
Iterated Approximate Value Functions

Brendan O’Donoghue Yang Wang Stephen Boyd

Abstract— In this paper we introduce a control policy which
we refer to as the iterated approximate value function policy.
The generation of this policy requires two stages, the first one
carried out off-line, and the second stage carried out on-line.
In the first stage we simultaneously compute a trajectory of
moments of the state and action and a sequence of approximate
value functions optimized to that trajectory. The next stage is to
perform control using the generated sequence of approximate
value functions. This yields a time-varying policy, even in the
case where the optimal policy is time-invariant.

We restrict our attention to the case with linear dynamics
and quadratically representable stage cost function. In this case
the pre-computation stage requires the solution of a semidefinite
program (SDP). Finding the control action at each time-period
requires solving a small convex optimization problem which can
be carried out quickly. We conclude with some examples.

I. INTRODUCTION

We consider an infinite horizon discounted stochastic
control problem with full state information. In general this
problem is difficult to solve exactly, although there are some
special cases in which it is tractable. When the state and
action space are finite and not too large, it is readily solved.
Another example is the case of linear dynamics and convex
quadratic stage cost, possibly with linear constraints. In this
case the optimal action is affine in the state variable, and the
coefficients are readily computed.

A general method for solving stochastic control problems
is dynamic programming (DP). DP relies on characterizing
the value function of the stochastic control problem, which
is the expected cost incurred by an optimal policy starting
from the given state. The optimal policy can then be written
as an optimization problem involving the stage cost and the
value function. However, in most cases the value function is
hard to represent, let alone compute. Even in cases where
this is not the case, it may be hard to solve the optimization
problem that gives the policy.

In such cases a common alternative is to use approximate
dynamic programming (ADP). In ADP the value function is
replaced with a surrogate function, often referred to as an
approximate value function (AVF). The approximate policy
is found by solving the policy optimization problem, with
the true value function replaced with the surrogate. The goal
in ADP is to choose an approximate value function so that
the problem of computing the approximate policy is tractable
and the approximate policy performs well. In this paper, we
introduce an approximate dynamic programming policy, in
which the surrogate function we use to find the control action
changes in each time step.

The policy we develop in this paper relies on parametrizing
a family of lower bounds on the true value function. The
condition we use to guarantee lower boundedness is referred
to as the iterated Bellman inequality [1], and is related to
the ‘linear programming approach’ to ADP [2], [3], [4].
In a series of recent papers Wang and Boyd demonstrated
a technique for generating performance bounds for a class
of stochastic control problems using the iterated Bellman
inequality. Their method derives a numerical performance
bound via the solution of an optimization problem. As a by-
product of the optimization problem they generate a sequence
of functions, each of which is a pointwise underestimator
of the true value function. In this paper we justify the
use of these functions as a sequence of approximate value
functions. We do this by showing that the dual variables of
the optimization problem correspond to a trajectory of first
and second moments of the state and action of the system,
under the policy obtained by the sequence of AVFs. We
restrict our attention to the case with linear dynamics and
quadratically representable stage cost, in which case the per-
formance bound problem can be expressed as a semidefinite
program (SDP). We conclude with some numerical examples
to illustrate the technique.

II. STOCHASTIC CONTROL

We begin by briefly reviewing the basics of stochastic
control and the dynamic programming solution. For more
detail the interested reader is referred to, e.g., [5], [6]. We
consider a discrete time dynamical system, with dynamics
described by

xt+1 = f(xt, ut, wt), t = 0, 1, . . . , (1)

where xt ∈ X is the system state, ut ∈ U is the control input
or action, wt ∈ W is an exogenous noise or disturbance, all
at time t, and f : X × U ×W → X is the state transition
function. The noise terms wt are independent identically
distributed (IID), with known distribution. The initial state x0
is also random with known distribution, and is independent
of wt.

The stage cost function is denoted ` : X×U → R∪{+∞},
where the infinite values of ` encode constraints on the states
and inputs: The state-action constraint set is C = {(z, v) |
`(z, v) < ∞} ⊆ X × U . (The problem is unconstrained if
C = X × U .)

We consider causal state feedback control policies of the
form

ut = φt(xt), t = 0, 1, . . . ,

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 3882

where φt : X → U is the control policy or state feedback
function at time t. The stochastic control problem is to choose
φt in order to minimize the infinite horizon discounted cost

Jφ = E

∞∑
t=0

γt`(xt, φt(xt)), (2)

where γ ∈ (0, 1) is a discount factor. The expectations are
over the noise terms wt, t = 0, 1, . . ., and the initial state
x0. We assume here that the expectation and limits exist,
which is the case under various technical assumptions [5],
[6]. We denote by J? the optimal value of the stochastic
control problem, i.e., the infimum of Jφ over all policies
φ : X → U . When the control policy functions φt do not
depend on t, they are called time-invariant. For the stochastic
control problem we consider it can be shown that there is
always an optimal policy that is time-invariant.

A. Dynamic programming

In this section we briefly review the dynamic programming
characterization of the solution to the stochastic control
problem. For more details, see [5], [6].

The value function of the stochastic control problem, V ? :
X → R ∪ {∞}, is given by

V ?(z) = inf
φ

E

(∞∑
t=0

γt`(xt, φ(xt))

)
,

subject to the dynamics (1) and x0 = z; the infimum is
over all policies φ : X → U , and the expectation is over
wt for t = 0, 1, The quantity V ?(z) is the expected cost
incurred by an optimal policy, when the system is started
from state z at time t = 0. The optimal total discounted cost
is given by

J? = E
x0

V ?(x0). (3)

It can be shown that the value function is the unique fixed
point of the Bellman equation [7]

V ?(z) = inf
v

(
`(z, v) + γE

w
V ?(f(z, v, w)

)
for all z ∈ X . We can write the Bellman equation in the
form

V ? = T V ?, (4)

where we define the Bellman operator T as

(T g)(z) = inf
v

(
`(z, v) + γE

w
g(f(z, v, w))

)
for any g : X → R ∪ {+∞}. Moreover, iteration of
the Bellman operator, starting from any initial function,
converges to the value function V ? (see [5], [6] for many
more technical details and conditions). This procedure is
referred to as value iteration.

A time-invariant optimal policy for the stochastic control
problem is given by

φ?(z) ∈ argmin
v

(
`(z, v) + γE

w
V ?(f(z, v, w))

)
, (5)

for all z ∈ X . (We drop the subscript t since this policy is
time-invariant.)

B. Approximate dynamic programming

In many cases of interest, it is intractable to compute (or
even represent) the value function V ?, let alone carry out
the minimization required evaluate the optimal policy (5). A
common alternative is to replace the value function with an
approximate value function V̂ [8], [9], [10]. The resulting
policy, given by

φ̂(z) ∈ argmin
v

(
`(z, v) + γE

w
V̂ (f(z, v, w))

)
,

for all z ∈ X , is called an approximate dynamic program-
ming (ADP) policy. When V̂ = V ?, the ADP policy is
optimal. The goal of approximate dynamic programming is
to find a V̂ for which the ADP policy can be easily evaluated
(for instance, by solving a convex optimization problem), and
also attains near-optimal performance. We can also consider
time-varying ADP policies, obtained from a sequence of
approximate value functions V̂t, which results in a time-
varying AVF policy. While an optimal policy can always be
chosen to be time-invariant, a time-varying AVF policy may
give better control performance than a time-invariant AVF
policy.

III. ITERATED APPROXIMATE VALUE FUNCTION POLICY

In this section we introduce the iterated AVF policy.
We begin by reviewing the iterated Bellman inequality and
discuss how it can be used to generate performance bounds
on stochastic control problems. Finally we introduce the
iterated AVF policy.

A. Iterated Bellman inequality

Any function which satisfies the Bellman inequality,

V ≤ T V, (6)

where the inequality is pointwise, is a guaranteed pointwise
lower bound on the true value function (under some addi-
tional mild technical conditions) [2], [3], [4], [11], [5], [6].
The basic condition works as follows. Suppose V : X → R
satisfies V ≤ T V . Then by the monotonicity of the Bellman
operator and convergence of value iteration [5], [6], we have

V ≤ lim
k→∞

T kV = V ?,

so any function that satisfies the Bellman inequality must be
a value function underestimator.

We can derive a weaker condition for being a lower
bound on V ? by considering an iterated form of the Bellman
inequality. Suppose we have a sequence of functions Vt :
X → R, t = 0, . . . , T + 1, that satisfy a chain of Bellman
inequalities

V0 ≤ T V1, V1 ≤ T V2, . . . VT ≤ T VT+1, (7)

2

3883

with VT = VT+1. Then, using similar arguments as before,
we can show that Vt ≤ V ? for t = 0, . . . , T + 1. The
condition is weaker since any function feasible for the single
Bellman inequality is also feasible for the iterated Bellman
inequality.

If we parametrize the functions to be linear combinations
of k fixed basis functions V (i) : X → R with coefficient
vectors αt ∈ Rk, i.e.,

Vt =

k∑
i=1

αtiV
(i), (8)

for t = 0, . . . , T + 1, then the Bellman inequalities lead to
convex constraints on the coefficients αt. To see this, we
write the Bellman inequality relating Vt and Vt+1 as

Vt(z) ≤ inf
v

(
`(z, v) + γE

w
Vt+1(f(z, v, w))

)
,

for all z ∈ X . For each z, the left hand side is linear in αt,
and the right hand side is a concave function of αt+1, since
it is the infimum over a family of affine functions. Hence, the
set of αt, t = 0, . . . , T + 1 that satisfy the iterated Bellman
inequalities (7) is convex [12].

B. Performance bound

Now that we have a tractable condition on value function
lower-boundedness we can use it to generate a performance
bound on the stochastic control problem, since if V0 : X → R
satisfies V0(x) ≤ V ?(x) for all x ∈ X , then

J lb = E
x0

V0(x0) ≤ E
x0

V ?(x0) = J?.

To find the best (i.e., largest) lower bound we solve the
following problem:

maximize Ex0 V0(x0)
subject to Vt ≤ T Vt+1, t = 0, . . . , T

VT = VT+1

(9)

over variables α0, . . . , αT+1. Since the iterated Bellman
condition is a convex constraint on the coefficients αt ∈ RK ,
t = 0, . . . , T + 1, and the objective is linear in α0 this
is a convex optimization problem [12]. For (much) more
detail on deriving bounds for stochastic control problems see
[10], [1], [13] and the references therein. Note that in [1],
where the iterated Bellman inequality was first introduced,
the authors used V0 = VT+1 as the terminal constraint. We
replace that with VT = VT+1 here, which generally gives
better numerical bounds.

C. Policy

By solving the performance bound problem (9) we obtain a
sequence of approximate value functions V0, . . . , VT+1, each
of which is a lower bound on the true value function. The
iterated AVF policy is given by

φt(x) ∈ argmin
u

(`(x, u) + γEVt+1(f(x, u, w))) (10)

for 0 ≤ t ≤ T , and

φt(x) ∈ argmin
u

(`(x, u) + γEVT+1(f(x, u, w))) (11)

for t > T .
Note that for the problem we consider an optimal policy

is time-invariant. However, the iterated AVF policy is time-
varying. It may be advantageous to use a time-varying policy
because, typically, an approximate value function cannot be
a good approximation of the true value function everywhere,
so knowledge about the initial state of the system, and subse-
quent states under the iterated AVF policy, can be exploited
to our advantage. The rest of this paper is a justification for
the use of this time-varying policy in the particular case of
linear dynamics and quadratically representable stage cost.

We briefly mention another policy, the pointwise maxi-
mum policy:

φ(x) ∈ argmin
u

(
`(x, u) + γ max

t=0,...,T
EVt(f(x, u))

)
. (12)

Note that this policy is time-invariant. Since each Vt is
an underestimator of the true value function, the pointwise
maximum of these is also an underestimator and is at least
as good an approximation of the true value function as any
individual Vt. However, this policy is much more expensive
to compute, and moreover its complexity grows with horizon
T .

IV. QUADRATICALLY REPRESENTABLE CASE

We restrict our attention to the case with linear dynamics
and quadratically representable stage cost and constraint set.
We consider this limited case for simplicity, but the results
in this paper extend to other cases with some minor modi-
fications, such as time-varying dynamics, random dynamics,
and a finite horizon.

We consider the case where the state and action spaces are
finite dimensional vector spaces, i.e., xt ∈ Rn and ut ∈ Rm,
and the dynamics equation has the form

xt+1 = f(xt, ut, wt) = Axt +But + wt, t = 0, 1, . . .

for some matrices A ∈ Rn×n and B ∈ Rn×m. We will write
the dynamics as

G

 xt+1

ut+1

1

 = F

 xt
ut
1

+

[
wt
1

]
where

F =

[
A B 0
0 0 1

]
, G =

[
I 0 0
0 0 1

]
.

We pad the state-action vector with an additional 1 so that
it has dimension l = n + m + 1, which will allow more
compact notation in the sequel. We assume that the noise
term has zero mean, i.e., Ewt = 0 for all t, and has second

3

3884

moment EwtwTt = Ŵ for all t. For compactness of notation
we let

E

[
wt
0

] [
wt
0

]T
=

[
Ŵ 0
0 0

]
= W.

We consider stage cost functions of the form

`(x, u) =

{
¯̀(x, u) (x, u) ∈ C
∞ otherwise,

where

¯̀(x, u) =

 x
u
1

T L
 x
u
1

 ,
L ∈ Sl (the set of l × l symmetric matrices), is a convex
quadratic function and where C denotes the feasible set of
state-action pairs. We assume that we can write the feasible
set as the intersection of k + 1 convex quadratic constraint
sets, i.e.,

C =

(x, u)

∣∣∣∣∣∣∣
 x
u
1

T Σi

 x
u
1

 ≤ 0, i = 0, . . . , k


(13)

where Σi ∈ Sl, i = 0, . . . , k.
We shall parametrize the approximate value functions to

be convex quadratic functions of the state, i.e.,

Vt(x) =

[
x
1

]T
Pt

[
x
1

]
for some Pt ∈ Sn+1. With this choice of approximate value
function the parameter Pt takes role of αt in (8) and (9).
Thus the iterated Bellman inequalities are a set of convex
constraints on the parameters P0, . . . , PT+1. This choice
of approximate value function also ensures that the policy
problems (10) and (11) are convex optimization problems
and can be solved efficiently [14], [12].

A. Iterated Bellman inequalities
With the notation we have established, we can write

EV (xt+1) = EV (Axt +But + wt) = xt
ut
1

T FTPF
 xt
ut
1

+ Tr(PW).

We denote by U(z) = {u | (z, u) ∈ C} the set of feasible
actions at a given state z. The single Bellman inequality is
written

V (x) ≤ min
u∈U(x)

(`(x, u) + γEV (Ax+Bu+ w)) ,

for all x ∈ X , which with our notation is[
x
1

]T
P

[
x
1

]
≤ γTr(PW)

+ minu∈U(x)

 x
u
1

T (L+ γFTPF)

 x
u
1



for all x such that U(x) is non-empty, or equivalently x
u
1

T (L+ γFTPF −GTPG)

 x
u
1

+ γTr(PW) ≥ 0

(14)
for all (x, u) ∈ C. This constraint is convex (indeed affine)
in the variable P . However it is semi-infinite, since it is
a family of constraints parametrized by the (infinite) set
(x, u) ∈ C. The S-procedure [15] provides a sufficient
condition that ensures (14) holds for all states. By using
the S-procedure, we can approximate the iterated Bellman
inequalities as linear matrix inequalities (LMIs) and, in turn,
(9) can be approximated as an SDP, which can be solved
efficiently. Since the S-procedure is sufficient, the resulting
approximate value functions found by solving the SDP will
still be pointwise underestimators of the true value function,
and the numerical performance bound will still be valid.

The set C is defined by quadratic inequalities parametrized
by Σi, i = 0, . . . , k. From the S-procedure we have that the
Bellman inequality will hold if there exists λ ∈ Rk+1

+ such
that

L+ γFTPF −GTPG+ γTr(PW)ele
T
l � −

∑k
i=0 λ

iΣi

where el is the lth unit vector, λi denotes the ith component
of λ, and � denotes matrix inequality.

The extension of the single Bellman inequality to the
iterated case is written

L+ γFTPt+1F −GTPtG+ γTr(Pt+1W)ele
T
l �

−
∑k
i=0 λ

i
tΣi

for t = 0, . . . , T , along with the end condition PT = PT+1.
This condition is convex in parameters P0, . . . , PT+1 ∈ Rl×l
and λ0, . . . , λT ∈ Rk+, in particular it is a linear matrix
inequality (LMI) [15], [12].

B. Performance bound problem

In this section we will define the set PTt ⊂ Sn+1
+ , which is

the set of convex quadratics, parametrized by Pt, for which
there exists Pt+1, . . . , PT+1 ∈ R(n+1)×(n+1) that together
satisfy T+1−t iterated Bellman inequalities. Thus any Pt ∈
PTt defines a convex quadratic function that is a guaranteed
lower bound on the true value function.

First, the iterated Bellman inequalities must hold, i.e.,

L+ γFTPτ+1F −GTPτG+ γTr(Pτ+1W)ele
T
l �

−
∑k
i=0 λ

i
τΣi, τ = t, . . . , T

(15)
where

λτ ∈ Rk+1
+ , τ = t, . . . , T. (16)

For convexity of the approximate value functions we require

Pτ =

[
P̂τ pτ
pTτ rτ

]
, P̂τ ∈ Sn+, τ = t, . . . , T + 1. (17)

4

3885

Finally we require the terminal constraint

PT = PT+1. (18)

We denote by PTt the set of parameters that satisfy these
conditions, i.e.,

PTt = {Pt | ∃ Pt+1, . . . , PT+1, λt, . . . , λT ,
such that (15), (16), (17), (18) are satisfied} .

With this notation the problem of finding a lower bound on
the performance of the optimal policy can be expressed as
an SDP in the variables P0, . . . , PT+1 and λ0, . . . , λT ,

maximize Tr(P0X0)
subject to P0 ∈ PT0

(19)

where

X0 = E

[
x0
1

] [
x0
1

]T
contains the first and second moments of the initial state.

V. ITERATED QUADRATIC AVFS

The goal in this section is to justify the iterated AVF policy
given in (10) and (11), i.e., using the chain of value functions,
arising from solving (19), as a sequence of approximate value
functions. We assume throughout that (19) is feasible and that
the optimal value is attained.

A. Relaxed policy problem

Here we introduce what we refer to as the relaxed policy
problem. This is the problem of minimizing the expected
cost in the policy problems (10) or (11), where instead of
exact knowledge of the state we know only its first and
second moments, and where we relax the constraints to hold
in expectation. (The relaxed policy problem reduces to the
standard policy problem when the state is known exactly).
For an in-depth treatment on the use of moment relaxations
in optimal control see [16]. This problem is written

minimize E

 x
u
1

T (L+ γFTPt+1F)

 x
u
1


subject to E

[
x
1

] [
x
1

]T
= Xt

E

 x
u
1

T Σi

 x
u
1

 ≤ 0, i = 0, . . . , k

where Xt contains the first and second moment information
about the state at time t. If we let

Zt = E


 x
u
1

 x
u
1

T
 ∈ Sl+

we can write the problem as

minimize Tr(L+ γFTPt+1F)Zt
subject to GZtG

T = Xt

Zt � 0
Tr(ΣiZt) ≤ 0, i = 0, . . . , k

(20)

over variable Zt ∈ Rl×l. The solution matrix Z?t contains
the first and second moments of the state and action that
minimize the expected cost-to-go, using Vt+1 as the value
function. Since we have relaxed the constraints to hold in
expectation, we shall refer to Zt as the relaxed second
moment at time t.

B. Saddle point problems

In this subsection we shall show that the dual variables
of the performance bound problem (19) correspond to the
relaxed second moments of the state and action under the
policy admitted by the sequence of approximate value func-
tions. We will show that the sequence of approximate value
functions is optimized to this trajectory, which concludes our
justification.

We start by forming the partial Lagrangian of the problem,
where we introduce dual variable Z0 � 0 for the Bellman
inequality constraint relating P0 and P1, which is written

L(P0, P1, Z0) = Tr(P0X0) + γTr(P1W)eTl Z0el

+TrZ0

(
L+ γFTP1F −GTP0G−

∑k
i=0 λ

i
0Σi

)
where we have the additional constraint that P1 ∈ PT1 . If
we analytically maximize this over P0 and λ0 we obtain the
following set of constraints on Z0:

Z0 =
{
Z | GZGT = X0, Tr(ΣiZ) ≤ 0, Z � 0

}
.

These constraints correspond exactly to the constraints in the
relaxed second moment problem (20). The first constraint
above requires Z0 to be in consensus with the supplied
second order information about the state, and the second
constraint requires the state and action to satisfy the con-
straints (13) in expectation. From the first constraint we also
have that eTl Z0el = 1. Making the appropriate substitutions
we arrive at the saddle point problem

minimize Tr(LZ0) + γ max
P1∈PT

1

Tr(FZ0F
T +W)P1

subject to Z0 ∈ Z0

(21)
over Z0. If we swap the order of maximization and mini-
mization in (21) we have

maximize γTr(P1W) + min
Z0∈Z0

Tr(L+ γFTP1F)Z0

subject to P1 ∈ PT1
(22)

over variables P1, . . . , PT and λ1, . . . , λT−1. Assuming
strong duality, problems (21) and (22) are equivalent and
attain the same optimal value as (19). The second term in
problem (22) is identical to problem (20) for t = 0. This

5

3886

implies that the optimal Z0 is the optimal second moment
of the relaxed problem (20) at t = 0 using V1 as the value
function, i.e., we can interpret Z0 as

Z0 = E


 x0
u0
1

 x0
u0
1

T
 .

With this we can write

FZ0F
T +W

= E

[
Ax0 +Bu0 + w

1

] [
Ax0 +Bu0 + w

1

]
= E

[
x1
1

] [
x1
1

]T
,

and thus we can rewrite the second term in problem (21) as

max
P1∈PT

1

Tr(FZ0F
T+W)P1 = max

P1∈PT
1

E

[
x1
1

]T
P1

[
x1
1

]
.

This implies that the optimal P1 is the quadratic lower bound
that maximizes the expected cost over states at time t = 1
(and satisfies the iterated Bellman inequalities).

The above argument is repeated inductively: At iteration
t we introduce a new dual variable Zt for the Bellman in-
equality involving Pt and Pt+1 and show that it corresponds
to the relaxed second moment of the state and action at time
t, provided the same holds for Zt−1. Then, since the relaxed
second moment of the state at time t + 1 is determined by
applying the dynamics equations to Zt, it follows that Pt+1

maximizes the expected cost over states at time t+ 1 (while
satisfying the Bellman inequalities). This is repeated up to
t = T . Finally, if the relaxed second moment of the state
converges to a steady-state and the horizon T is large enough,
then, by the argument above, PT (and therefore PT+1) is
optimized to that steady-state distribution, which justifies the
long-term policy (11).

VI. EXAMPLES

Here we introduce two examples to demonstrate the effi-
cacy of the iterated AVF policy. For other practical examples
of formulating the bound problem (9) as an SDP see [17],
[18], [1], [10].

A. One-dimensional example

In this instance we take n = m = 1 and γ = 0.99, the
dynamics were given by xt+1 = xt+ut and the cost function
was chosen to be

`(x, u) =

{
x2 + (0.1)u2 |u| ≤ 1,
∞ otherwise.

This allows us to visually inspect the approximate value
functions and the true value function for this particular
problem.

We solve the performance bound problem (19) with a
horizon of T = 25 and with exact knowledge of the initial
state, which we take to be x0 = 20. Figure 1 shows the

−20 −15 −10 −5 0 5 10 15 20
−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

x

Fig. 1. AVF sequence and state trajectory.

−20 −15 −10 −5 0 5 10 15 20
0

500

1000

1500

2000

2500

3000

x

V
⋆(x)

maxt Vt(x)

Fig. 2. True value function and pointwise max over AVFs.

sequence of value functions generated by solving problem
(19). The red circles are the trajectory of first moments of the
state xt, extracted from the dual variables Zt, the blue curves
are the corresponding quadratic value functions defined by
Pt. Note that each quadratic is a good approximation in some
regions, namely where the state is expected to be at that time,
and a bad approximation in other regions. In this case we
can find the true value function by discretizing the state and
action spaces and performing value iteration [5], [6]. Figure 2
shows the approximate value function given by the pointwise
maximum over all 25 quadratics in blue and the true value
function in red. In this case the two are indistinguishable.

We evaluated the performance of various policies using
Monte Carlo simulation, starting from x0. The iterated AVF
policy obtained 2747.6, almost identical to the lower bound
of 2745.0; a single approximate value function achieved
2750.1, a small but significant difference. The single AVF
was generated by solving (9) with T = 0. The more
computationally expensive model predictive control (MPC)
policy [19], [20], [21], [22] with a lookahead of 50 time-
steps, achieved a performance of 2745.1.

6

3887

Policy Performance
Lower bound 50737

MPC 50923
Iterated AVF 51286
Single AVF 52479

TABLE I
LOWER BOUND, AND POLICY PERFORMANCES.

B. Box constrained quadratic control

This example is similar to an example presented in [18].
We control a linear dynamical system with stage cost

`(x, u) =

{
xTQx+ uTRu ‖u‖∞ ≤ 1
∞ otherwise,

where Q � 0 and R � 0, i.e., our action is constrained to lie
in a box at all time periods. The constraint that ‖ut‖∞ ≤ 1
can be rewritten as

(ut)
2
i ≤ 1, i = 1, . . . ,m.

We randomly generated a numerical instance with n =
12 and m = 4. The dynamics matrix A was randomly
generated, and then scaled to have spectral radius 1. The
horizon length for both MPC and the lower bound calculation
was set to 50, the value of γ was chosen to be 0.99. We
ran 1000 Monte Carlo simulations of 500 time periods to
estimate performance of various policies. We compared the
performance of the iterated AVF policy with a single AVF
policy, where we solve (9) with T = 0. We also compared to
MPC with a 50 step-lookahead. The results are summarized
in table I. All computation was carried out on a 4-core
Intel Xeon processor, with clock speed 3.4GHz and 16Gb
of RAM, running Linux. The off-line pre-computation to
generate the AVF policies was carried out using CVX [23]
and required 8.1s for the T = 50 lookahead horizon. Custom
interior point solvers were generated by CVXGEN [24] and
used to solve the policy problems for both the AVF policies
and the MPC policy. On average, it took 9ms to solve the
MPC problem at each iteration, whereas it only took 83µs
to solve the AVF policy problem, more than two orders of
magnitude faster. From the lower bound we can certify that
MPC is no more than 0.4% suboptimal, the iterated AVF
policy is no more than 1.1% suboptimal, and the single AVF
policy is no more than 3.4% suboptimal.

VII. SUMMARY

In this paper we introduced the iterated approximate value
function policy, which is a time-varying policy even in
the case where the optimal policy is time-invariant. The
sequence of approximate value functions we use is derived
from a performance bound problem, which, for the case we
consider, is a convex optimization problem and thus tractable.
We justified the use of this sequence of approximate value

functions by considering the dual of the performance bound
problem. We showed that the dual variables of this problem
could be interpreted as a trajectory of moments of the state
and action for the stochastic control problem. We concluded
with some examples to show the performance of our policy.

REFERENCES

[1] Y. Wang and S. Boyd, “Approximate dynamic programming via
iterated Bellman inequalities,” http://www.stanford.edu/∼boyd/papers/
adp iter bellman.html, 2010, manuscript.

[2] A. Manne, “Linear programming and sequential decisions,” Manage-
ment Science, vol. 6, no. 3, pp. 259–267, Apr. 1960.

[3] P. Schweitzer and A. Seidmann, “Generalized polynomial approx-
imations in Markovian decision process,” Journal of mathematical
analysis and applications, vol. 110, no. 2, pp. 568–582, Sep. 1985.

[4] D. De Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, Nov. 2003.

[5] D. Bertsekas, Dynamic Programming and Optimal Control: Volume
1. Athena Scientific, 2005.

[6] ——, Dynamic Programming and Optimal Control: Volume 2. Athena
Scientific, 2007.

[7] R. Bellman, Dynamic Programming. Dover Publications, 1957.
[8] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena

Scientific, 1996.
[9] W. Powell, Approximate Dynamic Programming: Solving the Curses

of Dimensionality. J. Wiley & Sons, 2007.
[10] Y. Wang and S. Boyd, “Performance bounds for linear stochastic

control,” Systems & Control Letters, vol. 58, no. 3, pp. 178–182, Mar.
2009.

[11] D. de Farias and B. Van Roy, “A cost-shaping linear program for
average-cost approximate dynamic programming with performance
guarantees,” Mathematics of Operations Research, vol. 31, no. 3, pp.
597–620, 2006.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, Sep. 2004.

[13] Y. Wang and S. Boyd, “Performance bounds and suboptimal policies
for linear stochastic control via LMIs,” International Journal of Robust
and Nonlinear Control, vol. 21, no. 14, pp. 1710–1728, Sep. 2011.

[14] ——, “Fast evaluation of quadratic control-Lyapunov policy,” IEEE
Transactions on Control Systems Technology, vol. 19, no. 4, pp. 939–
946, Jul. 2011.

[15] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[16] C. Savorgnan, J. Lasserre, and M. Diehl, “Discrete-time stochastic
optimal control via occupation measures and moment relaxations,” in
Proc. 48th IEEE Conference on Decision and Control, Dec. 2009, pp.
519–524.

[17] S. Boyd, M. Mueller, B. O’Donoghue, and Y. Wang, “Perfor-
mance bounds and suboptimal policies for multi-period investment,”
http://www.stanford.edu/∼boyd/papers/port opt bound.html, Jul. 2012,
manuscript.

[18] B. O’Donoghue, Y. Wang, and S. Boyd, “Min-max approximate
dynamic programming,” in Proceedings of the 2011 IEEE Multi-
Conference on Systems and Control, Sep. 2011, pp. 424–431.

[19] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for
optimal control,” http://www.stanford.edu/∼boyd/papers/oper splt ctrl.
html, 2012, manuscript.

[20] C. Garcia, D. Prett, and M. Morari, “Model predictive control: Theory
and practice,” Automatica, vol. 25, no. 3, pp. 335–348, May 1989.

[21] J. Maciejowski, Predictive Control with Constraints. Prentice-Hall,
2002.

[22] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, Jun. 2000.

[23] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, Apr. 2011.

[24] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 13,
no. 1, pp. 1–27, 2012.

7

3888

