to assess the student’s conversion skill. The second problem is highly uneven

item pool usage, which refers to some items being administered to an excessive num-

ber of examinees; this endangers item pool security, and some items are never used,

which causes economic inefficiency in test development. Although CD-CAT tends

to be applied for classroom settings and low-stack settings, where test security is not

a major concern, the concern of balancing the item exposure rate in CD-CAT is still

crucial for test developers and practitioners. Specifically, the item pool must be

maintained because the construction of CD-CAT items is tedious as well as time and

money consuming given that item writing for CD-CAT must be based on a compli-

cated blueprint of cognitive requirements. In addition, the practice or memorizing

effect may generate invalid diagnostic information for repeated test takers when par-

ticular items are administered in every test. Under the limited pool size condition,

which commonly appears in CD-CAT, how to use most items in the pool is a critical

issue.
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Some researchers have considered practical constraints along with psychometric

appeal by incorporating, for example, an attribute-balancing index into the GDI,

namely, the modified maximum global discrimination index (MMGDI) method

(Cheng, 2010), or modifying an information index through a progressive exposure

control technique, namely, the restrictive progressive posterior weighted Kullback–

Leibler (RP_PWKL) information index method (Wang, Chang, & Huebner, 2011).

However, these methods address one of the aforementioned two problems while

ignoring the other, and thus, uneven item pool utilization is likely generated under

the MMGDI and unbalanced attribute coverage with the RP_PWKL.

Few attempts to develop item selection criteria while considering attribute balan-

cing and exposure control have been made. Thus, this article proposes a holistic item

selection method for CD-CAT, namely, the constrained progressive index

(CP_SWDGDI), which can simultaneously ensure adequate attribute coverage and a

balanced item exposure rate. This holistic index is formulated by replacing the item

information element in a progressive algorithm with an attribute-balanced item selec-

tion criterion, which is also proposed in this article and named the standardized

weighted deviation GDI (SWDGDI).

The remainder of this article begins by describing the cognitive diagnostic model

(CDM) applied in this study, namely, the reduced reparameterized unified model

(reduced RUM; Roussos, DiBello, Stout, Hartz, Henson, & Templin, 2007).

Subsequently, the KL-based GDI is reviewed before a detailed introduction of the

proposed methods is provided; the proposed methods were evaluated in a simulation

study where the GDI method was used as a baseline under various experimental con-

ditions. This article concludes with a discussion, limitations of the proposed methods,

and suggestions for application with a smaller number of attributes as well as for

future studies.

Method

This section describes the two most crucial elements in CD-CAT development and

implementation, namely, CDM selection and the item selection algorithm. Many

CDMs have been developed and demonstrated as applicable for practical formative

assessment (e.g., Fusion model applied by Romàn, 2009) and adaptive testing (e.g.,

deterministic input noisy ‘‘and’’ gate [DINA] model applied by Cheng, 2009, 2010).

This study used the reduced RUM only to illustrate the application of our proposed

methods for its relatively low computational demand and a potentially suitable candi-

date as the basis of a real-time CAT program. In addition, the RUM has been proven

useful in real-data analysis (e.g., Roussos, Hartz, & Stout, 2003), which could pro-

vide parameter estimates based on which a simulation study can be constructed. The

item selection methods proposed in this study can be adapted for application in any

other CDM.
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Reduced RUM

The goal of diagnostic classification testing is to identify strengths and weaknesses

among multiple attributes rather than to assess an examinee’s overall proficiency in a

particular scholastic area. CDMs have been developed to fulfill such diagnostic pur-

poses. Available CDMs include the rule space model (Tatsuoka, 1983), DINA model

(Haertel, 1989; Junker & Sijtsa, 2001), noisy input deterministic ‘‘and’’ gate (NIDA)

model (Maris, 1999), and RUM (Hartz, 2002), as well as the model used in this study,

namely, the reduced RUM (Roussos et al., 2007).

The aforementioned models intend to estimate examinees’ latent attributes based

on their item responses. Each examinee’s attribute profile is defined by a vector

~a = (a1, a2, . . . , ak) of K skills, ak being the examinee’s cognitive state along attri-

bute k. This study investigated the effectiveness of various item selection criteria in

CD-CAT under the dichotomous attribute assumption. Accordingly, ak = 1 indicates

mastery of attribute k, whereas ak = 0 indicates nonmastery. CDMs can be applied to

map the skill structures of items and yield a Q matrix (Tatsuoka, 1983). Because an

item pool contains J items, the Q matrix is a (J3K) matrix. The entry qjk of a Q

matrix equals 1 if item j measures attribute k, and zero otherwise. That is, the binary

data for row j of a Q matrix specify whether attribute k is required for a test taker to

complete item j or which attributes are measured by item j. Table 1 provides an illus-

tration of a Q matrix for an arithmetic test. This Q matrix was designed to measure

three attributes (or skills) with six items. For example, the first item, 3 2 (26), mea-

sures only one skill, whereas Item 4, 28 2 (24), measures all three attributes.

To model the probability of a correct response for an examinee, the RUM defines

slipping and guessing item parameters at the attribute level. This model originated in

the NIDA model developed by Maris (1999), which, by separately estimating the

slipping parameter sjk and guessing parameter gjk, defines the probability of a correct

response to item j for examinee i as follows:

P Xij = 1jai, s, g
� �

=
YK
k = 1

1� sjk

� �aik
g

1�aik

jk

h iqjk

: ð1Þ

Table 1. Q Matrix for a Hypothetical Arithmetic Test.

Attribute

Item
Subtraction with

parenthesis
Subtraction when

a \ b [a2b = 2 (b2a)]
Addition with different

sign numbers

3 2 (26) 1 0 0
3 2 9 0 1 0
28 + 8 0 0 1
28 2 (24) 1 1 1
25 2 (27) 1 0 1
27 + 3 0 1 1
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To consider any attributes not included in the Q matrix, DiBello, Stout, and

Roussos (1995) incorporated a continuous latent variable ui into Equation 1 to define

the unified model. Subsequently, Hartz (2002) reparameterized the unified model by

combining sjk and gjk to prevent unidentifiability in the unified model, and two new

item parameters were yielded. The first of these parameters, p�j , defines the probabil-

ity of a correct response to item j, given that the examinee has mastered all required

attributes; this parameter is expressed as p�j =
QK

k = 1 (1� sjk)qjk The second para-

meter, r�jk , is a ‘‘penalty’’ for not mastering attribute k for item j and is expressed as

r�jk =
gjk

1�sjk
With these two parameters, the reduced version of the RUM (Roussos

et al., 2007) can define the probability of a correct response as follows:

P Xij = 1jai

� �
= p�ij

XK

k = 1

r
� 1�aikð Þqjk

jk : ð2Þ

The reduced RUM omits the term of supplemental ability in the original RUM,

thereby simplifying the model by assuming that no supplemental ability that may

affect item responses is present.

Before our proposed methods for item selection is introduced, the KL-based GDI

in CD-CAT (Xu et al., 2003) is reviewed in this article; our selection methods were

constructed based on this index. The GDI method was chosen as a baseline in our

study because KL divergence has been recognized as a legitimate concept applicable

to cases where the latent traits are categorical (e.g., Eggen, 1999); many studies have

used this concept as a basis for new criteria to improve item selection in estimation

precision (e.g., Cheng, 2009) and to achieve balance between psychometric accuracy

and nonpsychometric constraints (e.g., Cheng, 2010; Wang et al., 2011).

KL Information in CD-CAT

Fisher information (FI) and KL information are two of the most popular item selec-

tion criteria in CAT; however, FI is undefined in CD-CAT. FI defines the amount of

information regarding unknown parameter u carried by observable random variable

X under the continuity requirement for the conditional distribution of X given u. The

discreteness of CD-CAT precludes the application of FI. By contrast, KL information

is applicable to CD-CAT, where the latent structure involves categorical latent class.

KL information measures the divergence between two probability distributions

f(x) and g(x) (Cover & Thomas, 1991) and is defined by

KL f k gð Þ= Ef log
f (x)

g(x)

� �
ð3Þ

so that the KL quantity increases as the two distributions diverge. Chang and Ying

(1996) first suggested the use of the KL information in CAT research; ever since,

many studies have used KL information in various computer-based testing contexts.
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Chen, Ankenmann, and Chang (2000) used KL information in the early stage of

CAT. Eggen (1999) and Lin (2011) have applied KL information to computerized

classification testing. Henson and Douglas (2005) proposed KL-based divergence

indices to assemble cognitive diagnostic tests. Wu et al. (2003) and Cheng (2009)

have modified the KL index for CD-CAT applications.

In CD-CAT, information refers to an item’s ability to discriminate between two

attribute patterns in a pair. In this sense, the KL divergence measure in diagnostic

classification should reflect the distance between two conditional distributions,

namely, f Xij âij
� �

, the distribution of Xij conditioning on the current estimated latent

class, and f Xij âtj
� �

, the conditional distribution of Xij given the true state. This logic

yields the following KL equation for CD-CAT:

KLj âi k atð Þ =
X1

x = 0

log
P Xij = xjâi

� �
P Xij = xjat

� �
 !

P Xij = xjâi

� �
: ð4Þ

Considering that the true latent state is unknown and there are 2k possible states, Xu

et al. (2003) proposed a GDI formulated as follows:

GDIj âið Þ=
X2K

c = 1

X1

x = 0

log
P Xij = xjâi

� �
P Xij = xjâc

� �
 !

P Xij = xjâi

� �" #
: ð5Þ

This index is the sum of the KL distances between P Xij âij
� �

and P Xij âcj
� �

for all

possible latent states. Items with larger GDI values have a higher ability to discrimi-

nate between the estimated attribute pattern and all other possible cognitive profiles.

In Xu et al. (2003), the GDI method performed well in recovering examinees’ attri-

bute profiles.

A downside of the maximum GDI method is that it does not consider attribute bal-

ancing or exposure control. Thus, we proposed a holistic index to consider these cru-

cial practical constraints in CD-CAT by using the GDI as a basis for developing the

proposed item selection methods.

Holistic Item Selection Criterion in CD-CAT

In this study, the following two indices were applied to formulate the holistic item

selection criterion: (1) an attribute-balanced item selection criterion and (2) a progres-

sive control algorithm. The main objective was to initially form an attribute-balanced

item selection criterion and subsequently incorporate it into a progressive algorithm

for item exposure control; this idea is introduced as follows.

Weighted Deviation Balancing Index for Attribute-Balanced Item Selection. Attribute bal-

ancing in CD-CAT may appear analogous to content balancing in conventional CAT

with respect to test validity. However, in CD-CAT, an item can measure more than

one attribute simultaneously. Assuming that the content areas in question are

340 Educational and Psychological Measurement 79(2)



mutually exclusive, most content-balancing methods in traditional CAT (e.g., Chen

& Ankenmann, 2004; Cheng, Chang, & Yi, 2007) cannot be adapted for attribute

balancing in CD-CAT. Therefore, Cheng (2010) developed an attribute-balancing

index and multiplied it by the GDI to create a modified GDI (MGDI) able to yield

adequate attribute coverage for CD-CAT. The current study further proposed a more

general item selection index with a weighing scheme for attribute balancing in cases

where some attributes are more crucial than others or where constraints other than

attribute balancing may be required in CD-CAT.

In this study, the proposed attribute-balancing item selection criterion, namely, the

weighted deviation GDI (WDGDI) was formulated as

WDGDIj âið Þ= (�WDj)3GDIj âið Þ: ð6Þ

In a process conceptually similar to that used to create the MGDI, we multiplied a

native value of a weighted deviation index (WD) by the GDI. The WD index,

namely, the attribute-balancing index of the WDGDI method, originated from the

weighted deviations model (WDM) heuristic developed by Swanson and Stocking

(1993). The WDM approach bases the evaluation of each item on the positive devia-

tions of its nonpsychometric and psychometric properties from those required on the

target test (i.e., constraints). The goal of the WDM heuristic is to seek the items

whose inclusion in a test generates the smallest weighted sum of positive deviations.

Accordingly, items are selected sequentially so that those selected first yield the

maximum improvement while simultaneously meeting all constraints.

The WDM heuristic considers the upper and lower boundaries around all target

values or constraints to gain some degree of flexibility in meeting each constraint.

Decisions regarding distance between lower and upper bounds are made at the dis-

cretion of test developers and specialists based on their rationales and needs to be

achieved. In this study, we constrained each test to contain at least 10 items (mini-

mum) and no more than the number equivalent to the test length (maximum) to

measure each attribute because we were mainly concerned about whether the min-

imum number of items could be selected. The upper bound was specified as the

test length to ensure that the minimum requirement would be fulfilled. Although

this upper bound specification seemed unnecessary for our study, we formulated

the upper bound in our WD index, as shown in Equation (7), because we intended

to develop an item selection index that can be applied to various testing situations.

For example, the upper bound is needed because the requirement is constrained to

be a specific target value. Finally, weights can be specified for each constraint by

using the WDM heuristic so that some constraints can be emphasized over others.

More details regarding the weight selection are provided in the section titled simu-

lation study.

When the WDM with an attribute outline is applied in CD-CAT, the WD for each

item candidate j in the pool is computed as
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WDj =
XK

k = 1

(WkDjLk
) +
XK

k = 1

(WkDjUk
), ð7Þ

where Wk is the weight for the kth attribute, and DjLk
and DjUk

, respectively corre-

spond to the positive deviations from the minimal (i.e., lower boundary) and maximal

(i.e., upper boundary) numbers of items required to assess the kth attribute when item

j is included in the test. For each constraint k, DjLk
is defined as (Lk2qk) and DjUk

is

defined as (qk2Uk), where Lk and Uk, respectively denote the lower and upper

bounds for the kth-attribute constraint. The term qk represents the expected number of

items measuring the kth attribute that would have been obtained if item candidate j

was included in the test, assuming that the remaining item selections were random.

According to the WDM heuristic, when qk is smaller than Lk, DjLk
equals (Lk2qk)

and DjUk
equals 0; when qk is greater than Uk, DjLk

equals 0 and DjUk
equals (qk2Uk);

and when qk is within the lower and upper bounds of the attribute coverage require-

ment, DjLk
and DjUk

both equal zero, and thus the minimum and maximum require-

ments are met.

The inclusion of an item candidate with the smallest WD (or greatest WD) value

in the test can be expected to yield the greatest improvement toward fulfilling the

attribute-balancing requirement. Consequently, the WDGDI, formulated as Equation

(6), appears able to ensure attribute balancing and diagnostic precision. Although this

study concerned only attribute constraints in the WDM, the model in Equation (7)

provided the option of incorporating other nonpsychometric constraints such as con-

tent outline and answer choice specification.

To place the WD and the GDI metrics on an equal footing, we standardized the

WD and GDI values, and the final attribute-balancing item selection index became

SWDGDIj âið Þ=
Max(WDj)�WDj

Max(WDj)�Min(WDj)

� �
3

GDIj âið Þ �Min GDIj âið Þ
� �

Max GDIj âið Þ
� �

�Min GDIj âið Þ
� �

 !

ð8Þ

Greater standardized GDI information represents more psychometric attractiveness

for an item. Notably, the standardized WD is computed by Max(WDj)�WDj as

opposed to WDj �Min(WDj), such that a greater standardized WD indicates a

greater contribution made by an item to satisfy the attribute-balancing requirement.

The product obtained from the standardized WDGDI (SWDGDI) synchronizes the

nonpsychometric and psychometric attractiveness of an item. Under consideration

for the attribute balancing, an item with the greatest SWDGDI is selected first in the

test as opposed to one with the maximum GDI. Rather than the standard deviation,

we used the simplest measure of variability, namely, range (i.e., maximum–mini-

mum), for the standardization in Equation 8, mainly to render the mathematical form

of the denominator similar to that of the numerator. Future studies may use the stan-

dard deviation for standardization.
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Constrained Progressive Algorithm. A progressive exposure control algorithm was the

second element—or more specifically, the framework of our holistic index—in

charge of balancing the exposure rate. How to balance severely uneven item pool

usage is always an issue when a maximum information method is applied in adaptive

testing. Items with greater information may be administered excessively frequently

and become overexposed, leading to a test security breach and compromising test

validity. Less informative items are rarely chosen and become underexposed, which

raises an economic concern. In previous decades, numerous exposure control tech-

niques were proposed and categorized (Georgiadou, Triantafillou, & Economides,

2007). In general, such techniques address exposure control by aiming to suppress

overexposure (e.g., Chen, Lei, & Liao, 2008), boost usage of the underexposed (e.g.,

Revuelta & Ponsoda, 1998), or both (e.g., Chang, Qian, & Ying, 2001; Wang et al.,

2011).

The progressive method of Revuelta and Ponsoda (1998) was used as a template

for our holistic item selection index because of its intention to increase the usage of

barely used items. Progressive control involves a randomization scheme in the item

selection criterion to diminish the possibility of selecting items with the greatest

information. Under consideration of this aspect, we modified the progressive method

to further suppress overexposure by adding one more stochastic component (RjI) to

the item selection criterion, expressed as follows:

P INFOj = 1� X

L

� �
Rj +

X

L
3RjI , ð9Þ

where X equals the number of items already administered, L denotes the test length,

and Rj is generated from uniform (0, maximum information). The term 1� X
L

� �
Rj

allows for a greater randomization impact in the early stage of testing, and this

relaxes the precision demand. As the test progresses, the information progressively

comes into play in the item selection process. The resultant item exposure can be

controlled without seriously compromising estimation precision due to the initial

lack of information regarding the examinee’s proficiency.

The current index differs from the original progressive method in that we replaced

the fixed information quantity with a random draw from an information interval. The

term RjI refers to a random draw from a uniform distribution bounded by the lower

and upper limits of an information interval, or RjI is generated from uniform (LBj,

UBj). The information interval is computed from item j by defining the lower bound

as LBj = Infoj2 (Infoj2 Min)/s and the upper bound as UBj = Infoj + (Max 2Infoj)/s

with 1 � s�N, where Infoj is the information calculated from item j and Min and

Max are the maximum and minimum item information in the pool, respectively. The

term s is an interval-adjusting factor. Notably, when s = 1, item selection is com-

pletely random. When s = N, denoting that the interval does not exist,

P INFOj = 1� X
L

� �
Rj + X

L
3Infoj, and our modified index becomes the index of

Revuelta and Ponsoda (1998). This modified index renders item selection more flex-

ible by adjusting the width of the information interval via s. The specification of s is
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sometimes arbitrary, depending on the testing purpose. A lower s value results in a

wider interval and a greater random effect on the information part, indicating that

greater test security than estimation precision is demanded. By contrast, a higher s

value results in a narrower interval and weaker random effect on the information

part, indicating that greater estimation precision than test security is demanded.

Wang et al. (2011) proposed another modification of the progressive algorithm

proposed by Revuelta and Ponsoda (1998) by adding an importance parameter b to

adjust for the balance between exposure rate distribution and estimation accuracy.

Despite the similarity between parameter b and the s factor, the proposal for the

interval-adjusting factor s expresses an intention to use the randomization scheme

throughout the item selection process for exposure control. Moreover, as described

in the following section, the major difference between the proposed index of Wang

et al. (2011) and our proposed index lies in the type of information imposed in the

progressive algorithm.

Holistic Index. To simultaneously manage test security and validity, we incorporated

the attribute-balanced information SWDGDIj âið Þinstead of the purely psychometric

information (e.g., Wang et al., 2011) into the progressive algorithm expressed as

Equation 9. The resultant integrated item selection index, namely, the progressive

SWDGDI, is expressed as

P SWDGDIj âið Þ= 1� X

L

� �
Rj +

X

L
3RjI , ð10Þ

where in RjI, LBj = SWDGDIj âið Þ � SWDGDIj âið Þ �Min
� �

=s and UBj = SWDGDIj

âið Þ + Max� SWDGDIj âið Þ
� �

=s.

Similar to the approach of Wang et al. (2011), our progressive SWDGDI approach

substantially reduces the number of unexposed items, whereas the maximum expo-

sure rate is high in our study (e.g., 0.89 in Table 5). To suppress overexposure and

constrain the maximum exposure rate, or r_max, under a certain level, we multi-

pliedP SWDGDIj âið Þ by a dynamic exposure parameter. The final item selection cri-

terion was named constrained P SWDGDIj âið Þ i:e:, CP SWDGDIj âið Þ
� �

and

became

CP SWDGDIj âið Þ=
r max

rj

3P SWDGDIj âið Þ=
r max

rj

3 1� X

L

� �
Rj +

X

L
3RjI

� �
ð11Þ

The exposure parameter r max
rj

is dynamic and requires no intensive simulation

because the item exposure rate for item j (i.e., rj) is updated as the test progresses

(Chen et al., 2008). Specifically, if an item is frequently selected and its current

exposure rate (i.e., rj) rapidly approaches the constrained r_max, its r max
rj

value soon

decreases toward 1 from a very high level, thereby reducing the likelihood of this

item being selected. That is, an item with greater information of P SWDGDIj âið Þ
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tends to be frequently administered, resulting in a lower r max
rj

value; however, its

overexposure could be suppressed by multiplying its P SWDGDIj âið Þ with the cor-

responding lower r max
rj

.

Simulation Study

This study ran a simulation to evaluate the proposed holistic item selection method,

namely, comparing the effectiveness of the new criteria, CP_SWDGDI and

SWDGDI, to that of the GDI method. Simulated item pools and examinees were

generated in a manner consistent with or similar to those adopted in previous studies.

The evaluation criteria included attribute recovery rates, attribute-balanced percen-

tages, and exposure control statuses. The anticipated variables that could have influ-

enced CD-CAT characteristics were the test length and number of attributes. The

item selection methods were compared under these experimental conditions.

Detailed descriptions of item pool construction and examinee generation are

described in the following sections.

Item Pool Construction and Examinee Generation

This study simulated item pools (i.e., the Q matrices and item parameters) and exami-

nees (i.e., a matrices) in a manner consistent with those adopted in previous studies

(e.g., Cheng, 2009; Finkelman, Kim, Roussos, & Verschoor, 2010; Henson &

Douglas, 2005 Wang & Chang, 2011). We simulated two item pools, each containing

400 items, based on the reduced RUM model. First, the reduced RUM model requires

a (J3K) Q matrix for each item pool to specify which attributes are to be measured

by each item. In this study, one pool measured four attributes and required a (400 3

4) Q matrix, whereas the other pool measured six attributes and required a (400 3 6)

Q matrix. We assumed independence among the items and that the K attributes being

diagnosed were uncorrelated. Thus, the entry qjk of the Q matrix for each item pool

was generated separately for each item under the constraint that each item was to

assess 30% of the attributes on average and measure at least one attribute. The resul-

tant 400 attribute patterns in each Q matrix were regarded as a random sample from

a population of all possible attribute patterns conforming to the attribute-balancing

constraint. Second, for the reduced RUM model, the item parameters for each pool

were generated in a fashion very similar to those reported in previous studies such as

Henson and Douglas (2005) and Finkelman et al. (2010); p�j parameters were simu-

lated from a uniform (0.75, 0.95) distribution and r�jk parameters were simulated from

another uniform (0.20, 0.95) distribution.

A 2000 3 4 matrix a and 2000 3 6 matrix a were generated with the ~a vectors

representing the true attribute patterns of 2000 examinees. Specifically, 2000 multi-

variate normal k-dimensional vectors (~a;MVN (0, r)) were generated, where r was

a K3K variance–covariance matrix with K = 4 or 6. Under the assumption of inde-

pendence among attributes for simplicity, the off-diagonal elements in r equaled 0
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and the diagonal elements equaled 1. Additionally, the probability of mastery was

assumed to be 50% for each attribute, and thus, the ith individual’s mastery for attri-

bute k was

aik =
1 if ~a � 0

0 otherwise

�
: ð12Þ

Tables 2 and 3 report the distributions of items and examinees over attributes for

both attribute-number conditions. Table 2 shows that the number of items measuring

each attribute was approximate over the attributes, as was the number of examinees

who mastered each attribute. These findings resulted from the independence assump-

tion among the attributes. Table 3 reveals that most items measured one or two attri-

butes under both attribute-number conditions because of the constraint imposed on Q

matrix generation that on average, each item was to measure 30% of the attributes;

that is, 30% 3 4 = 1.2 attributes per item for K = 4 and 30% 3 6 = 1.8 attributes per

item for K = 6. Table 3 also gives the numbers of examinees who mastered all possi-

ble numbers of attributes. Most examinees mastered one to three attributes with a

mode of two attributes for K = 4 and two to four attributes with a mode of three attri-

butes for K = 6. These findings confirmed our expectation because the examinee attri-

bute patterns were derived from the multivariate normal distribution.

Estimation of Attribute Patterns

The current study applied the posterior mode to classify an individual’s attribute pat-

tern so that the prior distribution for each pool was constructed through generation of

a further 10000 multivariate normal k-dimensional vectors(~a;MVN (0, r)) with aik

defined in the same manner as in Equation 12. The prior probabilities of all possible

attribute patterns were estimated in this manner.

Item responses were simulated using the Monte Carlo method based on the

reduced RUM. Notably, the initial attribute pattern estimate was randomly produced

with approximately half 0s and half 1s. Based on the item responses, the posterior

mode estimate of the cognitive profile was updated. Specifically, with the item

Table 2. Number of Items Measuring (or Examinees Mastering) Each Attribute.

K = 4 1 2 3 4

Number of items 158 172 160 161
Number of examinees 983 1,002 1,008 1,001

K = 6 1 2 3 4 5 6

Number of items 138 143 132 138 132 136
Number of examinees 982 980 1,001 956 1,025 1,018
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parameters known, attribute pattern estimation was performed by calculating the

likelihood of each possible attribute pattern based on the examinees’ item responses

and multiplying the results by the prior probabilities.

CD-CAT Simulation Condition

The independent variables in this study included the item selection method, test

length, and number of attributes. Two test lengths were considered: a short test (32

items) and long test (60 items). Two numbers of attributes were specified: 4 and 6.

Three item selection methods were applied: (1) GDI information, (2) the attribute-

balanced information index (SWDGDI), and (3) the attribute-exposure-balanced

information index (CP_SWDGDI). This design yielded 12 (2 3 2 3 3) experimental

conditions. In method (2), this study constrained each test to have at least 10 items

(minimum) and no more than the number equivalent to the test length (maximum) to

enable measurement of each attribute under each experimental condition. Assuming

that all attributes were of equal importance, a set of equal weights was applied and a

value of 1 was assigned to each attribute. In method (3), the specifications for attri-

bute balancing were identical to those in method (2), and the maximum exposure rate

was set to 0.25. Although the s parameter in method (3) was adjustable according to

various practical purposes, a value of 1.6 was assigned to it under all conditions to

enable fair comparison; 1.6 was selected because it produced a reasonable trade-off

between psychometric precision and nonpsychometric balancing under all conditions.

Weight Selection

The weight assigned to each test specification (e.g., the number of items required to

measure attribute 1 was 10) was typically 1 when the specifications were identical or

at least similar to the proportion of items in the pool. Moreover, so long as the pool

contained sufficient items with relevant characteristics, it was expected that almost

all the test specifications would be readily satisfied no matter how the weights were

applied (i.e., either equal or unequal weights). However, some specifications were

Table 3. Number of Items Measuring (or Examinees Mastering) Each Number of Attributes.

K = 4 0 1 2 3 4

Number of items 0 199 154 44 3
Number of examinees 126 508 731 516 119

K = 6 0 1 2 3 4 5 6

Number of items 0 139 143 85 26 7 0
Number of examinees 35 191 477 613 468 190 26
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difficult to satisfy when fewer items than expected in the pool had the relevant char-

acteristics. Under such circumstances, a test specialist can prioritize these specifica-

tions by weighing them more when they are desired properties.

In addition to the constraints specified in the previous section, we simulated a

condition characterized by difficulty fulfilling some specifications in a manner that

enabled evaluation of the impact of weight selection on the results by using the

CP_SWDGDI method. We evaluated only the effect of weight selection under the

experimental condition of the short test with four attributes for illustration. Instead of

constraining each test to obtain an equivalent minimum number of items across all

attributes, the lower bounds for the number of items for attributes 1 to 4 were speci-

fied as 10, 10, 10, and 23, respectively. The weight assigned to each attribute was 1

under the equal weight condition. Under the unequal weight condition, the weight

was 2 for attribute 4 and 1 for each of the other attributes to ensure that at least 23

items measured attribute 4. Weight selection is arbitrary, and test constructors may

test several weights to obtain a satisfactory outcome.

Evaluation Criteria

The evaluation criteria included psychometric precision and the degree of nonpsycho-

metric balancing in CD-CAT. Psychometric precision is evaluated based on the entire

pattern recovery rate and recovery rate for each attribute. The entire pattern recovery

rate refers to the proportion of examinees in the sample with estimated attribute pat-

tern â identical to the true pattern a for all attributes. The attribute recovery rate for

individual attribute k is defined as the proportion of examinees with estimated mas-

tery status matching true status for attribute k in the sample.

This study examined nonpsychometric balancing in relation to attribute coverage

and item exposure status. The degree of attribute balancing was measured by the per-

centage of tests that fulfilled the attribute coverage constraints at the attribute level

and entire test level. To assess item exposure balance, the maximum exposure rate

and number of unused items were recorded, and the chi-square statistic was com-

puted as x2 =
Pn

j = 1

rj��rð Þ2
r

(Chang & Ying, 1999), where rj is the item exposure rate

for item j and �r is the average exposure rate. This index measures the evenness of

item exposure rates over items; the lower the chi-square value, the more similar are

the exposure rates.

Results

To simplify the interpretation of the results, special emphasis was placed on compari-

sons among item selection methods across various experimental conditions. Tables 4

to 6 present the recovery rates, item exposure statuses, and percentages of attribute-

balanced tests for three item selection methods for various test-length and attribute-

number conditions, respectively. Of the six rightmost columns in each of these tables,
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the first three display the results for the short test condition, whereas the final three

show the outcomes for the long test condition.

The results in Table 4 show that when an attribute-balancing index was added to

the solely information-based criterion, the SWDGDI method slightly outperformed

the GDI method by gaining an individual attribute and overall precision over the GDI

method. The difference in the entire pattern recovery rate is more evident than that in

the individual attribute recovery rate because entire pattern recovery results from cor-

rect recovery for all attributes and a gain at the attribute level aggregates; this result

is in line with the corresponding result of Cheng (2010).

Table 4 reveals that the CP_SWDGDI method performed worst in terms of reco-

vering the individual attributes and the entire pattern, mainly because of its item-

exposure-control mechanism. As shown in Table 5, the CP_SWDGDI method con-

trols the maximum exposure rate at the prespecified 0.25 level, uses all items in the

pool (number of unused items = 0), and yields a much lower chi-square value (e.g.,

34.28 vs. 163.81 and 164.66). However, the GDI and SWDGDI methods yield maxi-

mum exposure rates at least 0.89, substantial numbers of unused items (more than

200), and relatively high chi-square values. Taken together, the results for psycho-

metric precision and the exposure control indices show that the CPI_SWDGDI

method successfully evens item usage alongside the ‘‘side effect’’ of precision loss

under most conditions; this represents a trade-off between exposure control and mea-

surement precision that occurs in most CAT methods. These results are generalizable

across various test-length and attribute-number conditions. The attribute

Table 4. Recovery Rate for Each Attribute and the Entire Cognitive Pattern.

Short test (32 items) Long test (60 items)

Method GDI SWDGDI CP_SWDGDI GDI SWDGDI CP_SWDGDI

K = 4
Attribute 1 0.98 0.99 0.96 1.00 1.00 0.98
Attribute 2 0.97 0.98 0.96 0.99 1.00 0.98
Attribute 3 0.99 0.98 0.96 1.00 1.00 0.98
Attribute 4 0.99 0.99 0.97 1.00 1.00 0.98
Entire pattern 0.93 0.95 0.87 0.98 0.99 0.93

K = 6
Attribute 1 0.93 0.94 0.90 0.98 0.98 0.95
Attribute 2 0.96 0.96 0.93 0.99 0.99 0.97
Attribute 3 0.98 0.96 0.93 0.99 0.99 0.96
Attribute 4 0.96 0.96 0.92 0.99 0.99 0.95
Attribute 5 0.96 0.96 0.92 0.98 0.99 0.97
Attribute 6 0.95 0.95 0.92 0.99 0.99 0.96
Entire pattern 0.77 0.78 0.64 0.92 0.94 0.80

Note. GDI = global discrimination index; SWDGDI = standardized weighted deviation global

discrimination index; CP_SWDGDI = constrained progressive standardized weighted deviation global

discrimination index.
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classification precision performance of the CP_SWDGDI method may be improved

by applying less stringent exposure control; a demonstration of such application is

described subsequently.

Considerably larger differences in psychometric precision were observed among

the attribute-number conditions, whereas item exposure statuses were similar. Taking

the short length as an example, as the number of attributes increased, the GDI,

SWDGDI, and CP_SWDGDI reduced the entire recovery rate by 0.16 (from 0.93 to

0.77), 0.17 (from 0.95 to 0.78), and 0.23 (from 0.87 to 0.64), respectively. These

results indicated that the CP_SWDGDI method produced the greatest difference of

all the methods. Although this difference pattern is generalizable across all test-

length conditions, the degree of precision loss decreased as the test length increased.

For example, for the long test length, the GDI, SWDGDI, and CP_SWDGDI reduced

the entire recovery rate by 0.06 (from 0.98 to 0.92), 0.05 (from 0.99 to 0.94), and

0.13 (from 0.93 to 0.80), respectively. As such, given that measurement precision

can be improved by adding more items to the test, this advantage of an increasing test

length becomes more evident as the number of attributes increases.

Table 6 compares the percentages of tests that fulfilled the attribute coverage con-

straints at the attribute level and entire test level as obtained from the three item

selection methods. For example, the first entry for the GDI in Table 6, namely, 0.85

denotes that 85% of the tests under the GDI method fulfilled the coverage constraints

of the first attribute, or 85% of the tests have at least 10 items measuring the first

attribute. The SWDGDI and CP_SWDGDI methods yielded perfect attribute balan-

cing, with 100% of the tests under these conditions fulfilling all attribute coverage

constraints, or 100% of these tests having 10 or more items measuring each of the

four attributes. The gain of these two methods over the GDI method in terms of attri-

bute balancing was greater at the entire test level. Under the four-attribute condition,

only 31% of the short tests were attribute balanced under the GDI, whereas the other

Table 5. Exposure Balance Measures.

Short test (32 items) Long test (60 items)

Method GDI SWDGDI CP_SWDGDI GDI SWDGDI CP_SWDGDI

K = 4
Maximum r 0.97 0.91 0.25 1.00 1.00 0.25

No. of unused 289 288 0 251 251 0
x2 163.81 164.66 34.28 182.10 182.46 23.42

K = 6
Maximum r 0.97 0.89 0.25 0.99 0.99 0.25
No. of unused 240 233 0 204 204 0
x2 157.94 149.01 26.54 157.72 161.20 22.03

Note. GDI = global discrimination index; SWDGDI = standardized weighted deviation global

discrimination index; CP_SWDGDI = constrained progressive standardized weighted deviation global

discrimination index.
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two methods ensured 100% attribute balancing. These findings are generalizable to

all test-length and attribute-number conditions.

Table 6 shows that the GDI method produced the worst attribute-balancing sta-

tuses under the conditions of a shorter test length and larger number of attributes.

Under the GDI, 91% of the long tests but only 31% of the short tests exhibited ade-

quate coverage of all four attributes. When the number of attributes equaled six, the

decreasing trend of test length was almost parallel to that under the four-attribute

condition; however, the percentage of balanced tests was consistently considerably

smaller across all test-length conditions—65% of the long tests but only 1% of the

short tests attained the required level of attribute coverage. Therefore, the advantage

of attribute balancing in the SWDGDI and CP_SWDGDI methods became more pro-

nounced as the test length decreased and the number of attributes increased.

Table 7 provides information regarding the effect of weight selection on the attri-

bute recovery rate, exposure balance status, and percentage of attribute-balanced tests

by using the CP_SWDGDI method. Given that the specification of at least 23 items

measuring attribute 4 was prioritized and weighted more, the unequal weight condi-

tion generated 100% congruence in this specification, whereas with 97%, the equal

weight condition did not. The differences in the other evaluation criteria between the

equal and unequal weight conditions were negligible. This article provides only pre-

liminary information regarding the weighing effect. In-depth investigation may be

conducted by considering weight selection as an independent variable when more

nonpsychometric constraints are incorporated into CD-CAT.

Table 6. Percentages of Attribute-Balanced Tests.

Short test (32 items) Long test (60 items)

Method GDI SWDGDI CP_SWDGDI GDI SWDGDI CP_SWDGDI

K = 4
Attribute 1 0.85 1.00 1.00 1.00 1.00 1.00
Attribute 2 0.66 1.00 1.00 0.92 1.00 1.00
Attribute 3 0.84 1.00 1.00 1.00 1.00 1.00
Attribute 4 0.87 1.00 1.00 0.99 1.00 1.00
Entire pattern 0.31 1.00 1.00 0.91 1.00 1.00

K = 6
Attribute 1 0.37 1.00 1.00 0.90 1.00 1.00
Attribute 2 0.60 1.00 1.00 0.95 1.00 1.00
Attribute 3 0.69 1.00 1.00 0.96 1.00 1.00
Attribute 4 0.53 1.00 1.00 0.93 1.00 1.00
Attribute 5 0.44 1.00 1.00 0.91 1.00 1.00
Attribute 6 0.59 1.00 1.00 0.94 1.00 1.00
Entire pattern 0.01 1.00 1.00 0.65 1.00 1.00

Note. GDI = global discrimination index; SWDGDI = standardized weighted deviation global

discrimination index; CP_SWDGDI = constrained progressive standardized weighted deviation global

discrimination index.
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Taken as a whole, the results for attribute balancing highlight the effectiveness of

the SWDGDI and CP_SWDGDI methods, and the outcomes for the exposure bal-

ance indices highlight the effectiveness of the CP_SWDGDI method. The SWDGDI

method was developed to balance attribute coverage and realized this goal by achiev-

ing attribute balancing in 100% of tests, with attribute classification rates as high as

those of the GDI method. Although the CP_SWDGDI method also proved highly

effective in balancing attribute coverage by achieving attribute balancing in 100% of

tests, this method did not demonstrate a high attribute classification rate. The lowest

recovery rate was yielded by the CP_SWDGDI method under the test-assembly con-

ditions of a shorter test and greater number of attributes; this phenomenon may have

been a result of the stringent exposure constraint, given that the value of s was speci-

fied as 1.6 and the maximum item exposure rate (i.e., r_max) was constrained to

0.25.

CD-CAT is usually employed for a low-stack setting, and thus a relatively high

maximum item exposure rate is allowed. To improve the attribute classification pre-

cision of the CP_SWDGDI method and demonstrate that this method can simultane-

ously balance attribute coverage and item pool usage while maintaining acceptable

estimation precision, we relaxed the exposure specifications in the CP_SWDGDI

algorithm by imposing a greater r_max (0.60) and s (6) under the condition of a short

test with six attributes. Table 8 contrasts the outcome of the original exposure speci-

fication with that of the less stringent exposure specification in terms of attribute

recovery rate, exposure balance status, and percentage of attribute-balanced tests.

The results shown in Table 8 indicated that as the exposure specifications were

relaxed, the recovery rates of the CP_SWDGDI method increased uniformly across

each attribute and the entire pattern were almost as high as those of the GDI method.

Moreover, the CP_SWDGDI method with a less stringent exposure specification

achieved attribute balancing in 100% of tests, used all the items in the pool (number

Table 7. Recovery Rates, Exposure Balance Measures, and Percentages of Attribute-
Balanced Tests (PABT) of Various Weighing Schemes Under the Condition of a Short Test
With Four Attributes by Using the CP_SWDGDI Method.

Recovery rate and exposure balance PABT

Equal weight Unequal weight Equal weight Unequal weight

Attribute 1 0.92 0.92 1.00 1.00
Attribute 2 0.93 0.93 1.00 0.98
Attribute 3 0.94 0.94 1.00 0.99
Attribute 4 0.98 0.97 0.97 1.00
Entire pattern 0.81 0.80 0.97 0.97
Maximum r 0.25 0.25
No. of unused 0.00 0.00
x2 40.18 40.43
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of unused items = 0), and yielded a considerably lower chi-square value than did the

GDI method (i.e., 89.31 vs. 157.94).

Conclusion and Discussion

This research supports our proposal of a single item selection criterion that balances

attribute coverage and the exposure rate without a severe loss in estimation accuracy.

The results revealed that the SWDGDI method successfully balanced attribute cover-

age in CD-CAT. Furthermore, the CP_SWDGDI method simultaneously achieved

balance over attribute coverage and ensured test security by reducing the maximum

exposure rate and number of unused items while maintaining acceptable measure-

ment precision.

The advantageous features of the SWDGDI method include its weighing scheme

and the capability to incorporate a variety of nonpsychometric constraints. The

SWDGDI index was subsequently incorporated into the progressive algorithm to cre-

ate the CP_SWDGDI index. To characterize the CP_SWDGDI method as an

attribute-exposure-balanced item selection criterion, the SWDGDI does not incorpo-

rate additional nonpsychometric requirements other than attribute balancing in this

study, despite its ability to serve multiple purposes. However, the success of the

CP_SWDGDI method eventually depends on whether the item pool can support a

test with the required properties. Notably, CD-CAT is usually applied for a low-stack

setting. When an item pool can barely support CD-CAT, a greater maximum

Table 8. Recovery Rates, Exposure Balance Measures, and Percentages of Attribute-
Balanced Tests (PABT) for the GDI and CP_SWDGDI Methods With Two Specifications
Under the Condition of a Short Test With Six Attributes.

Recovery rate and exposure balance PABT

Method GDI CP_SWDGDI CP_SWDGDI GDI CP_SWDGDI CP_SWDGDI

Specification s = 1.6 s = 1.6, r = 0.25 s = 6, r = 0.6 s = 1.6 s = 1.6, r = 0.25 s = 6, r = 0.6

Attribute 1 0.93 0.90 0.97 0.37 1.00 1.00
Attribute 2 0.96 0.93 0.95 0.60 1.00 1.00
Attribute 3 0.98 0.93 0.94 0.69 1.00 1.00
Attribute 4 0.96 0.92 0.95 0.53 1.00 1.00
Attribute 5 0.96 0.92 0.95 0.44 1.00 1.00
Attribute 6 0.95 0.92 0.94 0.59 1.00 1.00
Entire pattern 0.77 0.64 0.76 0.01 1.00 1.00
r 0.97 0.25 0.60
No. of unused 240 0 0
x2 157.94 26.54 89.31

Note. GDI = global discrimination index; SWDGDI = standardized weighted deviation global

discrimination index; CP_SWDGDI = constrained progressive standardized weighted deviation global

discrimination index. No maximum r is specified under the GDI method; ‘‘r’’ denotes maximum r.

Lin and Chang 353



exposure rate may be specified or greater weights may be placed on the prioritized

specifications within the CP_SWDGDI index to produce acceptable psychometric

precision and nonpsychometric balancing in CD-CAT (see Tables 7 and 8).

This study showed that the SWDGDI and CP_SWDGDI methods are more crucial

when the test in question is short or designed for a large number of attributes. This is

because without attribute-balancing constraints, lower percentages of attribute-

balanced tests tend to be associated with short tests and tests measuring more

attributes.

The CP_SWDGDI method incorporates two crucial parameters. The s parameter

adjusts the information interval and the exposure parameter specifies the desired

maximum exposure rate according to the specific testing purpose. Consequently, the

CP_SWDGDI method successfully controls the maximum exposure rate, which ben-

efits from the SH-based dynamic exposure parameter, and uses all items for CD-

CAT, which benefits from the stochastic progressive technique that we currently pro-

posed in this article.

The results of our preliminary analyses revealed that the number of unused items

became zero when the CP_SWDGDI method was applied, no matter which value of s

was specified. As the value of s increased, so did the estimation precision, albeit with

more uneven item pool usage, and vice versa. The preliminary results also revealed

that the maximum exposure rate can be controlled at any desired level through adjust-

ment of the dynamic exposure parameter and that larger maximum exposure rates

yield greater estimation precision, and vice versa. These results of adjusting the two

parameters confirm the flexibility of the CP_SWDGDI method in balancing the expo-

sure control requirement and psychometric precision. Practitioners may select spe-

cific s values and maximum exposure rates to serve their purposes.

Particularly of note is the significant decrease in the entire recovery rate alongside

the increase in the number of attributes. This occurred because with independent attri-

butes, the entire recovery rate is the product of the individual attribute recovery rates

based on the probability multiplicative rule. Incorporating more items into a test may

to some extent compensate for the precision loss resulting from an increase in the

number of attributes in CD-CAT. However, longer tests may compromise the mea-

surement efficiency promoted by adaptive testing. The trade-off between measure-

ment precision and test length should be carefully considered.

This research recommends that for psychometric accuracy, CD-CAT should not

cover a broad scope of knowledge or learning materials. Classroom assessment may

be suitable for CD-CAT application; for example, similar to formative assessment,

CD-CAT can be imbedded within the instructional process. CD-CAT with relatively

few attributes can still collect compressive information for classroom learning and

teaching if tests are administered periodically. CD-CAT enables students to learn

what they specifically do well and obtain specific suggestions for improvement so

that they may reach higher levels of learning. Educators can use CD-CAT to adjust

learning objectives and instructional strategies through information concerning what

students have learned and in which areas they are struggling.
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This study could be expanded in future research. The current study shows that the

SWDGDI and CP_SWDGDI methods can be good candidates for item selection in

CD-CAT based on a simulation study. However, the simulation may have confined

the generation of results to specific conditions. Therefore, to further justify the effec-

tiveness of the methods proposed herein, future research should involve real applica-

tion of the proposed two methods of CD-CAT by using real item pools. Second, this

study assumed independence among attributes and defined the same cut-off point

across all attributes for the sake of simplicity and interpretability. Future studies may

examine the effectiveness of the currently proposed item selection criteria under more

realistic conditions such as correlated attributes and different cutoff points across all

attributes. One possible investigation is how correlated attributes and various mastery

difficulty levels affect attribute-number selection in CD-CAT. Third, another expan-

sion of this simulation study could incorporate various nonpsychometric constraints

in the attribute-balancing index with various weighing schemes (i.e., equal vs.

unequal) to comprehensively evaluate the SWDGDI and the CP_SWDGDI methods’

effectiveness for regulating balance among all requirements. Fourth, the logic of

forming the SWDGDI and CPI_SWDGDI indices could be adapted to other item

selection criteria such as the method based on expected Shannon entropy or that

based on posterior-weighted KL information. Fifth, this study focused on fixed-length

CD-CAT. Application of the proposed item selection methods in variable-length CD-

CAT is a key consideration because inquiries are rarely made into variable-length

testing despite its vivid ‘‘tailored’’ nature. Finally, the distance between the upper

and lower bounds was fairly large in the current study because each test was con-

strained to have at least 10 items measuring each attribute. To further evaluate the

performance of our proposed methods, future studies may consider a smaller distance

between the upper and lower bounds or a fixed number of items under the condition

of the constraint being a specific target value.
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