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Iterated Dynamic 

Condensation Technique 

and Its Applications in 

Modal Testing 

This article addresses an application of the dynamic condensation in modal testing, which 
requires measurements of natural frequencies and a limited number of components of 
modal shapes only. The measured frequencies can be employed as the initial estimates 
in the iterated dynamic condensation to effectively find an exact solution for the original 
eigenvalue problem and determine the transformation matrix between the testing and 
nontesting coordinates. Complete modal shapes including the nontesting coordinates can 
then be estimated based on the limited measurements. Numerical results are presented to 
illustrate the feasibility and efficiency of the iterated dynamic condensation. A comparison 
with the experimental results of a multiple disk system is also provided. © 1997 John 
Wiley & Sons, Inc. 

INTRODUCTION 

Modal testing has been employed in many engi

neering disciplines to determine the vibration 

characteristics of a system including its natural 

frequencies and the corresponding modal shapes. 

With development of hardware and software, the 

modal testing technique has become more and 

more efficient, reliable, and accurate and has been 

widely adopted in the industry. However, for large 

complex structures, the testing is usually costly 

and time consuming, especially when mode shapes 

are concerned. On the other hand, the finite ele

ment method has become a powerful tool for engi

neering structural analysis. However, applications 

of the method depends, in many cases, on how the 

mathematical model appropriately represents the 

real physical system; therefore, an experimental 
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verification is often required. Many efforts have 

been devoted to bridge the gap between these 

two approaches including using modal testing to 

identify the boundary conditions of real physical 

systems (Chen and Wang, 1991), using the finite 

element model to estimate the complete modal 

shapes based on the limited measurements (Chen 

et aI., 1995; Stephan, 1986), and some applications 

in structural dynamic modification (Baruch, 1978; 

Chen et aI., 1995). 

This article addresses an application of the iter

ated dynamic condensation technique in the modal 

testing. Generally speaking, the measurement of 

natural frequencies of a system is relatively easier 

to implemented and less costly. Engineers can eas

ily select the testing coordinates for which the test

ing facilities are available and implementation of 

the test is convenient. Using the measured fre-
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quencies as the initial estimates in the iterated 
dynamic condensation, exact solutions for the nat

ural frequencies of the finite element formulation 

can be efficiently obtained. And, in turn, the rela

tionship between the testing and nontesting coor

dinates for the modes of interest can be found. 

Therefore, the nontesting coordinates of the 

modal shapes can be estimated based on the lim

ited measurements of the testing coordinates, and 

the full or complete modal vectors can be con

structed. 

A brief summary of the iterated dynamic con

densation is provided in the following section. Its 

applications in the modal testing are then dis

cussed. Numerical results for vibration analysis of 

a cantilever beam are presented to illustrate the 
accuracy and efficiency of the dynamic condensa

tion iteration. A comparison with the experimental 

results for a multiple disk system is provided to 

demonstrate the application of the dynamic con

densation in the modal testing. 

DYNAMIC CONDENSATION 
TECHNIQUES 

In structural dynamics, the natural frequencies and 

eigenmodes of a structure can be obtained by solv

ing the following generalized eigenvalue problem: 

(1) 

where K and M are the stiffness and mass matrices 
of the structure, respectively, w is a natural fre

quency and X is the corresponding eigenvector, 

or mode shape of the system. It is assumed that K 

is semipositive definite and M is positive definite. 

Condensation techniques for large-scale general

ized eigenvalue problems have been proposed to 

reduce the size of the problem and improve the 

computational efficiency including Guyan (1965), 

Irons (1965), Kuhar and Stahle (1974), Leung 

(1978), Paz (1978), Singh and Suarez (1992), 

Suarez and Singh (1991), Vysloukh et al. (1973), 

and Zhang and Rou (1980, 1981). Using these 

approaches, the components of the unknown ei

genvector, X, are classified as the primary (or mas

ter) coordinates and the secondary (or slave) coor
dinates, i.e., 

(2) 

where Xp and Xs are, respectively, the subvectors 
of the primary and secondary coordinates. In a 

partitioned form, Eq. (1) can be rewritten as 

where Kij and Mij (1, j = p, s) are the submatrices 

of K and M and 0 represents a zero vector. The 

primary and secondary coordinates are related by 

Xs=RXp, (4) 

where R is given by 

Define a transformation matrix, T, as follows: 

(6) 

in which I is a p X P identity matrix. Using the 

transformation matrix defined, an equivalent ei
genvalue problem in terms of the primary coordi

nates, X p , can be derived as 

where 

K* = TTKT, 

M* = TTMT, 

(7) 

(8) 

are the equivalent stiffness and mass matrices, re

spectively. It can be shown that K* remains semi

positive definite and M* remains positive definite, 

provided the rank of the transformation matrix 

is p. 

Generally speaking, the transformation matrix, 

T, is a function of the unknown natural frequency, 

w. Therefore, the new formulation in terms of Xp 

seems not to bring any computational advantage 

into the solution. To implement this technique, 

Guyan (1965) neglected the inertia effect in 

Eq. (5), i.e., 

(9) 

Guyan's condensation, referred to as the static 

condensation, may lead to an exact solution for 



the static problem but only an approximate solu

tion for its dynamic counterpart. The error caused 

by the static condensation increases for higher or

der modes due to the increasing inertia effects. 

To improve the accuracy, Kuhar and Stahle (1974) 

used 

where w is an estimated natural frequency. Their 

approximation, referred to as the dynamic conden

sation, took the inertia effect into account. The 

results are an approximate solution but are ex

pected to be improved for the mode(s) whose cor

responding natural frequency( s) is close to the esti

mated frequency. 

Leung (1978), Singh and Suarez (1992), Suarez 

and Singh (1991) and Zhang and Hou (1980, 1981), 

proposed various versions of the iterated dynamic 

condensation technique. For example, in Zhang 

and Hou (1980), to obtain the eigensolution for 

the ith mode, a sequence solution of w~O), w?), ... 

wP\ wy+1), ... is constructed where w~O) is an initial 

estimate for the ith natural frequency by using the 
static condensation and wy+l) is the (j + l)th iter

ated estimation by using 

R(j+1) = -(K - wviM )-l(K - wviM) (11) 
S8 I ss sp I sp· 

Zhang and Hou (1980,1981) showed that the iter

ated dynamic condensation may lead to an exact 

solution for the eigenvalue problem provided the 

primary coordinates are properly selected. A crite

rion for selecting the principal coordinates was 

given. Numerical results were presented for its 

application in vibration analysis of engine blades 

with the superparametric shell element. Singh and 

Suarez (Singh and Suarez, 1992; Suarez and Singh, 

1991) used the iterated dynamic condensation in 

the synthesis of substructure eigenproperties and 

numerical examples are presented to demonstrate 

the implementation of the procedure. 

MODAL TESTING BASED ON 
DYNAMIC CONDENSATION 

The governing differential equation of a linear 

multiple degree of freedom system is written as 

d2 d 
M dt2 :!(t) + C dt :!(t) + K:!(t) = f(t), (12) 
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where M, C, and K are, respectively, the mass, 

damping, and stiffness matrices; x(t) is the re

sponse vector; and F(t) is the external excitation 

vector. Equation (12)" may be obtained by the finite 

element formulation or some other approximation 

techniques. The associated generalized eigenvalue 

problem is expressed by Eq. (1). 

Distinguishing the components of the modal 

vectors as the testing coordinates and nontesting 

coordinates, the modal vector may be written as 

(13) 

where X t is an Nt X 1 subvector for all testing 

coordinates and X nt is an N nt X 1 subvector for all 

nontesting coordinates. The testing coordinates 

should be carefully chosen based on the availabil

ity of the testing facilities, feasibility of implemen

tation, and understanding of the physical nature 

of the modes of interest. The number of the testing 

coordinates should be larger than the number of 

modes of interest and may be much less than the 

total number of degrees of freedom of the system. 

Assume that the natural frequencies and incom

plete modal shape of the first n (n :5 Nt) modes 

are measured and denoted by wt and Xt (i = 1, 

2, ... , n). These measured naturalfrequencies may 

be used as initial estimates of frequencies of the 

modes of interest in the iterated dynamic conden

sation. In detail, Wi and X; (i = 1, 2, ... , n) are 

obtained by the following iteration: 

where 

K (j+1)TAi+l) - 2M(j+l) 
~t -w t , j = 0,1,2, ... , 

KU+1) = TU+l)TKT(j+1), 

MU+1) = TU+1)TMTU+1), 

in which 

(14) 

(15) 

and (. Y stands for the transpose of a matrix or 

vector. In Eq. (16) wy) is the jth estimated natural 

frequency of the ith mode and w!O) = wt, i.e., the 

corresponding experimental result. It is expected 

that under certain conditions the iteration con-
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3 1 I = L/2 2 I = L/2 3 

~-========~I========~I 
E, I, A, p, L 

FIGURE 1 A simple finite element model for a canti

lever beam. 

verges (Zhang and Hou, 1980, 1981). Assume that 

the limiting values of the ith natural frequency, 

the corresponding mode shape, and the transfor

mation matrix are represented by w}"'l, At), and 

T(oo), respectively. The complete modal vector in

cluding both testing and nontesting coordinates 

can be estimated by 

(17) 

Computational experience shows that the process 

converges after only a few of iterations if the test

ing coordinates are appropriately selected, as dem

onstrated later by numerical examples. 

NUMERICAL EXAMPLES 

Numerical results for three example problems are 

provided to demonstrate concepts of iterated dy

namic condensation techniques. The first example 

illustrates a step by step procedure ofthe approach 

for a two-element model of a cantilever beam. The 

second example demonstrates how to use experi

mental results for the natural frequencies of a can

tilever beam as the initial estimates to find more 

accurate values for the natural frequencies using 

the iterated dynamic condensation for a relatively 

large finite element model. Results for the beam 

problem with general boundary conditions are also 

listed. The third example shows an application for 

modal testing for a multiple-disk shaft system. A 

comparison is given for both natural frequencies 

and model shapes. 

EXAMPLE 1: Vibration analysis of a cantilever 

beam using a two-element model. 

To demonstrate the feasibility and efficiency 

of the iterated dynamic condensation technique, 

transversal vibration of a cantilever beam, as 

shown in Fig. 1, is considered. E is the Young's 

modulus of the beam material, 1 and A are, respec

tively, the moment of inertia and the area of the 

beam cross section, L is the total length of the 

beam, and p is the mass density per unit volume 

of the beam material. 

To demonstrate the basic concepts and proce

dure of the proposed approach, a simple finite 

element model with three nodes and two elements 

is employed. There are 2 degree of freedoms for 

each node, i.e., the lateral displacement, Yi, and 

rotation (or slope), 8; (i = 1, 2, 3). 

The corresponding generalized eigenvalue 

problem can be obtained as 

where 

24 0 -12 6 

K=E1 
0 8 -6 2 

[3 -12 -6 12 -6 

6 2 -6 4 

312 0 54 -13 

M=pAl 
0 8 13 -3 

(18) 
420 54 13 156 -22 

-13 -3 -22 4 

X~@ 
For convenience, 'Pi = 18;, i = 1,2,3 are introduced. 

The exact solutions for the first two modes of the 

original complete problem without condensation 

are 

0.246646 

WI 0.844903 
Aj=-=35177 X j = E1 . , 0.726460 

(19) 

pAl4 
1.000000 

and 

0.149924 

w~ -0.09023 
A2 = - = 22.221 X j = 

E1 ' -0.20771 
(20) 

pAl4 
-1.00000 



Choose the testing coordinates as 

(21) 

i.e., the deflections at nodes 2 and 3. Using the 

static condensation, an approximate solution can 

be obtained as 

0.241260 

(0)2 0.815853 
A(O) = ~ = 3.5219 X(O)- (22) 

1 E1 ' 
1 - , 

0.710569 
pAl4 

1.000000 

and 

0.140709 

(0)2 -0.051915 
A (0) = ~ = 22.279 X(O)- . (23) 

2 E1 ' 
2 -

-0.201277 
pAl4 

-1.00000 

Quite accurate results are obtained. For the 

first mode, the error for the frequency is 0.12% 

and the maximum error for the mode shape is 

3.4%. For the second mode, the error reaches 

0.26% for the frequency but 42% for the 

mode shape. 

Using the dynamic condensation with an esti

mated frequency of A \0) = 3.5219, one obtains 

0.246658 

(1)2 0.844974 
A(1) - WI - 3 5177 X(1) - , (24) 

I - E1 -. , 1 - 0.726499 

pAl4 
1.000000 

for the first mode, which is almost the correspond

ing exact solution, and 

(1)2 

A (1) = ~ = 22.276 
2 E1 ' 

pAl4 

0.140965 

-0.052637 
X~)= , (25) 

-0.201350 

-1.000000 

for the second mode, which does not show any 

significant improvement. 

The solution for the second mode can be im

proved by using w~l) = 22.276, or directly using 
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the second eigenvalue from the static condensa

tion, as the new estimated frequency in the dy

namic condensation, which leads to the follow

ing results: 

(2)2 

A (2) = ~ = 22.221 
2 E1 ' 

pAl4 

0.149968 

-0.090504 
xf)= . (26) 

-0.207766 

-1.000000 

The error in frequency has been reduced to almost 

zero and for the mode shape, the error reduces 

to 0.3%. 

The efficiency of implementing the iterated 

dynamic condensation depends, to a large extent, 

on the choice of the testing coordinates. As a 

demonstration, the above example was repeated 

with a different choice of the testing coordi

nates as 

(27) 

i.e., the deflection and rotation at node 3. The 

static condensation leads to the following approxi

mate solutions: 

(0)2 

A (0) = ~ = 3.5327 
1 E1 ' 

pAl4 

and 

(0)2 

A (0) = ~ = 34.807 
2 E1 ' 

pAl4 

0.237976 

0.838928 
X\O) = , (28) 

0.725952 

1.000000 

0.059405 

-0.053214 
X~~= , (29) 

-0.131191 

-1.00000 

For the first mode, the error for the frequency is 

0.43% and the maximum error for the mode shape 

is 3.4%. For the second mode, the error reaches 

56% for the frequency and 60% for the mode 

shape. 
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Table 1. First Three Natural Frequencies of Beams with Differeut Boundary Conditions 

Boundary Mode Zeroth First Second 

Conditions No. Iteration Iteration Iteration 

Fixed-free 1 3.2" 3.522 3.516 

beam 2 19.5" 22.07 22.034 

3 52.0" 61.90 61.697 

Fixed-Fixed 1 0 22.532 22.373 

beam 2 0 63.177 61.677 

3 0 158.338 129.280 

Fixed-hinged 1 0 15.471 15.418 

beam 2 0 52.870 50.022 

3 0 145.851 97.265 

Hinged - hinged 1 0 9.883 9.870 

beam 2 0 40.444 39.481 

3 0 131.550 79.38 

"Experimental measurements. 

The first iteration yields the following Im-

proved results: 

0.246719 

(1)2 0.844948 
A(I) = ~ = 3.5177 X(I)- (30) 

1 E1 ' 
1 - , 

0.726460 
pAl4 

1.000000 

and 

0.056902 

W(I)2 -0.315803 
A(l) = _2_ = 17.761 X(l)- , (31) 

2 E1 ' 
2 -

-0.276364 
pAl4 

-1.000000 

While the solution for the first mode is very close 

to the exact solution, the solution for the second 

mode remains in a significant error. However, us

ing the iterated dynamic condensation, a good re

sult for the second mode may also be obtained 

after 13 iterations. For example, the solution in 

the 14th iteration is 

(14)2 

A (14) = ~ = 22 221 X(14) = 
2 E1 ., 2 

pAl4 

0.149923 

-0.090211 

-0.207693 

-1.000000 

(32) 

Third Fourth Fifth Exact Exact 

Iteration Iteration Iteration (FEM) (BVP) 

3.516 3.516 

22.034 22.034 22.0345 

61.697 61.697 61.6972 

22.373 22.3733 

61.673 61.673 61.6728 

122.883 121.029 120.904 120.904 120.9034 

15.418 15.4182 

49.965 49.965 49.9645 

106.739 103.373 104.493 104.248 104.2477 

9.870 9.87 

39.478 39.478 39.5 

91.62 89.23 88.83 88.823 88.9 

EXAMPLE 2: Determination of natural frequen

cies of beams with general bound

ary conditions using the iterated 

dynamic condensation 

To demonstrate efficiency of the procedure for 

a large-scale problem, a finer finite element mesh 

with 40 nodes and 39 elements for beams with 

general boundary conditions is used for modeling. 

The finite element model has a total of 80 degrees 

of freedom. The nodes are numbered in an as

cending order from one end. Three rotations at 

node numbers 5, 16, and 35 and two translations 

at node numbers 11 and 26 are randomly selected 

as the testing coordinates. The selection does not 

violate the convergence criteria. Boundary condi

tions of the beam includes four appropriate combi

nations of the boundary conditions for the fixed, 

hinged, or free end, i.e., hinged-hinged, fixed

hinged, fixed-fixed, and fixed-free. Results for 

the first three natural frequencies are listed in 

Table 1 where there are two sets of exact solutions: 

one is from the full finite element model and the 

other is from the corresponding boundary value 

problem (Thomson, 1993). The results for the 

FIGURE 2 A three-disk shaft system. 



Table 2. Measured Natural Frequencies and Mode 

Shapes of Multidisk Rotor System 

Mode It = 47.43 Hz fz = 125.52 Hz 

Yl 0.0 0.0 

Yz 0.1245 0.3550 

Y3 0.2150 0.0357 

Y4 0.1315 -0.3534 

Ys 0.0 0.0 

fixed-free (cantilever) beam starts with a set of 

experimental measurements and the other three 

cases start with results from the static conden

sation. 

Table 1 shows that accurate results for the natu

ral frequencies can be iteratively obtained from 

the dynamically condensed system with a much 

smaller size. Very few iterations are needed for 

these investigated cases. Selection of the testing 

coordinates is rather arbitrary, provided certain 

mentioned requirements are satisfied. The numer

ical program is self-compensated, i.e., small errors 

introduced in each iteration will not affect the final 

results. All iterated results are obtained in just a 

few seconds using a 66-MHz 486 Pc. Results for 

the mode shapes are not listed due to their size. 

In general, the convergence rate for the mode 

shapes is relatively slow and, therefore, more itera

tion steps are required for good results. 

In the dynamic condensation iteration, only one 

particular mode is of interest in each run of the 

computer program, which is a disadvantage. To 

improve the efficiency of the proposed method, 
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an algorithm is developed for that purpose to cal

culate an arbitrarily assigned number of the eigen

modes in any selected order. The algorithm is 

proven to be efficient in the dynamic condensation 

iteration, even for the generate cases where dupli

cate eigenvalues occur. 

EXAMPLE 3: An application of the dynamic 

condensation in model testing of 

a three-disk shaft system. 

Consider a multiple-disk rotor system, as shown 

in Fig. 2. The system consists of three disks assem

bled on a steel shaft whose ends are fixed in two 

bearings with thin 502 glue. The diameter and 

length of the shaft are 6 and 290 mm, respectively. 

The three steel disks are identical, 78 mm in diam

eter and 15 mm in thickness. Disk II is in the mid

dle of the shaft and disks I and II are 60 mm from 

the nearest end. Three transducers are used to 

measure the lateral displacement of the disks. A 

mass of 54 g is attached to each disk to account 

for the mass of the transducers. For disk I, an 

additional mass of 49.2 g is attached. Table 2 lists 

the measured natural frequencies and modal 

vector. 

Note that the listed mode shapes are incomplete 

because they do not include the measurements of 

slopes at the nodes due to the lack of reliable 

sensors. 

A simplified five-node finite element model is 

derived. Two rotational springs are introduced on 

both ends to model the imperfect boundary condi

tions, i.e., the shaft is neither simply supported 

Table 3. Natural Frequency and Modal Shape of First Mode 

First Second Third Full 

Iteration Iteration Iteration Model Experiment 

Frequency (Hz) fl l ) = 49.948 flZ) = 47.163 f13) = 47.112 It = 47.112 n = 47.43 

Incomplete modal shape {0.15551 } 
0.12674 

{0.12598} 
0.12685 

{0.12913 } 
0.12685 

{0.12922 } 
0.12918 

{0.12456} 
0.13150 

0.0000 0.0000 0.00000 0.00000 0.00000 

1.32411 0.95347 0.99306 0.99406 0.94344 

0.15551 0.12598 0.12914 0.12922 0.12450 

2.73960 2.67353 2.68060 2.68078 2.63747 

Complete modal vector 0.27257 0.27257 0.27257 0.27257 0.27257 

-0.02737 -0.03023 -0.02949 -0.03001 0.07370 

0.12674 0.12685 0.12685 0.12918 0.13150 

-2.2254 -2.7006 -2.6432 -2.6902 -2.68615 

0.00000 0.0000 0.00000 0.00000 0.00000 

-1.07347 -0.95778 -0.9729 -1.09911 -1.02268 
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Table 4. Natural Frequeucy and Modal Shape of Second Mode 

First 

Iteration 

Frequency (Hz) f~l) = 123.36 

Incomplete modal vector { 0.35500} 
-0.37349 

0.0000 

3.84758 

0.35500 

3.11701 

Complete modal vector -0.01636 

-7.92037 

-0.37349 

3.44424 

0.00000 

3.81103 

nor fixed. Chen and Wang (1991) estimated the 

rotational constants 

kJ = k2 = 786.393 N . m. 

The stiffness and mass matrices are derived by 

standard finite element formulations for the three

disk rotor system with diagonal modifications in 

the stiffness matrix due to the rotational springs 

and those in the mass matrix due additional 

masses. Choose Y2 and Y4, i.e., the lateral displace

ments of disks I and III, as the testing coordinates. 

The iterated dynamic condensation with the initial 

estimates from the static condensation leads to the 

results in Tables 3 and 4. 

As compared with the results from the full analy

sis of the four-element model, the errors of fre

quency estimate for the first mode is 6.0% for the 

static iteration, 1.1 % for the second iteration, and 

0.00006% for the third iteration; errors of the fre

quency estimate for the second mode is 1.06% for 

the static iteration and 0.00024% for the fourth iter

ation. Using the measurements of deflection of 

disks I and III in a model testing, the corresponding 

full-mode shape including the deflection of disk II 

and rotations at different nodes can be recovered. 

The results are normalized in terms of the maxi

mum deflection measurement for each mode. The 

mean square errors for the deflection components 

of the first mode is 3.1 % for the static condensation, 

0.77% for the second iteration, and 0.46% for the 

third iteration; those for the second mode are 4% 

for the static condensation and 3.6% for the fourth 

iteration. The iteration process can be accelerated 

Second Full 

Iteration Model Experiment 

f~2) = 122.04 .fz = 122.04 It = 123.52 

{ 0.35500} 
-0.35772 

{ 0.35500} 
-0.35778 

{ 0.3550} 
-0.3534 

0.00000 0.0000 0.00000 

3.65317 3.66428 3.74653 

0.35500 0.35500 0.35500 

3.86886 3.82637 3.51471 

-0.02013 -0.02257 -0.56469 

-9.12539 -9.09147 -9.03183 

-0.35772 -0.35340 -0.35340 

4.06675 4.07015 4.32105 

0.00000 0.00000 0.00000 

3.63686 3.63671 3.51307 

if the frequency measurements are directly em

ployed as the initial estimates. This is especially use

ful for complex systems due to the difficulties in se

lecting the testing coordinates for the interesting 

modes and the expense in solving the associated 

large-scale generalized eigenvalue problems. 

CONCLUSIONS 

Dynamic condensation provides an efficient and 

accurate solution for large-scale generalized eigen

value problems. A procedure using the dynamic it

eration technique in modal testing is proposed to 

obtain complete modal shapes based on limited 

measurement data. The measured natural frequen

cies can be employed as the initial estimates in the 

iteration to effectively find the exact solution for 

the original eigenvalue problem and determine the 

transformation matrix between the testing and the 

non testing coordinates. The complete modal 

shapes including the nontesting coordinates can 

then be estimated based on the limited measure

ments. The approach may be useful for model test

ing of complex structures for which the natural fre

quency measurements are feasible and the 

measurement of the complete modal shapes is not 

practical. 
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