
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 100

ITERATE: A Conceptual Clustering Algorithm for
Data Mining

Gautam Biswas, Senior Member, Jerry B. Weinberg, Member, and Douglas H. Fisher, Member.

Abstract|The data exploration task can be divided into
three interrelated subtasks: (i) feature selection, (ii) dis-
covery, and (iii) interpretation. This paper describes an
unsupervised discovery method with biases geared toward
partitioning objects into clusters that improve interpretabil-
ity. The algorithm, ITERATE, employs: (i) a data ordering
scheme and (ii) an iterative redistribution operator to pro-
duce maximally cohesive and distinct clusters. Cohesion
or intra-class similarity is measured in terms of the match
between individual objects and their assigned cluster proto-
type. Distinctness or inter-class dissimilarity is measured by
an average of the variance of the distribution match between
clusters. We demonstrate that interpretability, from a prob-
lem solving viewpoint, is addressed by the intra- and inter-
class measures. Empirical results demonstrate the proper-
ties of the discovery algorithm, and its applications to prob-
lem solving.

Keywords|knowledge discovery, data mining, conceptual
clustering, concept formation, criterion function, order bias,
iterative redistribution.

I. Introduction

I
N recent years, technology has advanced to the point
where electronic data collection and storage have become

tasks that can be accomplished easily. However, the abun-
dance of available data forges new problems, such as how
to e�ectively and e�ciently analyze this data using au-
tomated mechanisms to better understand, characterize,
and validate known phenomena and trends, as well as dis-
cover new and interesting phenomena. Frawley, Piatetsky-
Shapiro, and Matheus [21] cite examples of a number of
forward-looking companies that are developing tools and
techniques, mainly based on ID3-like classi�er systems [35]
to analyze their databases for interesting and useful pat-
terns. For example, American Airlines uses knowledge dis-
covery techniques to periodically search its frequent yer
database to �nd pro�les of its better customers and target
them for speci�c promotions. General Motors uses classi-
�cation methods to study its automotive troubleshooting
databases and derive diagnostic expert systems for its dif-
ferent car models.

Knowledge discovery is de�ned as \the non trivial extrac-

tion of implicit, previously unknown and potentially useful
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information in data" [42]. An architecture for a knowl-
edge discovery system, which begins with raw data and
ends with useful knowledge, includes a number of process-
ing steps, such as data selection, feature-value selection and
transformation, incorporation of prior knowledge, and in-
terpretation [12]. At the center of the system is a discovery
or \data mining" method that extracts and evaluates data
groupings, patterns, and relationships in the context of a
problem solving task. Discovery methods for extracting
patterns from data are typically based on heuristic search
methods, which have roots in statistical analysis, numerical
taxonomy, and conceptual clustering methods. While the
�rst two have been successfully applied to numeric data1,
conceptual clustering has been applied to a mixture of nu-
meric, ordinal, and cardinal (symbolic) data.

Typically, an exhaustive search for structure is an expo-
nential problem, therefore, clustering algorithms incorpo-
rate biases that guide the search process in speci�c areas
of the total hypothesis space of possible groupings or rela-
tionships among a given set of data [8], [34]. A lot of the
work in conceptual clustering has developed biases from a
cognitive modeling viewpoint. Actual problem solving ap-
plications of conceptual clustering algorithms have focused
on the task of classi�cation and exible prediction, i.e., pre-
dicting missing feature values in speci�c contexts with high
accuracy [14].

In this paper we describe a conceptual clustering algo-
rithm, ITERATE, whose biases are speci�cally adapted to
the process of discovering interesting patterns from data.
When interpreted in the context of a domain or problem
solving situation this results in potentially useful and pos-
sibly new knowledge. The essential task here is interpreta-
tion of the generated patterns, and this is best addressed
by creating groups of data that demonstrate cohesiveness
within but clear distinctions between the groups.

There are a number of processing steps in the overall
knowledge discovery task, but, in our framework, we con-
solidate these tasks into three key subtasks: (i) feature
selection, (ii) discovery, and (iii) interpretation. Feature
selection deals with issues for characterizing the data to
be studied in the context of the current problem solving
situation. This includes making decisions about which fea-
tures are relevant descriptors, and the level of speci�cation
that values of these features will assume. A knowledge
discovery framework should facilitate iteration among fea-

1An exception to this is a measure of similarity developed by
Goodall [24] that attempts to add ordinal and distance information to
nominal values using a probability analysis and prior domain knowl-
edge. The SBAC system has adapted this measure for knowledge
discovery [30]
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ture/value selection and pattern discovery subtasks. This
allows knowledgeable users and domain experts to conduct
empirical studies in the knowledge discovery process by cre-
ating di�erent characterizations of the data. This method
suggests that the feature selection subtask is an integral
part of the discovery process, but we do not discuss this
subtask in this paper. The discovery subtask involves the
derivation of structure or groupings among a set of data ob-
jects in a particular context or problem solving situation.
Groupings or data objects can be based on metric-based
measures of similarity and dissimilarity [26], or probabilis-
tic measures of similarity based on counts of identically-
valued features [9], [14]. Some methods evaluate groupings
based on measures of parsimony, interestingness, novelty,
and understandability. Such criteria can be subjective or
objective [36]. The interpretation subtask assigns mean-
ing to the groupings discovered [17]. While some knowl-
edge discovery systems attempt to validate knowledge in
terms of known domain theories [28], in general, this sub-
task is usually left to domain experts who relate derived
class structure of data to domain theory, and, more specif-
ically, to the current problem solving situation. This pro-
cess can also lead to discovery of new concepts that improve
problem solving and extend domain theories [12], [13], [27].
The interpretation process is directly linked to the overall

goal of improving problem solving performance in the do-
main of interest. In the knowledge discovery framework, in-
terpretability relates to the qualities of the partition struc-
ture of the data generated. In our framework, we focus on
two qualities that impact the utility of concepts generated:

1. concept distinctness or inter-class dissimilarity. Dis-
tinctness of two concepts is de�ned in terms of the dif-
ferences in their prototypical class descriptions. More
distinct concepts produce better problem space de-
compositions, resulting in greater problem solving ef-
�ciency [37].

2. cohesion or intra-class similarity. This is de�ned in
terms of how individual objects match the prototyp-
ical description of the class they are assigned to by
the algorithm. The ability to classify instances and
make inductive inferences increases with the similar-
ity of the instance to the class prototype (this is also
called central tendency [1]). Classes that exhibit high
class cohesion improve the speci�c classi�cation of pre-
viously unseen instances.

We believe that partitioning schemes that maximize
intra-class similarity and inter-class dissimilarity measures
generate more interpretable partitions. Two control op-
erators, anchored dissimilarity ordering and iterative re-

distribution, are developed within the ITERATE frame-
work to improve cluster cohesion and distinction.

To evaluate ITERATE's performance, we de�ne two a

posteriori measures: (i) cohesion, and (ii) distinctness that
directly link to intra-class similarity and inter-class dissim-
ilarity, respectively. Cohesion measures how well a cluster
prototype predicts feature values of its member objects.
Distinctness compares the average predictability of all fea-
ture values across two di�erent class descriptions. A mea-

sure called the variance of the distribution match is de�ned
to capture distinctness. For two perfectly distinct clusters,
the distinctness equals the sum of their cohesion values. IT-
ERATE's ability to converge on the more interesting parts
of the partition search space (high intra-class similarity and
inter-class dissimilarity) is studied.

In addition to performing experiments that demonstrate
the hypothesized biases of ITERATE, we conduct two ad-
ditional studies that focus on interpretation and problem
solving. A dataset of mineral samples is clustered, and the
resulting partition structure is interpreted using expert-
supplied domain knowledge. ITERATE is also evaluated
in the context of a decision task. The partitioning struc-
ture created by ITERATE is applied to the problem solving
task, and a comparison is made of system performance with
and without the use of the partition structure.

Section 2 discusses the biases of ITERATE's criterion
function and suggests a control structure that exploits this
bias to generate cohesive and distinct clusters. Section 3
describes the ITERATE algorithm. Section 4 presents the
a posteriori evaluation measures and discusses the results
of the experiments conducted. Section 5 presents the sum-
mary and conclusions.

II. Clustering Systems and Criterion Functions

In clustering schemes, data objects are represented as
vectors of feature-value pairs. Features represent properties
of an object that are relevant to the problem-solving task.
For example, if we wish to classify automobiles in terms
of the speeds they can achieve, body weight, body shape,
and engine size are relevant features, but color of the car
body is not. Feature vectors may be a combination of nu-
meric and non-numeric descriptors. If one looks at geolog-
ical data, features such as age, porosity, and permeability
are numeric-valued, whereas descriptors, such as rock type
and facies structure are non numeric and nominal-valued.
Therefore, it becomes important to deal with algorithms
that can work with a combination of numeric- and nominal-
valued data. The best way to combine nominal, ordinal,
and numeric valued features is still an open question.

Numerical taxonomy methods use pairwise relations be-
tween numerical feature-valued objects stored in a prox-
imity matrix as the basis for de�ning groups or clusters.
If the objects are de�ned as points in a multi-dimensional
metric space, measures such as the Euclidean and Maha-
lanobis metrics are used to de�ne dissimilarity between ob-
jects. Cluster analysis methods can be parametric or non-
parametric, and hierarchical or partitional [26].

Conceptual clustering methods have primarily focused
on data objects described as nominal-valued features or
mixed nominal/numerical-valued features, and typically
rely on non-parametric probabilistic measures to de�ne
groupings. CLUSTER/2 [32], bases its criterion function
on measures of common attribute values within a cluster,
non intersecting attribute values between clusters, and sim-

plicity of the conjunctive expression for describing a clus-

ter. UNIMEM [29] builds a classi�cation tree based on
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a Hamming distance2 measure which mainly focuses on
intra-cluster similarity. WITT [25], de�nes intra cluster
similarity in terms of the strength of pairwise attribute
relationships (co-occurrences) that exist within a cluster
or group. The strength of these relationships is de�ned in
terms of correlational measures that are represented as con-
tingency tables. AUTOCLASS [9] and COBWEB [14] de-
�ne classes as a probability distribution over the attributes
of the objects. AUTOCLASS, a parametric scheme, adopts
the Bayesian classi�cation approach. Fisher's COBWEB
uses the category utility measure developed by Gluck and
Corter [23] to predict the preferred level of categorization
in human hierarchical organizations.
The creation of a taxonomy is the end result of cluster

analysis. The next step is to relate nodes of the classi�ca-
tion hierarchy to salient concepts in the domain of interest.
This is usually accomplished by characterizing each group
in terms of a general description, which depends on the
nature of the bias used in the clustering algorithm [8], [38].
The bias has been de�ned as \the set of all factors that
collectively inuence hypothesis de�nition"(i.e., the nature
of the clusters or groupings formed). These factors include
the de�nition of the hypothesis space and the algorithm
that searches this space for concept descriptions [8]. These,
in turn, can be expressed in terms of a criterion function

chosen to inuence grouping and concept formation and
the control structures that guide the search for derivation
of structure in the data.
Our focus is on non-parametric conceptual clustering

schemes. We start o� with the category utility criterion
function because it tends to address the tradeo� between
intra-cluster similarity and inter-cluster dissimilarity in
evaluating partitional structures. A study of the biases
of the category utility function led us to develop a scheme
for pre-ordering the data objects before generating a par-
tition structure. This approach biases the result toward
more cohesive groupings.

Category Utility: Analysis of its Bias

In conducting research on cognitively preferred levels
of categorization (basic level phenomenon), Gluck and
Corter [23] adopted a probability matching strategy to es-
tablish the usefulness or utility of a category. They de�ned
the Category Utility (CU) of a class Ck as:

CUk = P (Ck)
� P

i

P
j
[P (Ai = Vij j Ck)

2 � P (Ai = Vij)2]
	
;

(1)

where P (Ai = Vij) is the probability of feature Ai tak-
ing on value Vij, and P (Ai = Vij j Ck) is the conditional
probability of Ai = Vij in class Ck. This represents an in-
crease in the number of feature values that can be correctly
guessed for class Ck (P (Ai = VijjCk)2), over the expected
number of correct guesses given that no class information
is available (P (Ai = Vij)2). The partition score, i.e., the

2The Hamming distance is the same as the Manhattanmetric when
all feature values are considered to be binary, i.e., present or absent.

utility of a partition structure made up of K classes, is
de�ned as the average CU over the K classes:

PK

k=1
CUk

K
(2)

Gluck and Corter demonstrated the e�cacy of category
utility in predicting the preferred level of categorization
given a pre-existing classi�cation hierarchy. Fisher adapted
this probability matching measure to develop a conceptual
clustering algorithm called COBWEB [14], which, given a
set of objects expressed as feature-value vectors builds a
classi�cation tree. COBWEB uses a greedy incremental
approach to build a hierarchy by incorporating data ob-
jects one-at-a-time into an existing hierarchy structure. A
data object is placed into a level of the hierarchy using
one of two operations: (i) classify data object into an ex-
isting class or (ii) create a new class. The operation that
produces a partition with the higher partition score is the
one applied to update the partition. The data object is re-
cursively classi�ed until the object is placed in a singleton
class (a class consisting of a single instance). Empirically,
Fisher demonstrates that the method does well in model-
ing basic level phenomena and the resulting classi�cation
trees perform well in exible prediction tasks [15], [16].

A well-studied characteristic of greedy, incremental algo-
rithms is their order dependency. Their control structures
generate di�erent classi�cation trees for di�erent data or-
ders. For example, the CU function represents a trade-
o� between size, P (Ck), and cohesiveness (Co) or pre-
dictive accuracy of feature-values, [(

P
i

P
j(P (Ai = Vij j

Ck)2 � P (Ai = Vij)2)] of a class or category. The term
P (Ck) causes a bias toward larger categories, and data or-
derings with consecutive presentation of a group or groups
of highly similar data objects may skew the partition struc-
ture. A number of studies [4], [22], [31] have examined the
e�ects of order-dependency on classi�cation tree structure
and concept formation. Gennari, et al. [22] and McKusick
and Langley [31] have established that the COBWEB con-
trol structure and evaluation function are oriented toward
\maximizing predictive accuracy, (and) the hierarchies it
constructs may not reect the underlying class structure
of the domain" [31]. What this implies is that it is likely
to produce spurious intermediate nodes in the classi�ca-
tion trees [31], which can cause unnecessary fragmentation

in the �nal partitions. Fragmentation makes it di�cult to
interpret and extract useful information from a partition
structure.

An analysis of the partition score in an extreme case of
skewed data presentation reveals the nature of the bias.
Consider the situation where m + n instances have al-
ready been classi�ed in an emerging partition, creating
n+ 1 classes, where n classes are singletons3 (cohesiveness
Cosingle) and one class has m objects (cohesiveness Com).
This situation illustrates an extreme case of uneven class

3A singleton concept maximizes the CO value since P (Ai = Vij j
Ck) = 1 for all attributes. Also, the CO value for all singletons in a
partition are equal.
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growth4. In such a situation, it can be shown that:

(m+ n+ 2)Coms = Cosingle (3)

As expected, the size (m + 1) of the larger class biases
the addition of the data instance to the class. However,
the larger class is actually favored by the much larger fac-
tor (m + 1) + (n + 1), i.e., the size of the class plus the
size of the partition. Intuitively, the measure has a bias
toward limiting the number of classes, even when the new
data instance has only a small number of feature values in
common with the larger class. A more complete analysis
of this phenomenon is discussed elsewhere [39].
A number of attempts have been made to mitigate the

e�ects of order dependency in the emerging partition struc-
tures. Most of these come under the auspices of reclassi�-
cation methods [18]. The COBWEB system described in
[14] introduced split and merge operators to mitigate order
e�ects. The split operator divides a category in a partition
into its sub-categories thereby promoting them in the hier-
archy. Conversely, the merge operator combines a number
of categories into a more general super-category thereby
demoting the combined categories in the hierarchy. Both
operators are applied locally within each partition, with
the merge operator being applied to all pairwise combina-
tions of categories. The operation that produces the largest
increase in the partition score is applied to generate a mod-
i�ed hierarchy. McKusick and Langley [31] and Fisher [14]
have experimented with promote operators which extend
the split and merge operators. This operator promotes a
class or grouping that is more similar to an ancestor than
its direct parent, and allows subsequent redistribution to
place these objects in proper categories lower down in the
hierarchy.
Fisher, Xu, and Zard [18] introduced a non-incremental

control structure in a system called AGGLOM. This mir-
rors traditional agglomerative approaches like single- and
complete-link clustering, where two classes whose combi-
nation produces the best change in CU are merged into a
single class. Initially, each data object forms a singleton
class, and the agglomerative procedure results in a binary
tree. The second step is to traverse the tree top down,
applying the split operator in an attempt to improve the
partition score of each level. By extending the search, AG-
GLOM removes the order dependency, but the size bias of
the CU function could still a�ect cluster formation. An
analysis of this approach reveals that larger classes are fa-
vored by an order of m, where m is the size of the class.
Therefore, given a data set that represents a class structure
that contains both very cohesive classes and weakly cohe-
sive classes, AGGLOM will similarly derive skewed class
structure [39].
We adopt a di�erent viewpoint in developing ITERATE.

Rather than attempting to mitigate the order dependency

4This is not unusual in real data sets, e.g., the mushroom data set
we used for evaluating ITERATE's performance has a large cohesive
class of poisonous mushrooms, and a number of less cohesive classes
of edible mushrooms. A similar observation can be made of the Iris
data set.

e�ects and maximize the partition score (average category
utility), we use the phenomenon as an opportunity to man-
age both skewed order presentations and skewed data sets.
This is addressed by manipulating the data order so that
the cohesiveness factor plays a more important role in the
early partition formation process. Previous work shows
that interleaved5 orders produce better classi�cation trees
and better �nal groupings in terms of the rediscovery task
and interpretation task [4], [5].
To exploit the size bias of the CU function, data objects

are ordered using the ADO (Anchored Dissimilarity Or-
dering) algorithm6. The object chosen to be next in the
order is the one that maximizes the sum of the Manhat-
tan distance between it and the previous n objects in the
order. The Manhattan distance between two objects de-
�ned by nominal-valued attributes is simply the number of
di�erences in the attribute-value pairs. The window size,
n, is user de�ned, but empirically corresponds to the ac-
tual number of classes expected in the data. The �rst data
instance in the order (i.e., the anchor) is chosen as the in-
stance most dissimilar from a prototypical instance of the
entire data set of the node.

III. The ITERATE Algorithm

It has been demonstrated in the partitional numeric clus-
tering schemes that di�erent initial partitions can lead to
di�erent �nal clusterings based on the square error con-
verging to local minima, and this is especially true if the
groupings are not well separated [26]. Therefore, choice
of a \good" initial partition is of primary importance in
obtaining the best grouping possible. It has also been sug-
gested that the results of a hierarchical clustering scheme
can be used to select the initial partition, especially if the
nature of the data set is not well known [26]. This idea can
be exploited by extracting initial partitions7 from a classi-
�cation tree and then introducing a partitive control struc-
ture [26] in the form of an iterative redistribution operator
to further re�ne the partition structure. The ITERATE
algorithm adopts this approach by combining hierarchical
and partitional control schemes to generate cohesive and
maximally distinct clusters.
The algorithm has three primary steps:

1. derive a classi�cation tree using category utility as a

criterion function for grouping instances.

2. extract a\good" initial partition of data from the clas-

si�cation tree as a starting point to focus the search

for desirable groupings or clusters, and

3. iteratively redistribute data objects among the group-

ings to achieve maximally separable clusters.

Given our focus on data mining, the design of ITER-
ATE is governed by four important assumptions about the

5Interleaved corresponds to an order where objects from di�erent
classes are presented in sequence in an attempt to obtain a maximally
dissimilar ordering among the objects.
6This extends an ordering algorithm developed by Xu [41], [19].
7The concept of creating initial partitions can be linked to pruning

methods [16] and extraction of basic level categories [15].
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nature of the data: (i) a large percent of the attributes
describing data objects are nominal-valued8, (ii) no pre-
existing classi�cation is available for the data being ana-
lyzed, (iii) the data objects to be classi�ed are available at
the start of the clustering process, and (iv) the size of the
database is large enough to make computational e�ciency
of the clustering algorithm a major concern.

A. Derivation of Classi�cation Tree

Numeric partitional clustering algorithms form an initial
partition by randomly specifying k seed points. A better
way is to use a hierarchical clustering scheme to direct ini-
tial partition formation [11]. We use this approach and
create a classi�cation tree as the �rst step in de�ning a
\good" initial partition.

The algorithm for generation of the classi�cation tree is
summarized below:

Initialize: Set L = N1,
O1 = set of data objects to be clustered.

Loop till L empty
Get �rst element from L, say Nk

If Ok contains more than one object
Sort objects according to anchored
dissimilarity ordering (ADO) scheme

Loop for every object in Ok

If �rst object in Ok

Create new node Nk+c as child of Nk

Place object in node Nk+c

Else:
(i) Place object in all child nodes one by one,
and compute partition scores for each one

(ii) Place object as new child node under Nk

and compute partition score.
Assign object to node for which the
partition score is highest, and
update Ai = Vij count for node.

End Loop

Place new children in L.
End If

End Loop

Ni represents a node in the classi�cation tree, and Oi de-
�nes the set of data objects in node Ni. N1 is the root of
the tree and O1 is the set of data objects to be clustered.
The creation of the classi�cation tree uses a simple parti-
tional control scheme to divide each group of data objects
into sub classes, starting with the entire group as the root
of the tree. The algorithm uses the partition score (equa-
tion 2) to determine if an object is to be placed in one of
the existing groups or becomes a new group on its own.
The tree is constructed in a breadth-�rst manner, where
each level of the tree is completed prior to creating the
next lower level.

8The method for handlingnumeric valued features in the ITERATE
algorithm is discussed in [6].
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Fig. 1. CU values along a path of a Classi�cation tree

Prior to dividing a group of data objects into a sub-class
structure, the group of objects is ordered using Anchored
Dissimilarity Ordering (ADO) to exploit the biases of the
category utility measure as discussed in the last section.

B. Extraction of Initial Partition

The initial partition structure is extracted by comparing
the CU value (equation 1) of classes or nodes along a path
in the classi�cation tree. For any path from root to leaf of
a classi�cation tree this value initially increases, and then
drops (see Fig. 1). Classes from the level below the point
where the CU value falls, can be considered to over�t the
data, and, therefore, not useful for the clustering task.
Using this as the basis, the algorithm for generating the

initial partition is outlined below9:

Initialize: set node N = root
set list = fNg
Loop till list empty
get children(N)

if
CUN > CUc 8 c 2 children(N)

N de�nes a group in the initial partition (i)
else
8c such that c 2 children(N) and CUN � CUc

add c to list (ii)
8c such that c 2 children(N) and CUN > CUc

make c a group in initial partition (iii)
end if
remove N from list

set N = �rst element of list
End Loop

Step (i) of the algorithm ensures that a node at which
CUk peaks will be included in the initial partition. Note
that this algorithm is conservative. It prefers more speci�c

9Conceptually the tree generation step and partitionextraction step
are described separately, for e�ciency though, the current ITERATE
implementation combines these steps.
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to more general concepts (clusters) in forming the initial
partition. Along a particular path from root to leaf, if a
child node has a greater CU value than the node itself,
this node is not picked to be a component of the initial
partition (Step (ii)). If the CU value decreases for other
children of this node, those children are picked for the ini-
tial partition (Step (iii)). Once a node is picked along a
path, no other nodes below this node can be included in
the initial partition. Thus the algorithm ensures that no
concept subsumes another.
The implication of the conservative approach is that

seeds picked from lower levels of the classi�cation tree rep-
resent more speci�c concepts, and, therefore, tend to be
more cohesive in their attribute value speci�cations. If
these concepts are signi�cant, they remain in the �nal par-
tition, otherwise they may be merged into other groups
during iterative redistribution. Empirical studies in Sec-
tion 4 illustrate this fact.

C. Iterative Redistribution: Improving Partition Structure

The iterative redistribution operator is applied to max-
imize the cohesion measure for individual classes in the
partition. The redistribution operator assigns object d to
class k for which the category match measure CMdk (equa-
tion 4) is maximum. When ties occur, and the data object's
current class is a contender, the object is retained in the
same class. Otherwise ties are broken arbitrarily. A re-
distribution iteration consists of determining each object's
assignment and updating the partition based on that as-
signment. The redistribution operator is applied iteratively
till quiescence.
Partitive schemes like ISODATA [2] adopt a square-error

criterion function, with the Euclidean metric providing the
measure for computing distance between data objects and
cluster centers. Data objects are reassigned to optimize a
chosen criterion function, usually the mean-square error.
With nominal-valued data, the match between an object d
and a class k is de�ned as a probabilistic similaritymeasure,
called the category match measure [17]:

CMdk = P (Ck)
X

i;j2fAigd

(P (Ai = Vij j Ck)2 � P (Ai = Vij)
2);

(4)
Note that a class Ck is de�ned in terms of the conditional
probability distribution of all feature values for the class,
i.e., P (Ai = Vij j Ck); 8 i; j in class Ck. Also, the cate-
gory match measure assumes that a data object has only
one value per attribute (represented by j 2 fAigd in the
above equation). Category match measures the increase in
expected predictability of class Ck for the attribute values
present in data object d.

IV. Experimental Results

A primary goal of knowledge discovery is the interpreta-
tion of discovered concepts in the context of domain knowl-
edge. We work on the premise that concept distinctness
and cohesion are the key to creating e�ective and useful
partition structures. The experiments reported here study

the e�ects of ITERATE's biases on these two character-
istics. Two additional studies examine the interpretation
task in the context of speci�c problem solving domains.
The �rst of these studies maps the partition structure gen-
erated by ITERATE on mineral samples into an expert-
supplied classi�cation structure. The second study focuses
on the more complex problem solving task of characteriz-
ing hydrocarbon plays for the purpose of estimating the
potential of oil reserves. This task was implemented as
a knowledge-based system, PLAYMAKER [3], which uses
over 500 expert-supplied rules to query users about ge-
ological characteristics of a region of interest to classify
the play structure. This study looks at how the expert-
supplied rules can be partitioned into a classi�cation struc-
ture to better focus the query selection process. Focusing
the query selection process results in the system seeking
only relevant data, and the play structure and its hydro-
carbon potential can be established quickly. Changes in
system performance, when the derived structure was used
to guide the problem solving process are discussed.

A. Evaluating Final Partitions

Corresponding to the two factors: (i) generate maximally
cohesive clusters (intra-class similarity) and (ii) achieve
maximumseparability (inter-class dissimilarity) among the
clusters in a partition, we de�ne two post-hoc probabilis-
tic measures of partition quality. Unlike mean-square er-
ror algorithms and schemes like CLUSTER/2 which de�ne
categorical evaluation measures, our evaluation measures
are based on probability matching schemes, because IT-
ERATE's cluster de�nitions are probabilistic.
Cohesion is measured as the increased predictability of

each feature value of the objects in the dataset given the
assigned class structure. The increase in predictability for
an object d assigned to class k, Mdk, is de�ned as:

X

i;j2fAigd

[P (Ai = Vij j Ck)2 � P (Ai = Vij)
2]: (5)

The cohesion of the partition structure is measured as the
sum of the Mdk values for all objects in the data set. This
can be interpreted as the increase in match between a data
object and its assigned cluster prototype over the match
between the data object and the dataset prototype. Note
that this is the second term of the CM measure (equa-
tion 4). The P (Ck) term trades o� fragmentation with
cohesion during the class formation process. On the other
hand, the evaluation measure concentrates solely on cohe-
sion for de�ning the quality of the partition.
Distinctness of clusters in the �nal partition is mea-

sured as inter-class dissimilarity using a probability match
measure termed the variance of the distribution match.
Variance of the distribution match between classes k and l
in a given partition is measured as:

1

n

nX

i

X

j

[P (Ai = Vij j Ck) � P (Ai = Vij j Cl)]2: (6)

The greater this value, the more dissimilar are the two
classes being compared, and, therefore, the concepts they
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Class Type Minerals
D1 Halide Halite, Fluorite
D2 Oxide Periclase, Corundum, Rutile,

Cassiterite, Spinel
D3 Hydroxide Diaspore, Brucite, Gibbsite
D4 Carbonate Calcite, Dolomite, Magnesite, Siderite
D5 Sulfate Barite, Celestite, Anhydrite, Gypsum
D6 Phosphate Monazite, Apatite, Dahhlite
D7 Silica Quartz
D8 Feldspar Orthoclase, Sanidine, Microclase,

Albite, Oligoclase, Andesine,
Labradorite, Bytownite, Anorthite

D9 Feldspathoid Leucite, Nepheline, Cancrinite,
Sodalite

D10 Inosilicate Enstatite, Hypersthene, Diopside,
Augite

TABLE I

Mineral Data: Grouping by Chemical Composition

represent. When comparing two partitions, the one that
produces the greater average variance between classes
should be the preferred partition since the classes in this
partition represent the more distinct concepts.

B. Dataset Descriptions

The Soybean and Iris data sets were obtained from the
UCI repository of machine learning databases and domain
theories. The database of soybean diseases [33] used is a
subset of the original data, consisting of 47 instances from 4
classes, each represented by 35 nominal attributes. Classes
C1, C2, and C3 have 10 data objects each, and class C4
has 17 data objects. Classes C1 and C2 are distinct, but
classes C3 and C4 are more similar.
The Iris dataset [20] contains 150 object descriptions dis-

tributed equally in 3 classes: setosa, virginica, and ver-

sicolor. The original data object descriptions are four
numeric-valued features: sepal length and width, and petal
length and width. The features were converted nominal-
valued form using a discretization algorithm discussed in
[6]. The characteristic of the data set is that setosa sep-
arates well from the other two classes, but versicolor and
virginica are mixed.
The mineral data set was created by an expert geologist.

It contains 39 di�erent minerals from ten di�erent groups
based on chemical composition. Each mineral is described
in terms of optical properties, such as color, form, cleavage,
relief, birefringence, and interference �gure. Given that the
features correspond to optical properties, it was not clear
whether clustering could recreate the chemical groupings
shown in Table I. Therefore, analysis of this dataset il-
lustrates the process of characterizing and interpreting the
groupings formed, i.e., Step 3 in the exploratory data anal-
ysis task.
The last data set was extracted from PLAYMAKER, a

rule-based system for characterizing hydrocarbon plays [3].
A set of 144 rules for classifying one of 13 facies structures
in geological formations (see Table II) was extracted from
the larger PLAYMAKER rule base. Examples of some
expert supplied PLAYMAKER rules appear below.

Facies Structures Geological Attributes
Aeolian AEO Depositional setting DSE

Alluvial Fan AFN Primary Bedding Type PBT

Basin BAS Primary Bedding Shape PBS

Barrier Beach BBE Vertical Sediment Variation VSV

Delta DEL Downdip Sediment Association DSA

Estuarine EST Updip Sediment Association USA

Fluvial FLU Interbedded Sediment Association ISA

Glacial GLA Sediment Type STY

Lacustrian LAC Lithology LTY

Shelf SHF Paleomarker PMA

Slope SLP Bedding Thickness BTH

Submarine Fan SFN Fauna FNA

Tidal Flat TFL Aerial Geometry AGM

Sediment Texture STX

Paleoenvironment Indicator PEI

Sediment Structure SST

TABLE II

List of Facies Structures & Geological attributes

If PMA subaerial

STY sandstone

LTY homogeneous

PBT dipping-parallel

DSE shelf

then facies Aeolian (7)

If PMA freshwater

PBS flat-top-lens

DSE shelf

then facies Fluvial (4)

facies Glacial (1)

facies Alluvial-Fan (1)

If PMA fresh-water

DSE shelf

then facies Lacustrian (3)

facies Glacial (1)

facies Fluvial (3)

Note that rules have overlapping conditions. This can
be explained by the fact that some are more general and
others more speci�c. Rules may have multiple conclusions
and these conclusions are weighted by a belief factor shown
in parentheses.
Conversion of PLAYMAKER rules to ITERATE data

objects is discussed in [7]. All feature values are nominal.
An interesting feature of the data set is that no rule uses
more than 5 of the 16 features, in fact, on the average,
a rule uses only 3:04 attributes, therefore, 75 � 80% of
the attribute values are missing. The modi�cation to the
ITERATE algorithm to handle large numbers of systematic
missing values is described in [40]. The belief values were
not included in the de�nition of ITERATE data objects.

C. Quality of the Final Partitions

In exploratory data analysis, class structure of a data
set is not known beforehand. Therefore, objective mea-
sures have to be de�ned to evaluate the partition structure
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generated by a clustering algorithm. Previous studies [14],
[41] use maximizing the partition score (i.e., average pre-
dictability) as the norm for evaluating the \goodness" of
a partition. That criterion may not result in both the
individual intra-class similarities and pairwise inter-class
dissimilarities being maximized. For example, the highest
partition score obtained on the Soybean data, 1:468, cor-
responds to a three class structure { D1, D2, and D3 & D4
merged into one class. The partition score corresponding
to the class structure with four classes is 1:389. This is ex-
plained by the fact that the partition score maximizes the
average predictability over a partition as opposed to maxi-
mizing predictability for an individual class. On the other
hand, category match (equation 4) with the iterative redis-
tribution control structure focuses on global movements of
individual objects to enable them to seek their best-match
clusters. This results in better intra-class similarity and
inter-class dissimilarity than the partition score measure.
This was observed in the experiments conducted, where
the average cohesiveness values were higher for all three
data sets, and that the �nal partitions were consistently
generated in more desirable parts of the partition search
space.
Final partition structures generated using the ADO or-

dering scheme versus using random initial ordering of data
are compared to demonstrate the e�ectiveness of ADO in
generating better partitions. Partition quality is measured
in terms of the average Mdk (cohesion) and average VDM
values (distinctness) described in Section 4.
The mean and standard deviations of the average Mdk

value for the Soybean, Iris, and Mineral data sets over
51 runs each are shown in Table III. Note that we see
an increase in the average match value for all three data
sets implying more cohesion in the clusters of a partition.
Moreover, the smaller standard deviation values indicate
consistency in the convergence to better structures.
The t-test was employed to check for statistical signi�-

cance in the di�erence in means. The t-statistic is given
by:

t =
�X � �0

ŝX=
p
N
:

�X is the sample mean, �0 is the hypothesized population
mean, and sX is the unbiased standard deviation of the
sample. The computed values appear in Table IV. All
values greater than the 2:36 are signi�cant with 99% or
greater con�dence, and the Soybean and Iris data satisfy
this threshold. The mineral data mean may be considered
signi�cant at only the 80% con�dence level.
The statistical signi�cance of the di�erence in the stan-

dard deviations (actually the variances), was checked using
the directional t-test with null hypothesis { H0 : �2ran <
�2ADO. Given N observations, the t-statistic with N � 2
degrees of freedom is:

t =
(ŝ2ran � ŝ2ADO)

p
N � 2

2ŝranŝADO
p
1� r2exp�ADO

;

where the ŝ0s represent the estimated standard deviations

Method Soybean Iris Mineral
mean s-dev mean s-dev mean s-dev

ADO 7.575 0.327 1.794 0.012 2.808 0.278
Random 6.460 0.789 1.368 0.218 2.759 0.536

TABLE III

Di�erences in average match as a measure of Cohesion

Means

Comparison Soybean Iris Mineral
Random-ADO 24.35 13.96 1.26

Standard Deviations

Comparison Soybean Iris Mineral
Random-ADO 24.35 64.02 5.192

TABLE IV

t-statistic: Means and Standard Deviations for Mdk

for the two sets of runs, and r2 represents the square of the
correlation between the two samples. The t-statistic com-
puted is presented in Table IV. All values above 2:34 reject
the null hypothesis with a greater than 99% con�dence.
For the soybean data (Table V), the variance of the com-

bined class 3/4 with the classes 1 and 2 (last column of the
three class partition) versus the variance of the individual
classes 3 and 4 (columns 3 and 4 of the four class parti-
tion), one notes that the variance values for the latter are
higher than the former. Moreover, the variance between
class 3 and 4 distributions is 0:25. Though smaller than
the other classes it is non negligible (> 1

2
of the average

variance 0:45). The overall average variance for the four
class partition is a little higher than the average variance
for the three class partition. This establishes the four class
partition as the favored structure.
For the Iris data, we compared the average variance of

the distribution match of the given class structure (using
the known object labels) with the variance of the distribu-
tion match of the partition structure generated by ITER-
ATE (Table VI). The average variance of the ITERATE-
generated classes was higher, indicating that they were
more distinct than the original class descriptions.
Table VII reports the average variance of the distribu-

tion match for the three data sets on the experimental runs.
The t-statistic for establishing the statistical signi�cance
in the VDM means is shown in Table VIII. All values

Four class partition Three class partition

C1 C2 C3 C4 C1 C2 C3/4
C1 0.0 0.462 0.390 0.407 C1 0.0 0.462 0.344
C2 0.0 0.631 0.537 C2 0.0 0.514
C3 0.0 0.245 C3/4 0.0
C4

Average = 0.45 Average = 0.44

TABLE V

Variance of Distribution Match: Soybean Data



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 28 PART C, NO. 2, MAY 1998 108

Given partition ITERATE partition

C1 C2 C3 C1 C2 C3
C1 0.0 1.166 1.235 0.0 1.279 1.286
C2 0.0 0.641 0.0 0.578
C3 0.0 0.0

Average = 1.02 Average = 1.05

TABLE VI

Variance of Distribution Match: Iris Data

Method Soybean Iris Mineral
ADO 0.4454 1.11 0.999
Random 0.4412 1.05 0.973

TABLE VII

Average Variance of the Distribution Match

greater than 2:343 are considered signi�cant with 99% or
greater con�dence. Both the soybean and mineral data sets
showed signi�cant increases as expected. The iris data set
showed a signi�cant decrease in the mean VDM. This is
because random orderings tended to converge to a 2 class
structure with VDM = 1.138, as compared to the aver-
age VDM of 1.05 for the 3 class structure. However, Mdk,
which measures the cohesion of individual classes is signif-
icantly higher for the 3 class structure, indicating that, in
this case, the ADO ordering achieves greater within-class
cohesion while trading o� inter-class separability. In gen-
eral, our empirical results demonstrate that ITERATE's
pre-ordering scheme, ADO, and redistribution operator do
well in improving cohesion within classes and maximizing
inter-class dissimilarity.

D. Interpreting Class Structures: The Mineral data

The groupings obtained for the mineral data set are illus-
trated in Table IX. The numbers in parentheses correspond
to the number of objects in each of the groups. Note that

Method Soybean Iris Mineral
Random-ADO 33.884 9.96 12.309

TABLE VIII

t-statistic: Signi�cance of di�erences in VDM

crystal structure ITERATE
isometric/isotropic (6) C1(6)
hexagonal (11) C6(11)
feldspar monoclinic, triclinic, C4(14)
and orthorhombic (14)

pyroxene monoclinic, triclinic, C5(5)
and orthorhombic (5)

tetragonal (2) C2(2)
singletons (gibbsite) C3(1)

TABLE IX

Mineral Data: ITERATE Partition Structure

the optical features used to characterize the data objects
do not produce the chemical groupings (Table I). Instead
these features produce a partition that corresponds to the
crystal structure of the minerals shown in Table IX. It may
seem unusual that gibbsite, which is monoclinic forms its
own singleton class (Class 3). However, it is known that hy-
droxides often absorb water and exhibit variations in their
structural properties. Though classes 3,4, and 5 have sim-
ilar (i.e., monoclinic) crystal structures, their signi�cant
features have di�erent values (see Table X). A feature-
value is considered signi�cant if it has high predictiveness
(P (Ck j Ai = Vij)) for the class (k), and the predictabil-
ity (P (Ai = Vij j Ck)) of the feature value (Ai = Vij) is
also high. For example, the feldspar group and the sul-
fates (Class 4) are mostly colorless though they may ex-
hibit some clouding, whereas the pyroxenes exhibit various
shades of color in their thin sections. Gibbsite on the other
hand is colorless with a brownish tinge. Other signi�cant
features that exhibit di�erences are cleavage, relief, and
birefringence.

E. PLAYMAKER

Geology, the problem solving domain for the PLAY-
MAKER system, is characterized by fuzzy domain concepts
because geological data often imply multiple characteris-
tics, and therefore, precise domainmodels for problem solv-
ing are hard to come by [3]. As a result, problem solving
rules are often acquired on a case-by-case basis and prob-
lem solving traces do not show much common structure.
This makes it hard to apply induction schemes like chunk-
ing (SOAR [27]) and macro-operators [13] on problem solv-
ing traces to derive aggregated problem solving steps that
can be used to focus the reasoning process. Therefore,
we focus on an alternative approach to improve problem
solving e�ciency by directly exploiting domain structure
present in the expert-supplied problem-solving knowledge
encoded as rules in the knowledge base. Domain structure
refers to inherent regularities and di�erences that can be
observed in the expert-supplied knowledge. Our hypothesis
is that this structure should produce better performance in
problem-solving tasks by providing a reorganization of the
problem solving knowledge in a way that provides access
to the most relevant knowledge in speci�c problem-solving
situations. The net result should be a more e�cient dialog
with the user.
In our experiment, ITERATE was used to create a hier-

archical partition structure (see Fig. 2) for the 144 PLAY-
MAKER rules for classifying 13 di�erent facies structures.
The derived class structures for groups of rules are termed
rule models [10]. A rule model is a generic description for
the set of rules that constitute that rule model. These
models were used to focus hypothesis re�nement during a
problem solving session.
The rule model hierarchy produced by running ITER-

ATE recursively on the facies rules is shown in Figure 2.
Each node (number in parentheses) de�nes a rule model,
which is de�ned in terms of its associated attribute values.
A more complete description of the rule hierarchy and its
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Class C4 C5 C3
Feature Value P (A:V j C) P (C j A:V ) Value P (A:V j C) P (C j A:V ) Value P (A:V j C) P (C j A:V )
color cl 0.86 0.6 cln,etc. 0.2 1.0 clpbr 1.0 1.0
form ahsh 0.36 0.71 pr 0.4 1.0 eh 1.0 1.0
cleav p001 0.43 1.0 pl110 0.8 0.8 pl001 1.0 1.0
relief lo 0.5 1.0 hi 1.0 0.71 mod 1.0 1.0
biref wk 0.86 0.63 st 0.4 0.67 mod 1.0 1.0
extinc plcl 0.21 0.75 pl 0.6 0.33 oblique 1.0 1.0
int�g bi 0.93 0.72 bi 1.0 0.28 none 1.0 1.0
lown one 0.5 0.41 thr 0.8 0.57 two 1.0 1.0
opt pos 0.5 0.44 pos 0.8 0.25 pos 1.0 1.0

TABLE X

Predictability and Predictiveness of Features: Mineral Data

Root (1)
AEO - 5  LAC - 18  GLA - 4  FLU - 31  AFN - 9  DEL - 32  EST - 9

BBE - 6  TFL - 8  SHF - 16  SLP - 16  SFN - 22  BAS - 12

(2) (4)(3)
DEL - 28  SFN - 2  SLP - 7 SFN - 20  TFL - 6  BAS - 10 FLU - 29  DEL - 4  LAC - 15

BBE - 2  EST - 6 SLP - 6  SHF - 10 GLA - 3  AFN - 8  EST - 3
AEO - 5  BBE - 2  SHF - 5

(5) (6) (7)

(9) (11)(10)
(8)

DEL - 28  

EST - 6

SLP - 7  BBE - 2
SFN - 2

(12) (13) (14)
SFN - 2 BBE - 2 SLP - 7

(16) (15)
EST - 6 DEL - 28

(17) (18)
BAS - 5
SHF - 5
SLP - 3
SFN - 2

BAS - 4

SHF - 1

SFN - 18  SLP - 3

(24) (25)
DEL - 20 DEL - 8

(26) (27)
BAS - 5
SLP - 3
SFN - 2

SHF - 4

FLU - 23  AFN - 3
SHF - 5  DEL - 3
EST - 2  BBE - 2

(19) (20)
SHF - 5
BBE - 2

FLU - 23
AFN - 2

(28) (29)
FLU - 8 FLU - 15

(21) (22) (23)
LAC - 5 FLU - 6

AFN - 4
LAC - 9

(30) (31)
AFN - 4 FLU - 5

Fig. 2. Rule model for Facies

generation method appears in [7].
The resulting concept hierarchy is used to focus PLAY-

MAKER's evidence gathering scheme during problem solv-
ing. Details of the method used for selecting a rule model
based on the current hypothesis are presented in [7]. The
performance of the system using the ITERATE generated
rule models was evaluated on 9 test cases. These test cases
were compiled from case books of real data by our geolog-
ical experts. The results are compared against the previ-
ous method of attention focusing [7] which basically chose
rules that supported the leading hypotheses. The experi-
ments focused on two issues: (i) how much more e�cient
is the rule model scheme over the previous scheme, and
(ii) are there any structural di�erences in the consultation
dialogues between the two schemes?
E�ciency was measured in terms of the number of

queries the system had to ask of the user before it got to its
�nal conclusions. E�ciency improved because the system
could identify the more important and relevant features
pertaining to the desired conclusions early in the dialog
process, and as a result, the unimportant and irrelevant
attributes were ignored. This not only reduced the num-
ber of queries asked, but is also produced more focused
�nal conclusions in terms of relative ranking by belief val-
ues. We determined empirically that a consultation could
be terminated if belief values of the relevant hypotheses did
not change over the last three queries. The actual number
of queries saved for the nine test cases are listed in Table XI.
From an e�ciency viewpoint, 2.3 queries=case represents

a 14% speedup on the average, which is signi�cant but not

Case no. 1 2 3 4 5 6 7 8 9 Ave
Query savings 3 2 2 3 3 2 2 2 2 2.33

TABLE XI

Query Savings

Case no. 1 2 3 4 5 6 7 8 9 Ave
Without rule models 0 2 3 0 2 4 1 0 0 1.33
With rule models 0 0 1 0 0 1 2 2 0 .67

TABLE XII

Number of Change-overs

a tremendous gain. However, study of the structure of the
consultation process revealed another primary di�erence
between the two versions of the system. In the rule model
version, sets of evidence (queries) were picked in a particu-
lar context de�ned by the selected rule models. This made
it easier for the system to present sets of related queries to
the user simultaneously, rather than follow the one-query-
at-a-time format. The result was a quicker consultation
process, and interactions where the user could focus on
pieces of relevant evidence at the same time. During the
consultation process, the hypotheses were ranked in terms
of their associated belief values. We used a measure, the
number of change-overs in the rankings of the primary hy-
potheses to illustrate the ability of the rule model approach
to focus on the right context and conclusions early in the
consultation process. Everytime the ranking of a primary
(i.e., the top 3 hypotheses) changed during the consulta-
tion process, the change-over count was incremented by 1.
Table XII lists the results of the experiment. An average
100% performance improvement was observed in the rule
model approach.

In addition to providing speedup, the more structured
case presentations demonstrate clarity in the reasoning pro-
cess. This aids the system in providing better explanations
of its own reasoning processes. This property is a key to
achieving overall reliability and e�ectiveness in complex de-
cision making systems.
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V. Conclusions

The focus of this work has been on developing a con-
cept formation tool useful for data mining tasks. The key
issue to be addressed in this unsupervised framework is
interpretation of the generated partition structure. A par-
tition structure is considered to be more interpretable if
it maximizes the traditional concepts of intra-class simi-
larity and inter-class dissimilarity. These were measured
by cohesion within a class and the distinctness between
classes, respectively. By performing an analysis of the bi-
ases of the concept formation strategy (partition score and
incremental control structure), we derived a general data
ordering method to exploit the biases in accordance with
the goals of our task. A second operator was introduced
to manipulate the partition structure and further improve
our performance measures.
The result, our conceptual clustering algorithm, ITER-

ATE, uses a hierarchical control structure to determine an
e�ective initial starting point for a partitional optimiza-
tion scheme, iterative redistribution, for generating inter-
pretable clusters. The ADO algorithm, orders the data to
favorably exploit the biases of the category utility function,
so that ITERATE generates an initial partition structure
with good cohesiveness and separability among the classes.
The iterative redistribution operator, as currently imple-
mented, is quite powerful and general, and it can be applied
in other situations to optimize initial partition structures.
The experimental results in Section 4 demonstrate that

ITERATE achieves statistically signi�cant improvements
in within-class cohesion and between-class separability.
The mineral data and the PLAYMAKER rule models de-
scribe two empirical studies where interpretation of class
structure forms the basis for further analysis. The PLAY-
MAKER results are especially exciting because it demon-
strates how the partition structures assist in improving ef-
�ciency in problem solving performance. Other extensions
to ITERATE that have not been discussed in this paper
include modi�cations to the criteria functions and control
structure to handle missing values. Our studies with the
PLAYMAKER rule base indicate that systematic missing
values play a signi�cant role in the cluster de�nition pro-
cess [7], [40].
Further work with the ITERATE algorithm includes ex-

tending the capabilities of the algorithmalong the following
directions:
1. investigate in more detail the relation between clus-
ters and concept de�nitions associated with these clus-
ters; the goal is to develop formal methodologies for
data mining studies,

2. process data sets that have a combination of numeric-
and nominal-valued attributes; our initial e�orts indi-
cate that this is a di�cult task [6], and

3. most important, extend the ITERATE control struc-
ture so that we can selectively generate a hierarchy
of concepts rather than a at partition. The need for
this is very apparent in some of our current work on
analysis of data from real-life data bases.

The overall goal is to use ITERATE as the discovery tool

in our toolbox for concept and knowledge discovery in large
databases.
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