
ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines

Marco Gori, Augusto Pucci

Dipartimento di Ingegneria dell’Informazione

University of Siena

Via Roma, 56. Siena, Italy

{marco,augusto}@dii.unisi.it

Abstract

Recommender systems are an emerging technology
that helps consumers to find interesting products. A
recommender system makes personalized product
suggestions by extracting knowledge from the pre-
vious users interactions. In this paper, we present
”ItemRank”, a random–walk based scoring algo-
rithm, which can be used to rank products accord-
ing to expected user preferences, in order to recom-
mend top–rank items to potentially interested users.
We tested our algorithm on a standard database,
the MovieLens data set, which contains data col-
lected from a popular recommender system on
movies, that has been widely exploited as a bench-
mark for evaluating recently proposed approaches
to recommender system (e.g. [Fouss et al., 2005;
Sarwar et al., 2002]). We compared ItemRank with
other state-of-the-art ranking techniques (in par-
ticular the algorithms described in [Fouss et al.,
2005]). Our experiments show that ItemRank per-
forms better than the other algorithms we compared
to and, at the same time, it is less complex than
other proposed algorithms with respect to memory
usage and computational cost too.

1 Introduction

A recommender system makes personalized product sugges-
tions by extracting knowledge from the previous user interac-
tions with the system. Such services are particularly useful in
the modern electronic marketplace which offers an unprece-
dented range of products. In fact a recommender system rep-
resents an added value both for consumers, who can easily
find products they really like, and for sellers, who can fo-
cus their offers and advertising efforts. Several recommender
systems have been developed that cope with different prod-
ucts, e.g. MovieLens for movies (see [Sarwar et al., 2001]),
GroupLens for usenet news [Miller et al., 2002], Ringo for
music [Shardanand and Maes, 1995], Jester for jokes [Gold-
berg et al., 2001] and many other (see e.g. [Schafer et al.,
2001] for a review). A recommender system constructs a
user profile on the basis of explicit or implicit interactions
of the user with the system. The profile is used to find prod-
ucts to recommend to the user. In the simplest approach, the

profile is constructed using only features that are related to
the user under evaluation and to the products he/she has al-
ready considered. In those cases, the profile consists of a
parametric model that is adapted according to the customer’s
behavior. Key issues of collaborative filtering approach are
scalability and quality of the results. In fact, real life large–
scale E–commerce applications must efficiently cope with
hundreds of thousands of users. Moreover, the accuracy of
the recommendation is crucial in order to offer a service
that is appreciated and used by customers. In this paper,
we present ”ItemRank”, a random–walk based scoring al-
gorithm, which can be used to rank products according to
expected user preferences, in order to recommend top–rank
items to potentially interested users. We tested our algorithm
on a popular database, the MovieLens dataset1 by the Grou-
pLens Research group at University of Minnesota and we
compared ItemRank with other state-of-the-art ranking tech-
niques (in particular the algorithms described in [Fouss et al.,
2005]). This database contains data collected from a popu-
lar recommender system on movies that has been widely ex-
ploited as a benchmark for evaluating recently proposed ap-
proaches to recommender system (e.g. [Fouss et al., 2005;
Sarwar et al., 2002]). The schema of such archive resembles
the structure of the data of many other collaborative filter-
ing applications. Our experiments show that ItemRank per-
forms better than the other algorithms we compared to and,
at the same time, it is less complex than other proposed algo-
rithms with respect to memory usage and computational cost
too. The paper is organized as follows. In the next subsec-
tion (1.1) we review the related literature with a special focus
on other graph based similarity measure and scoring algo-
rithms applied to recommender systems. Section 2 describes
the MovieLens data set (in subsection 2.1) and illustrates the
data model we adopted (in subsection 2.2). Section 3 dis-
cusses ItemRank algorithm in details and we address Item-
Rank algorithm complexity issues in subsection 3.1. Section
4 contains the details of the experimentation, while Section 5
draws some conclusions and addresses future aspects of this
research.

1http://www.movielens.umn.edu

IJCAI-07
2766

1.1 Related Work

Many different recommending algorithms have been pro-
posed in literature, for example there are techniques based
on Bayesian networks [Breese et al., 1998], Support Vec-
tor Machines [Grcar et al., 2005] and factor analysis [Canny,
2002]. The most successful and well–known approach to rec-
ommender system design is based on collaborative filtering
[Sarwar et al., 2001; Shardanand and Maes, 1995]. In collab-
orative filtering, each user collaborates with others to estab-
lish the quality of products by providing his/her opinion on
a set of products. Also, a similarity measure between users
is defined by comparing the profiles of different users. In or-
der to suggest a product to an ”active user”, the recommender
system selects the items among those scored by similar cus-
tomers. The similarity measure is often computed using the
Pearson–r correlation coefficient between users (e.g. in [Sar-
war et al., 2001]). Recently a graph based approach has been
proposed in [Fouss et al., 2005]. Fouss et al. compared
different scoring algorithm to compute a preference ranking
of products (in that case movies) to suggest to a group of
users. In this paper the problem has been modeled as a bipar-
tite graph, where nodes are users (people node) and movies
(movie node), and there is a link connecting a people node
ui to a movie node mj if and only if ui watched movie mj ,
in this case arcs are undirected and can be weighted accord-
ing to user preferences expressed about watched movies. Au-
thors tested many different algorithms using a wide range of
similarity measures in order to rank movies according to user
preferences, some of the most interesting methods are:

Average Commute Time (CT). This is a distance measure
between a pair of nodes i and j in a graph, we denote it as
n(i, j), it is defined as the average number of steps that a
random walker2 going across a given graph, starting in the
state corresponding to node i, will take to enter state j for
the first time and go back to i. If we measure this distance
between people and movie nodes in the given bipartite graph,
we can use this score to perform the movie ranking.

Principal Component Analysis based on Euclidean
Commute Time Distance (PCA CT). From the eigenvector
decomposition of L+, that is the pseudoinverse of the Lapla-
cian matrix (L) corresponding to the graph, it is possible to
map nodes into a new Euclidean space that preserves the Eu-
clidean Commute Time Distance, it is also possible to project
to a m-dimensional subspace by performing a PCA and keep-
ing a given number of principal components. Then distances
computed between nodes in the reduced space can be used to
rank the movies for each person.

Pseudoinverse of the Laplacian Matrix (L+). Matrix L+

is the matrix containing the inner products of the node vectors
in the Euclidean space where the nodes are exactly separated
by the ECTD, so l+i,j can be used as the similarity measure
between node i and j, in order to rank movies according to
their similarity with the person.

In literature there are many other examples of algorithms
using graphical structures in order to discover relationships
between items. Chebotarev and Shamis proposed in [Cheb-
otarev and Shamis, 1997] and [Chebotarev and Shamis, 1998]

2see [Norris, 1997] for more details

a similarity measure between nodes of a graph integrating in-
direct paths, based on the matrix-forest theorem. Similarity
measures based on random-walk models have been consid-
ered in [White and Smyth, 2003], where average first-passage
time has been used as a similarity measure between nodes. In
collaborative recommendation field is also interesting to con-
sider different metrics described in [Brand, 2005].

2 The Problem

Formally, a recommender system deals with a set of users ui,
i = 1, . . . , Un and a set of products pj , j = 1, . . . , Pn, and its
goal consists of computing, for each pair: ui, pj , a score r̂i,j

that measures the expected interest of users ui for product pj

on the basis of a knowledge base containing a set of prefer-
ences expressed by some users about products. So we need a
scoring algorithm to rank products/items for every given user
according to its expected preferences, then a recommender
system will suggest to a user top-ranked items with respect
to personalized ordering. In this section we present the data
model we adopted and MovieLens data set, that is a widely
used benchmark to evaluate scoring algorithms applied to
recommender systems. Our choice with respect to the data
model and the data set is not restrictive since it reflect a very
common scenario while dealing with recommender systems.
In the following we will indifferently make use of terms such
as item, product and movie depending on the context, but ob-
viously the proposed algorithm is a general purpose scoring
algorithm and it does not matter which kind of items we are
ranking in a particular scenario, moreover we will also use
the notation mj to refer a product pj in the particular case of
movies to be ranked.

2.1 MovieLens Data Set

MovieLens site has over 50, 000 users who have expressed
opinions on more than 3, 000 different movies. The Movie-
Lens dataset is a standard dataset constructed from the
homonym site archive, by considering only users who rated
20 or more movies, in order to achieve a greater reliability
for user profiling. The dataset contains over 100, 000 ratings
from 943 users for 1, 682 movies. Every opinion is repre-
sented using a tuple: ti,j = (ui, mj , ri,j), where ti,j is the
considered tuple, ui ∈ U is an user, mj ∈ M is a movie,
and ri,j is a integer score between 1 (bad movie) and 5 (good
movie). The database provides a set of features character-
izing users and movies which include: the category of the
movie, the age, gender, and occupation of the user, and so
on. The dataset comes with five predefined splitting, each
uses 80% of the ratings for the training set and 20% for the
test set (as described in [Sarwar et al., 2002]). For every
standard splitting we call L and T respectively the set of
tuples used for training and for testing, moreover we refer
the set of movies in the training set rated by user ui as Lui

and we write Tui
for movies in the test set. More formally:

Lui
= {tk,j ∈ L : k = i} and Tui

= {tk,j ∈ T : k = i}.

2.2 Data Model: Correlation Graph

Even from a superficial analysis of the proposed problem, it
seems to be clear that there is a different correlation degree

IJCAI-07
2767

between movies, if we could exploit this information from
the training set then it would be quite easy to compute user
dependent preferences. We define Ui,j ⊆ U the set of users
who watched (according to the training set) both movie mi

and mj , so:

Ui,j =

{
{uk : (tk,i ∈ Luk

) ∧ (tk,j ∈ Luk
)} if i �= j

∅ if i = j

Now we compute the (|M |×|M |) matrix containing the num-
ber of users who watched each pair of movies:

C̃i,j = |Ui,j |

where | · | denotes the cardinality of a set, obviously ∀i, C̃i,i =

0 and C̃ is a symmetric matrix. We normalize matrix C̃ in or-

der to obtain a stochastic matrix Ci,j =
C̃i,j

ωj
where ωj is the

sum of entries in j − th column of C̃. C is the Correlation
Matrix, every entry contains the correlation index between
movie pairs. The Correlation Matrix can be also considered
as a weighted connectivity matrix for the Correlation Graph
GC . Nodes in graph GC correspond to movies in M and there
will be an edge (mi, mj) if and only if Ci,j > 0. Moreover
the weight associated to link (mi, mj) will be Ci,j , note that

while C̃ is symmetrical, C is not, so the weight associated to
(mi, mj) can differ from (mj , mi) weight. The Correlation
Graph is a valuable graphical model useful to exploit corre-
lation between movies, weights associated to links provide
an approximate measure of movie/movie relative correlation,
according to information extracted from ratings expressed by
users in the training set.

3 ItemRank Algorithm

The idea underlying the ItemRank algorithm is that we can
use the model expressed by the Correlation Graph to forecast
user preferences. For every user in the training set we know
the ratings he assigned to a certain number of movies, that is
Lui

, so, thanks to the graph GC we can ”spread” user prefer-
ences through the Correlation Graph. Obviously we have to
properly control the preference flow in order to transfer high
score values to movies that are strongly related to movies with
good ratings. The spreading algorithm we apply has to pos-
sess two key properties: propagation and attenuation. These
properties reflect two key assumptions. First of all if a movie
mk is related to one or more good movies, with respect to a
given user ui, then movie mk will also be a good suggestion
for user ui , if we analyse the Correlation Graph we can easily
discover relationships between movies and also the strength
of these connections, that is the weight associated to every
link connecting two movies. The second important factor
we have to take into account is attenuation. Good movies
have to transfer their positive influence through the Correla-
tion Graph, but this effect decrease its power if we move fur-
ther and further away from good movies, moreover if a good
movie mi is connected to two or more nodes, these have to
share the boosting effect from mi according to the weights
of their connections as computed in matrix C. PageRank al-
gorithm (see [Page et al., 1998]) has both propagation and

attenuation properties we need, furthermore thanks to signif-
icant research efforts we can compute PageRank in a very ef-
ficient way (see [Kamvar et al., 2003a]). Consider a generic
graph G = (V , E), where V is the set of nodes connected by
directed links in E , the classic PageRank algorithm computes
an importance score PR(n) for every node n ∈ V accord-
ing to graph connectivity: a node will be important if it is
connected to important nodes with a low out-degree. So the
PageRank score for node n is defined as:

PR(n) = α ·
∑

q:(q,n)∈E

PR(q)

ωq

+ (1 − α) ·
1

|V|
(1)

where ωq is the out-degree of node q, α is a decay factor3.
The equivalent matrix form of equation 1 is:

PR = α · C · PR + (1 − α) ·
1

|V|
· 1|V| (2)

where C is the normalized connectivity matrix for graph
G and 1|V| is a |V| long vector of ones. PageRank can also
be computed iterating equation 2, for example by applying
the Jacobi method [Golub and Loan, 1996], even if iteration
should be run until PageRank values convergence, we can
also use a fixed number I of iterations. Classic PageRank
can be extended by generalizing equation 2:

PR = α · M · PR + (1 − α) · d (3)

where M is a stochastic matrix, its non-negative entries
has to sum up to 1 for every column, and vector d has non-
negative entries summing up to 1. Vector d can be tuned in
order to bias the PageRank by boosting nodes corresponding
to high value entries and matrix M controls the propagation
and attenuation mode. Biased PageRank has been analysed
in [Langville and Meyer, 2003] and custom static score distri-
bution vectors d have been applied to compute topic-sensitive
PageRank [Haveliwala, 2002], reputation of a node in a peer-
to-peer network [Kamvar et al., 2003b] and for combating
web spam [Gyongyi et al., 2004]. We present the ItemRank
algorithm, that is a biased version of PageRank designed to be
applied to a recommender system. ItemRank equation can be
easily derived from equation 3. We use graph GC to compute
a ItemRank value IRui

for every movie node and for every
user profile. In this case the stochastic matrix M will be the
Correlation Matrix C and for every user ui we compute a dif-
ferent IRui

by simply choosing a different dui
static score

distribution vector. The resulting equation is:

IRui
= α · C · IRui

+ (1 − α) · dui
(4)

where dui
has been built according to user ui preferences as

recorded in training set Lui
. The unnormalized d̃ui

, with re-
spect to the j − th component, is defined as:

d̃j
ui

=

{
0 if ti,j �∈ Lui

ri,j if ti,j ∈ Lui
∧ ti,j = (ui, mj , ri,j)

3A common choice for α is 0.85

IJCAI-07
2768

So the normalized dui
vector will simply be dui

=
˜dui

|
˜dui

|
.

ItemRank, as defined in equation 4, can be computed also
iteratively in this way:

{
IRui

(0) = 1
|M| · 1|M|

IRui
(t + 1) = α · C · IRui

(t) + (1 − α) · dui

(5)

This dynamic system has to be run for every user, luckily it
only needs on average about 20 iterations to converge. The
interpretation of IRui

score vector for user ui is straightfor-
ward, ItemRank scores induce a sorting of movies accord-
ing to their expected liking for a given user. The higher is
the ItemRank for a movie, the higher is the probability that a
given user will prefer it to a lower score movie.

3.1 Complexity Issues

ItemRank algorithm results to be very efficient both from
computational and memory resource usage point of view.
We need to store a |M | nodes graph with a limited num-
ber of edges. The interesting fact is that graph GC contains
edges (mi, mj) and (mj , mi) if and only if ∃uk : tk,i ∈
Luk

∧ tk,j ∈ Luk
, so no matter the number of users satisfy-

ing the previous condition, ratings information will be com-
pressed in just a couple of links anyway. It is interesting to
note that the data structure we use scale very well with the
increase of the number of users, in fact GC node set cardi-
nality is independent from |U| and also the number of edges
tend to increase very slowly after |U| has exceeded a cer-
tain threshold Ū . That is a very useful property, because
in a real applicative scenario the number of users for a cer-
tain e-commerce service and the number of expressed pref-
erences about products will rise much faster than the total
amount of offered products. Moreover ItemRank computa-
tion is very efficient, thanks to its strong relationship with
PageRank algorithm, and we only need about 20 iterations of
system 5 for every user in order to rank every movie accord-
ing to every user taste, so if we have |U| users we have to
run the algorithm |U| different times. ItemRank is more effi-
cient than similar Random-Walk based approach such as CT
and L+ (already introduced in subsection 1.1, see [Fouss et
al., 2005] for details), in fact both CT and L+ require to han-
dle a graph containing nodes representing users and products
and edges referred to user preferences. So in this graph there
are |U|+ |M| nodes and two edges (ui, mj),(mj , ui) for ev-
ery opinion (ui, mj , ri,j), while in the case of ItemRank you
have only |M| nodes and ratings information is compressed.
CT is used to rank every movie with respect to every sys-
tem user, so the average commute time (CT) n(ui, mj) re-
ferred to any user-movie couple ui, mj has to be computed,
but n(ui, mj) = m(ui|mj) + m(mj |ui) where m(ui|mj)
denotes the average first-passage time from node ui to node
mj . So CT needs 2 · |U| · |M| average first-passage time com-
putations, while ItemRank has to be applied only |U| times to
rank every movie with respect to its similarity to every user.
The situation is similar also if we consider L+ algorithm, in
this case, as stated in [Fouss et al., 2005], the direct computa-
tion of the pseudoinverse of the Laplacian matrix L becomes
intractable if the number of nodes becomes large (that could

easy happen while the number of users increase), some op-
timized methods to partially overcome these limitations has
been proposed in [Brand, 2005].

4 Experimental Results

To evaluate the performances of the ItemRank algorithm, we
ran a set of experiments on the MovieLens data set, described
in subsection 2.1. The choice of this particular data set is not
restrictive, since it is a widely used standard benchmark for
recommender system techniques and its structure is typical of
the most common applicative scenarios. In fact we can apply
ItemRank every time we have a set of users (U) rating a set
of items or products (I that is the generic notation for M),
if we can model our recommendation problem this way (or
in any equivalent form) it will be possible to use ItemRank
to rank items according to user preferences. We chose an ex-
perimental setup and performance index that is the same as
used in [Fouss et al., 2005], this way we can directly com-
pare our algorithm with some of the most promising scoring
algorithms we found in related literature (CT, L+ and so on),
having many points of contact with ItemRank ”philosophy”.
We split MovieLens data set as described in [Sarwar et al.,
2002], in order to obtain 5 different subsets, then we applied
ItemRank 5 times (5-fold cross validation). Each time, one of
the 5 subsets is used as the test set and the remaining 4 sub
sets have been merged to form a training set. At the end we
computed the average result across all 5 trials. So we have
5 splittings, each uses 80% of the ratings for the training set
(that is 80, 000 ratings) and 20% for the test set (the remaining
20, 000 ratings), that is exactly the same way tests have been
performed in [Fouss et al., 2005]. The performance index we
used is the degree of agreement (DOA), which is a variant
of Somers’D (see [Siegel and Castellan, 1988] for further de-
tails). DOA is a way of measuring how good is an item rank-
ing (movie ranking in MovieLens case) for any given user. To
compute DOA for a single user ui we need to define a set of
movies NWui

⊂ M that is the set of movies that are not in
the training set, nor in the test set for user ui, so:

NWui
= M\ (Lui

∪ Tui
)

Now we define the boolean function check order as:

check orderui
(mj , mk) =

{
1 if IR

mj

ui ≥ IRmk
ui

0 if IR
mj

ui < IRmk
ui

where IR
mj

ui is the score assigned to movie mj with respect
to user ui preferences, by the algorithm we are testing. Then
we can compute individual DOA for user ui, that is:

DOAui
=

∑
(j∈Tui

, k∈NWui
) check orderui

(mj , mk)

|Tui
| · |NWui

|

So DOAui
measures for user ui the percentage of movie pairs

ranked in the correct order with respect to the total number
of pairs, in fact a good scoring algorithm should rank the
movies that have indeed been watched in higher positions
than movies that have not been watched. A random ranking
produces a degree of agreement of 50%, half of all the pairs
are in correct order and the other half in bad order. An ideal

IJCAI-07
2769

ranking correspond to a 100% DOA. Two different global de-
gree of agreement can be computed considering ranking for
individual users: Macro-averaged DOA and micro-averaged
DOA. The Macro-averaged DOA (or shortly Macro DOA)
will be the average of individual degree of agreement for ev-
ery user, so:

Macro DOA =

∑
ui∈U DOAui

|U|

The micro-averaged DOA (or shortly micro DOA) is the ra-
tio between the number of movie pairs in the right order (for
every user) and the total number of movie pairs checked (for
every user), so it can be computed as:

micro DOA =

∑
ui∈U

(∑
(j∈Tui

, k∈NWui
)

check orderui
(mj , mk)

)
∑

ui∈U

(
|Tui

| · |NWui
|
)

Then micro DOA is something like a weighted averaging of
individual DOA values. In fact the bigger is set Tui

for a
given user ui, the more important is the individual DOAui

contribution to micro DOA global computation. Macro DOA
and micro DOA have been evaluated for every experiment we
ran. We summarize experimental results in table 1 and 2. In
table 1 we compare ItemRank performances to a simplified
version of the same algorithm, in order to highlight the im-
portance of the information hidden in the Correlation Matrix
C. ItemRank with the binary graph is identical to classical
ItemRank (described in section 3) but there is a key differ-
ence in the way we build matrix C (we denote the simplified

version as Cbin), in this case it is obtained by normalizing a

binary version of C̃ (C̃bin), so we have: Cbin
i,j =

C̃bin
i,j

ωj
where

C̃bin
i,j can be computed as:

C̃bin
i,j =

{
1 if Ui,j > 0
0 if Ui,j = 0

In other words if we compute ItemRank with binary graph,
we are weighting every correlation edge connecting two items
in the same way, no matter the number of co-occurrences in

user preference lists for these items, since Cbin
i,j correspond to

the weight of edge (mi, mj) in the Correlation Graph GC we
use for information propagation.

Table 1 clearly shows the usefulness of a properly weighted

Correlation Matrix C compared to Cbin. This table provides
both Macro and micro DOA for every split and for Item-
Rank and its simplified version with binary graph: ItemRank
clearly works much better when we use a proper Correlation
Matrix. For example, if we look at Macro DOA mean values,
ItemRank with Correlation Matrix C obtain +15.43 points (in

%) with respect to Cbin version. These are interesting results
because they confirm our main hypothesis: ItemRank algo-
rithm ranks items according to the information extracted from
the Correlation Matrix (that is equivalent to the weighted Cor-
relation Graph) and the way we compute C entries is really
able to properly model relationships among evaluated items.
Finally table 2 shows a performance comparison among dif-
ferent scoring algorithm applied to MovieLens data set. We

briefly described some of these algorithms in subsection 1.1,
for further details see [Fouss et al., 2005]. For every tested
algorithm we provide Macro DOA index, that has been com-
puted for every technique as the average result across all 5
trials of 5-fold cross-validation. Moreover we provide the dif-
ference (in %) with performance obtained by the trivial MaxF
algorithm and the standard deviation (STD) of this quantity.
MaxF is our baseline for the task, it is a user independent
scoring algorithm, it simply ranks the movies by the num-
ber of persons who watched them, movies are suggested to
each person in order of decreasing popularity. So MaxF pro-
duces the same ranking for all the users. ItemRank performs
better than any other considered technique obtaining +3.69
with respect to the baseline and a very good standard devia-
tion (0.31). In this test ItemRank also perform better than L+

algorithm by obtaining a Macro DOA value of 87.76 versus
87.23 for L+ and also a better standard deviation. In addi-
tion it is worth to note that ItemRank is less complex than
other proposed algorithms with respect to memory usage and
computational cost too, as already argued in subsection 3.1.

5 Conclusions

In this paper, we present a random–walk based scoring al-
gorithm, which can be used to recommend products accord-
ing to user preferences. We compared our algorithm with
other state-of-the-art ranking techniques on MovieLens data
set. ItemRank performs better than the other algorithms we
compared to and, at the same time, it is less complex than
other proposed algorithms with respect to memory usage and
computational cost too. Future research topics include the ex-
perimentation of the algorithm on different applications. We
are now working on a extension of ItemRank. The version
presented so far is able to handle the recommendation task as
a item scoring/ranking problem. But we can face the problem
from the regression point of view too. So we expect Item-
Rank 2.0 will also be able to produce expected satisfaction
prediction for a given recommendation, other than product
ranking.

Acknowledgments

Many thanks to Giuliano Testa for running the experiments.

References

[Brand, 2005] M. Brand. A random walks perspective on
maximizing satisfaction and profit. In 2005 SIAM Interna-
tional Conference on Data Mining, 2005.

[Breese et al., 1998] J. S. Breese, D. Heckerman, and
C. Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In 14th Conference on Uncertainty
in Artificial Intelligence (UAI-98), pages 43–52, July 1998.

[Canny, 2002] J. Canny. Collaborative filtering with privacy
via factor analysis. In IEEE Conference on Security and
Privacy, May 2002.

[Chebotarev and Shamis, 1997] P. Chebotarev and
E. Shamis. The matrix-forest theorem and measur-
ing relations in small social groups. Automation and
Remote Control, 58(9):15051514, 1997.

IJCAI-07
2770

ItemRank ItemRank (binary graph)
micro DOA Macro DOA micro DOA Macro DOA

SPLIT 1 87.14 87.73 71.00 72.48
SPLIT 2 86.98 87.61 70.94 72.91

SPLIT 3 87.20 87.69 71.17 72.98

SPLIT 4 87.08 87.47 70.05 71.51
SPLIT 5 86.91 88.28 70.00 71.78

Mean 87.06 87.76 70.63 72.33

Table 1: Performance comparison between ItemRank and its simplified version with binary Correlation Graph.

MaxF CT PCA CT One-way Return L+ ItemRank Katz Dijkstra

Macro DOA 84.07 84.09 84.04 84.08 72.63 87.23 87.76 85.83 49.96

difference with MaxF (in %) 0 +0.02 -0.03 +0.01 -11.43 +3.16 +3.69 +1.76 -34.11

STD of the difference with MaxF 0 0.01 0.76 0.01 1.06 0.84 0.31 0.24 1.52

Table 2: Comparison among different scoring algorithm applied to MovieLens data set.

[Chebotarev and Shamis, 1998] P. Chebotarev and
E. Shamis. On proximity measures for graph ver-
tices. Automation and Remote Control, 59(10):14431459,
1998.

[Fouss et al., 2005] F. Fouss, A. Pirotte, J. M. Renders, and
M. Sarens. A novel way of computing dissimilarities be-
tween nodes of a graph, with application to collaborative
filtering. In IEEE / WIC / ACM International Joint Con-
ference on Web Intelligence, pages 550–556, 2005.

[Goldberg et al., 2001] K. Goldberg, T. Roeder, D. Gupta,
and C. Perkins. Eigentaste: A constant time collaborative
filtering algorithm. Information Retrieval, 4(2):133151,
2001.

[Golub and Loan, 1996] G. Golub and C. Van Loan. Matrix
Computations. The Johns Hopkins University Press, third
edition, 1996.

[Grcar et al., 2005] M. Grcar, B. Fortuna, D. Mladenic, and
M. Grobelnik. Knn versus svm in the collaborative fil-
tering framework. In ACM WebKDD 2005 Taming evolv-
ing, Expanding and Multi-faceted Web Clickstreams Work-
shop, 2005.

[Gyongyi et al., 2004] Z. Gyongyi, H. Garcia-Molina, and
J. Pedersen. Combating web spam with trustrank. Techni-
cal report, Stanford University, 2004.

[Haveliwala, 2002] T. Haveliwala. Topic-sensitive pagerank.
In Eleventh International Conference on World Wide Web,
2002.

[Kamvar et al., 2003a] S. Kamvar, T. Haveliwala, C. Man-
ning, and G. Golub. Extrapolation methods for accelerat-
ing pagerank computations. In Twelfth International Con-
ference on World Wide Web, 2003.

[Kamvar et al., 2003b] S. Kamvar, M. Schlosser, and
H. Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In Twelfth International
Conference on World Wide Web, 2003.

[Langville and Meyer, 2003] A. Langville and C. Meyer.
Deeper inside pagerank. Internet Mathematics, 1(3):335–
380, 2003.

[Miller et al., 2002] B. Miller, J. Riedl, and J. Konstan.
Grouplens for usenet: Experiences in applying collabora-
tive filtering to a social information system. In C. Leug and
D. Fisher, editors, From Usenet to CoWebs: Interacting
with Social Information Spaces. Springer-Verlag, 2002.

[Norris, 1997] J. Norris. Markov Chains. Cambridge Uni-
versity Press, 1997.

[Page et al., 1998] L. Page, S. Brin, R. Motwani, and
T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford University,
1998.

[Sarwar et al., 2001] B. M. Sarwar, G. Karypis, J. A. Kon-
stan, and J. Riedl. Item-based collaborative filtering rec-
ommendation algorithms. In 10th International World
Wide Web Conference (WWW10), May 2001.

[Sarwar et al., 2002] B. M. Sarwar, G. Karypis, J. Konstan,
and J. Riedl. Recommender systems for large-scale e-
commerce: Scalable neighborhood formation using clus-
tering. In Fifth International Conference on Computer and
Information Technology, 2002.

[Schafer et al., 2001] J. Schafer, J. Konstan, and J. Riedl.
Electronic commerce recommender applications. Journal
of Data Mining and Knowledge Discovery, January 2001.

[Shardanand and Maes, 1995] U. Shardanand and P. Maes.
Social information filtering: Algorithms for automating
”word of mouth”. In CHI 95, 1995.

[Siegel and Castellan, 1988] S. Siegel and J. Castellan.
Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill, 1988.

[White and Smyth, 2003] S. White and P. Smyth. Algo-
rithms for estimating relative importance in networks. In
Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data mining, page 26627, 2003.

IJCAI-07
2771

