IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 100

ITERATE: A Conceptual Clustering Algorithm for
Data Mining

Gautam Biswas, Senior Member, Jerry B. Weinberg, Member, and Douglas H. Fisher, Member.

Abstract— The data exploration task can be divided into
three interrelated subtasks: (i) feature selection, (ii) dis-
covery, and (iii) interpretation. This paper describes an
unsupervised discovery method with biases geared toward
partitioning objects into clusters that improve interpretabil-
ity. The algorithm, ITERATE, employs: (i) a data ordering
scheme and (ii) an iterative redistribution operator to pro-
duce maximally cohesive and distinct clusters. Cohesion
or intra-class similarity is measured in terms of the match
between individual objects and their assigned cluster proto-
type. Distinctness or inter-class dissimilarity is measured by
an average of the variance of the distribution match between
clusters. We demonstrate that interpretability, from a prob-
lem solving viewpoint, is addressed by the intra- and inter-
class measures. Empirical results demonstrate the proper-
ties of the discovery algorithm, and its applications to prob-
lem solving.

Keywords— knowledge discovery, data mining, conceptual
clustering, concept formation, criterion function, order bias,
iterative redistribution.

I. INTRODUCTION

N recent years, technology has advanced to the point

where electronic data collection and storage have become
tasks that can be accomplished easily. However, the abun-
dance of available data forges new problems, such as how
to effectively and efficiently analyze this data using au-
tomated mechanisms to better understand, characterize,
and validate known phenomena and trends, as well as dis-
cover new and interesting phenomena. Frawley, Piatetsky-
Shapiro, and Matheus [21] cite examples of a number of
forward-looking companies that are developing tools and
techniques, mainly based on ID3-like classifier systems [35]
to analyze their databases for interesting and useful pat-
terns. For example, American Airlines uses knowledge dis-
covery techniques to periodically search its frequent flyer
database to find profiles of its better customers and target
them for specific promotions. General Motors uses classi-
fication methods to study its automotive troubleshooting
databases and derive diagnostic expert systems for its dif-
ferent car models.

Knowledge discovery is defined as “the non trivial extrac-
tion of implicit, previously unknown and potentially useful

Manuscript received xx x, xxxx; revised yy yy, yyyy.

G. Biswas is with the Department of Computer Science, Box
1679 Sta B, Vanderbilt University, Nashville, TN 37235. E-mail:
biswas@vuse.vanderbilt.edu.

J.B. Weinberg is with the Dept. of Computer Science , Southern
Ilinois University at Edwardsville, Edwardsville, IL. 62026. E-mail:
jweinbe@siue.edu.

Doug Fisher is with the Department of Computer Science, Box
1679 Sta B, Vanderbilt University, Nashville, TN 37235. E-mail:
dfisher@vuse.vanderbilt.edu.

Biswas and Weinberg were partially supported by grants from
Amoco and Arco Research Labs.

information in data” [42]. An architecture for a knowl-
edge discovery system, which begins with raw data and
ends with useful knowledge, includes a number of process-
ing steps, such as data selection, feature-value selection and
transformation, incorporation of prior knowledge, and in-
terpretation [12]. At the center of the system is a discovery
or “data mining” method that extracts and evaluates data
groupings, patterns, and relationships in the context of a
problem solving task. Discovery methods for extracting
patterns from data are typically based on heuristic search
methods, which have roots in statistical analysis, numerical
taxonomy, and conceptual clustering methods. While the
first two have been successfully applied to numeric datal,
conceptual clustering has been applied to a mixture of nu-
meric, ordinal, and cardinal (symbolic) data.

Typically, an exhaustive search for structure is an expo-
nential problem, therefore, clustering algorithms incorpo-
rate biases that guide the search process in specific areas
of the total hypothesis space of possible groupings or rela-
tionships among a given set of data [8], [34]. A lot of the
work 1n conceptual clustering has developed biases from a
cognitive modeling viewpoint. Actual problem solving ap-
plications of conceptual clustering algorithms have focused
on the task of classification and flexible prediction, i.e., pre-
dicting missing feature values in specific contexts with high
accuracy [14].

In this paper we describe a conceptual clustering algo-
rithm, ITERATE, whose biases are specifically adapted to
the process of discovering interesting patterns from data.
When interpreted in the context of a domain or problem
solving situation this results in potentially useful and pos-
sibly new knowledge. The essential task here is interpreta-
tion of the generated patterns, and this is best addressed
by creating groups of data that demonstrate cohesiveness
within but clear distinctions between the groups.

There are a number of processing steps in the overall
knowledge discovery task, but, in our framework, we con-
solidate these tasks into three key subtasks: (i) feature
selection, (ii) discovery, and (iii) interpretation. Feature
selection deals with issues for characterizing the data to
be studied in the context of the current problem solving
situation. This includes making decisions about which fea-
tures are relevant descriptors, and the level of specification
that values of these features will assume. A knowledge
discovery framework should facilitate iteration among fea-

LAn exception to this is a measure of similarity developed by
Goodall [24] that attempts to add ordinal and distance information to
nominal values using a probability analysis and prior domain knowl-
edge. The SBAC system has adapted this measure for knowledge
discovery [30]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 101

ture/value selection and pattern discovery subtasks. This
allows knowledgeable users and domain experts to conduct
empirical studies in the knowledge discovery process by cre-
ating different characterizations of the data. This method
suggests that the feature selection subtask is an integral
part of the discovery process, but we do not discuss this
subtask in this paper. The discovery subtask involves the
derivation of structure or groupings among a set of data ob-
jects in a particular context or problem solving situation.
Groupings or data objects can be based on metric-based
measures of similarity and dissimilarity [26], or probabilis-
tic measures of similarity based on counts of identically-
valued features [9], [14]. Some methods evaluate groupings
based on measures of parsimony, interestingness, novelty,
and understandability. Such criteria can be subjective or
objective [36]. The interpretation subtask assigns mean-
ing to the groupings discovered [17]. While some knowl-
edge discovery systems attempt to validate knowledge in
terms of known domain theories [28], in general, this sub-
task is usually left to domain experts who relate derived
class structure of data to domain theory, and, more specif-
ically, to the current problem solving situation. This pro-
cess can also lead to discovery of new concepts that improve
problem solving and extend domain theories [12], [13], [27].

The interpretation process is directly linked to the overall
goal of improving problem solving performance in the do-
main of interest. In the knowledge discovery framework, in-
terpretability relates to the qualities of the partition struc-
ture of the data generated. In our framework, we focus on
two qualities that impact the utility of concepts generated:

1. concept distinctness or inter-class dissimilarity. Dis-
tinctness of two concepts is defined in terms of the dif-
ferences in their prototypical class descriptions. More
distinct concepts produce better problem space de-
compositions, resulting in greater problem solving ef-
ficiency [37].

2. coheston or intra-class similarity. This is defined in
terms of how individual objects match the prototyp-
ical description of the class they are assigned to by
the algorithm. The ability to classify instances and
make inductive inferences increases with the similar-
ity of the instance to the class prototype (this is also
called central tendency [1]). Classes that exhibit high
class cohesion improve the specific classification of pre-
viously unseen instances.

We believe that partitioning schemes that maximize
intra-class similarity and inter-class dissimilarity measures
generate more interpretable partitions. Two control op-
erators, anchored dissimilarity ordering and iterative re-
distribution, are developed within the ITERATE frame-
work to improve cluster cohesion and distinction.

To evaluate ITERATE’s performance, we define two a
posteriori measures: (i) cohesion, and (ii) distinctness that
directly link to intra-class similarity and inter-class dissim-
ilarity, respectively. Cohesion measures how well a cluster
prototype predicts feature values of its member objects.
Distinctness compares the average predictability of all fea-
ture values across two different class descriptions. A mea-

sure called the variance of the distribution match is defined
to capture distinctness. For two perfectly distinct clusters,
the distinctness equals the sum of their cohesion values. IT-
ERATE’s ability to converge on the more interesting parts
of the partition search space (high intra-class similarity and
inter-class dissimilarity) is studied.

In addition to performing experiments that demonstrate
the hypothesized biases of ITERATE, we conduct two ad-
ditional studies that focus on interpretation and problem
solving. A dataset of mineral samples is clustered, and the
resulting partition structure is interpreted using expert-
supplied domain knowledge. ITTERATE is also evaluated
in the context of a decision task. The partitioning struc-
ture created by ITERATE is applied to the problem solving
task, and a comparison is made of system performance with
and without the use of the partition structure.

Section 2 discusses the biases of ITERATE’s criterion
function and suggests a control structure that exploits this
bias to generate cohesive and distinct clusters. Section 3
describes the ITERATE algorithm. Section 4 presents the
a postertori evaluation measures and discusses the results
of the experiments conducted. Section 5 presents the sum-
mary and conclusions.

II. CLUSTERING SYSTEMS AND CRITERION FUNCTIONS

In clustering schemes, data objects are represented as
vectors of feature-value pairs. Features represent properties
of an object that are relevant to the problem-solving task.
For example, if we wish to classify automobiles in terms
of the speeds they can achieve, body weight, body shape,
and engine size are relevant features, but color of the car
body is not. Feature vectors may be a combination of nu-
meric and non-numeric descriptors. If one looks at geolog-
ical data, features such as age, porosity, and permeability
are numeric-valued, whereas descriptors, such as rock type
and facies structure are non numeric and nominal-valued.
Therefore, it becomes important to deal with algorithms
that can work with a combination of numeric- and nominal-
valued data. The best way to combine nominal, ordinal,
and numeric valued features is still an open question.

Numerical taxonomy methods use pairwise relations be-
tween numerical feature-valued objects stored in a prox-
imity matrix as the basis for defining groups or clusters.
If the objects are defined as points in a multi-dimensional
metric space, measures such as the Euclidean and Maha-
lanobis metrics are used to define dissimilarity between ob-
jects. Cluster analysis methods can be parametric or non-
parametric, and hierarchical or partitional [26].

Conceptual clustering methods have primarily focused
on data objects described as nominal-valued features or
mixed nominal/numerical-valued features, and typically
rely on non-parametric probabilistic measures to define
groupings. CLUSTER/2 [32], bases its criterion function
on measures of common attribute values within a cluster,
non intersecting attribute values between clusters, and sim-
plicity of the conjunctive expression for describing a clus-
ter. UNIMEM [29] builds a classification tree based on

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998

a Hamming distance? measure which mainly focuses on

intra-cluster similarity. WITT [25], defines intra cluster
similarity in terms of the strength of pairwise attribute
relationships (co-occurrences) that exist within a cluster
or group. The strength of these relationships is defined in
terms of correlational measures that are represented as con-
tingency tables. AUTOCLASS [9] and COBWEB [14] de-
fine classes as a probability distribution over the attributes
of the objects. AUTOCLASS, a parametric scheme, adopts
the Bayesian classification approach. Fisher’s COBWEB
uses the category utility measure developed by Gluck and
Corter [23] to predict the preferred level of categorization
in human hierarchical organizations.

The creation of a taxonomy is the end result of cluster
analysis. The next step is to relate nodes of the classifica-
tion hierarchy to salient concepts in the domain of interest.
This is usually accomplished by characterizing each group
in terms of a general description, which depends on the
nature of the bias used in the clustering algorithm [8], [38].
The bias has been defined as “the set of all factors that
collectively influence hypothesis definition” (i.e., the nature
of the clusters or groupings formed). These factors include
the definition of the hypothesis space and the algorithm
that searches this space for concept descriptions [8]. These,
in turn, can be expressed in terms of a eriterion function
chosen to influence grouping and concept formation and
the control structures that guide the search for derivation
of structure in the data.

Our focus is on non-parametric conceptual clustering
schemes. We start off with the category utility criterion
function because it tends to address the tradeoff between
wintra-cluster similarity and inter-cluster dissimilarity in
evaluating partitional structures. A study of the biases
of the category utility function led us to develop a scheme
for pre-ordering the data objects before generating a par-
tition structure. This approach biases the result toward
more cohesive groupings.

Category Utility: Analysis of its Bias

In conducting research on cognitively preferred levels
of categorization (basic level phenomenon), Gluck and
Corter [23] adopted a probability matching strategy to es-
tablish the usefulness or utility of a category. They defined
the Category Utility (CU) of a class Cj, as:

CU = P(Cr) { D0, 22, IP(Ai = Vij | Ok)? = P(4i = Viy)*] |,
(1)

where P(A; = Vj;) is the probability of feature 4; tak-
ing on value Vj;, and P(A4; = Vj; | Ck) is the conditional
probability of A; = V;; in class C). This represents an in-
crease in the number of feature values that can be correctly
guessed for class Cy (P(A; = V;;|Cx)?), over the expected
number of correct guesses given that no class information
is available (P(4; = V;;)?). The partition score, i.e., the

2The Hamming distance is the same as the Manhattan metric when
all feature values are considered to be binary, i.e., present or absent.

102

utility of a partition structure made up of K classes, 1is
defined as the average CU over the K classes:

Zszl CUk 2
I @

Gluck and Corter demonstrated the efficacy of category
utility in predicting the preferred level of categorization
given a pre-existing classification hierarchy. Fisher adapted
this probability matching measure to develop a conceptual
clustering algorithm called COBWEB [14], which, given a
set of objects expressed as feature-value vectors builds a
classification tree. COBWEB uses a greedy incremental
approach to build a hierarchy by incorporating data ob-
jects one-at-a-time into an existing hierarchy structure. A
data object is placed into a level of the hierarchy using
one of two operations: (i) classify data object into an ex-
isting class or (ii) create a new class. The operation that
produces a partition with the higher partition score is the
one applied to update the partition. The data object is re-
cursively classified until the object is placed in a singleton
class (a class consisting of a single instance). Empirically,
Fisher demonstrates that the method does well in model-
ing basic level phenomena and the resulting classification
trees perform well in flexible prediction tasks [15], [16].

A well-studied characteristic of greedy, incremental algo-
rithms is their order dependency. Their control structures
generate different classification trees for different data or-
ders. For example, the CU function represents a trade-
off between size, P(Cy), and cohesiveness (Co) or pre-
dictive accuracy of feature-values, [(3_; > ;(P(4i = Vij |
Cr)? — P(A; = Vi;)?)] of a class or category. The term
P(C}) causes a bias toward larger categories, and data or-
derings with consecutive presentation of a group or groups
of highly similar data objects may skew the partition struc-
ture. A number of studies [4], [22], [31] have examined the
effects of order-dependency on classification tree structure
and concept formation. Gennari, et al. [22] and McKusick
and Langley [31] have established that the COBWEB con-
trol structure and evaluation function are oriented toward
“maximizing predictive accuracy, (and) the hierarchies it
constructs may not reflect the underlying class structure
of the domain” [31]. What this implies is that it is likely
to produce spurious intermediate nodes in the classifica-
tion trees [31], which can cause unnecessary fragmentation
in the final partitions. Fragmentation makes it difficult to
interpret and extract useful information from a partition
structure.

An analysis of the partition score in an extreme case of
skewed data presentation reveals the nature of the bias.
Consider the situation where m 4+ n instances have al-
ready been classified in an emerging partition, creating
n + 1 classes, where n classes are singletons® (cohesiveness
Cosinge) and one class has m objects (cohesiveness Coy,).
This situation illustrates an extreme case of uneven class

3 A singleton concept maximizes the CO value since P(A; = Vi |
Ck) = 1 for all attributes. Also, the CO value for all singletons in a
partition are equal.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998

growth*. In such a situation, it can be shown that:
(m +n+4+ Q)COms = COsingle (3)

As expected, the size (m + 1) of the larger class biases
the addition of the data instance to the class. However,
the larger class is actually favored by the much larger fac-
tor (m+ 1) + (n + 1), i.e., the size of the class plus the
size of the partition. Intuitively, the measure has a bias
toward limiting the number of classes, even when the new
data instance has only a small number of feature values in
common with the larger class. A more complete analysis
of this phenomenon is discussed elsewhere [39].

A number of attempts have been made to mitigate the
effects of order dependency in the emerging partition struc-
tures. Most of these come under the auspices of reclassifi-
cation methods [18]. The COBWEB system described in
[14] introduced split and merge operators to mitigate order
effects. The split operator divides a category in a partition
into its sub-categories thereby promoting them in the hier-
archy. Conversely, the merge operator combines a number
of categories into a more general super-category thereby
demoting the combined categories in the hierarchy. Both
operators are applied locally within each partition, with
the merge operator being applied to all pairwise combina-
tions of categories. The operation that produces the largest
increase in the partition score is applied to generate a mod-
ified hierarchy. McKusick and Langley [31] and Fisher [14]
have experimented with promote operators which extend
the split and merge operators. This operator promotes a
class or grouping that is more similar to an ancestor than
its direct parent, and allows subsequent redistribution to
place these objects in proper categories lower down in the
hierarchy.

Fisher, Xu, and Zard [18] introduced a non-incremental
control structure in a system called AGGLOM. This mir-
rors traditional agglomerative approaches like single- and
complete-link clustering, where two classes whose combi-
nation produces the best change in CU are merged into a
single class. Initially, each data object forms a singleton
class, and the agglomerative procedure results in a binary
tree. The second step is to traverse the tree top down,
applying the split operator in an attempt to improve the
partition score of each level. By extending the search, AG-
GLOM removes the order dependency, but the size bias of
the CU function could still affect cluster formation. An
analysis of this approach reveals that larger classes are fa-
vored by an order of m, where m is the size of the class.
Therefore, given a data set that represents a class structure
that contains both very cohesive classes and weakly cohe-
sive classes, AGGLOM will similarly derive skewed class
structure [39].

We adopt a different viewpoint in developing ITERATE.
Rather than attempting to mitigate the order dependency

4This is not unusual in real data sets, e.g., the mushroom data set
we used for evaluating ITERATE’s performance has a large cohesive
class of poisonous mushrooms, and a number of less cohesive classes
of edible mushrooms. A similar observation can be made of the Iris
data set.

103

effects and maximize the partition score (average category
utility), we use the phenomenon as an opportunity to man-
age both skewed order presentations and skewed data sets.
This is addressed by manipulating the data order so that
the cohesiveness factor plays a more important role in the
early partition formation process. Previous work shows
that interleaved® orders produce better classification trees
and better final groupings in terms of the rediscovery task
and interpretation task [4], [5].

To exploit the size bias of the CU function, data objects
are ordered using the ADO (Anchored Dissimilarity Or-
dering) algorithm® The object chosen to be next in the
order is the one that maximizes the sum of the Manhat-
tan distance between it and the previous n objects in the
order. The Manhattan distance between two objects de-
fined by nominal-valued attributes is simply the number of
differences in the attribute-value pairs. The window size,
n, is user defined, but empirically corresponds to the ac-
tual number of classes expected in the data. The first data
instance in the order (i.e., the anchor) is chosen as the in-
stance most dissimilar from a prototypical instance of the
entire data set of the node.

III. THE ITERATE ALGORITHM

It has been demonstrated in the partitional numeric clus-
tering schemes that different initial partitions can lead to
different final clusterings based on the square error con-
verging to local minima, and this is especially true if the
groupings are not well separated [26]. Therefore, choice
of a “good” initial partition i1s of primary importance in
obtaining the best grouping possible. It has also been sug-
gested that the results of a hierarchical clustering scheme
can be used to select the initial partition, especially if the
nature of the data set is not well known [26]. This idea can
be exploited by extracting initial partitions” from a classi-
fication tree and then introducing a partitive control struc-
ture [26] in the form of an iterative redistribution operator
to further refine the partition structure. The ITERATE
algorithm adopts this approach by combining hierarchical
and partitional control schemes to generate cohesive and
maximally distinct clusters.

The algorithm has three primary steps:

1. derive a classification tree using category utility as a
criterion function for grouping instances.

2. extract a“good” initial partition of data from the clas-
sification tree as a starting point to focus the search
for desirable groupings or clusters, and

3. iteratively redistribute data objects among the group-
ings to achieve maximally separable clusters.

Given our focus on data mining, the design of ITER-
ATE is governed by four important assumptions about the

5Interleaved corresponds to an order where objects from different
classes are presented in sequence in an attempt to obtain a maximally
dissimilar ordering among the objects.

8This extends an ordering algorithm developed by Xu [41], [19].

"The concept of creating initial partitions can be linked to pruning
methods [16] and extraction of basic level categories [15].

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998

nature of the data: (i) a large percent of the attributes
describing data objects are nominal-valued®, (ii) no pre-
existing classification is available for the data being ana-
lyzed, (iii) the data objects to be classified are available at
the start of the clustering process, and (iv) the size of the
database is large enough to make computational efficiency
of the clustering algorithm a major concern.

A. Derwation of Classification Tree

Numeric partitional clustering algorithms form an initial
partition by randomly specifying k seed points. A better
way 18 to use a hierarchical clustering scheme to direct ini-
tial partition formation [11]. We use this approach and
create a classification tree as the first step in defining a
“good” initial partition.

The algorithm for generation of the classification tree is
summarized below:

Initialize: Set L = Ny,
0O, = set of data objects to be clustered.
Loop till L empty
Get first element from L, say Ny
If Oy contains more than one object
Sort objects according to anchored
dissimilarity ordering (ADO) scheme
Loop for every object in O
If first object in O
Create new node Ny as child of N
Place object in node Ng 4.
Else:
(i) Place object in all child nodes one by one,
and compute partition scores for each one
(i) Place object as new child node under N
and compute partition score.
Assign object to node for which the
partition score is highest, and
update A; = V;; count for node.
End Loop
Place new children in L.
End If
End Loop

N; represents a node in the classification tree, and O; de-
fines the set of data objects in node N;. Nj is the root of
the tree and O is the set of data objects to be clustered.
The creation of the classification tree uses a simple parti-
tional control scheme to divide each group of data objects
into sub classes, starting with the entire group as the root
of the tree. The algorithm uses the partition score (equa-
tion 2) to determine if an object is to be placed in one of
the existing groups or becomes a new group on its own.
The tree is constructed in a breadth-first manner, where
each level of the tree is completed prior to creating the
next lower level.

8 The method for handling numeric valued features in the ITERATE

algorithm is discussed in [6].

104

15 +
=)
O 10+
2
E
>
o]
3
® 057
O

0 2 4 6 8 10 12
Node Number
Fig. 1. CU values along a path of a Classification tree

Prior to dividing a group of data objects into a sub-class
structure, the group of objects is ordered using Anchored
Dissimilarity Ordering (ADO) to exploit the biases of the
category utility measure as discussed in the last section.

B. Extraction of Initial Partition

The 1nitial partition structure is extracted by comparing
the CUvalue (equation 1) of classes or nodes along a path
in the classification tree. For any path from root to leaf of
a classification tree this value initially increases, and then
drops (see Fig. 1). Classes from the level below the point
where the CU value falls, can be considered to overfit the
data, and, therefore, not useful for the clustering task.

Using this as the basis, the algorithm for generating the
initial partition is outlined below®:

Initialize: set node N = root
set 1ist = {N}
Loop till 1ist empty
get children(NV)
if
CUy > CU. V¢ € children(N)
N defines a group in the initial partition (1)
else
Ve such that ¢ € children(N) and CUyx < CU,
add ¢ to 1ist
Ve such that ¢ € children(N) and CUy > CU,
make ¢ a group in initial partition
end if
remove N from list
set N = first element of 1ist
End Loop

(i)
(i)

Step (i) of the algorithm ensures that a node at which
CUy peaks will be included in the initial partition. Note
that this algorithm is conservative. It prefers more specific

9 Conceptually the tree generation step and partition extraction step
are described separately, for efficiency though, the current ITERATE
implementation combines these steps.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 105

to more general concepts (clusters) in forming the initial
partition. Along a particular path from root to leaf, if a
child node has a greater CU value than the node itself,
this node is not picked to be a component of the initial
partition (Step (ii)). If the CU value decreases for other
children of this node, those children are picked for the ini-
tial partition (Step (iii)). Once a node is picked along a
path, no other nodes below this node can be included in
the initial partition. Thus the algorithm ensures that no
concept subsumes another.

The implication of the conservative approach is that
seeds picked from lower levels of the classification tree rep-
resent more specific concepts, and, therefore, tend to be
more cohesive in their attribute value specifications. If
these concepts are significant, they remain in the final par-
tition, otherwise they may be merged into other groups
during iterative redistribution. Empirical studies in Sec-
tion 4 illustrate this fact.

C. Iterative Redistribution: Improving Partition Structure

The iterative redistribution operator is applied to max-
imize the cohesion measure for individual classes in the
partition. The redistribution operator assigns object d to
class k for which the category match measure C'M gy, (equa-
tion 4) is maximum. When ties occur, and the data object’s
current class is a contender, the object is retained in the
same class. Otherwise ties are broken arbitrarily. A re-
distribution iteration consists of determining each object’s
assignment and updating the partition based on that as-
signment. The redistribution operator is applied iteratively
t1ll quiescence.

Partitive schemes like ISODATA [2] adopt a square-error
criterion function, with the Euclidean metric providing the
measure for computing distance between data objects and
cluster centers. Data objects are reassigned to optimize a
chosen criterion function, usually the mean-square error.
With nominal-valued data, the match between an object d
and a class k is defined as a probabilistic similarity measure,
called the category match measure [17]:

CMa, = P(Cy) Z (P(A; = Vi | C)? — P(Ai = Vij)?),

1,5€{A}a
(4)
Note that a class C}, 1s defined in terms of the conditional
probability distribution of all feature values for the class,
ie, P(A4; = V;; | Cx), ¥V 4, in class Cy. Also, the cate-
gory match measure assumes that a data object has only
one value per attribute (represented by j € {A;}q in the
above equation). Category match measures the increase in
expected predictability of class C for the attribute values
present in data object d.

IV. EXPERIMENTAL RESULTS

A primary goal of knowledge discovery is the interpreta-
tion of discovered concepts in the context of domain knowl-
edge. We work on the premise that concept distinctness
and cohesion are the key to creating effective and useful
partition structures. The experiments reported here study

the effects of ITERATE’s biases on these two character-
istics. Two additional studies examine the interpretation
task in the context of specific problem solving domains.
The first of these studies maps the partition structure gen-
erated by ITERATE on mineral samples into an expert-
supplied classification structure. The second study focuses
on the more complex problem solving task of characteriz-
ing hydrocarbon plays for the purpose of estimating the
potential of oil reserves. This task was implemented as
a knowledge-based system, PLAYMAKER, [3], which uses
over 500 expert-supplied rules to query users about ge-
ological characteristics of a region of interest to classify
the play structure. This study looks at how the expert-
supplied rules can be partitioned into a classification struc-
ture to better focus the query selection process. Focusing
the query selection process results in the system seeking
only relevant data, and the play structure and its hydro-
carbon potential can be established quickly. Changes in
system performance, when the derived structure was used
to guide the problem solving process are discussed.

A. Evaluating Final Partitions

Corresponding to the two factors: (i) generate maximally
cohesive clusters (intra-class similarity) and (ii) achieve
maximum separability (inter-class dissimilarity) among the
clusters in a partition, we define two post-hoc probabilis-
tic measures of partition quality. Unlike mean-square er-
ror algorithms and schemes like CLUSTER/2 which define
categorical evaluation measures, our evaluation measures
are based on probability matching schemes, because IT-
ERATE’s cluster definitions are probabilistic.

Cohesion is measured as the increased predictability of
each feature value of the objects in the dataset given the
assigned class structure. The increase in predictability for
an object d assigned to class k, Mg, is defined as:

Yo [P(A=Viy | G)® — P(A=Vi)) (5)
i,j€{A:}a

The cohesion of the partition structure is measured as the
sum of the My values for all objects in the data set. This
can be interpreted as the increase in match between a data
object and its assigned cluster prototype over the match
between the data object and the dataset prototype. Note
that this is the second term of the CM measure (equa-
tion 4). The P(Cj) term trades off fragmentation with
cohesion during the class formation process. On the other
hand, the evaluation measure concentrates solely on cohe-
sion for defining the quality of the partition.

Distinctness of clusters in the final partition is mea-
sured as inter-class dissimilarity using a probability match
measure termed the wvariance of the distribution match.
Variance of the distribution match between classes & and [
in a given partition is measured as:

%ZZ[P(AZ' = Vi | Cr) = P(4 = Vi | O, (6)

The greater this value, the more dissimilar are the two
classes being compared, and, therefore, the concepts they

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998

106

Class | Type Minerals Facies Structures Geological Attributes
D1 Halide Halite, Fluorite Aeolian AEOD Depositional setting DSE
D2 Oxide Periclase, Corundum, Rutile, Alluvial Fan AFN Primary Bedding Type PBT
Cassiterite, Spinel Basin BAS Primary Bedding Shape PBS
D3 Hydroxide Diaspore, Brucite, Gibbsite Barrier Beach BBE Vertical Sediment Variation VsV
D4 Carbonate Calcite, Dolomite, Magnesite, Siderite Delta DEL Downdip Sediment Association DSA
D5 Sulfate Barite, Celestite, Anhydrite, Gypsum Estuf"n“ine EST Updip Sediment.Association. . USA
D6 Phosphate Monazite, Apatite, Dahhlite Fluvial FLU Interbedded Sediment Association ISA
D7 Silica Quartz Glacial . GLA St.ediment Type STY
D8 Feldspar Orthoclase, Sanidine, Microclase, Lacustrian LAC Lithology LTY
Albite, Oligoclase, Andesine, Shelf SHF Paleo.markel.“ PHA
Labradorite, Bytownite, Anorthite Slope . SLP Bedding Thickness BTH
D9 Feldspathoid | Leucite, Nepheline, Cancrinite, Sl.lbmarlne Fan SEN Fau}qa FIA
Sodalite Tidal Flat TFL Aer¥al Geometry AGH
D10 Inosilicate inst.atite7 Hypersthene, Diopside, Ezcll:;zqnvtiiixnt;rni Indicator 1?’;)1(
ugtte Sediment Structure SST
TABLE 1

Mineral Data: Grouping by Chemical Composition

represent. When comparing two partitions, the one that
produces the greater average variance between classes
should be the preferred partition since the classes in this
partition represent the more distinct concepts.

B. Dataset Descriptions

The Soybean and Iris data sets were obtained from the
UCI repository of machine learning databases and domain
theories. The database of soybean diseases [33] used is a
subset of the original data, consisting of 47 instances from 4
classes, each represented by 35 nominal attributes. Classes
C1, C2, and C3 have 10 data objects each, and class C4
has 17 data objects. Classes C1 and C2 are distinct, but
classes C3 and C4 are more similar.

The Tris dataset [20] contains 150 object descriptions dis-
tributed equally in 3 classes: setosa, virginica, and ver-
sicolor. The original data object descriptions are four
numeric-valued features: sepal length and width, and petal
length and width. The features were converted nominal-
valued form using a discretization algorithm discussed in
[6]. The characteristic of the data set is that setosa sep-
arates well from the other two classes, but versicolor and
virginica are mixed.

The mineral data set was created by an expert geologist.
It contains 39 different minerals from ten different groups
based on chemical composition. Each mineral is described
in terms of optical properties, such as color, form, cleavage,
relief, birefringence, and interference figure. Given that the
features correspond to optical properties, it was not clear
whether clustering could recreate the chemical groupings
shown in Table I. Therefore, analysis of this dataset il-
lustrates the process of characterizing and interpreting the
groupings formed, i.e., Step 3 in the exploratory data anal-
ysis task.

The last data set was extracted from PLAYMAKER, a
rule-based system for characterizing hydrocarbon plays [3].
A set of 144 rules for classifying one of 13 facies structures
in geological formations (see Table IT) was extracted from
the larger PLAYMAKER rule base. Examples of some
expert supplied PLAYMAKER rules appear below.

TABLE II

List of Facies Structures & Geological attributes

If PMA subaerial

STY sandstone

LTY homogeneous
PBT dipping-parallel
DSE shelf

then facies Aeolian (7)
If PMA freshwater
PBS flat-top-lens
DSE shelf

facies Fluvial (4)
facies Glacial (1)

facies Alluvial-Fan (1)

then

If PMA fresh-water
DSE shelf

facies Lacustrian (3)
facies Glacial (1)

facies Fluvial (3)

then

Note that rules have overlapping conditions. This can
be explained by the fact that some are more general and
others more specific. Rules may have multiple conclusions
and these conclusions are weighted by a belief factor shown
in parentheses.

Conversion of PLAYMAKER rules to ITERATE data
objects is discussed in [7]. All feature values are nominal.
An interesting feature of the data set is that no rule uses
more than 5 of the 16 features, in fact, on the average,
a rule uses only 3.04 attributes, therefore, 75 — 80% of
the attribute values are missing. The modification to the
ITERATE algorithm to handle large numbers of systematic
missing values is described in [40]. The belief values were
not included in the definition of ITERATE data objects.

C. Quality of the Final Partitions

In exploratory data analysis, class structure of a data
set 1s not known beforehand. Therefore, objective mea-
sures have to be defined to evaluate the partition structure

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998

generated by a clustering algorithm. Previous studies [14],
[41] use maximizing the partition score (i.e., average pre-
dictability) as the norm for evaluating the “goodness” of
a partition. That criterion may not result in both the
individual intra-class similarities and pairwise inter-class
dissimilarities being maximized. For example, the highest
partition score obtained on the Soybean data, 1.468, cor-
responds to a three class structure — D1, D2, and D3 & D4
merged into one class. The partition score corresponding
to the class structure with four classes is 1.389. This is ex-
plained by the fact that the partition score maximizes the
average predictability over a partition as opposed to maxi-
mizing predictability for an individual class. On the other
hand, category match (equation 4) with the iterative redis-
tribution control structure focuses on global movements of
individual objects to enable them to seek their best-match
clusters. This results in better intra-class similarity and
inter-class dissimilarity than the partition score measure.
This was observed in the experiments conducted, where
the average cohesiveness values were higher for all three
data sets, and that the final partitions were consistently
generated in more desirable parts of the partition search
space.

Final partition structures generated using the ADO or-
dering scheme versus using random initial ordering of data
are compared to demonstrate the effectiveness of ADO in
generating better partitions. Partition quality is measured
in terms of the average Mgy (cohesion) and average VDM
values (distinctness) described in Section 4.

The mean and standard deviations of the average Mg
value for the Soybean, Iris;, and Mineral data sets over
51 runs each are shown in Table III. Note that we see
an increase in the average match value for all three data
sets implying more cohesion in the clusters of a partition.
Moreover, the smaller standard deviation values indicate
consistency in the convergence to better structures.

The t-test was employed to check for statistical signifi-
cance in the difference in means. The t-statistic is given
by:

= 7)(—Ho
sx VN

X is the sample mean, ug is the hypothesized population
mean, and sx 1s the unbiased standard deviation of the
sample. The computed values appear in Table IV. All
values greater than the 2.36 are significant with 99% or
greater confidence; and the Soybean and Iris data satisfy
this threshold. The mineral data mean may be considered
significant at only the 80% confidence level.

The statistical significance of the difference in the stan-
dard deviations (actually the variances), was checked using
the directional t-test with null hypothesis — Hy : 62pqn <
c?apo. Given N observations, the t-statistic with N — 2
degrees of freedom is:

t

(52

a2 /
= ran_SADO) N -2
- ~ ~ bl
25ran5ADO \ 1- rzeprDO

where the §'s represent the estimated standard deviations

107

Method Soybean Iris Mineral
mean | s-dev mean | s-dev mean | s-dev
ADO 7.575 0.327 1.794 0.012 2.808 0.278
Random 6.460 0.789 1.368 0.218 2.759 0.536
TABLE III

Differences in average match as a measure of Cohesion

|| Means ||
Comparison | Soybean | Iris Mineral
Random-ADO | 24.35 13.96 | 1.26

|| Standard Deviations ||

Comparison | Soybean | Iris Mineral
Random-ADO | 24.35 64.02 | 5.192
TABLE IV

t-statistic: Means and Standard Deviations for My,

for the two sets of runs, and r? represents the square of the
correlation between the two samples. The t-statistic com-
puted is presented in Table IV. All values above 2.34 reject
the null hypothesis with a greater than 99% confidence.

For the soybean data (Table V), the variance of the com-
bined class 3/4 with the classes 1 and 2 (last column of the
three class partition) versus the variance of the individual
classes 3 and 4 (columns 3 and 4 of the four class parti-
tion), one notes that the variance values for the latter are
higher than the former. Moreover, the variance between
class 3 and 4 distributions is 0.25. Though smaller than
the other classes it is non negligible (> % of the average
variance 0.45). The overall average variance for the four
class partition is a little higher than the average variance
for the three class partition. This establishes the four class
partition as the favored structure.

For the Iris data, we compared the average variance of
the distribution match of the given class structure (using
the known object labels) with the variance of the distribu-
tion match of the partition structure generated by ITER-
ATE (Table VI). The average variance of the ITERATE-
generated classes was higher, indicating that they were
more distinct than the original class descriptions.

Table VII reports the average variance of the distribu-
tion match for the three data sets on the experimental runs.
The t-statistic for establishing the statistical significance
in the VDM means is shown in Table VIII. All values

(I Four class partition [Three class partition

C1 C2 C3 C4 C1 C2 C3/4
C1l | 0.0 | 0.462 | 0.390 | 0.407 C1 0.0 | 0.462 | 0.344
C2 0.0 0.631 | 0.537 C2 0.0 0.514
C3 0.0 0.245 C3/4 0.0
C4
Average = 0.45 Average = 0.44
TABLE V

Variance of Distribution Match: Soybean Data

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 108

|| Given partition || ITERATE partition ||

C1 C2 C3 C1 C2 C3
C1]0.0|1.166 | 1.235 | 0.0 | 1.279 1.286
C2 0.0 | 0.641 0.0 0.578
C3 0.0 0.0

Average = 1.02 Average = 1.05

TABLE VI

Variance of Distribution Match: Iris Data

Method | Soybean | Iris | Mineral

ADO 0.4454 1.11 | 0.999

Random | 0.4412 1.05 | 0.973
TABLE VII

Average Variance of the Distribution Match

greater than 2.343 are considered significant with 99% or
greater confidence. Both the soybean and mineral data sets
showed significant increases as expected. The iris data set
showed a significant decrease in the mean VDM. This is
because random orderings tended to converge to a 2 class
structure with VDM = 1.138, as compared to the aver-
age VDM of 1.05 for the 3 class structure. However, Mg,
which measures the cohesion of individual classes is signif-
icantly higher for the 3 class structure, indicating that, in
this case, the ADO ordering achieves greater within-class
cohesion while trading off inter-class separability. In gen-
eral, our empirical results demonstrate that ITERATE’s
pre-ordering scheme, ADQO, and redistribution operator do
well in improving cohesion within classes and maximizing
inter-class dissimilarity.

D. Interpreting Class Structures: The Mineral data

The groupings obtained for the mineral data set are illus-
trated in Table IX. The numbers in parentheses correspond
to the number of objects in each of the groups. Note that

Method Soybean | Iris | Mineral
Random-ADO | 33.884 9.96 | 12.309
TABLE VIII

t-statistic: Significance of differences in VDM

crystal structure ITERATE
isometric/isotropic (6) C1(6)
hexagonal (11) Ce(11)
feldspar monoclinic, triclinic, C4(14)
and orthorhombic (14)
pyroxene monoclinic, triclinic, | C5(5)
and orthorhombic (5)
tetragonal (2) C2(2)
singletons (gibbsite) C3(1)

TABLE IX
Mineral Data: ITERATE Partition Structure

the optical features used to characterize the data objects
do not produce the chemical groupings (Table T). Instead
these features produce a partition that corresponds to the
crystal structure of the minerals shown in Table IX. It may
seem unusual that gibbsite, which is monoclinic forms its
own singleton class (Class 3). However, it is known that hy-
droxides often absorb water and exhibit variations in their
structural properties. Though classes 3,4, and 5 have sim-
ilar (i.e., monoclinic) crystal structures, their significant
features have different values (see Table X). A feature-
value is considered significant if it has high predictiveness
(P(Cyx | A; = Vjj;)) for the class (k), and the predictabil-
ity (P(A; = Vi; | Cy)) of the feature value (4; = Vj;) is
also high. For example, the feldspar group and the sul-
fates (Class 4) are mostly colorless though they may ex-
hibit some clouding, whereas the pyroxenes exhibit various
shades of color in their thin sections. Gibbsite on the other
hand is colorless with a brownish tinge. Other significant
features that exhibit differences are cleavage, relief, and
birefringence.

E. PLAYMAKER

Geology, the problem solving domain for the PLAY-
MAKER system, is characterized by fuzzy domain concepts
because geological data often imply multiple characteris-
tics, and therefore, precise domain models for problem solv-
ing are hard to come by [3]. As a result, problem solving
rules are often acquired on a case-by-case basis and prob-
lem solving traces do not show much common structure.
This makes it hard to apply induction schemes like chunk-
ing (SOAR [27]) and macro-operators [13] on problem solv-
ing traces to derive aggregated problem solving steps that
can be used to focus the reasoning process. Therefore,
we focus on an alternative approach to improve problem
solving efficiency by directly exploiting domain structure
present in the expert-supplied problem-solving knowledge
encoded as rules in the knowledge base. Domain structure
refers to inherent regularities and differences that can be
observed in the expert-supplied knowledge. Our hypothesis
1s that this structure should produce better performance in
problem-solving tasks by providing a reorganization of the
problem solving knowledge in a way that provides access
to the most relevant knowledge in specific problem-solving
situations. The net result should be a more efficient dialog
with the user.

In our experiment, ITERATE was used to create a hier-
archical partition structure (see Fig. 2) for the 144 PLAY-
MAKER rules for classifying 13 different facies structures.
The derived class structures for groups of rules are termed
rule models [10]. A rule model is a generic description for
the set of rules that constitute that rule model. These
models were used to focus hypothesis refinement during a
problem solving session.

The rule model hierarchy produced by running ITER-
ATE recursively on the facies rules 1s shown in Figure 2.
Each node (number in parentheses) defines a rule model,
which is defined in terms of its associated attribute values.
A more complete description of the rule hierarchy and its

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 109
Class C4 C5 C3
Feature | Value | P(AV [C) | P(CTA.V) | Value P(AV]C) | P(CTAYV) | Value P(AVIC) | P(CTAYV)
color cl 0.86 0.6 cln,etc. | 0.2 1.0 clpbr 1.0 1.0
form ahsh 0.36 0.71 pr 0.4 1.0 eh 1.0 1.0
cleav p001 0.43 1.0 pl110 0.8 0.8 pl0o01 1.0 1.0
relief lo 0.5 1.0 hi 1.0 0.71 mod 1.0 1.0
biref wk 0.86 0.63 st 0.4 0.67 mod 1.0 1.0
extinc plcl 0.21 0.75 pl 0.6 0.33 oblique | 1.0 1.0
intfig bi 0.93 0.72 bi 1.0 0.28 none 1.0 1.0
lown one 0.5 0.41 thr 0.8 0.57 two 1.0 1.0
opt pos 0.5 0.44 pos 0.8 0.25 pos 1.0 1.0
TABLE X
Predictability and Predictiveness of Features: Mineral Data
Root (1) Case no. 12|34 |5 |6|7|8]|9]| Ave
A BoE o TFL-8 SHF 16 SLP-16 SFN-22 BAG-12 | Querysavings | 3 | 2 |2 |3 |3]2 |2[2]2]233
TABLE XI
@ ® @
DEL-28 SFN-2 SLP-7 SFN-20 TFL -6 BAS-10 FLU-29 DEL -4 LAC-15 QUERY SAVINGS
BBE-2 EST-6 SLP-6 SHF -10 GLA-3 AFN-8 EST-3
AEO -5 BBE-2 SHF -5
© © @ ®
SLPégN?iE'Z DEL -28 SFN-18 SLP-3) (10) (1)
e) SHE 5 DEL D
s e BAS-5 BAS-4 EST-2 BBE-2
A S I S Lhels 0+ “thc-s
@ o SFN-2 o 0 ARN-4 Case no. 1 (23|45 [6|7]8] 9] Ave
DEL-20 DEL-8 BBE -2 j’(@) @) Without rulemodels |0 | 2 [3 |0 |2 4] 1]0]| 0] 1.33
e e @ @ TR With rule models ojlof1|o|o|1|2|2]|0] .67

FLU-8 FLU-15
stp-3 SHF-4

SFN-2

Fig. 2. Rule model for Facies

generation method appears in [7].

The resulting concept hierarchy is used to focus PLAY-
MAKER’s evidence gathering scheme during problem solv-
ing. Details of the method used for selecting a rule model
based on the current hypothesis are presented in [7]. The
performance of the system using the ITERATE generated
rule models was evaluated on 9 test cases. These test cases
were compiled from case books of real data by our geolog-
ical experts. The results are compared against the previ-
ous method of attention focusing [7] which basically chose
rules that supported the leading hypotheses. The experi-
ments focused on two issues: (i) how much more efficient
is the rule model scheme over the previous scheme, and
(ii) are there any structural differences in the consultation
dialogues between the two schemes?

Efficiency was measured in terms of the number of
queries the system had to ask of the user before it got to its
final conclusions. Efficiency improved because the system
could identify the more important and relevant features
pertaining to the desired conclusions early in the dialog
process, and as a result, the unimportant and irrelevant
attributes were ignored. This not only reduced the num-
ber of queries asked, but is also produced more focused
final conclusions in terms of relative ranking by belief val-
ues. We determined empirically that a consultation could
be terminated if belief values of the relevant hypotheses did
not change over the last three queries. The actual number
of queries saved for the nine test cases are listed in Table XI.

From an efficiency viewpoint, 2.3 queries/case represents
a 14% speedup on the average, which is significant but not

TABLE XII
NUMBER OF CHANGE-OVERS

a tremendous gain. However, study of the structure of the
consultation process revealed another primary difference
between the two versions of the system. In the rule model
version, sets of evidence (queries) were picked in a particu-
lar context defined by the selected rule models. This made
it easier for the system to present sets of related queries to
the user simultaneously, rather than follow the one-query-
at-a-time format. The result was a quicker consultation
process, and interactions where the user could focus on
pieces of relevant evidence at the same time. During the
consultation process, the hypotheses were ranked in terms
of their associated belief values. We used a measure, the
number of change-overs in the rankings of the primary hy-
potheses to illustrate the ability of the rule model approach
to focus on the right context and conclusions early in the
consultation process. Everytime the ranking of a primary
(i.e., the top 3 hypotheses) changed during the consulta-
tion process, the change-over count was incremented by 1.
Table XII lists the results of the experiment. An average
100% performance improvement, was observed in the rule
model approach.

In addition to providing speedup, the more structured
case presentations demonstrate clarity in the reasoning pro-
cess. This aids the system in providing better explanations
of its own reasoning processes. This property is a key to
achieving overall reliability and effectiveness in complex de-
cision making systems.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 110

V. CONCLUSIONS

The focus of this work has been on developing a con-
cept formation tool useful for data mining tasks. The key
issue to be addressed in this unsupervised framework is
wnterpretation of the generated partition structure. A par-
tition structure is considered to be more interpretable if
it maximizes the traditional concepts of intra-class simi-
larity and inter-class dissimilarity. These were measured
by cohesion within a class and the distinctness between
classes, respectively. By performing an analysis of the bi-
ases of the concept formation strategy (partition score and
incremental control structure), we derived a general data
ordering method to exploit the biases in accordance with
the goals of our task. A second operator was introduced
to manipulate the partition structure and further improve
our performance measures.

The result, our conceptual clustering algorithm, ITER-
ATE, uses a hierarchical control structure to determine an
effective initial starting point for a partitional optimiza-
tion scheme, iterative redistribution, for generating inter-
pretable clusters. The ADO algorithm, orders the data to
favorably exploit the biases of the category utility function,
so that ITERATE generates an initial partition structure
with good cohesiveness and separability among the classes.
The iterative redistribution operator, as currently imple-
mented, is quite powerful and general, and it can be applied
in other situations to optimize initial partition structures.

The experimental results in Section 4 demonstrate that
ITERATE achieves statistically significant improvements
in within-class cohesion and between-class separability.
The mineral data and the PLAYMAKER rule models de-
scribe two empirical studies where interpretation of class
structure forms the basis for further analysis. The PLAY-
MAKER results are especially exciting because it demon-
strates how the partition structures assist in improving ef-
ficiency in problem solving performance. Other extensions
to ITERATE that have not been discussed in this paper
include modifications to the criteria functions and control
structure to handle missing values. Our studies with the
PLAYMAKER rule base indicate that systematic missing
values play a significant role in the cluster definition pro-
cess [7], [40].

Further work with the ITERATE algorithm includes ex-
tending the capabilities of the algorithm along the following
directions:

1. investigate in more detail the relation between clus-
ters and concept definitions associated with these clus-
ters; the goal 1s to develop formal methodologies for
data mining studies,

2. process data sets that have a combination of numeric-
and nominal-valued attributes; our initial efforts indi-
cate that this is a difficult task [6], and

3. most important, extend the ITERATE control struc-
ture so that we can selectively generate a hierarchy
of concepts rather than a flat partition. The need for
this is very apparent in some of our current work on
analysis of data from real-life data bases.

The overall goal is to use ITERATE as the discovery tool

in our toolbox for concept and knowledge discovery in large
databases.

ACKNOWLEDGMENTS

We acknowledge Gyesung Lee who has performed the
PLAYMAKER studies as part of his Ph.D. dissertation re-
search. A number of others: Glenn Koller, Anil Jain, and
Cen Li, who have provided valuable input to this research.
Tracy Price helped with the final editing. Suggestions for
improvement by the anonymous reviewers are also grate-
fully acknowledged. Ease of access to the UCI repository of
machine learning databases and domain theories was also

a big help.

REFERENCES

[1] J.R. Anderson The Adaptive Character of Thought, Lawrence
Erlbaum Assoc., Hillsdale, NJ, 1990.

[2] G.H. Ball. Data Analysis in the Social Sciences: What about the
details?. Proc. of the AFIPS Fall Joint Computer Conference,
pp. 533-560, 1965.

[3] G. Biswas, et al. PLAYMAKER: A Knowledge-Based Approach
to Characterizing Hydrocarbon Plays. Intl. Journal of Pattern
Recognition and Artificial Intelligence, 4:315-339, 1990.

[4] G. Biswas, J. Weinberg, Q. Yang, and G. Koller. Conceptual
Clustering and Exploratory Data Analysis. Proc. of the Eighth
Intl. Workshop on Machine Learning, Evanston, IL, pp. 591-595,
June 1991.

[5] G. Biswas, J. Weinberg, and G. Koller. Data Exploration in Non
Numeric Databases. Advances in Database and Artificial Intelli-
gence, vol. 1, F. Petry and L. Delcambre, eds., Jai Press, CT, pp.
145-165, 1995.

[6] G. Biswas, J. Weinberg, and C. Li. ITERATE: A Conceptual
Clustering Scheme for Knowledge Discovery in Databases. Artifi-
cial Intelligence in the Petroleum Industry, B. Braunschweig and
R. Day, eds., Editions Technip, Paris, France, pp. 111-139, 1995.

[7] G.Biswas and G. Lee. Knowledge Reorganization: A Rule Model
Scheme for Efficient Reasoning, Proc. Tenth IEEFE Conference
on Al for Applications (CAIA), San Antonio, TX, pp. 312-318,
March 1994.

[8] W. Buntine. Myths and Legends in Learning Classification Rules.
Proc. AAAI-90, Boston, MA, 736-742, 1990.

[9] P. Cheesman, et al. AutoClass: A Bayesian Classification System.
Proc. of the Fifth International Conference on Machine Learning,
Ann Arbor, MI, 54-64, 1988.

[10] R. Davis. Use of Meta-level Knowledge in Construction, Main-
tenance, and use of Large Knowledge Bases. Ph.D. Dissertation,
Stanford University, 1976.

[11] R.O. Duda and P.E. Hart. Pattern Classification and Scene
Analysis. John Wiley, New York, NY, 1973.

[12] U. Fayyad, G. Piatetsky, and P. Smyth. From Data Mining to
Knowledge Discovery in Databases. AT Magazine, 17:37-4, 1996.

[13] R.E.Fikes, P.E. Hart, and N.J. Nilsson. Learning and Executing
Generalized Robot Plans. Artificial Intelligence, 3:251-288,1972.

[14] D. Fisher. Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2:139-172, 1987.

[15] D. Fisher. A computational account of basic level and typical-
ity effects. Proceedings of the Seventh AAAI 233-238, Morgan
Kaufmann, San Mateo, CA, 1988.

[16] D. Fisher. Noise-Tolerant conceptual clustering. Proceedings
of the Eleventh IJCAI, 825-830, Morgan Kaufmann, San Mateo,
CA, 1989.

[17] D. Fisher and P. Langley. The Structure and Formation of Nat-
ural Categories. In: The Psychology of Learning and Motivation,
vol. 26, pp. 241-284, 1990.

[18] D. Fisher, L. Xu, and N. Zard. Ordering Effects in Clustering.
Proceedings of the Ninth International Conference on Machine
Learning, pp. 163-168, Morgan Kaufmann, San Mateo, CA, 1992.

[19] D. Fisher, et al. Applying AI Clustering to Engineering Tasks.
IEEE Ezpert, vol. 8, pp. 51-60, 1993.

[20] R.A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Fugenics, 3:179-188, 1936.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 111

[21] W.J. Frawley, G. Piatetsky-Shapiro, and C.J. Matheus. Knowl-
edge Discovery in Databases: An Overview. Al Magazine, vol.
14, no. 3, pp. 57-70, Fall 1992.

[22] J.H. Gennari, P. Langley, and D. Fisher. Models of incremental
concept formation. Artificial Intelligence, vol. 40, pp. 11-61, 1989.

[23] M. Gluck and J. Corter. Information, uncertainty, and the utility
of categories. Proceedings of the Seventh Annual Conf. of the
Cognitive Science Society, 283-287, Irvine, CA, 1985.

[24] D.W. Goodall. A New Similarity Index Based On Probability.
Biometrics, vol. 22, pp. 882-907, 1966.

[25] S.J. Hanson and M. Bauer. Conceptual clustering, categoriza-
tion, and polymorphy. Machine Learning, 3:343-372, 1989.

[26] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data,
Prentice Hall, Englewood Cliffs, NJ, 1988.

[27] J.E.Laird, P.S. Rosenbloom, and A. Newell. Chunking in SOAR:
The anatomy of a general learning algorithm. Machine Learning,
1:11-46, 1986.

[28] P. Langley, H.A. Simon, G.L. Bradshaw, and J.M. Zytkow, Sci-
entific Discovery: Computational Explorations of the Creative

Processes, MIT Press, Cambridge, MA, 1987.

[29] M. Lebowitz. Experiments with incremental concept formation:
UNIMEM. Machine Learning, 2:103-138, 1987.

[30] C. Li and G. Biswas, “Conceptual Clustering with Numeric-
and-Nominal Mixed Data - A New Similarity Based System,” in
review, IEEE Trans. on Knowledge and Data Engineering, July

1996.

[31] K.B. McKusick and P. Langley. Constraints on tree structure
in concept formation. Proc. 12th Intl. Joint Conf. on Artificial
Intelligence, Sydney, Australia, pp.810-816, August, 1991.

[32] R. Michalski and R.E. Stepp. Learning from observation: con-
ceptual clustering. In: Machine Learning: An Artificial Intelli-
gence Approach, R. Michalski, J. Carbonell, and T. Mitchell, eds.,
331-364, Tioga Press, Palo Alto, CA, 1983.

[33] R. Michalski and R.E. Stepp. Automated Construction of Clas-
sifications: Conceptual Clustering versus Numerical Taxonomy.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
5:396-409, 1983.

[34] T.M. Mitchell. The Need for Biases in Learning Generaliza-
tions. Rutgers Technical Report, 1980. Reprinted in Readings in
Machine Learning, J. Shavlik and T. Dietterich, eds., 184-191,
Morgan Kaufmann, San Mateo, CA, 1990.

[35] J.R. Quinlan. Induction of Decision Trees. Machine Learning,
1:81-106, 1986.

[36] A. Silberschatz and A. Tuzhilin. On Subjective Measures of In-
terestingnessin Knowledge Discovery. Proc. of KDD-95: First In-
ternational Conference on Knowledge Discovery and Data Min-
ing, AAAI Press, Menlo Park, CA, 275-281, 1995.

[37] H.A. Simon. The Sciences of the Artificial. MIT Press, Cam-
bridge, MA, 1981.

[38] P.E. Utgoff. Machine Learning of Inductive Bias. Kluwer Aca-
demic Publishers, 1986.

[39] J.B. Weinberg and G. Biswas. An Analysis of the Inductive Bias
of Concept Formation Using the Category Utility as a Criterion
Function. Tech. Report, Dept. of Computer Science, Vanderbilt
Univ., Nashville, TN.

[40] J.B. Weinberg, G. Biswas, and G.R. Koller. Conceptual Clus-
tering with Systematic Missing Values. Proc. of the Ninth Inter-
national Workshop on Machine Learning, Aberdeen, Scotland,
pp. 464-469, 1992.

[41] L. Xu. Improving Robustness of the COBWEB Clustering Sys-
tem. M.S. Thesis, Department of Computer Science, Vanderbilt
University, Nashville, TN, December, 1991.

[42] J.M. Zytkow. The KDD land of plenty. AAAI Workshop Notes
— Knowledge Discovery in Databases, Anaheim, CA, pp. iii-vi,
July 14, 1991.

Gautam Biswas is an Associate Professor
of Computer Science, Computer Engineering
and Management of Technology, and Direc-
tor of the Computer Engineering program at
Vanderbilt University. He has a B.Tech. de-
gree in Electrical Engineering from the Indian
Institute of Technology, Bombay, India, and
M.S. and Ph.D. degrees in Computer Science
from Michigan State University, East Lansing.
Dr. Biswas conducts research in the design and
analysis of Intelligent Systems, and has pri-
mary interests in qualitative and model-based reasoning, hybrid mod-
eling systems, monitoring and diagnosis, conceptual clustering and
data mining, and cognitive psychology and intelligent learning envi-
ronments. He has published in a number of journals and contributed
book chapters. He is an associate editor of the International Journal
of Approximate Reasoning and the Journal of Applied Intelligence,
and has served on the Program Committee of a number of confer-
ences. He was co-chair of the 1996 Principles of Diagnosis Workshop,
and a senior program committee member for AAAT 97 and AAAT 98.
He is a Senior member of the IEEE Computer Society, ACM, AAAI,
and the Sigma Xi Research Society.

Jerry Weinberg is an assistant professor of
computer science as Southern Illinois Univer-
sity at Edwardsville. His research involves ab-
ductive reasoning, inductive learning, medical
diagnosis, and the application of conceptual
clustering and concept formation to database
mining and knowledge discovery. He received a
BS in nursing from Indiana State University, a
BS in computer science from the University of
South Carolina, and his MS and PhD in com-
puter science from Vanderbilt University. He

is a member of IEEE Computer Society, AAAI, and ACM.

Doug Fisher is an associate professor of com-
puter science at Vanderbilt University. His
current research areas are machine learning,
knowledge discovery, and cognitive models of
problem solving. Application areas include
Space Shuttle telemetry data, printing process
control, road traffic control, and software char-
acterization. He received his PhD from the
University of Californiaat Irvine in 1987 for the
development of the Cobweb clustering system.
He is an associate editor of IEEE Expert and of
Machine Learning, a governing board member of the Society for Ar-
tificial Intelligence and Statistics, and a member of the AAAI, IEEE,
and ACM. Doug’s email address is dfisher@vuse.vanderbilt.edu.

