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Item Selection Using an Average Growth
Approximation of Target Information Functions
Richard M. Luecht and Thomas M. Hirsch

American College Testing

The derivations of several item selection

algorithms for use in fitting test items to target
information functions (IFS) are described. These
algorithms circumvent iterative solutions by using
the criteria of moving averages of the distance to a
target IF and by simultaneously considering an
entire range of ability points used to condition the
IFS. The algorithms were tested by generating six
forms of an ACT math test, each fit to an existing
target test, including content-designated item sub-
sets. The results indicate that the algorithms pro-
vided reliable fit to the target in terms of item
parameters, test information functions, and
expected score distributions. Index terms: com-

puterized testing, information functions, item informa-
tion, parallel tests, test construction, test information

Advances in computer technology have

generated a growing interest in test construction
applications that take advantage of that

technology. One such area of interest has been
the use of computers to create parallel tests.

In item response theory (IRT), parallelism
among tests, test forms, or subtests can be deter-
mined in part by item and test information func-
tions (TIFS), among other criteria. IRT uses this
concept of information, conditional on a latent

ability, 0, to determine measurement precision.
In contrast with classical test theory, which
derives a single estimate of measurement accuracy
through reliability and the standard error of
measurement, IRT uses the inverse of the square
root of the information function (IF) about 0 to
denote measurement accuracy across an entire 0

metric.

This information is defined at the item level by
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where P(6) is the probability of a correct response
to item j at some 0 level, and P’ (6) is the first

derivative of P(6). The item information, condi-
tional on 0 [1(0)], is additive over items. Conse-
quently, information can be derived for an en-
tire test or subtest as

T(8) is merely the TIF conditional on a single
level of 0, but 0 is distributed continuously from
-oo to oo. The shape of the TIF and its area can
then be used to determine a weak form of

parallelism among tests (Lord, 1977; Samejima,
1977). That is, tests or subtests having similar
content, measuring the same latent trait, and
having identical TIFS may be considered essen-
tially parallel.

However, practical solutions that attempt to
generate parallel tests through TIFs have

demonstrated only limited success. Algorithms
suggested by Theunissen (1985) and van der
Linden and Boekkooi-Timminga (1989), which
employ 0-1 linear programming to maximize test
information, tend to require large amounts of
computing time and are of limited utility in large-
scale applications. Although parameter restric-
tions and heuristics can be applied to the 0-1
problem (e.g., Adema, 1988), there is a trade off
between computer time and accuracy.

Techniques based on heuristic approaches
(sort and search rule-based algorithms)
dramatically reduce computational demands, but
run the risk of operating with limited accuracy.
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For example, Ackerman (1989) was able to

demonstrate the implementation of a strictly
heuristic technique that prioritized item informa-
tion based on distance from a target TIF. Under
Ackerman’s approach, pooled items were pre-
sorted at various 8 levels by descending informa-
tion, and those items that contributed the most
information at priority points on the TIF were
assigned to test forms. Unfortunately,
Ackerman’s technique tended to select the most
discriminating items and usually overestimated
the target TIFS (i.e., produced more informative
tests than targeted).

Therefore, a set of techniques that effect a
compromise between computational demands
and heuristic approaches is necessary. This paper
presents and evaluates a set of general heuristics
and algorithms that can be used to select a

prespecified number of items, J, from a pool of
M items (J < M) that minimize the difference
between a target IF and the actual IF formed by
the J items, at K points on 0.

The Item Selection Algorithm

Derivation

T(8k) is defined as some amount of targeted
test information, conditional on 0,, for k = 1,
... , K quadrature points along the 0 metric. This
target information is assumed to represent the
standard form of a test. The properties of this
standard form are to be matched. Tj*(8k) is

defined as the conditional estimated information

with respect to the jth selected item ( j = 1, ...,
J) such that

By prior definition of the test information in
Equation 2, Tj*(8k) is an incremental sum of the
conditional item information, I~(6k). For concep-
tual convenience, T*(6k), the approximation of
the item information functions (IIFS) being in-
crementally summed, is distinguished from T(6k),
the finished approximation of the IF, conditional

on 0,. That is, T(6k) = r*(6J, where j = J.
As implied earlier, the distribution of 0 used

to condition the TIF is generally considered to
span { -oo, oo } ; however, in practice, K is usually
kept to some small number of quadrature points
(e.g., K ::5 31) on the interval ( -3.0, + 3.0 which
is minimally adequate for sampling the

cumulative information function (CIF, or

cumulative density of the IF conditional on 0) at
equal partitions. Because partitioning the infor-
mation cumulative density function into equal
areas essentially prioritizes the quadrature points
of 0 relative to the conditional information den-

sities, the concentration and spread of 0 cor-
responds closely to the actual distributional prop-
erties of the TIF.

Next, consider the distances between the target
function, n8k), and the IF under construction,
r*(6J. That distance is given by

which denotes the conditional difference between
the target function, 7~), and the approximation
of the TIF, T?(0~).

d(9k) can now be adjusted to a partitioned
distance corresponding, ideally, to smooth

growth in T*(6k), given 0,, as

This partitioning of the IF at some point, k,
assumes that 8(0,) is the optimal information
with which to evaluate the next J - j + 1 items.
Thus, 8(0,) becomes a moving average of the in-
formation selection criterion and is adjusted at
each iteration in the selection process.

There are two sound reasons for using 8(0,).
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First, the averaging process explicit in computing
8(0,) appears to prevent extreme (and arbitrary)
growth in any one area of the function. That is,
items with maximal or minimal information

properties at any kth 0 point will be less likely
to be selected than items with less extreme infor-
mation. Thus, averaging should produce smooth
growth in T*(6k) as opposed to sporadic growth
that requires continual and sometimes dramatic
correction. Second, the dynamic nature of com-
puting cS(8k) at each jth selection iteration allows
for constant &dquo;fine tuning&dquo; along the 6k(k =

1, ..., K) points. In other words, error in

estimating the target function is accounted

for directly by the algorithm as part of the

next set of distances from the target to be

evaluated.

8(ok) is used to create a set of relative weights,
w(6k), that will then be used to actually prioritize
the information at the K 0 points being evaluated.
The relative weights are determined by normaliz-
ing cS(8k) across the K quadrature points, as given
by

where Ef , w(O,) = 1.0. In practice, 1 - w(O,)
will serve as the actual weight for reasons ex-
plained below.

8(ok) and W(Ok) are used to evaluate the

M - j + 1 items in the item pool. Let çm(8k)
denote the absolute error difference between the

information of each mth item in the pool,
evaluated at the kth 0 point and 8(ok). That is,

where çm(8k) is the error in fit of the M - j + 1

items in the unused item pool to õ(8k), the

partitioned IF. ~(8~) is, in some sense, an

arbitrary measure of the relative estimation error
that occurs during the process of selecting items.
Accordingly, rank ordering the absolute dif-

ferences between 1.(0,) and 5(0,), or squaring
that difference, are suggested as plausible alter-

natives for arriving at çm(8k). However, çm(8k),
only in its form as the absolute difference, retains
the scale properties of the IFs under evaluation.
Thus, any derivation of çm(8k) except the use of
the absolute difference would introduce addi-

tional, arbitrary, and probably unwanted

weighting of the item information along the K
0 points.

Finally, to determine the selection of the jth
item, given M - j + 1 items, a composite selec-
tion value is created for each of the pooled items
as a sum of each weighted relative error [i.e., a
sum of the product of 1 - w(O,) and çm(8k),
across the grid of K 0 points]. Note that the use
of 1 - w(8k) in place of w(8k) merely guarantees
that the weighting and the relative error in fit,
çm(8k), remain in the same direction. Summing
the weighted relative errors produces an adjusted
item selection composite of the fit to smooth

growth in Tj*(8k) for the M - j + 1 items remain-

ing in the pool. That adjusted item fit selection
composite, Sm, is given by the summation over
the 0 grid, where

During each iteration of the selection cycle, the
item with the smallest value of S&dquo;, (i.e., least

overall error, weighted by information impor-
tance) is selected from the M - j + 1 pool, j is
incremented, and the process continues until
j = J or until a specified degree of accuracy in
approximating T(8k), k = 1, ..., K, is attained.

Finding the item with the minimum value of S.
(per iteration) therefore serves as the primary
heuristic to be used during the selection process.

Dealing with Item Subsets and Subtests

One assumption implicit in this algorithm is
that the target function is comprised of fairly
homogeneous items. That is, in building Tj*(8k)
(see Equation 3), the IFs are essentially com-
pared to a criterion of an average IF for each of
J items (conditional on the quadrature points, 0,,
k = 1, ..., K). In certain circumstances, this
assumption may not be tenable. When a target
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function is established as a composite of subsets
of items from an existing test or from item

specifications (e.g., subtests categorized by con-
tent area and/or some other criteria), the cate-

gorical subsets may have different information
distributional properties (i.e., moments of the
IFS) than the overall target IF.

In these situations, multiple targets can be
used in a two-stage fitting procedure. The first
stage of the method involves fitting each sub-
target ; the second stage groups the selected item

subsets to fit an overall targeted TIF.
In the first stage of this procedure, a sub-

target, 7~(6~), is fit, conditional on 0,, comprised
of J, items for r = 1, ..., R subsets of items,
such that

Thus, the subtarget represents an allowable par-
titioning of the IF in the overall target, given 0,.
In judging the fit of J, items to T,(O,), the item
selection score, given by Equation 8, is now

denoted as Srm corresponding to the (restricted)
subset of items in the pool. A subset of items,
7~(6J, is then independently fit to each T,(8k)

The second stage of fitting begins after all R
subsets of J, items have been fit to each sub-

target. In this stage, the subsets of the J, selected
items are used as the basic units of comparison.
The selection algorithm proceeds as described in
Equation 8, but now compares the composite fit
of the R subsets of selected J, items, or 7~(6J,
to the overall target T(6k). This item subset score
is given by

with restrictions identical to those given in Equa-
tions 4 and 5, and where W(8k) is defined and
used as shown in Equations 6 and 8. Therefore,
the subset of J, items that minimizes the weighted
sum of information to the average growth in the
overall conditional function being fitted is

selected for each of the r = 1, ..., R categories.
It should be emphasized that R subsets of items

(e.g., content areas) are guaranteed to be selected
under this approach.

Multiple Parallel Test Forms

Multiple parallel test forms can be constructed
in the same manner as a single test form. The ma-

jor difference lies in the need to consider T q(6k)
( j = 1, ..., J ; q = 1, ..., Q), where Q is the
number of test forms being fit to the target,
T(6k). By rotating the order of the form being fit
(q) at each jth item selection iteration and by con-
trolling for duplication of item selection across
forms, the assignment of items-based on the
information fit to 8q(Ak)-can be essentially
equalized across test forms.

Method

Implementation

All algorithms and heuristics were imple-
mented in an IBM-compatible microcomputer-
based package called ITEMSEL. This integrated
software consists of 10 menu-driven program
modules written in Microsoft QuickBasic 4.0
(1987) by the first author. ITEMSEL provides
graphic on-screen presentation of the selection
process and a wide variety of item database
modules and file handling utilities that facilitate
the item selection process. The software package
also supports the construction of multiple test
forms, the use of multiple subtargets for dealing
with content subtests or subsets of items, and
allows user submitted item substitutions.

ITEMSEL requires user input of an item pool
file, a target information file, related control
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input such as the size of J or J(r) (the number
of items to be selected), and classifications of the
items to be selected. Selected items are retained
in additional files in which optimization of the
fitting process can occur or from which optional
combining of item subtests can be accomplished.

ITEMSEL uses a three-parameter logistic IRT
model to compute all information quantities.
Under that model, the probability of a correct
response to item j, conditional on 0, is given by

P, (0) = c, + (1-c,) ~1 + exp[-Da~(0 -b~)]] -1, (13)

where c, is the lower asymptote parameter, a. is
the discrimination parameter, and b. is the item
difficulty. D is a constant equal to approximate-
ly 1.702 and is used for scaling 0 under the logistic
model.

Data Specifications

An item pool consisting of 600 mathematics
items from American College Testing (ACT)
mathematics tests was selected to investigate the
use of the S. and Srm algorithms as implemented
by the ITEMSEL program. 520 of the items were
from 13 previously administered ACT Assessment
Program (AAP) Math Usage tests. An additional
80 items were drawn from the Collegiate
Mathematics Placement Program. Item

parameters for all 600 items were derived from
a three-parameter logistic calibration performed
using LOGIST IV (Wingersky, Barton, & Lord,
1982) and were scaled to a common 0 metric.

40 items that comprised the AAP Math Usage
Form 26A were selected as the overall test target
function, to remain consistent with Ackerman
(1989). These 40 items were also included in the
item pool. The Form 26A target function was fit
by evaluating the test information at K = 31

quadrature points on the 0 interval ( -3.0, + 3.0 } .
The decision to use 31 quadrature points was
based on previous analyses in which stable and
satisfactory results were obtained with minimal

computing time and computer memory re-

quirements. A smaller number of quadrature
points might, of course, yield nominally different
item selections. The CIF was equally partitioned

(based on an integration of 1,000 0 points)
to locate the 31 points, which were selected so
that they divided the CIF into equal area

partitions.
Additionally, the six content areas that com-

prise Form 26A of the AAP Math Usage test were
used to generate six corresponding subtargets.
The CIF of each subtarget was likewise parti-
tioned independently when generating the

K = 31 quadrature points. For purposes of com-
puting the IFS and generating subsequent subsets
of items, these Form 26A subtest content areas
contained the following numbers of items:

Arithmetic and Algebraic Reasoning (AAR), 14
items; Arithmetic and Algebraic Operations
(AAO), 4 items; Geometry (G), 8 items;
Intermediate Algebra (IA), 8 items; Number and
Numeration Concepts (NNS), 4 items; and Ad-
vanced Topics (AT), 2 items.

Item Selection Procedures

ITEMSEL was employed in a two-stage set of
fitting procedures meant to generate six indepen-
dent forms of the AAP Math Usage test. In the
first stage, six forms of each of the content areas

(AAR, AAO, G, IA, NNS, and AT) were initially fit
to the Form 26A subtest information targets.
ITEMSEL thus generated a total of 36 content-
restricted item subsets. In the second stage of fit-

ting, an &dquo;optimizer&dquo; module in the ITEMSEL
system was used to identify and combine com-
posite groupings of the content-restricted item
subsets that fit the overall Form 26A target IF to

produce six independent forms of the AAP Math
Usage test. That is, each of the six generated total
test forms was created as a summation of the

unique AAR, AAO, G, IA, NNS, and AT subsets of
items that &dquo;best&dquo; fit the overall Form 26A target
function.

The generation of multiple forms during both
stages of item selection was performed as a
simultaneous operation. As described earlier,
ITEMSEL automatically rotated all form indices
as each item or item subtest was selected to
ensure equalization of the item/subtest selection
process across forms.
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Table 1

Descriptive Statistics for Fitted IRT Item Parameters for Form 26A
Target Test and AAP Math Forms A-F (N = 40 items)

Results

IRT Item Parameters

The IRT item parameters provide an important
starting point in consideration of the item selec-
tion process. Assuming that the test target
represents an ideal composite of items, the items
selected or fitted by the ITEMSEL program should
demonstrate distributions of the item parameters
similar to those present in the target specifica-
tions or test.

Table 1 compares the distributional properties
of the parameters for each of the six generated
AAP Math forms (A-F) with the Math Form 26A
target parameters. The data suggest a very slight
tendency (with one exception, Form F) toward
overfitting the average item a parameters, and
toward selecting items with nominally higher

mean b parameters. At the same time, the SDS of
both the discrimination parameters and the item

difficulty parameters for the fitted forms (A-F)
were slightly smaller than for the Form 26A target
test.

Thus, there appears to be a tendency for
ITEMSEL to spread out the information (i.e., to
slightly underfit at the peak of the IF and com-
pensate elsewhere along the function, at least for
these data). Given the explicit averaging of the
conditional IFS, through the S. algorithm, this
very minor distributional difference seems quite
reasonable. It should also be noted that despite
the minor distributional differences between the

item parameters of the target test and those of
the selected test forms, ITEMSEL was nonetheless
very consistent in matching item parameters
among Forms A through F of the test.

Table 2

Means and SDs of IRT Item Parameters for 12 Manually
Constructed AAP Math Usage Forms (N = 40 Items)
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Table 2 shows the means and SDs of the IRT

parameters from 12 manually constructed Math
Usage forms (i.e., actual forms prepared by test
specialists). These data provide strong evidence
of a greater degree of variation in the types of
items that were manually selected across forms
than was present in the computer-selected forms.

Information Functions

Figure 1 shows that all six selected Math Usage
forms demonstrated quite similar patterns of in-
formation. That similarity is perhaps even more
evident in terms of the means and variances of

the IFS (for which estimates of the expectations
can be derived across the 31 quadrature points
of 0). For the target test, Form 26A, the mean
information across the 31 quadrature points of
0 was 21.67. In comparison, the average of the
expected means of the ’rlFS for the six selected
test forms was 21.54. Likewise, the approximate
variance of the Form 26A target IF for 31

quadrature points was 152.53, compared to an
average variance of 161.55 for the Forms A-F

TIFS. These results indicate that the IFS from the

Figure 1
Test Information Curves for Six Forms of the
AAP Math Usage Test Fit to the Form 26A

Target Information Curve

six selected test forms were essentially centered
at the same point as the target function, but with
nominally larger variances.

Figure 2 shows IFS for the subsets of items
selected by ITEMSEL to fit the individual content
area subtargets (AAR, AAO, G, IA, NNS, and AT).
Some caution is warranted, however, when

reviewing these content-specific graphs of the
item subsets. The apparent differences in the

functions across content areas must take into
account the scaling of the ordinate axes. For ex-
ample, the AT forms (Figure 2f) appear to dem-
onstrate a greater lack of fit than the AAR forms

(Figure 2a). However, by considering the ordinate
axes of the AT functions versus the AAR func-

tions, it should be obvious that the real dif-

ferences between the AT functions (two items per
subtest form) are actually as small or smaller than
the differences between the AAR functions (14
items per subtest form).

Goodness of Fit

The weighted mean square (WMS) shown in
Table 3 represents a weighted difference index,
where the weights are derived from the test

characteristic function associated with the Form
26A target test. That is, the weights are used to
scale the squared IF differences to an assumed
distribution of true scores for the target test.

(Here, the term &dquo;true score&dquo; denotes the test

characteristic function conditional on some range
of 0.) For the present AAP data, those true scores
were assumed to be normally distributed. Under
this normality assumption, the actual weighting

Table 3

WMS, PMI, and WMSSECe>
Goodness-of-Fit Indices for

Fit of Generated Forms to Form 26A
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was accomplished by standardizing the true

scores across a range of 31 equidistant quadrature
points for 0 between * 3 .0, and then using a nor-
mal density approximation function to compute
the weights. The net effect of this procedure was
to assign the greatest weight to squared informa-
tion differences near the point of maximum slope
of the target test response function (TRF) and the
smallest weight near the asymptotes.

This was statistic is given by

given ~(6~), the probability of a correct response
to item j, conditional on 0,.

Typically, comparisons of item response func-
tions and IFs are made using a simple,
unweighted mean square statistic. However, a
mean square statistic does assume uniform

weights. Unfortunately, it is also highly suscep-
tible to large differences near the asymptotes of
the functions as well as to the range of 0 used

during computation. The use of the true score
weighting, under the assumption of normality,
is essentially a compromise between implicitly
using such uniform weights, explicitly assuming
some arbitrary distribution of the unobservable
0 (e.g., normal 0,1), and directly using the nor-
malized target test information to weight the
difference.

By itself, the wMS goodness-of-fit index pro-
vided in Table 3 implies a weighted function of
the squared differences between the Form 26A

target function and the selected TIFS (i.e., the
functions for Forms A-F). However, to put this
index in a different perspective, consider it a

proportion of an IF, conditional on some value
of 0. To do so merely requires dividing the value
of the was index in Table 3 by the IF at some
point along the 0 metric (e.g., the mean infor-
mation for the Form 26A target test of 21.67).
For example, the was value .874 in the first
row of Table 3 could be seen to represent pro-
portional differences between the Form A func-
tion and the target function of 4.03 %, at the

point of average test information. These propor-
tional differences, conditional on the mean

information in the Form 26A target function, are
also provided in Table 3 as PMi, the proportion
of mean information. The PMI results indicate

that the fit between the IFS is actually better than
the was indices might suggest on the surface.
That is, the apparent functional differences taken
as relative ratios (proportions) to the amount of
average information in the target function are

essentially inconsequential.
Another method of assessing the goodness of

fit considers the relationship between the test in-
formation and the standard error of the latent

abilities, 0:

Using this relationship, it becomes possible to re-
state the goodness-of-fit statistics as weighted
functions of the average unsigned differences be-
tween the conditional standard errors. These

standard error differences are also shown in Table

3. Considering these weighted differences be-
tween the standard errors, the observed differ-

ences between the conditional target test and the

generated TIFS obviously become quite negligible.

Expected Score Differences

The final determinants of the adequacy and
accuracy in fitting a target test using S,&dquo; and S,m
algorithms (as implemented in the ITEMSEL soft-
ware) are the expected score distributions ob-
tained from the various tests. That is, if the issue

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



50

of parallelism among test forms is considered to
extend beyond the objective function (test informa-
tion), then the score distributions of the fitted test
forms in comparison to the target test (AAP Math
Form 26A, in this case) must also be considered.

Figure 3
TRFs for the Target Test Form 26A and

Six Test Forms Fitted by ITEMSEL

Figure 3 presents the TRFS for each of the six
fitted test forms and the TRF for Form 26A.

These ’rRFS are defined by the sum of the con-
ditional probabilities for all items in a test across
the 8 metric. That is,

J

w (0) = E I¡(8) . (18)
j=l 

i

Therefore, w(0) defines the expectation of a ran-
dom examinee’s true score on J items, given
his/her 8 level (Lord, 1980).

Figure 3 demonstrates a very close correspon-
dence between true scores across the fitted forms

of the AAP Math test and Form 26A. Addition-

ally, the differences between predicted score

distributions can be compared by converting the
true scores to a discrete number-correct (NC)
scale, using a compound binomial generating
function, where the density of 0 is assumed

(Lord, 1980). Predicted NC scores were obtained
by assuming a (0,1) normal distribution on 0.
Table 4 provides the means, SDS, skewness, and
kurtosis values of the predicted score distribu-
tions for the six AAP Math test forms fitted by
ITEMSEL and the Form 26A target test. Classical
item difficulties (proportion correct), biserial cor-
relations, and their SDs are also shown in Table 4.

Table 4 provides evidence of essential

parallelism among the six fitted forms and the
target test, not only in terms of predicted means
and SDS, but also skewness and kurtosis. In other

words, the process of fitting the target informa-
tion was sufficient to fit the expected (predicted)
NC score distributions for the present item pool.
Finally, the data in Table 4 suggest that the S,,
and Srm algorithms also satisfy classical test

theory criteria for parallelism.

Discussion

The Sm and S,m algorithms have three distinct
benefits. First, the moving average criterion

absorbs and redirects error in fit, thus allowing

Table 4

Descriptive Statistics for Proportion-Correct (PC), Biserial r (rb,s),
and NC Scores for Six Fitted Test Forms and Target Form 26A
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for a noniterative solution. The result is a

reasonably fast method of fitting any target IF.
Second, the algorithms simultaneously consider
all quadrature points that define the ’rlFs and on
which the IFs are conditional. That is, the entire
IF is always fit in the process of selecting items
or item subsets. Finally, the algorithms can be
conveniently extended for use with subtests/sub-
targets, item subsets, and multiple test forms.

ITEMSEL was able to produce six test forms
that were essentially parallel (although not strictly
parallel) to the target test, as evaluated by multi-
ple criteria. For example, IRT item parameters
were shown to closely correspond to the param-
eters in the target test-more closely, in fact, than
the parameters derived from existing, manually
constructed forms of the Math Usage test. Other
criteria denoting the fit of the selected test forms
to the target test (e.g., comparisons of the actual
IFS) likewise demonstrated consistency among the
generated forms. In addition, the procedure gen-
erated similar expected score distributions and
classical item parameters. Finally, the method is
feasible for microcomputer technology, and is at
least as accurate as manual test construction
methods.
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