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We calculate 3-loop master integrals for heavy quark correlators and the 3-loop
quantum chromodynamics corrections to the p-parameter. They obey non-factorizing
differential equations of second order with more than three singularities, which
cannot be factorized in Mellin-N space either. The solution of the homogeneous
equations is possible in terms of »F; Gaufl hypergeometric functions at rational
argument. In some cases, integrals of this type can be mapped to complete ellip-
tic integrals at rational argument. This class of functions appears to be the next
one arising in the calculation of more complicated Feynman integrals following the
harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic poly-
logarithms, square-root valued iterated integrals, and combinations thereof, which
appear in simpler cases. The inhomogeneous solution of the corresponding differen-
tial equations can be given in terms of iterative integrals, where the new innermost
letter itself is not an iterative integral. A new class of iterative integrals is intro-
duced containing letters in which (multiple) definite integrals appear as factors.
For the elliptic case, we also derive the solution in terms of integrals over mod-
ular functions and also modular forms, using g-product and series representations
implied by Jacobi’s ©#; functions and Dedekind’s n-function. The corresponding rep-
resentations can be traced back to polynomials out of Lambert-Eisenstein series,
having representations also as elliptic polylogarithms, a g-factorial 1/7*(t), loga-
rithms, and polylogarithms of ¢ and their g-integrals. Due to the specific form of
the physical variable x(q) for different processes, different representations do usu-
ally appear. Numerical results are also presented. Published by AIP Publishing.
https://doi.org/10.1063/1.4986417

. INTRODUCTION

Many single scale Feynman integrals arising in massless and massive multi-loop calculations in
Quantum Chromodynamics (QCD)' have been found to be expressible in terms of harmonic poly-
logarithms (HPLs),? generalized harmonic polylogarithms,** cyclotomic harmonic polylogarithms,’
square-root valued iterated integrals,® and more general functions, entering the corresponding alpha-
bet in integral iteration. After taking a Mellin transform, they can be equivalently expressed in terms
of harmonic sums’*® in the simpler examples and finite sums of different kinds in the other cases,’°
supplemented by special numbers like the multiple zeta values'? and others appearing in the limit
N — oo of the nested sums, or the value at x = 1 of the iterated integrals in Refs. 2—8. The Mellin

transform for functions is defined by
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1
M[f(x)](N) = / dxfo(x), with N eN, f:[0,1]— C; and the Riemann
0
integral of xVf(x) over x€[0,1] with the measure dx exists. (1.1)

In QCD, also D-distributions® like the §-distribution and +-distributions contribute. Their Mellin
transform is given by

M[5(1 —x)](N)=1 (1.2)
1
M[(g(x))+](N) =/ dx(xY = Dg(x), withNeN, g:[0,1[— C, and the Riemann
0
integral of (xN —1)g(x) over x€[0,1] with the measure dx exists. (1.3)

In many higher-order calculations, a considerable reduction of the number of integrals to be calculated
is obtained using integration-by-parts identities (IBPs),'! which allow us to express all required
integrals in terms of a much smaller set of the so-called master integrals. Differential equations
satisfied by these master integrals'>!3 can then be obtained by taking their derivatives with respect
to the parameters of the problem and inserting the IBPs in the result. What remains is to solve these
differential equations, given initial or boundary conditions, if possible analytically. One way of doing
this is to derive an associated system of difference equations'*'? after applying a mapping through
a formal Taylor series or a Mellin transform. If these equations factorize to first-order equations, we
can use the algorithm presented in Ref. 18 for general bases to solve these systems analytically and to
find the corresponding alphabets over which the iterated integrals or nested sums are built. The final
solution in N and x space is found by using the packages Sigma'®?’ and EvaluateMultiSums
and SumProduction.?!

However, there are physical cases where full first-order factorizations cannot be obtained for
either the differential equations in x or the difference equations in N.>3—40-187

In the present paper, we will address the analytic solution of typical cases of this kind, related to
a series of master integrals appearing in the 3-loop corrections of the p-parameter in Ref. 41. It turns
out that these integrals are more general than those appearing in the sunrise and kite diagrams due
to the appearance of also the elliptic integral of the second kind, E(z), which cannot be transformed
away. The corresponding second-order differential equations have more than three singularities, as in
the case of the Heun equation.*? For the sake of generality, we will seek solutions of the second-order
homogeneous differential equations which are given in terms of GauB’ »F; functions*® within the
class of globally bounded solutions,** cf. also Ref. 45. Here the parameters of the ,F function are
rational numbers and the argument is a rational function of x. The complete elliptic integrals K(z)
and E(z)*4188 are special cases of this class.

The hypergeometric function obeys different relations like the Euler- and Pfaff-transfor-
mations, ! the 24 Kummer solutions,’>3 and the 15 GauR’ contiguous relations.”®! There are
more special transformations for higher than first-order in the argument.’>>4-% In the present case,
equivalent , F'| representations are obtained by applying arithmetic triangle groups.>’ The correspond-
ing algorithm has been described in Ref. 58 in its present most far reaching form. The relations of
this type may be useful to transform a found solution into another one, which might be particularly
convenient. In the case a function space of more solutions is considered, these relations have to be
exploited to check the independence of the basis elements.

The main idea of the approach presented here is to obtain the factorization of a high-order scalar
difference or differential equation, after uncoupling®°' the corresponding linear systems, to all
first-order parts and its second-order contributions. While the first-order parts have been algorithmi-
cally solved in Ref. 18, the treatment of second-order differential equations shall be automated.'®’
The class of | solutions has an algorithmic automation to a wide extent,”® and it seems that this
class constitutes the next one following the iterated square-root valued letters in massive single-scale
3-loop integrals. Applying this method, we obtain the corresponding »F; functions with (partly)
fractional parameters and rational argument, and ir(rational) pre-factors, forming the new letters of
the otherwise iterated integrals. These letters contain a definite integral by virtue of the integral
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representation of the ,F| function, which cannot be fully transformed into an integral depend-
ing on the follow-up integration variable only through its integration boundaries. In general, we
have therefore to iterate new letters of this kind. Through this, we obtain a complete algorithmic
automation of the solution also when second-order differential operators contribute, having F
solutions.

As it will be shown, in a series of cases, the reduction of the ,F| functions to complete elliptic
integrals E(r(z)) and K(7(z)) is possible. Therefore we also study special representations in terms of
g-series, which have been obtained in the case of the sunrise graph, cf. Refs. 32, 34, 35, 37, and 39,
before. More general representations are needed for the integrals considered in the present paper, and
we describe the necessary extension.

In performing a higher loop calculation, in intermediary steps, usually more complicated nested
integrals and sums occur than in the final result.'*® Various necessary decompositions of the problem
that have to be performed, such as the integration-by-parts reduction and others, account for this
in part. It appears therefore necessary to have full control on these occurring structures first, which
finally may simplify in the result. Moreover, experience tells that in more general situations, more and
more of these structures survive, cf. Ref. 17 in comparison to Ref. 62. If the mathematical properties
of the quantities occurring are known in detail, various future calculations in the field will be more
easily performed.

The paper is organized as follows. In Sec. II, we present the linear systems of first-order differ-
ential equations for master integrals in Ref. 41 which cannot be solved in terms of iterated integrals.
We first perform a decoupling into a scalar second-order equation and an associated equation for each
system. Using the algorithm of Ref. 18, the non-iterative solution in both the x- and Mellin-N-space
is uniquely established. In Sec. III, we first determine the homogeneous solutions of the second-order
equations, which turn out to be ,F; solutions** and obey representations in terms of weighted com-
plete elliptic integrals of the first and second kinds at rational argument. In Sec. IV, we derive the
solutions in the inhomogeneous case, which are given by iterated integrals, in which some letters are
given by a higher transcendental function defined by a non-iterative, i.e., definite, integral in part. We
present numerical representations for x € [0, 1] deriving overlapping expansions around x = 0 and
x = 1. The methods presented apply to a much wider class of functions than the ones being discussed
here specifically. These need to have a representation in terms neither of elliptic integrals nor of just
a»F function. The respective letter can be given by any multiple definite integral.

Owing to the fact that we have elliptic solutions in the present cases, we may also try to cast the
solution in terms of series in the nome

q =exp(inT), (1.4)

where
_ l.K(l - z(x))

K(z(x))

denotes the ratio of two complete elliptic integrals of the first kind. In the following, we con-
sider the case that z(x) is a rational function associated with the elliptic curve of the problem. It
is now interesting to see which closed form solutions the corresponding series in g obey. All con-
tributing quantities can be expressed in terms of ratios of Riemann’s Dedekind 7(7) function,®® cf.

with teH={zeC,Im()> 0} (1.5)

Eq. (6.14). However, various building blocks are only modular forms®*76 up to an additional factor
of 191
1
——, k>0, keN. (1.6)
(1)

We seek in particular modular forms which have a representation in terms of Lambert—Eisenstein
series®*®> and can thus be represented by elliptic polylogarithms,® forming a frame of representation.
However, the n-factor (1.6) in general remains. Thus the occurring g-integrands are modulated by a
g-factorial®'%” denominator in these cases.

Structures of the kind for k > 0 are frequent even in the early literature. A prominent case is
given by the invariant J, see, e.g., Ref. 88,

G3(q)

= 216000A) 147
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with G,(g) being an Eisenstein series, cf. Eq. (6.63), and the discriminant A,

A =2m"2¢ [ [a - = 2m"n*@. (1.8)
k=1

In the more special case considered in Refs. 32, 34, 35, 37, and 39, terms of this kind are not present.

For the present solutions, we develop the formalism in Sec. V. We discuss possible extensions
of integral classes to the present case in Sec. VI and of elliptic polylogarithms,%® as has been done
previously in the calculation of the two-loop sunrise and kite-diagrams.3>3+3337-3% Here the usual
variable x is mapped to the nome ¢, expressing all contributing functions in the new variable. This
can be done for all the individual building blocks, the product of which forms the desired solution.
Section VII contains the conclusions.

In Appendix A, we briefly describe the algorithm finding for second-order ordinary differential
equations o F' solutions with a rational function argument. In Appendix B, we present for convenience
details for the necessary steps to arrive at the elliptic polylogarithmic representation in the examples
of the sunrise and kite integrals.3>3*3%37-3 Here we compare some results given in Refs. 32 and 37.
In Appendix C, we list a series of new sums, which simplify the recent results on the sunrise diagram
of Ref. 89.

In the present paper, we present the results together with all necessary technical details and we
try to refer to the related mathematical literature as widely as possible, to allow a wide community
of readers to apply the methods presented here to other problems.

Il. THE DIFFERENTIAL EQUATIONS

The master integrals considered in this paper satisfy linear differential equations of second-order

[% )+ q(x)} W) =N, @1
with rational functions r(x) = p(x), g(x), which may be decomposed into!%2
n, (r)
ru)zzg kOV a" b €. (2.2)
k=1 X —4a;

The homogeneous equation is solved by the functions l//(log(x), which are linearly independent, i.e.,
their Wronskian W obeys

d d
W(x)= wi%c)a Ox) - w;‘))(x)aw?’)(x) #0 (2.3)

The homogeneous Eq. (2.1) determines the well-known differential equation for W(x),

d
T V&) =—p)W), 2.4
X

which, by virtue of (2.2), has the solution

n, 1
W(x) = ( (p)) , (2.5)

normalizing the functions 111502) accordingly. A particular solution of the inhomogeneous equation
(2.1) is then obtained by the Euler-Lagrange variation of constants”

V= wi(”(x)[cl - [ar o @]+

Q+/wﬁ%mm+ (2.6)
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with
N(x)
W(x)

n(x)= 2.7
and two constants Cj 3 to be determined by special physical requirements. We will consider indef-
inite integrals for the solution (2.6), which allows for more singular integrands. For the class of
differential equations under consideration, N(x) can be expressed by harmonic polylogarithms and
rational functions, W(x) is a polynomial, and the functions zﬁi(’)z)(x) turn out to be higher transcen-
dental functions, which are even expressible by complete elliptic integrals in the cases considered
here. Therefore Eq. (2.6) constitutes a nested integral of known functions® and elliptic integrals at
rational argument.
We consider the systems of differential equations*! for the O(?) terms of the master integrals,

d (fga(ao) _ ( : : ) . <f8a<x) ) . (NSG(x)) 08
E\fou) ) \ %55 enr)  \a@ ) \Nog)

and
d <fsb<x)> :( : : ) . (fgboo) X (Ngb(x)) 00
d\for) ) \ ot o) @/ \Nep@) )

with X here denoting matrix multiplication and

15(=13 — 16x% +x*)
4x
1755 +1863x% — 1255x* + 157x0  x(324 — 145x” + 15x*)
12x(x2 = 9)(x2 - 1) *2-9x2-1)

2x(45 — 17x%* + 2x%) 16x3

n(x) - ——————

*x2-9)xx2-1) 3x2 -2 -1)
15(=1 + 16x2 + 13x%)

Ngp(x) = — " +9x(8 + 15x%) In(x) — 18(x + 6x°) In?(x), (2.12)

15— 39722 + 92534 + 29720 3x(-36 +35x% + 195x*)
4x(9x2 — D(x2 - 1) 92 - D)2 - 1)
6x(5 +37x2 - 144x4) 16x3(—8 + 27x2)

n?G) + ——— 7
92 - (2 - 1) 9x2 — H(x2 = 1)

Nga(x) = - 3x(=24 + x*) In(x) — 18x In*(x), (2.10)

Nou(x) =

In(x)

In’(x), (2.11)

Nop(x) = —

In(x)

(). (2.13)

59-61

By applying decoupling algorithms, one obtains the following scalar differential equation:

d? 9-30x2+5x* d 8(-3 +x2)
0=— - - == - -
dxzfga(-x) + x(x2 _ 1)(9 _ .X'Z) dxfgu(-x) (9 _ xz)(x2 _ l)fga(-x)
~ 32x2 12(=9 + 13x2 + 2x*)
O -xH(x2-1) O -xHx2-1)
6(=54 + 62x2 + x* + x°) —1161 +251x2 + 61x* + 9x°
- In(x) +
9 -x)(x2-1) 209 -x2)(x2 - 1)

In3(x) + In?(x)

(2.14)
and the further equation
5 2, .4 x* 2 29,2 2
Joa(x) = —g(—13 —16x" +x") + 3(—24 +x7)In(x) + 3x° In“(x) — gfga(x)

xd
+ gafsa(x)- (2.15)
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Likewise, one obtains for the second system

d> 1-30x2 +45x* d 24(—1 +3x2)
0=— - - =7
228 (%) O D2 - D d ——Jfen(x) + O~ D02 = l)fSh(x)
20 2 _ 2 4 6
32:7(=8+27x%) ) + 12(1 — 13x2 — 216x* + 162x )lnz(x)
Ox2 - H(x2 - 1) 9x2 - D(x2-1)
6(6 — 46x2 — 399x* + 81x%) 61 — 415x% + 2199x* + 675x°
- In(x) — , (2.16)
9x2 - H(x2 - 1) 20922 - D(x2 = 1)
1
fop(x)=9x (1 +6x7) In(x) - §x2<8 +15x%) In(x) + @5 (=1 +16x% + 13x%) = 2 (x)
1
+ x—fgb(x) (2.17)

2 dx

The above differential equations of second-order contain more than three singularities. We seek solu-
tions in terms of Gauf3’ hypergeometric functions with rational arguments, following the algorithm
described in Appendix A. It turns out that these differential equations have ,F; solutions.

Two more master integrals are obtained as integrals over the previous solutions. They obey the
differential equations

d 6x(x? —6)H(x)  4x(x-3) 8
o106 = — 5= 1);’ R HR(0) + ~ | Hog o1,0(0) = Ho1,0(0) = Hi-10(0)

H " +x[342—51x2+2n2(x2—1)]

1,1,0(X) | = — Ho,1,0(x)] 3217
x*(165 = 17643) + 8x2(—105 + 2243) — 585 2n?
X Ho(x) + PG T - S A - Hi)
2(x? +3)
+ 3 1)2 e R wee e G0 (2.13)

d 3 6(15x2+2) , 4(4x* +33x2+1) 4 (8 - 16x?%)
afl()b(x) = ﬁl‘[ o)+ WHO(X) + - r Ho-1,0(x)

8
—Hy0(x)| + T H_j _10(x) = 2H_100(x) — H_1,10(x) — Hy -1,0(x)

3(59x% +38) + 2 (4x* — 6x% +2)
3(x2 = 1)%x

15 — 192x°%3 — 8x*(45 +243) +x*(=75 +20843)  2x°
307120 x ——[H-1(x) = Hi(x)]

4 2(3x% + 1)
+ mfz%b(x) + mf%(x), (2.19)

with {i, k € N, k > 2, being the values of the Riemann {-function at integer argument and the harmonic
polylogarithms H(x) are defined by”

+2H00(x) + Hy1,0(x)| +

Hy(x)

* 1 1 1
Hh,ﬁ(x)=/0 dy fr(y)Hz(y); fb(x)e{fo,fl,f—l}f{ }

o l—x 1+x

H, g0 = 1 0 ) = 1. (220)
k

Subsequently, we will use the shorthand notation Hz(x) = Hz. The harmonic polylogarithms occurring
in the inhomogeneities of Eqgs. (2.18) and (2.19) can be rewritten as polynomials of

Ho,H\,H_,Hy_1,Ho,1,Hoo,-1,Hoo,1,Ho-1,-1,Ho-1,1,Ho,1,-1,Ho,,1, (2.2D)
cf. Ref. 91.
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lll. SOLUTION OF THE HOMOGENEOUS EQUATION

In the following, we will derive the solution of the homogeneous part of Egs. (2.14) and (2.16)
as examples in detail, using the algorithm outlined in Ref. 58; see also Appendix A.
The homogeneous solutions of Eq. (2.14) read

2022 — 122 — 9)2 45
l!fig)(x)zylzﬁnx & (le(;; ) 2F1[ 33 ;z}, (3.1
2042 _ 12(+2 _ 9\2 45
l//g; x)= 2\/371')6 (x (lel;);‘l 9) 2F1[ 323 1 _Z:|, (3.2)
with
2(x2 _ 9y
=200 = % (3.3)
The Wronskian for this system is
W) =x(9 — x2)(x* = 1). (3.4)

The solutions are shown in Fig. 1.
Equivalent solutions are found by applying relations due to triangle groups,®’ see Appendix A,

1 11
HOE %{ ~ (= D=3 + 37 gy [ 22 ;z]
1 1
F(@2+3) (=3 9x_+31sz1 [ 2.2 ;z] } (3.5)

11
Uy, () = M{XZ\/(X + 1O - 30 Fy [ 2251~ z]
NG 1
;1 —z]}, 3.6)
3.7

=
o=

+ é\/(x + D9 = 3x)(x = 3)(x* + 3),F) [

1

where

16x3
(x+ D(x—3)3"

Z(x) =~

FIG. 1. The homogeneous solutions [(3.1) and (3.2)] w(()) (dashed line) and z//g)l) (full line) as functions of x.

la
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These solutions have the Wronskian (3.4) up to a sign'?? but differ from those in (3.1) and (3.2).
The ratios of the homogeneous solutions are given by

0)
¥y, () 3304

_ 3304, (3.8)
VANEY)

0)
pow 1 39)

WO ¥

The hypergeometric functions appearing in (3.5) and (3.6) are given in terms of complete elliptic
integrals,*’

11 )
2F1[ 212 ;Z] =—K(2), (3.10)
P
1_1 2
2F1[ 2 1 2 ;Z] Z—E(Z). (311)
P
We also used the relation”?
33 4
zFl[ 23 ;Z] - EQ - (- 9K (3.12)
2 rz(1 = 2)

noting that it is always possible to map a »F'; (a, b; c; x) function with 2a, 2b, ¢ € Z, ¢ > 0 into complete
elliptic integrals. Their integral representations in Legendre’s normal form”? read

(3.13)

1
K() = / S
0 (=21 - zt2)

o1z
E(2) ::/0 dt m (3.14)

In going from [(3.1) and (3.2)] to [(3.5) and (3.6)], also a contiguous relation had to be applied,
leading to a linear combination of two hypergeometric functions. The solutions are shown in Fig. 2.
The ratio l//g)/ ‘/’;(1);) exhibits the interesting form
Yy @)
B® 1 E() - n(0KE)
v 3E1-9-(I-n@KI-2)

(3.15)

1.2,b

0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 2. The homogeneous solutions [(3.5) and (3.6)] z/li(;) (dashed line) and z//g;) (full line) as functions of x.
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with
x+3)’x -1 r1(x)
ri(x)=——-——— and
x?+3)(x-3) r1(=x)
Whether »F'| solutions emerging in single scale Feynman integral calculations as solutions of
differential equations for master integrals are always of the class to be reducible to complete elliptic
integrals a priori is not known. However, one may use the algorithm given in Appendix A to map
a solution to one represented by elliptic integrals, if the parameters of the respective »F'; solution
match the required pattern.
The homogeneous solutions of (2.16) read

=1-z(x). (3.16)

p P = S Liih Ll [ D(3x* + 1)E@) - (x - 1)*Gx + l)K(z)], (3.17)
2V2r
VI -3xVx+1
v = v 8x°K(1 —2) — (x + 1)(3x2 + 1)E(1 - z)], (3.18)
with ;
=2 = — (3.19)

(x+1)P3Gx-1)
The argument 1 — z appeared already in complete elliptic integrals by Sabry in Ref. 23, Eq. (68), with
x = —A4, calculating the so-called kite-integral at 2 loops, 55 years ago; see also Ref. 26, Eq. (A1l),
for the sunrise-diagram and Ref. 38, Eq. (D18), with x = 1/+/u for the kite-diagram. The latter aspect
also shows the close relation between the elliptic structures appearing for both topologies, which has
been mentioned in Ref. 39.
Using the Legendre identity®?
T

KG@E( -2) +E@K(1 —2) - K(2)K(1 —2)= 3 (3.20)
one obtains the Wronskian of the system [(3.17) and (3.18)],
W(x) =x(9x* — 1)(x* - 1), (3.21)

cf. (2.5).

The homogeneous solutions [(3.17) and (3.18)], which are complex for x € [0, 1], are shown
in Fig. 3. The real part of zﬁgo)(x) has a discontinuity at x = 1/3 moving from —(4/9)v2/(3r) to
(4/9)v2/(3x), while Re(z,bflo)(x)) vanishes for x > 1/3. Likewise, Im(wio)(x)) vanishes for 0 < x <
1/3.

: : 0,0

We finally consider the ratio 5" /i, ",

©0)
U5 @ E@-nwK@) (3.22)
v E0-2) - (- n)KI-2)’
I N BN
: N -05 \\\
0.1 : \\\ \\\
1 % -10 N
- | ~. <« N
P ! ~a = \
S 00—~ ; = g 1 AN
N i —20 .
~01 A i -25 A
N : \
N -30 \\
-0.2L, N . . . .
00 02 0.4 06 08 10 00 02 0.4 06 08 10
X X

FIG. 3. The homogeneous solutions [(3.17) and (3.18)] w;O) (dashed lines) and (//io) (full lines) as functions of x; left panel:
real part and right panel: imaginary part.
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where
(x—1D2GBx+1) ra(x)
=————— and
x+1DGBx2+1) ra(—x)
This structure is the same as in (3.15) and (3.16) up to the pre-factor.

The solution of the inhomogeneous equations [(2.14) and (2.16)] are obtained from (2.6) spec-
ifying the constants C» by physical requirements. The previous calculation of the corresponding
master integrals in Ref. 41 used expansions of the propagators,’*®> obtaining series representations
around x = 0 and x = 1. The first expansion coefficients of these will be used to determine C; and
C». The inhomogeneous solutions are given by

r2(x)

=1-z(x). (3.23)

v =y WIC) - L]+ OC + ()], (3.24)
with
N
o) = / A2y (x) W((’; )) . (3.25)

Equation (3.24) is an integral which cannot be represented within the class of iterative integrals. It
therefore requires a generalization. We present this in Sec. IV. Efficient numerical representations
using series expansions are given in Sec. V.

IV. ITERATED INTEGRALS OVER DEFINITE INTEGRALS

The elliptic integrals [(3.13) and (3.14)] cannot be rewritten as integrals in which their argu-
ment x only appears in one of their integral boundaries, writing all the appearing integrals in explicit
form.”%1%4 Allintegrands considered here are either elementary or hyperexponential functions. There-
fore, the integrals of the type of Eq. (3.24) do not belong to the iterative integrals of the type given in
Refs. 2 and 4-6 and generalizations thereof to general alphabets, which have the form

Hya(x) = / dy fy(3)Hz (), (4.1)
0
with b €{0, 1, -1} and
n 1 . 1 A 1
B - - 4.2
fO y’ fl 1_}7’ fO 1+y ( )

for the harmonic polylogarithms and are generalized to alphabets appearing in more general classes,
as discussed in Refs. 3—6. For a given difference equation, associated with a corresponding differential
equation, the algorithms of Refs. 19 and 20 based on Ref. 97 allow us to decide whether or not the
recurrence is first-order factorizable. In the first case, the corresponding nested sum-product structure
is returned. In the case the problem is not first-order factorizable, integrals will be introduced whose
integrands depend on variables that cannot be moved to the integration boundaries and over which
one will integrate by later integrals. This is the case if the corresponding quantity obeys a differential
equation of order m > 2, not being reducible to lower orders. Examples of this kind are irreducible
Gaul}’ ,F'; functions, to which also the complete elliptic integrals E(z) and K(z) belong.
The new iterative integrals are given by

X R V1 VYm-1 R
Hal....,amq:{am;Fm(r(ym))},amu....,aq(x):/ dyifa,(y1) dys . / AYmfan V) Em[rm)]
0 0 0
X Hop s ) 43)

and cases in which more than one definite integral F,, appears. Here the fa[ (v) are the usual letters of
the different classes considered in Refs. 2 and 4-6, multiplied by hyperexponential pre-factors

roy" (-7, reQ, r(y)eQhbl, 4.4
and F[r(y)] is given by

1
Flr(y)]= /0 dzg(z,r(y)), r(y) €Qly] 4.5)
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such that the y-dependence cannot be transformed into one of the integration boundaries completely.
We have chosen here r(y) as a rational function because of concrete examples in this paper, which,
however, is not necessary. Specifically we have

1
[) / =2 (1 = 2PN = r()2) e,
b) Jo

F[V()’)]=2F1[ T —b)

(y)]

c
r(y)eQy],a,b,ceQ,c>b>0, 4.6)

or its analytic continuation.

The new iterated integral (4.3) is not limited to the emergence of the functions (4.6). Multiple
definite integrals are allowed as well. They emerge, e.g., in the case of Appell functions>’>! and even
more involved higher functions. These integrals also obey relations of the shuffle type with respect
to their lettersfam Om)(Fulrym)]), cf., e.g., Refs. 91, 98, and 99.

Within the analyticity region of the problem, one may derive series expansions of the correspond-
ing solutions around special values, e.g., x = 0, x = 1, and other values to map out the function for
its whole argument range. In many cases, one will even find convergent, widely overlapping repre-
sentations, which are highly accurate and provide a numerical solution in terms of a finite number of
analytic expansion coefficients. We apply this method to the solution of the differential equations in
Sec. ITin Sec. V and return to the construction of a closed form analytic representation using g-series
and Dedekind 7 functions in Sec. VL.

V. THE SOLUTION OF THE INHOMOGENEOUS EQUATION BY SERIES EXPANSION

The inhomogeneous solutions of type (3.24) can be expanded into series around x = 0 and x
= 1 analytically using computer algebra packages like Mathematica or Maple. One either obtains
Taylor series or superpositions of Taylor series times a factor In*(x), k € N. For all solutions, both
expansions have a wide overlap'®> and one may obtain in this way a highly accurate representation
of all solutions in the complete region x € [0, 1].

In the following, we present the first terms of the series expansion for the functions f'g(9,10),a(5)(x)
around x =0 and x = 1.

For f3,, we obtain

= V3l 35x  35x* 35x° 35 70x'0 665k 192 8x4
“ 108 486 4374 13122 59049 1062882

8x6  8x®  32x10 15212 e (o xt 4xd 46x8
- im|Lig[ — ||| -1+ = - = -
27 81 729 6561 V3

214x'0 5546x12) (3 o oa® 23 10740 2773x12) (1)(1)

T59049 2657205) \ 276 T 81 T2187 T 19683 T 885735 3

4 6 8 210 1912 54 116
_f,r(__x__x__x____ x )1n2(3)_[33x2_i__x

18 162 486 2187 39366

19x%  751x10 2227x12+ H(4x*  8x* 8x® 8 32410 152412
324 29160 164025

3 27 243 729 6561 59049

4t 4x®  ax® 16x10 76x12 135
N A O\ 1ne + B3 4 19,2
( T TR T 243 T 2187 +19683)”” ( )] ()+ g + 19

43t 80x® 14932 132503x10 2024 131x'2 (¥t 12¢) 2o
48 324 23328 5248800 236196000 |\ 2
~ 222 In*(x) + O(x"* In(x)) 5.1

around x = 0. Here we also applied a series of relations for ¢ ¥)-functions at rational argument, cf.
Ref. 5.
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Likewise, one may expand around y = 1 —x = 0. In this case, we can rewrite the inhomogeneous
solution given in (3.24) as

v =u"OM[C1 - )| +vy 0 [C2 + )], (5.2)
with
. _ o , NO
11(2)(x)_/dy wl(Z)( )W_(y) (53)
W<y>=w§°>(y) v ) - %) w“’)(y) (5.4)
One obtains
275 10 45,10, 47 o, 307 J 19541 5 22133
fa@=T7+ 3y =25+ 37 + 5y 437+ 5t + G+ e + T30960°

1107443 y10 4 96653003 |, 3127748803

yil 4 y12
7 741440” 851558400 34062336 000

o2 1 1 1 3 1, 4T
v -y Sy 64y 128y 512y 256" 16384°
69 11 421 12 13
- - oo, 55
327680 262148 )OO0 (5-3)

The solution of Eq. (2.15) around x = 0 reads

8x6  16x%  32x'0  608x!2 - 35x2
foa(x)=‘/§(4x2+gil+ A )Im Lis(%) +\/§7r3( al

243 729 19683 324
35x8 35x8 70x10 1330x2 ) 3 (x2 x0 X8 2x10 38y12 )

+ + + + al=+-—+-—=+ +
13122 19683 59049 1594323 12 486 729 2187 59049

« In2(3) + 12 2 2x? LB 4xt 8x6 128x8 262)610 N 25604x!2 1+ x?
pre) Bl 1+ =
39 81 9 19 683 59049 7971615 3
_2_x4 B 4_x6 B 64x8 B 131x10 B 12 802x!2 m(! N 3x2+x_4 N 11x% N 19x8
27 243 6561 19683 2657205 3 3162 486

751x10 N 8908x!2 2 4x? 8x6 16x3 32x10 N 608x!2 _ZLZ B ﬁ
29160 492075 9 729 2187 6561 177147 3 243

8x®  16x10 3O4x12)¢(1)( )] 5 11x? Sx* 148 115148
3

A S 1 S 2
729 ~ 2187 ~ 59049 08 * S~ T T T 243 34992

109973x'0  2523271x2

2
- - - 2x% log? Zx%log? 141 . 5.6
5248800 177147000  >F log )+ 3 log () +0(x" In()) (5.6)
The corresponding expansion around x = 1 is given by
5,2 .25 15 1 1 13 2461 , 3701
foab)= 343y + 377+ oy + 3y i 1920° ~ 120960° ~ 241920°
76627 , 1289527 o 635723359, 13482517 ,
4644864°  92897280° 510935040007  1261568000°
20 o ls Ls Lo 15 1 g 25, 65
71 -2y - 2 — — —
* ( 3776 T TerY T256” T256Y T5120 T16384” T 65536

9 145 5
*Br0720 T ea1aa” 5+ 0(y"). (5.7)
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Here the integration constants Cy 2 and C are!%

_3572° (0] 2x? In3) 3
CI_W+18Im[L13(— 7 )] + 7 (3)
+‘1/—3[25—21n(3)(45+8w“)(1))], (5.8)
1352 3,0 1) 2n
— 275
Ci==, (5.10)
— 275 275
Cr=—er~ g (2)——43 (5.11)

The solution of (2.18) is an integral containing the functions f3,(x) and fo,(x). Its series around
x =0 reads

20x* 1485 350x8 13652410 21370x12
=V3|-124? - —~ —~ - -
f10a®) \/_( T3 27 81 3645 6561 )

Li (=1)/6 ey 22x2 .\ 11x* . 22x° .\ 11x8 . 22x10 . 11x!2 :
N3 3 3 9 6 15 9 )%
i (7x 13x4 x° 12739x8  245263x!° 1950 047x12)

xIm

6 " 72 486 209952 2952450 21257640
Vi 3( 35x2  385x%  1295x6  12565x%  23891x!0 373975x12)

108 1944 8748 104976 236196 4251528

x2 1x* 37x%  359x%  3413x10  10685x'%) ,
+V3r|-= - - - - - n%(3)
72 324 3888 43740 157464

+(2i_ 5 Tx5  4825x%  76078x10 x4 561323x12) (1)(1)

X+ —+ + -—+ =
3 81 34992 ~ 492075 12 3542940 3
4 32x% 761k 3251x10 27455x12 L[ 5x? 0 53x* 1756
A _ _ _
27 648 2916 26244
1679x%  15839x'0  49301x" o (22 11x* . 74x5 .\ 359x8 . 6826x!°
2916 32805 118098 9 81 486 10935
12 4 2 4 6 8
10685x'2) ) InGx )_ C L o), 3t 245 31723«
19683 2 3 2 162~ 23328
634597x1%  10219913x!2 14
In(x)). 12
524880 ' 9447840 0(x () (5.12)
Likewise, one obtains the expansion around x = 1, which is given by
Izt 4In*Q2) 4, , 1 13y*  163y*
— —7?1In%(2) + 32Li4| = _ -
35 T3 T I 14(2)+ g 128
_631y°  1213y° 2335y 36247y 47221y 69631y'° 1100 145y"!
640 1536 3584 65536 98304 163 840 2883584

_544987y"*  1082435y" 5y .\ 7y’ .\ 2363y* .\ 1867y° .\ 2293073y°
1572864 3407872 |7 2 T 4 1728 1728 2592000

L 71317y7 8080 140871y% 31879816079y 255571071379"
96000 12644352000 = 56899584000 512096256000
1844349403 987y!" 13424 1233199779212 2056360866 308 893y"3 o)
4096770 048 000 32716805603328000 5452800933 888000 Y
(5.13)

+

Sfioa(x) =—

6+3y—2y2—
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with, see also Ref. 100,

19 4, 2 5 o1} 1 ofl)
= = —|-= - 14
(6] 77 +3ﬂtﬁ 3 2!& 3 + 643, (5.14)
C3=9¢4 — 643 — 2By, (5.15)
where!0!
Bs=—-451n%(2) + = 14(2)——§4+16L14(;) (5.16)

as integration constants in this case.
The series expansion of the solution of Eq. (2.16) is given by

145 261 19 4157 . 510593 ., 13208647
1 2 4 6 8 10 12
8 Y T e Y T st T 700 ¢ T 36000 ¢

fap(x) = {

272
+ 207 (=14 207 + 20 4+ 626 + 24x° + 114x1) 3
—2x? (—1 — 1407 + 4x* + 1220 + 48x% + 228x’0) In?(x)

1 9 2773
+ (— +=xt—6x0 —23x% — 107410 - TXIZ)Q

1
- mxz (120 + 585x% + 120x* +460x® +2140x" + 11 092x') In*(x)

201 , 29 5 307 5 7927 4, 14107

33+ Tt 4 5 2" "0’ 75

— 607 (=1 + 207 + 2x* + 600 + 2405 + 114x10>§2] In(x) + O(x"* 1n3(x))}.
(5.17)

The solution of Eq. (2.17) reads

25 11, 3, 53, 5999 ¢ 196621 ;o 14055067 |,
Fo) = = X = g e T gt T g0 9000
11 32 131 6401 5
+ 6—§x2+x +2x5+ = 3 8+Tx10+Fx12 *+ 9x2—9x4—§x6
1 26762
—%ﬁ%%;&o 6756 x4 (% + 220 + 1248 + 72410 + 456x'%) 7% | In(x)
25 604
— 6% + 12x* +24x5 +128x% + 786x'0 + — 12]1 2(x) + (2x% + 8x° + 48x8

+288x'0 + 1824x'?) In®(x) — (247 + 4x5 + 24x® + 144x'0 + 912x'%) 5
+0(x" In’(x)). (5.18)

Here the constants in (3.24) have been fixed by comparing to the first expansion coefficients in Ref. 41,
C =—%[2in(145+4n2)+3(165+ 164’3)], (5.19)
G, =—11—27r(145 +47%)=1m(C)). (5.20)

The solution of (2.19) is given as an integral containing f'g9),(x) with the constant

C3=3§4+6{3 (5.21)
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and reads

7, 553, 87587 . 9136091 236649223
3y — Ay 4 Lyt 222 6 S 10 _ 12
Sop() =364 =4 + 227 = o 1728 33750 162000
1, 46 . 1957 . 30907 ., 40103

2 14 40 6 8 10 12
+( 6x 2x+3x+24x+ s X+ 18x)§2

15, 257 4 3613 ¢ 103577 ,, 1039019

2 T 9N Tt T 500 1800

27 2
gxm + gxlz)fg] In(x)

116
+ (8% +16x* + Tx6 +128x% +

92 o 1957 ¢ 61814 10, 40103 12 12
( +—x"+ TR + 75 X 9 In“(x)
16 , 32 , 232 o 256 ¢ 5416 ;, 16124 5\ ;
+( +3x+9x+3x+15x+ 9x In”(x)
( 32 .6 896x]0 2684 L2

— 4148 -
5 3

)g +0(x"* ().
(5.22)

The corresponding solutions around x = 1 have the expansions

13850687 o 81562673 |, 6586514681
*38707200° T 1703116800 T 11354112000°
15 ¢ 9 o 687 ,, 1647

7, 1 3
722 =3 Lyt m - 2T - -
( VI Tea? T128Y Ts127 T 256 T 16384 T 32768

ser1ad’ )§3 +0(y"), (5.23)

5 3. 3, 171 < 577 . 35851 , 77957 . 1726163

-3 PN S S B O U AL 36— ¥ - ¥ = )
Jop) =342y 427+ 3y =Y = 1Y T ga0Y T 203200 806407 | 1548288
41342669 Jlo_ 27949201859 ;6932053241 ,

30965 760° 17031 168 000° * 2838528000

5, 15 3 5 17 21 5 1995 , 9873
S - SN B SN Y 64 = 74 2 8 ¥ 10
+7( YV T e T256Y T256Y 512”7 16384 T 655360
24741 |, 15933 ,, s
24
*hro " ene |2t O0Y) (>-24)

5, 13, 6251, 6721 5 10775573 ( 142659
2B, — 3 ¥ ¥ N ¥

Juon) = 2By =944+ 23* + o3’ + eyt + ey + S0 32000

60860651591 5 298199146349 ) 147503121177,y 26211821446 17

" 12644352000° ' 56899584000° © 256048128000 ° ' 4096770048000

, 235080972861513791 Sy 11, 307 , 1893 5 5137 ¢
+[6+9y+y" - —y - oyt - —=) -y

32 716 805 603 328 000 8 128 640 1536
_13179 5 263063 431519y 395TAI 15466743

3584 65 536 98 304 81 920 2883 584

9465637
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FIG. 4. The inhomogeneous solution of Eq. (2.14) as a function of x. Left panel—red dashed line: expansion around x = 0;

blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fg,(x)
around 0 and 1.

with the integration constants

275

Cy=—in=—— 2
C in 13 (5.26)
_ [~ 297 275
Co=i|Ch = 2L + 22 1n2) + 1443, (5.27)
2 73

_ 5 466638231901

=2 _gg, o 2000085010 0B 2
C3=3 =94~ 13505204012 &3 2B (5.28)

obtained by comparing again to the first expansion coefficients in Ref. 41. The constants are complex
here.

The solutions are illustrated in Figs. 4-9. The expansions around x = 0 and x = 1 have wide
overlapping regions in all cases. We use expansions up to O(x>’) and O(y*?), respectively. Due to the
constants C,-(a-), i=1,2,3, which are imposed by the physical case studied, all solutions are real in
the region x € [0, 1]. The fact that the homogeneous solutions in the cases b, have a branch point has,
however, consequences for the solutions around x = 0, as will be shown below.

The function f3,(x) is shown in Fig. 4. Its boundary values at x = 0, 1 read

_I135 5 03 ol _215
f34(0) = 6~ +2W (3) and fy,(1)= TR (5.29)

At very small x, the expansion around x = 1 delivers too small values, while at large x the small
x expansion evaluates to somewhat larger values, however, well below double precision. fo,(x) is
shown in Fig. 5 with the values

T
Lse ] 0.03 “
10 ‘\ 1
f 0.02
0.5 —
N 1
2 2| 2 |
0.0 <12 o0 |
|
|
0.5 1
0.00
-10 /
L n n L L n L L n n n Jd { L L L L L L L L L L L L 12
0.0 02 04 0.6 0.8 1.0 0.0 0.1 0.2 03 04

x x

FIG. 5. The inhomogeneous solution of Eq. (2.15) as a function of x. Left panel—red dashed line: expansion around x = 0;
blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fo,(x)
around O and 1.
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FIG. 6. The inhomogeneous solution of Eq. (2.18) as a function of x. Left panel—red dashed line: expansion around x = 0;
blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fjo,(x)
around O and 1.

5 2 1 5
Fou0)=3 + §n2 - w“)(g) and  fou(1) =3, (5.30)

at x =0, 1 and a very similar behaviour for the approximation around x = 0 and 1 as in the case of
fsq- Figure 6 shows the function fjg,, for which the boundaries are

fi (0):—977‘%%#2.,0(1)1 —11//“) ! 2+6§ and  fioa(1)=2B4 + 643 — 924, (5.31)
Oa 727 73 3] 727 \3 3 0a 3 S

Here somewhat larger deviations of the series solutions around x = 0 at 1 and x = 1 at O are visible.
In the following, we also illustrate the relative accuracy of the approximations expanding around x =
1 and x = 0 taking into account 50 expansion coefficients. Within the respective convergence region,
the accuracy can be enlarged expanding analytically to a higher number of terms.

In Fig. 7, the behaviour of f3,(x) is illustrated. The series expansion around x = 0 starts to diverge
at x ~ 0.4, while the expansion around x = 1 still holds at x ~ 0.1. The boundary values of f3; at x =
0, 1 are

145 1 275
foO)=-—7= =54 and fap()=—. (5.32)

There is a numerical artefact in Fig. 7(b) at x ~ 0.14 implied by the zero-transition of f3, in this
region.

A similar behaviour to that of fg;, is exhibited by fo;(x) shown in Fig. 8. Again the series-solution
around x = 0 starts to diverge for x ~ 0.4. However, the one around x = 1 holds even below x ~ 0.1.
The boundary values of fo, at x =0, 1 are

I 0.02 - |-
30 |

0.01 - q

Ssb

0.00

8 ] —0.01 */ -
0F ml L ]

|
|
L ] il J
Y — A L L P L P T
0.0 02 04 0.6 08 1.0 0.0 0.1 0.2 03 04
x x

Javo
fsvor

FIG. 7. The inhomogeneous solution of Eq. (2.16) as a function of x. Left panel—red dashed line: expansion around x = 0;
blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fg,(x)
around O and 1.
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FIG. 8. The inhomogeneous solution of Eq. (2.17) as a function of x. Left panel—red dashed line: expansion around x = 0;
blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fo,(x)
around 0 and 1.

25 5
Sfor(0) = <t { and  fop(1)= 3 (5.33)

fiop(x) is shown in Fig. 9. The validity of the serial expansions around x = 0 and 1 is very similar
to the cases of fg(9)(x), discussed above.
The boundary values at x =0, 1 are

Sip(0)=34+ 643 and  fiop(1) =2B4 + 643 — 944. (5.34)

Notice that the representations [(2.16) and (5.2)] allow for the analytic determination of the Nth
expansion coefficient of the corresponding series around x = 0 (y = 0) using the techniques of the
package HarmonicSums.m Refs. 4-6, 102, and 103.

The series expansions agree with those obtained by solving the differential equations through
series Ansitze in Ref. 41. In an attachment to this paper, we present the expansion of the solutions
around x = 0 and x = 1 up to terms of O(x*°) for further use. The solutions are well overlapping
in wider ranges in x. In the case of the functions fg(9,10)4(x), the power series expansion around
x = 1 reflects the branch point at x = 1/3 in the homogeneous solution. Our general expressions
easily allow expansions around other fixed values of x, which may be useful in special numerical
applications.

The above representations constitute a practical analytic solution in the case of iterative non-
iterative integrals. Indeed it applies to the whole class of these functions within their analyticity
regions. Thus the method is not limited to cases in which elliptic integrals contribute. Since, however,
the case in which »F; solutions may be related in a non-trivial manner, see (ii) and (iii) in Sec. VI,
to solutions through elliptic integrals with rational argument is very frequent, we turn now to a more
detailed discussion of this case.

0.02 |

Jos

0.01

s 1 0.00 ~
-0.01E L L L L R}

0.0 02 0.4 0.6 08 1.0 0.0 0.1 0.2 03 04
x

/lﬂ 0
f‘]ﬂa]
-

x

FIG. 9. The inhomogeneous solution of Eq. (2.19) as a function of x. Left panel—red dashed line: expansion around x = 0;
blue line: expansion around x = 1. Right panel—illustration of the relative accuracy and overlap of the two solutions fjop(x)

around O and 1.
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VI. ELLIPTIC SOLUTIONS

As we have seen, in special cases, the solutions of a second-order differential equation having
a »F solution may be expressed in terms of the complete elliptic integrals E(r(z)) and K(#(2)).
Our general goal is to represent the emerging structures in terms of g-series with explicit predicted
expansion coefficients in closed form as far as possible, if not even simpler representations can be
found.

Different levels of complexity can be distinguished, depending on the structure of r(z) and
whether only elliptic integrals of the first kind or also of the second kind necessarily contribute.
Furthermore, there are requirements to other building blocks emerging in the solutions, which we
will discuss below.

(i) If the complete elliptic integrals are given by K(z) or K(1 — z), choosing the case z € [0, 1], and
similarly for E, one may solve the difference equation, obtained from the differential equation
by a Mellin transform. It turns out that this difference equation factorizes to first order, unlike
the differential equation in x-space; see Ref. 104, for example. The Mellin transforms (1.1)
are given by

4AN+1
MIK(1 - 2)](N) = el (6.1)
¢! +2N)2( )
N
24N+2
M[E( - 2)I(N) = T2 (6.2)
2
(1+2N)“(3 +2N)(N )
since
1 1 1
K(l-72)== ® s 6.3
(1-2) I e (6.3)
El-gei® g1 (6.4)
241-2 1-z
Here the Mellin convolution is defined by
1 1
AG) ® B)= / dz / 0025z - 212)AGDB(2). (6.5)
0 0

Equations (6.1) and (6.2) are hypergeometric terms in N, which has been shown already in
Ref. 22 for K(1 - z); see also Ref. 6. As we outlined in Ref. 18, the solution of systems of
differential equations or difference equations can always be obtained algorithmically in the
case either of those factorizes to first order. The transition to z-space is then straightforward.
In z-space, also the analytic continuation to the other kinematic regions is performed.

(i) In a second set of cases, only the elliptic integrals K(r(z)) and K (r(z)) contribute, with r(z)
being a rational function. In transforming from z- to g-space, furthermore, no terms in the
solution emerge which cannot be expressed in terms of modular forms,**%3 except terms
oclnk(q),k € N. This is the situation, e.g., in the cases having been discussed in Refs. 32,
37, and 39. We will show below that here both the homogenous solution and the inte-
grand of the inhomogeneous solution can be expressed by Lambert-Eisenstein series,?*%
also known as elliptic polylogarithms, modulo eventual terms Inf(g). The remaining g-
integral in the inhomogeneous term can be carried out in the class of elliptic polyloga-
rithms;%° see Ref. 39. Note, however, that in the case of both the sun-rise and kite diagram
for the whole set of master integrals, both the elliptic integrals K and E contribute, cf.
Ref. 38.

(ii1) In the cases presented in Sec. III, the solutions depend on both the elliptic integrals K(r(z)),
E(r(z)) and K (r(2)), E (r(2)); see also Sec. VI B. Both E(r(z)) and E(r(z)) can be mapped
to modular forms representing them by the nome ¢ according to Egs. (1.4) and (1.5), pow-
ers of In(g), and polylogarithms, like Lig(¢g),'” and the n-factor given in Eq. (1.6). These
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aspects lead to a generalization with respect to the cases covered by (ii) since in a series of
building blocks the factor 1/77%(7) has to be split off to obtain a suitable modular form. This
factor is a g-Pochhammer symbol and also emerges in the g-integral in the inhomogeneous
solution.

Since the topic of analytic g-series representations is a very recent one and it is only on the way to
be algorithmized and automated for the application to a larger number of cases appearing in Feynman
parameter integrals, we are going to summarize the necessary definitions and central properties for
a wider audience in Sec. VI A. Then we will show in Sec. VI B that in the case of the differential
equations [(2.14) and (2.16)] both the elliptic integrals K and E are contributing, which implies the
appearance of the additional n-factor (1.6). In Sec. VI C, we will then construct the building blocks
for the homogeneous and inhomogeneous solutions of all terms through polynomials of n-weighted
Lambert—Eisenstein series, referring to the examples [(3.17) and (3.18)]. Here we use methods of the
theory of modular functions and modular forms.

A. From elliptic integrals to Lambert-Eisenstein series

There are various sets of functions which can be used to express the complete elliptic inte-
grals and their inverse, the elliptic functions, which have been worked out starting with Euler, 106
Legendre,”® and Abel,*® followed by Jacobi’s seminal work**!%7 and the final generalization by
Weierstraf.!0810%197 We first present a collection of relations out of the theory of elliptic integrals,
their related functions, and modular forms®° for the convenience of the reader. They are essential
to derive integrals over complete elliptic integrals at rational arguments, which can be represented in
terms of elliptic polylogarithms. Later, we will consider the different steps for a representation of the
inhomogeneous solution based on the homogeneous solutions ¢3 and 4 given before.

We first summarize a series of properties of Jacobi ¢; and the Dedekind 7 functions in
Sec. VI A 1, followed by the representation of the complete elliptic integrals of the first and second
kinds by the parameters of the elliptic curve and by the Jacobi J; and the Dedekind n functions in
Sec. VI A 2. Basic facts about modular functions and modular forms are summarized in Sec. VI A 3 for
the later representation of the building blocks of the homogeneous and inhomogeneous solutions of
the second-order differential equations of Sec. II. In Sec. VI A 4, we collect some relations on elliptic
polylogarithms and give representations of 5-ratios in terms of modular forms weighted by a factor
1/n*() in Sec. VI A 5. The modular forms are expressed over bases formed by Lambert—Eisenstein
series and products thereof.

1. The Jacobi 8; and Dedekind n functions

As an entrance point, we use Jacobi’s #%; functions.!?” The «# functions possess g-series and
product representations198

[oe] l ) [oe]
91(g.9= ) Dl 2)g812 exptak 4 izt =24 D =D sin[2n + 1z,

k=—00 k=0

(6.6)

92(q,00=2q)= > ¢* 6.7)
k=—o00

93(g, 0= 03 = ), ¢~ 6.8)
k=—o00

94q,0)=0a(g)= Y (=1)g". 6.9)
k=—00

The elliptic polylogarithms, introduced in (6.55) and (6.58), are also g-series, containing a specific
parameter pattern which allows accommodating certain classes of g-series emerging in Feynman
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integral calculations. The product representations associated with (6.7)—(6.9) read

(o)

1 2
92y =2q% | [(1-4%)(1+4*)", (6.10)
k=1
2
93(q) = ]_[ (1-)(1+4*"), ©.11)
2
9a(q)= ]_[ (1- ) (6.12)
They are closely related to Euler’s totient function''6
s@=] |5 6.13)
k=1
the first emergence of g-products, and to Dedekind’s 7 function®3!10-115.199
1
n()= ¢( 5 6.14)
One has?®
2n%(27)
Palg) == 5 6.15)
5
(1)
P5@)= — (6.16)
n?(37)n2@2r)
2(1
n\37
Pa(q) = Tl((T) ) (6.17)

In the following, we will make use of series representations of both Jacobi - and Dedekind
n-functions. We list a series of important relations for convenience,

n(r+m=ei2n(r), neN, (6.18)
n@=qm Y (- [116], (6.19)
k=—c0
(=gt Y @k+ gt 48], (6.20)
k=—0c0
an = 2 (-1 g [117], 621)
k=—o0
2 [e9]
n-27) _ i 4k242k
el kqu (1171, (6.22)
5 (o]
"((27)2 =g7 > (1@ + gt [118], (6.23)
n(7) Pl
@ _ 5 N 3k2+k
il k;w(6k+1)q [118], (6.24)
62 2 .
% g5 D (~1)fgtheH [119], (6.25)

k=—c0
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= 12

n(7)n(67) [119], (6.26)

nQonG3r? 1 Z 3K2+k

.;;.

77(7)2'7(67) ! 9k2+3k DGk
n2onGr) Z ) [119]. (6.27)

Many other identities hold and can be found, e.g., in Refs. 70, 71, and 120-126.

2. Representations of the modulus and the elliptic integrals

For later use, we also consider the structure of the differential equation of the Weierstra$3” function

0(2),108
97(2) =49’ (2) — £29(2) — 83 = 4(p(2) — e1)(P(2) — €2)(P(2) — €3). (6.28)
The functions g», g3, €1, €2, and e3 are given by
g2 =—4[erez + eze) +ejer] = 2[e% + e% + eg], (6.29)
g3 =4ejerez = ;—‘[e? + eg + eg], (6.30)
el +exy+e3=0, (6.31)

and the following representation in terms of Jacobi ¢ functions holds:

er= 0 [ﬂ“(g) +94(q)], (6.32)
= o [ﬂ (@) +03(q)], (6.33)
2
_ 4 4
es=—5 = [93@ + 3@, (6.34)
with
K
W= — (6.35)
\/6‘1 —e3
being Jacobi’s w function. Here Jacobi’s identity is implied by (6.31) with
93(q) = 95(q) + 93(q). (6.36)

The r.h.s. of (6.28) parameterizes the elliptic curve
V=40 — e - e)(x — e3) (6.37)

of the corresponding problem. Setting e; — e; = 1 for the purpose of illustration, the elliptic curves
corresponding to the module k& are shown in Fig. 10, choosing specific values.
The modulus k can be represented in terms of the functions e; by

k2 =z(x), (6.38)
cf. [(3.7) and (3.19)]. k and k’ = V1 — k2 are given by

k= 87 LECI 4778(%)774(%), (6.39)
er—er 9(q) n12()

A e %@ ;74(27);78(5)’ (6.40)
er—ex 93(q) n'2(7)

cf. (6.28), which implies the following relation for n functions:

_ni(3)nten)

n*(7)

[16n8(27)+n8(§)]. (6.41)
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FIG. 10. The elliptic curve for k = 0 (dashed blue line), k = 1/2 (dotted black lines), and k =1/ V2 full red lines.

Furthermore, one may express the elliptic integral of the first kind K by

10
K(kz)zwyel —e3, with e —e3= 192( )—%ﬁ
T

K'(k?) = —%K(kz) In(g).

Sometimes one also introduces the Jacobi functions w’, 77 and 77", which are defined by

, . K w
w' = 161—_63 =wT= P In(g),
_ 1 97(q)
T 20 9@
with
90 da*
@)=lim ~1(q.2).

The function 77’ can be obtained using Legendre’s identity (3.20) in the form

ﬁw’—ﬁ’w:iz
5

One obtains the representations of the elliptic integrals of the second kind as follows:

e\w+n
E(k*) = —,
\er —e3
, ew +7’
E'(k*) =i—=F%
Ve — 63
Later on, we will use the relation!?”-128 for E,
72
d
E(k) = KK?) + =1 94(9)],
(k") =K(k) K2 dg In[94(q)]

and the Legendre identity (3.20) to express E ,

d
E'(k*) = 1+21n(q) U In[94(q)] |-

2K(k2)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

6.51)
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3. Modular forms and modular functions

All building blocks forming the homogeneous solutions and the integrand of the inhomogeneous
solutions of the second-order differential equations considered above can be expressed in terms of
n-ratios. They are defined as follows.

Definition 6.1. Let r =(rs)sn be a finite sequence of integers indexed by the divisors ¢ of
N € N\{0}. The function f,(1)

fr(r) = 1—[ n(é7)°, 6,NeN\{0}, rseZ, (6.52)
SIN

is called n-ratio.

These are modular functions or modular forms. In the following, we summarize a series of basic
facts on these quantities in a series of definitions and theorems needed in the calculation of the present
paper, cf. also Refs. 64-76.

Definition 6.2. Let

SL2(Z)={M=(‘C’ Z), a,b,c,de, det(M)zl},

where SL,(Z) is the modular group.

For g = (Ccl Z) € SLy(Z) and z € C U o0, one defines the Mobius transformation

L, % +b
& cz+d’

Let

0 -1 11

S= and T= , S, TeSLy(Z).

1 0 0 1
These elements generate SL,(Z), and one has

1

Sz ——, Tz—z+1, S$%71> 7, ST’z 2.

Z

Definition 6.3. For N € N\{0}, one considers the congruence subgroups of SL,(Z), I'o(N),
I'1(N), and T(N), defined by

b
To(N) = {(a J €SLy(Z),c=0 (modN)},
c
b

SV

a
V)=

c

a
I'(NV) ::{

c d

with SLo(Z) 2To(N) 2T'1(N) 2T'(N) and T'o(N) CI'o(M), MIN.

)e SLy(Z),a=d=1 (mod N), ¢=0 (mod N)},

eSLy(Z),a=d=1 (mod N), b=c=0 (modN)},

Proposition 6.4. If N € N\{0}, then the index of To(N) in T'o(1) is

1
Ho(N) = [To(1): ToW)] =N ﬂ(l + —).

PIN

The product is over the prime divisors p of N.
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Definition 6.5. For any congruence subgroup G of SL,(Z), a cusp of G is an equivalence class
in Q U oo under the action of G, cf. Ref. 71.

Definition 6.6. Let x € Z\{0}. The analytic function f : H— C is a modular form of weight w
=k for To(N) and character a — (g) if

()
f(“z + b) = (3 )@+ afr@, veen, V(a 2) €T,
a C

(i) f(z) is holomorphic in H,

(ii1) f(z) is holomorphic at the cusps of T'o(N), cf. Ref. 129, p. 532.
Here (f) denotes the Jacobi symbol.3%131292 A modular form is called a cusp form if it
vanishes at the cusps.

Definition 6.7. A modular function f is of w = 0 and can be represented as the ratio of two
modular forms.

In particular, we will also have modular quantities, which are given by the ratio of a modular
form and 1! (1), 1 €N, 1> 0. The q expansion of these quantities has the form

00

[@= Z arg®, for some NyeN.
k=—No

Lemma 6.8. The set of functions M(k;N;x) for T'o(N) and character x obeying Definition 6.6
Sforms afinite dimensional vector space over C. In particular, for any non-zero functionf € M(k; N; x),
we have

dim(M)<b= %MO(N), (6.53)

cf., e.g., Refs. 65, 70, and 132.

The bound (6.53) on the dimension has been refined, cf., e.g., Refs. 66, 68, 72, 133, 134, and 203.
The number of independent modular forms f € M(k; N; x) is <b, allowing for a basis representation
in finite terms.

For any n-ratio f, (6.52), one can prove that there exists a minimal integer / € N, an integer N € N,
and a character x such that

H(@=n'(@)f(t) e M(k; N; x) (6.54)

is a modular form. All quantities which are expanded in g-series below will be first brought into
the form (6.54). In some cases, one has / = 0. The form (6.54) is of importance to obtain the
Lambert-Eisenstein series (Sec. VI A 5), which can be rewritten in terms of elliptic polylogarithms
(Sec. VI A 4).

The following theorems provide conditions for 5-ratios being modular forms.

Theorem 6.9 (Refs. 135 and 136).
Let f, be an n-ratio of weight w = % 25N Fs- fr € M(W; N 1) if the following conditions are
satisfied:
(1) Xswors =0 (mod 24),
(11) Z5|NNI’5/5 =0 (mod 24),
(iii) []sw 0™ is the square of a rational number,
(iv) Xswrs =0 (mod 4),
V) Yo ged?(8, 61)rsls > 0, Vo IN.
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Theorem 6.10 (Ref. 137).
Let an n-product (6.52), let k = % 26iNTs: s 20, and s=]]sy 0™, let ﬁ 25N Ors =c/e and
2—14 25w Nors/6=co/ep, both in lowest terms, and put F(t) = f(e7). If k is an integer and then

A= (Z Z) in To(eegN), we have
F(AT) = e(a)(cT + d)'F (1),

where € is the Dirichlet character (mod(Nege)) defined by

_1\k
e(a):(( il) s)

If we refer to modular forms, they are thought to be those of SL,(Z), if not specified otherwise.

for a >0 and gcd(a, 6) = 1.

4. Elliptic polylogarithms

The elliptic polylogarithm is defined by®6:138:204

ELingn(3 3 ) =iij§—

k=1 I=1

§|‘<

(6.55)

It appears in the present context, because it is a function which allows representing the different
Lambert—FEisenstein series, cf. Sec. VI A 5, spanning the n-ratios f,(7). In the following, we briefly
describe a few of its properties, which will be applied later on. One should note, however, that
in the following often, but not always, ELi,..,(x; y; ¢) will appear with non-positive indeces n,
m. In the polylogarithmic case, this would correspond to rational functions, rather than to genuine
polylogarithms. Clearly, the Eisenstein series play the main role here and we use the ELi,.,,-notation
rather as a frame to allow for the comparison to the foregoing literature, e.g., Refs. 32 and 37. Real
elliptic polylogarithms appear upon integrating these structures over dg/q or in the inhomogeneities,
which contain harmonic polylogarithms in the x-representation. In some cases, even various integrals
have to be performed.
Sometimes it appears useful, cf. Ref. 39, to refer also to

1 . : 1. -1

— 7[ELipm(x;y; @) — ELipyu(x™7 5775 9)],  n+m even,

Epm(y;9)=1 "~ R (6.56)
ELiym(x;y; ) + ELip(x™ 5975 q), n+m odd.

The multiplication relation of elliptic polylogarithms is given by®°

ELinl,...,n,;ml,...,m,;0,2oz ..... 20,_1(x19 S XL YY) =
ELinl;ml(xl;yl;q)ELinz,...,nl;mz,...,m1;202,...,20,_1 (XZ, e X Y2, - Y 5]), (657)

with
0o SIS o x/l x/l kl kl

ELin,...,m;ml ..... m;;201,...,201,|(x1,'~-,xl§)’],-")’ZQQ)zz ZZ Z _IleTI
J

1=1 =l k=
q11k1+ +q,k/

Hf YGiki + -+ jikp)oi

In the present derivation, elliptic polylogarithms form rather a frame to deal with the Lambert-
Eisenstein series. In the latter case, the argument g™, m € N, m > 1 may occur and the synchronization
to the argument ¢ is necessary. We will describe this below referring to the mth root of unity weights,
cf. Sec. VLA S.

[>0. (6.58)
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The logarithmic integral of an elliptic polylogarithm is given by

ELinl ..... nl;ml,..,,m1;2(01+l),202 ..... 20[,] (.X'], .. le)’l, LRI 7yl; 41) =
q dq

o S 5201 0,201 (K1 s XY e V0 q,)~
(6.59)
Similarly, cf. Ref. 39,
Enyosigseei0.200, 2011 (XL e S XE Vo2 V13 G) =

Enl;ml(xl;yl;Q)Enz,...,n/;mz ..... m;;200,..., 201_1()61,. XYL - "yl;Q)’
(6.60)

Enl,...,n,;ml ..... my;2(01+1),203,...,20,-1 ()Cl, e XY e Y Q) =

i dq,_ ’
7En1,...,n[;m1 ..... m,;201,...,201,1(xla R 025 2 B M 7 | ) (661)
0

holds.
The integral over the product of two more general elliptic polylogarithms is given by
q d_ ) ) , [oe] (e8] (o) (e8] a l'
/ TqEle,n(x, fla, qb)Ele’,n'(x ) q ) = Z Z Z Z m Loy n am
o 9 lllk’ll’kk ll
GO

XA tal + b+ bkl (6.62)

Integrals over other products are obtained accordingly.

5. Representations in terms of n-weighted Lambert-Eisenstein series

We turn now to the basis representation of the nj-ratios representing the different building blocks
of the integrands of Eq. (2.6). They will be given by modular forms of M(k; N;x) and in some cases
by an additional factor of 1/17'2(7'). The contributing modular forms M(k; N; x) turn out to be given
by the Eisenstein series®*® for weight w = k and products of the Eisenstein series of total weight k.
In the cases dealt with below, products of at most two Eisenstein series turned out to be sufficient.

The Eisenstein series are defined by

1
Gu@= )| s (6.63)
mneZ*\{0,0}

which can be rewritten in a normalized form by

sz(CI) n*-lg
E> = 6.64
W)= B Z — (6.64)
with By being the Bernoulli numbers. The Eisenstein series are modular forms for k£ > 2,
Exg)=1- 24; = (6.65)

is not a modular form but one has

Lemma 6.11. The function E>(t) — NE>(N7) is a modular form of weight w = 2 for the group
T'o(N) with the trivial character x = 1.

84,139-142

The Eisenstein series are associated with the earlier Lambert series, which are defined

by

(o)

Z Zva(k)q, oolk) = Zd“ aeN. (6.66)

k=1 dlk
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Equation (6.64) can be obtained from (6.63) by applying the Lipschitz summation formula.'*3 Finally,
Eq. (6.66) can be rewritten in terms of elliptic polylogarithms, cf. Eq. (6.55), by

> =Y KL= Y K7 = ELiLga(1: 1) (6.67)
k=1 k=1 k=1

In the derivation, often the argument ¢, m € N, m > 0, appears, which shall be mapped to the variable
q. We do this for the Lambert series using the replacement

x™ 1 v phx 1
Lig(x™) = =_ M= — % Lig(pkx), 6.68
0™ = 1 mkz;l—p’;,,x mkz:; () (6.68)
with
i
Pm = exp(ﬂ). (6.69)
m
One has
ka/ mk
21_ = ELi-q0(1; 15¢™) +lZELl_a()(pm,, : (6.70)
k=1

Relations like (6.68) and (6.70) and similar ones are the sources of the mth roots of unity, which
correspondingly appear in the parameters of the elliptic polylogarithms through the Lambert series.
Furthermore, the following sums occur:

i
(am+b)l am+b - mnqam+b
Z gem b Z a'b "Z T gt a,leN, belZ, (6.71)
=1
and
0 mnqam+b . .y 1 a ' .

1= g =ELino(1: ¢ 4" = — Z ELi_0(0%: ¢ q). (6.72)

m=1 v=1

Likewise, one has

)m n am+b

(-1 . y
Z W =ELi_y0(-1:4":¢%)

1
= {ZELl—nO(ng’q q) - ZELl-no(pa,q q)} (6.73)

v=1

In intermediate representations, also Jacobi symbols appear, obeying the identities

.. Nk -1y (-1)(-1
TS 1

In the case of an even value of the denominator, one may factor (’71) =1 and consider the case of the
remaining odd-valued denominator.
We also found Lambert series of the kind

sl (c—a)m 1 ¢
> f =ELioo(1:¢™¢) =~ »  ELino(p: 4™ q). (6.75)
m=1 ¢ n=1
sl q(c—a)m 1 ¢
D" =ELigo(l:=¢™:¢°)= = )" ELioo(pli =g ). a.c€N\(0},  (6.76)
m=1 n=1

in intermediate steps of the calculation.
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For later use, we also introduce the functions

-1
(mk+n) g T=1\ il i
Yot = Z mk+n = n'""Lig(¢") + ; "Il ELiLio(15 4" ¢™), (6.77)
=0
e km—lan ) -
Znni= )~ =ELin-gun(1:¢" 1), (6.78)
= T4
_ s (mk+n)l—lqa(mk+n)
Tm,n,l,a,b = Z 1— qb(mk+n)
k=0
n'™!g" P Lo ( 7" ”>Z( )m’ "1 ELijo (4" "1 ™). (6.79)

keeping the g-dependence implicit. The functions Y, Z, and T allow for more compact representations
for a series of building blocks given below. Note that (part of) the parameters (x; y) of the elliptic
polylogarithms can become g-dependent.

B. The emergence of E(r(z))

The solutions of the homogeneous part of Egs. (2.14) and (2.16) needed the elliptic integrals of
the first and second kinds. The question arises, whether one would also find solutions based on the
elliptic integral of the first kind only, as it was possible, e.g., in the case considered in Ref. 37. There
the reason is that the corresponding integral can be written as an integral over 1/ \/)7 where y? defines
an elliptic curve. Let us first transform (2.14) and (2.16) into Heun equations with four singularities
setting t = x?

d? 1 1 \d 2(t - 3)

e Fya(1) - (t - E)EF&;(?) mFSa(f) 0, (6.80)
& 1 1 \d 2(t-4)
ﬁFSb(t) - (m + _)dt Fp(t) + mFSb(t) 0. (6.81)

One may now consult Refs. 144, 145, and 205. In this form, both equations do not belong to the cases
for which the solution can be found as an integral over an algebraic curve, as one finds inspecting
the tables given in Refs. 144 and 145. However, one may investigate the solution of differential
equations associated with (2.14) and (2.16), which obey the conditions of Refs. 144 and 145. We
found equations of this type, but needed an additional differential operator to map them back to the
original equations. The differentiation of an elliptic integral of the first kind will now imply that an
elliptic integral of the second kind is present, as already the well-known relation*’

dK(k?)

dk?
shows. In general, the derivative is for x, where k = k(x). One retains nonetheless the dependence on
E, which has no representation in terms of Lambert—Eisenstein series only, as we show in Sec. VI C.
We remark that in the case considered in Refs. 32, 37, and 39 one obtains elliptic integrals of the

first kind only. The solution obeys a corresponding second-order differential equation in accordance
with Refs. 144, and 145.

E(k?)=2k*(1 = k%) +(1 = KHK(K?) (6.82)

C. The g-series of the n-ratio representations of the basic building blocks

In the following, we seek a series representation in the nome g (1.4) of the different building
blocks of the solutions [(2.14)—(2.19)]. We will as widely as possible apply an algorithmic approach,
which is applicable to a wide class of systems emerging in calculations of Feynman integrals of
a similar type, i.e., being solutions of second-order differential equations leading to solutions in
terms of (complete) elliptic integrals. In this context, the theory of modular forms and modular
functions®-6%72-76.132 plays a central role.
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The different building blocks depend on the kinematic variable x, which we discuss first. All con-
tributing functions are mapped to modular forms f,., splitting off a factor 1/p*(7) if necessary. They are
obtained as polynomials of the Lambert-Eisenstein series and are mapped to elliptic polylogarithms
following Secs. VI A 4 and VI A 5.

1. The kinematic variable x

We consider the representation of one of the sets of homogeneous solutions ¢3 4(z(x)), with z(x)
given by (3.19) and set x = —x.

1
X=—— 6.83
*=5 (6.83)
maps the modulus
16%°
K=z(t)= —————— 6.84
W= T a3 (059
into 16
P=z(y)= Y (6.85)

(1= +3y)*¥
obeying Legendre’s modular equation, cf. Ref. 64,

Vil + VKl =1, (6.86)
cf. Refs. 29, 30, 146, and 147. The nome g; = exp(-7K(k"?)/K(k?)) is the cube of the nome ¢; = ¢ =

exp(—7K(1’?)/K(I?)) and is obtained by a cubic Legendre-Jacobi transformation,!48-154.206
According to Refs. 29, 30, 146, and 147
16y _ 193(4) 6.87)
(L= +3yP  95(q)
is solved by
02 3 1 1
)1 _1 (6.88)

T 9Ag | 3% 3x
Both the expressions [(6.87) and (6.88)] are modular functions. For definiteness, we consider the
range in g,
€[-1,1] which correspondsto ye [0, %] , X€[1l,400[ (6.89)

in the following. Here the variable x lies in the unphysical region. However, the nome ¢
has to obey the condition (6.89). Other kinematic regions can be reached performing analytic
continuations. 36207

We would like to make use of the method of proving conjectured n-ratios by knowing a finite
number of terms in their g-series expansion. For this purpose, we refer to modular forms. In general,
it will be therefore necessary to split off an n-factor from the respective quantity such that the n-ratio
is analytic at the cusps, cf. (v) in Theorem 6.9. We can achieve this by separating off a common factor

of
1

n'2(r)’
A basis in the corresponding spaces M(k;N; x), with character y, is used to represent the
corresponding quantities.
To give a first example, we consider the n-representation for x. The associated n-ratio can be
represented in terms of Lambert—Eisenstein series at different powers of g as follows:

_1nteorGn _ 1 {1( S n5(—1>"q2") ( w1 2")
T3 p2omt6r)  3n'(r) 6l 8 1-g* 162

n=1

(6.90)

12n

5+24Z(1_ - qqlzn)}} (6.91)
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Following (6.70), one obtains

1 1 : 1. 2 3 : 1. 42
x= W{E(l —8ELi_s(~1; 1;¢ )) + R[l + 16ELi_30(-1; 1:¢%)]

X {5 +24ELi_1.0(1; 1; ¢%) — 144ELi_;0(1; 1;q‘2)}}. (6.92)

One may synchronize the arguments to ¢ using the relations given in Sec. VI A 5, and the products
in (6.92) may be formally collected using Eq. (6.57). For

% =xn'"%(1), (6.93)

both sides are modular forms, and the r.h.s. is expressed as a polynomial of the Lambert series.
According to Lemma 6.8, they agree if the first b non-vanishing expansion coefficients of their g-
series agree. Here we have extracted the power of 1/7'%(7), to choose a factor often appearing. It is
also the minimal factor necessary.

2. How to find the complete q-series of the building blocks?

After having found an exact representation of the kinematic variable x in terms of an p-ratio in
Sec. VIC 1, we are in the position to perform the variable transformation from x- to g-space by series
expansion at any depth. However, we still have to find the associated n-ratios for the corresponding
building blocks. An empiric way to derive the n-ratio would consist, e.g., in systematically enlarging
an Ansatz using larger and larger structures (6.52) and to compare their g-series to the one required
for a sufficiently large number of terms according to Lemma 6.8, after having projected on to a
suitable modular form, cf. Sec. VI A 3. This is a possible but time-consuming way. Quite a series of
g-series expressions of n-ratios are, however, contained in Sloan’s On-line Encyclopedia of Integer
Sequences,157 often with detailed references to the literature, which one therefore should consult
first. Lemma 6.8 will then allow us to prove the corresponding equality of the two modular forms
comparing their g-series up to the necessary number of non-vanishing expansion coefficients. All the
relevant g-series needed in the following could be found in this way. i-ratios can also be found from
g-series by using the Maple package described in Ref. 158.

3. The ingredients of the homogeneous solution

Let us now construct the individual g-series of the further building blocks. The representation of
the elliptic integral of the first kind K(z) using (6.42) and (6.66) is well known,

A 200 (s e
K(Z)=g 1+4kZ:; 1:161216}:%[“'7;[1410(”]() —Ll()(—lqk)]
= g [1+2E00(; 1:9)] (6.94)

cf. Ref. 157 A002654 by Somos,'>® and Ref. 70, Eq. (13.10). K'(z) is given by (6.43). Another
quantity, which enters the representation of E(k?) (6.50), can also be obtained in terms of Lambert-
series directly,

M 1
o)~ 2
~[ELi_10(1:¢7"59) + ELi_10(-1:¢7": q)]. (6.95)

[ELi10(1: 1:¢) + ELi_to(~1: 1:)] + [ELino(1:¢™'":¢) + ELino(~1:4™":q)]
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We still need the following n-weighted g-series:

1 2 5 3
—_— = —<¢1-24ELiy._1(1;1;9) — 4|1 — = |ELip._1(1; 1; ELip._(1;1;
) mlz(ﬂ{%{ io-1(1: 1) = 4[1 = 5 [ELio1(1: 1:q) + ELig.-1(1: 5 )

. . . [T
+ELig,_1(1;~1;¢) + ELig, (1; —l;q)]]}{ —1+4]- 3 [ELi_20(i; 1/4: @)
+ELiyo(~i:1/4:9)] + [ELi_1.0(i: 1/4:9) + ELi_v.o(~i: 1/4:9)] = 5 [ELiooGi: 1/g:q)

. . 1 | . .
+ELioo(~i:1/g:9)| ]} T {5 +4|-3 [ELi_40(i; 1/¢: ) + ELi_so(~is 1/q: )|

+2[ELi_30(i; 1/¢: q) + ELi_3.0(~i: 1/q: @)| - 3[ELi_20(i: 1/ q)
+ELi_20(~i; 1/q; @)| + 2[ELi_1.0(i; 1/ ) + ELi_1.0(~i; 1/q: )|

1
~ [ELioo(i: 1/¢:9) + BLino(~i: 1/4: ) }} (6.96)

to express E(k?) by Eq. (6.50). E (k?) is then obtained by (3.20) and (6.51).
Next we express the square root factor appearing in (3.17) and (3.18), for which the following
representation in an n-ratio holds'>’ A256637:

1 1(3)n(F)neonGn

VA =300 +x) = G . 6.97)

i n(t)n3(67)

q—-q

The corresponding g-series is given by

1 1 54

VA =3x)(1 +x)= ——{1 + = [Toi31,2+ 1213512 — 1213712 = T2a3,11,12 — T223.112
iV3n'2 (1) 7

26

—Ton3512+ 1223712+ Ta2311,12] — El [T6,13,14 = T6,1334 +T62334
—2T633,14+2T63334 — Tea3,14+T64334+T65314—T65334

+2T663,14 —2T66334] —8[¥s23 — Y863] +5[-Yi2,13 — 2Y1233

35 27
—Yios53+Yi273] — ZY12,8,3 + 1 [T2131,02+ 213512 — T2137.12
—Toa31112 = Ta230,12 = Tap3502 + Ta23712 + Tap3.11,12] Y1283

13
14
+T64334+To5314 — To5334 +2T663,14 —2T66334] Y1283 + [-8Y433

[To1314 —Te1334+T62334 —2T63314+2T63334 — T643,14

1
—2Y303+2Ys63] Y1283 + 2 [Y1213 —2Y1233 — Y1253 + Y1273

26 13

+2Y1293] Y1283 + 10Y 1293 + T623,1.4 = + ﬁ(—Y12,4,3 + Y1283

3 3 9
+Y12,103)] + 3 Y23+ 3 Yi83Y0423 — 1 Y2443 —2Y433Y2443

+—[Yi213+2Y1233 + Y1253 — Y1273 — 21293 Y2443 + 3Y2463

W A==

9 1
+ ZY12,8,3 Y2463 — I Y483 —2Y433Y2483 + I [Yi213+2Y1233

3
+Y1253 — Y1273 — 2Y1293] Y2483 + §Y24,10,3 + §Y12,8,3 Yo4103 — §Y24,14,3
3

9 1
—§Y12,8,3Y24,14,3 + ZY24,16,3 +2Y433Y24163 — 1 [Yi2,13+2Y1233
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3
+Y1253 — Y1273 — 2Y1293] V24,163 — 3Y24,183 — ZY12,8,3 Y24.183

+7Y413[8Y1283 +2Y2443 +2Y2483 — 2Y24.163 — 2Y24.203 ]

1
+Y 1135+ Z(_Y12’4’3 + Y1283 — Y2443 — You83+ 24163

9 1
+Y24203)] + ZY24’20’3 +2Y433Y24203 — I [Yi2,13+2Y1233+ Y1253

27
Y1273 — 2Y1293] Y24203 + Y12,103 T + 1 (T213,1,12 + T2,135,12
13712 = To31112 — Top3002 — T2p3512 + T3 712 + T223.11,12)
13

+ﬁ (=To13,14+T6,1334 —T62334+2T63314 —2T63334 + T643,1.4
—To4334 —T653,14+T65334 —2T663,14+2T66334) +8Y413—8Y433

1
—2Yg73+2Yg63 + I (=Y12,13 = 2Y1233 — Y1253+ Y1273 + 2Y1203

3
+Y12113) + g(Yz4,2,3 +2Y463 + Y24.103 — Y4143 — 2Y24183 — Y24.223)

27

+Y1243 T + ﬁ(_TZ,l,S,l,lz —T213512+ 1213712 +12,13,11,12

13
+To031,12+ 12235100 — 1223712 — Thn3.11,12) + ﬁ(T6,1,3,1,4

T334 +T62334 — 2163314 +2T63334 — Te43,14 + 164334
+T653,14 — T65334 +2T663,14 —2T6633.4) —8Ya13+8Y433+2Y323

1 3
—2Yg63 + I (Yi2,13+2Y 1233+ Y1253 — Y273 —2Y1203) + 3 (=Y2423

35

—2Y2463 — You,103 + Y24.143 + 2Y24.183 + You203) | + Y1223 T

7
+ﬁ(—T2,1,3,1,12 —T213512+ 1213712+ 12131112 + 122.3,1,12

13
+T2035.12 — T2037,12 — Top311,12) + 1 (To,13.14 — T6,133.4 — T623,1.4

+T6233.4 —2T633,14 +2T6333.4 — Toa3,1.4 +T64334+T653,1.4
—T65334 +2T663,14 —2T66334) —8Ya13+8Y433+2Y323

1
—2Y¥363 + Z(Y12’1’3 +2Y1233+ Y1253 — Y1273 — 2Y1203 — Yi2,113)
3
*+3 (=Y2423 = 2Y2463 — Yos,103 + Y4143 + 2Y24.183 + Y2422 3)

(6.98)

—Z Y4 — 2Yi253Y

5 Ta223 = g hi2ss 24,22,3}
7--q

The polynomials (x + 1)(3x? + 1) and (x — 1)>(3x + 1) can be assembled using (6.92).

Let us also list the g-series for Jacobi’s 77 function, cf. also Ref. 157 A000203,

1 = ()
7=———|-1424) kLio(g* }z—— , (6.99)
12w ; ( ) 12w 19(11)(61)
which is related to
9(q) . .
=—1+ 12[ELip._1(1; 1;¢) + ELip.—1 (- 1; 15 ¢)]. (6.100)

9" (g)
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4. The inhomogeneity

The integral over the inhomogeneity (3.25) in the case of the homogeneous solutions i3 4(x) has
the following structure:

8
d )
1= cn / ;"Hg(x)fm(x)¢3,4(x), nel0,1,2,3}, cneQ, 6.101)
m=1
and 1 1 1 1
fo , , , . 102
f’e{lix (1+x2 13x (li3x)2} (6.102)

For the functions fm, the relation
Ju0)=Fu0)| (6.103)
holds because of the structure of x, Eq. (6.88).
For convenience, we introduce the variable &,

§=%=3y, £€10,11og€[0,1]. (6.104)

Under this change of variables, the harmonic polylogarithms Hz(x) can be transformed using the
command TransformH of the package HarmonicSums.4-6:102,103
One obtains the following n-ratios, cf. A187100 and A187153 of Ref. 157,

S S n*(on(37)n’67) 6.105)
I=x 1=¢ "p(dr)neonen’ '
L e [ion(3r)ren]

(6.106)

I=3 3-6 y(in)peonen’

for which we get the representation in terms of an n-factor and elliptic polylogarithms using the
relations to the Lambert—series given in Sec. VI A 5,

1 1 637 49 49 91
= - Yoi6-Y — ———[Y316+ Y326l + ———Y336+ —7.
I-x ;712(7){ S1ga0 (1216 = Y220] = gegeglate + Yaosl + 53051506 + 355 Tana
721 _, .\ 721 91 I 721Y v 721 v 721 v
1620 4137103680 “*° " 360 *** 7 810 1274 T 1620 433 T 103680 H4°
S Yo26 —2Y636 — Youe + Yos6 +2Y -y
414720[ 6,1,6 — 16,2,6 6,3,6 6,4,6 6,5,6 666] 144 12,1,3
383 7 ) 67
Y. Yi33| Y1213+ — Y2 — Yoz +—VY — Yy
1620[ 4,13 — 433] 12,1,3 6480 12,13~ 16 12,2,3 128 1223 51 840 12,2,6
119 7 383 383 7
-—y Yais—Yazs]|Y Yi213Y Y? —Y
7 1233 — 810[ 4,13 433] 12”+1620 12,13 12%3+1620 12337 7 12,4,3
7 67 119
—Yi223Y Y? — Y146 — —Y Y. Ya33]Y
+64 12,23 1243+128 1243 ~ 57840 12,4,6 144 12,53 — 1620[ 413 — Y433] Y1253
+28 Y113 +2Y Y1273] Y1253 + ——— ELER 97y
3240 12,1,3 12,33 12,731112,53 6480 1253~ 35920 12,6,6
119 7 383
Yai13—=Ya33|Yin73 — —— Y 2Y Y
144 1273 1620[ 4,1,3 433] 12,7,3 3240[ 12]3+ ]233] 12,7,3

383 383 1, l
T6as0 12731 g
67 119 383

Yiogs — Yio3+Y1243]Y1283+ —=

6l 128 Thass

- + —Y Y. -Y. Y - —1Y; 2Y
31840 12,86 7 12,93 + 810[ 413 4131 Y1293 1620[ 1213 + 211233
383 7 7

+Y -Y +—Y? —Y - — Y +7Y
12,53 127%] 12,93 1620 12937+ 6 12,10,3 64[ 12,23 12,43

67 119 7

Y2006 + — Y2113+ —== Y413 — Ya33]

7
y v y2 o
1283] V12,103 + —=3 128 Y05+ 51840 144 1620
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3
xY12113 — 3240 —— Y1213+ 2Y1233 + Y1253 — Y1273 — 2Y1203] V12,113
LI R L Za1a+ =[Vio13+2Y1n33+7Y Y
150 12113 * 5595012126 ~ Tgdana + TglYiaus 1233+ Y1253 — Y1273
6 9
—2Y1203 — Y12,113123,14 + ZZ3,1,12 7 [Yi2,13+2Y1233+ Y1253 — Y1273 —2Y1293
117 259
—Yi1131Z31,12 + 5 Zgzl 2t g — 72334 — ' [Yi2,13+2Y1233+ Y1253

63 9
Y1273 —2Y1203 = Y12,113]1 2334+ — 73512 — I [Yi213+2Y1233+ Y1253

4
234 117 63
Y1273 = 2Y1203 = Y12,113] 235,12 + ?23,1,1223,5,12 + 3 2325 127 g —Z37.12

9
+4—¥ [Yi213+2Y1233 + Y1253 — Y1273 — 2Y1203 — Y12,113] 237,12

234 117 63

-—\Z +Z V/ +
[Z31,02 + Z3 5,121 Z3.7.12 3 1

2
5 Z%712

—7Z311,12

9
+4_1 [Yi213+2Y1233+ Y1253 — Y1273 —2Y1203 — Yi2.113] 23,1112

234 117 _, 4459
-——|Z +Z -7 V4 + —Z - —7
5 (Z3,1,12 + Z35,12 — Z3.7.12] 23,1112 5 4112~ g7g %610
7
+mY129%[Y41%—Y423]} (6.107)
1 1 2071
1—3x:UIZ(T){_117O[YZ’1’3_2Y4’3’3Y4’1’3] 8]90[Y1213+2Y1233+Y1253—Y1273
17 2071, 5651 , 9,
V1203 — YiorialYars+ —Ya13 - V2 b o y2 4 [y
1293 = Yi2,113] Y413 207413~ Tr70Yas3 + 35760 Y1213 64[ 1223
5651
2 2 2 y2 2 2 2
Y43+ Yings+Yin o 3] 32760 [4 233+t Yis3+ Vi3 + Y12,11,3]
T [Z31]2+ZSSI2+ZB7]2+ZHI]2] 2880[Y216—Y226]
49 2071 17
= [Vs16+ Yang —2Y336] + ———[Ya26 — Yaus] — =Y.
33280[ 3,16+ V326 33.6] 74880[ 426 — Yase] 5p Y433
Iy Yere— 2Vess— Yoo+ Yese+2Yees] - —Yass[¥
7096640 Y616 ~ Yoo 636 — Y646 + Y656 666l — ggp V4331213
1759 9
-y 2 Yiais = 2 Viaos + o [Y06 — ¥ S YyasY
12,113) Ty V1213 ~ g¥i223 74880[ 1226 — Yi2,46] — 7005 143371233
9
—Y Y - —Y, +—Y Y 4 ——Yu33Y
3100 121371233 = 5 Y233 + 5 ¥i223Y 1043 — V243 - ggp Yasstiass
L2651 5651 v Loy 1Y 1759Y 269 _209 o Aoy
T6ago Y1213 12331Y1253 = = Y1253 = 375 V1266 + grog Y433Y1273
5651 1759 9
- Y +2Y +7Y Y +—Y Y +Y -4
16380[ 12,13 1233 + Y1253 Y1273 g 11273~ 32[ 1223+ Y1243 — 4]
XY 269 Y +— H ———Y433Y S651 —[Y +2Y +Y
1283 = Trees V1286 + 7505Y433Y1293 — o5 (Y1213 1233+ Y1253

Y1273 = Y1203] Y1203 + mY 1293~ 35 [Yi223 + Y1243 — Yi283]Y12,103

5651
+=Y12.103 + ———Y12.106 — ——— Y1213+ 2Y1233 + Y
3 12,10,3 74 880 12,10,6 16 380 [ 12,1,3 12,33 12,53
Y1273 — 2Y1203] V12113 + —— Y1213 + ——— Y2126 + 6[ Y1213 + 2Y
12,7,3 ]2,9,3] 12,11,3 728 12,11,3 37 440 12,12,6 [ 12,1,3 12,3,3

1161
+Y1253 — Y1273 —2Y1293 — Y12,113] 23,14 — 427314 —

132 —[Yi2,13+2Y1233
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+Y1253 = Y1273 = 2Y1203 — Yi2,113] 231,10 + 723,1,12 —6[Yi2,13+2Y1233

+Y1253 — Y1273 — 2Y1203 — Yi2,113] 2334 + 422334 — (Y1213 +2Y1233

182
324 1
+Y1253 — Y1273 —2Y1203 — Yi2.113]1 235,12 + TZ3,1,1223,5,12 + 2—623,5,12
1161
+W [Yi213+2Y1233 + Y1253 — Y1273 —2Y1203 — Yi2,113]Z3.7.12
324 1161 1161
-——|Z +7Z Z - Z + ——|Y +2Y +7]
5 (Z3,1,12 + Z35,12] 237,12 TR (Y1213 1233+ Y1253
324
Y1273 —2Y1293 — Yi2.113]Z3.11,12 — =5 (Z31,12 + Z3 5,12 — 237,121 23,1112
1161 343
ey - —Z . 6.108
26 L2~ 355 6,1,1} ( )

For both (6.107) and (6.108), 38 Lambert—series of the kind [(6.77) and (6.78)] contribute in our
present basis representation. If expanded in Lig(¢") and the elliptic polylogarithms, many more
functions would appear. The expressions [(6.98), (6.107), and (6.108)] are rather large. Due to a large
number of relations between modular forms, we cannot currently exclude that these expressions can
be simplified. We leave this for a later study. Here our first goal has been to find valid representations
algorithmically in all cases.

Let us now turn to the harmonic polylogarithms appearing in the inhomogeneities. We first
change the measure for the integral (6.101) to

dx dIn(x)

dq .
—=—J(g), th J= . 6.109
Y g (@), wi din(q) ( )
The Jacobian J(g) is given by
dIn(x —= . = .
L +Eo-1(p3315.9) + Eo-1(p35 =i 9). (6.110)
d1In(q)
This is easy to see since the relation
a 1 2a
b : C
In["(@v)] =b| 5 In(g) - - ; ELio._12(1; 3 @)|, @, b €N\{0}, (6.111)
holds, which can be generalized to any n-ratio.
Integrating (6.110), one obtains
Ho(x)=~1In(3q) + Eo:-12(p3: 13 9) + Eoi-12(p3; =i ). (6.112)

Since also other harmonic polylogarithms may occur in the inhomogeneities, let us briefly discuss
the next possible cases.
Similar to (6.110), one has

din(1+x)  — — _ _
dind+ ) =4[Eg-1(=1:1:¢°) = Eo-1(p6; 1:9)| = |[Eo-1(=1; 1;9) = Eo-1(pe: 15 9)]
d1n(q)
—1+4Eo._1(p3;-1;¢°) (6.113)

=—1+Eo_1(=1;-1,9) — Eo_1(ps; —1; q) + Eo.—1(p3; —i5 q) + Eo1(03: i5q)
(6.114)
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and
din(l1 —x) dIn(1+x)
= . (6.115)
dIn(q) din(q) |,_,
H_i(x) and H(x) are obtained by integrating (6.113) and the relation (6.115),
H_i(x)=In(1 +x)=-1n(3q) — Eo.—12(~1; = 1;9) + Eo.-12(ps; ~1: q)
~Eo.-12(p3: —izq) — Eo-12(p3: 13 @), (6.116)
Hy(x) == H-1(xX)| g + 27, (6.117)
with
Ho(é)=-Ho(x), H1(§)=Hi(x)+Ho(x), H_ ((§)=H_1(x)+ Hox). (6.118)

There are similar symmetry relations at higher weight. One also applies the shuffle algebra,”’*? and

it is therefore sufficient to calculate the g-representations for Ho 1, Hy -1, Hop,1, Ho1,1, Ho,1,-1, and
Hi -1 up to weight w = 3.

In (6.101), we first transform to & as the integration variable through which the HPLs H;(x) are
replaced by

Ha(x) = Z anHy (€)+cq, ancz€C. (6.119)
By iteration, the different harmonic polylogarithms (2.20) are obtained as follows:
< dé 7dgdin(é) .
Hoate)= [ Caer= [ LR e, (6.120)
q dgdln(l —
Hyae)=- [ DL g)Ha(CI), (6.121)
o g dn(@)
“dgdln(l + &—
——H; 122
12(6) = / 410 #(q)s (6.122)

with Hy(q) = Hz(£(3) and
dln(é) _ dIn(x)

din(g) d In(g)’ (6.123)
dIn(1 - &) _dIn(l -x) B dIn(x)
din(g) ~ dln(g)  dln(g)’ (6.124)
dIn(l + &) _dIn(l +x) B d In(x)
din(q)  dln(g)  dln(g)’ (6.125)
To express the solution fy,(x), one needs to differentiate fg;(x),
e dq dIn(f) -
— — 6.126
3 gf(f) £ e ) 7 dme @@ (6.126)
For the solution of fo,(x), integrals of the type
SdE 9 dgdl
| Freren- 2 MO 5. 1) (6.127)
0o ¢ dIn(g)
are performed. Here, the integrand of (6.127) has to be expressed in terms of g.
In the case of (2.6), integrals of the kind
q" In"(q)
dgl— 6.128
/ Tk @) (©128)

contribute. For k = 0, these integrals are given by polynomials of ¢ and In(g) and the integration
relations of the type Eq. (6.59) can be used.
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Because of

12

q 1 2k
1+ —) p(k)g™, (6.129)
a* f]‘z ( el | IO ER)) CI% kZ:(;

cf. Refs. 75 and 87, g-Pochhammer symbols are appearing, which requires a corresponding general-
ization of the integration relation with respect to g. Here p(k) denotes the partition function. There is
no (known) finite rational closed form expression for p(k),” cf. also Ref. 160.

In Ref. 39, Egs. (50) and (69), only harmonic polylogarithms over the alphabet {0, 1} occurred,
which all could be expressed in terms of elliptic polylogarithms. However, the kinematic variable
in Ref. 39 is different from that in the present case. This implies different representations for the
harmonic polylogarithms in terms of g-series.

We finally remark that there is a multitude of equivalent representations of the g-series of a
modular form, which obey many relations.'®"2% It would be worthwhile to find minimal represen-
tations. One criterion could be to minimize the number of elementary elliptic polylogarithms (6.55)
contributing. Still one would have to decide whether in this representation different arguments are
synchronized or not, bearing in mind that the latter step is straightforward and only needed if the
corresponding expression shall be integrated over g.

VIl. POSSIBLE EXTENSIONS

In Sec. IV, we have obtained a representation of new iterative integrals containing also letters
which are impossible to be rewritten as integrals such that the next integration variable does only
appear in one boundary of this integral. In the present study, only the complete elliptic integrals were
forming the new letters of this kind. Due to this, it is possible to express the corresponding integrands
in terms of n-weighted Lambert-Eisenstein series, given the type of inhomogeneities are of the class
as in the present examples. For other irreducible differential equations of order o = 2, it may happen
that we end up with »F| solutions which cannot be reduced to complete elliptic integrals modulo
some (ir)rational pre-factor.

In more general cases, the ,F| solutions will not appearm but other higher transcendental
solutions might be found, obeying higher-order differential equations, which are the result of the
corresponding integration-by-parts reductions.!! They will usually have also definite integral rep-
resentations and appear as new letters other than the ones we mentioned earlier. Whether or not a
mathematical way exists to come up with an analog to the case of the elliptic polylogarithm will
depend on the class of functions. In various cases, the representation of Sec. IV will be the final one.

Still the case of the elliptic polylogarithm

k

ELipn(x;y; ) = i i ;Ci m

j=1 k=1

may get some generalizations in the case of Feynman integral calculations, as has been the case
before for the polylogarithms. The two summand terms

]7 (7.1
appearing are those of the generalized harmonic sums, i.e., the Mellin transforms of Kummer-iterative
integrals,'®> connected with the nome term ¢/*. One may think of a cyclotomic extension*> in the
sense of real-valued representations, where the two infinite sums allow for periodic gaps choosing
summands of the kind

xb

(Lij+hL)s’

Further extensions, which occurred in the non-elliptic case, may be binomially weighted sums, cf.
Ref. 6. Here, additional factors of the kind

LieN,[1,l3>0. (7.2)
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! T ! 1(2/), 2r,1€N, (7.3)

(j+r)l(,1) G+nr'\J
J

may occur in (7.2).

A reliable guide to find new structures consists in analyzing the appearing integrals by applying
dispersion relations.”®!6> The cuts immediately relate to a series of relevant Landau variables'¢*
of the problem, which are usually only revealed at a much later stage using differential or differ-
ence equations directly to solve the same problem.?*® In higher-order graphs, one cannot exclude
that hyperelliptic and Abel integrals'®” are going to appear at some level, which are known to be
multi-periodic compared to the double periodicity in the elliptic case; see Ref. 168 for the corre-
sponding theory. The corresponding integrals will require new classes of functions for the analytic
representations.

We finally mention that in ®* theory at eight loops more complicated structures are occurring
related to K 3-surfaces,'*%170210 compared to those implied by elliptic curves.

VIIl. CONCLUSIONS

A central problem in calculating higher loop Feynman integrals in renormalizable quantum field
theories consists in solving the differential equations obtained from the IBPs, which rule the master
integrals. In the present paper, we have solved master integrals which correspond to irreducible
differential equations of second order with more than three singularities fully analytically. They
appear in the calculation of the QCD corrections to the p-parameter at 3-loop order in Ref. 41. They
form typical examples for structures which appear in solving IBP-relations for Feynman diagrams
beyond the well-understood case of singly factorizing integrals given as iterative integrals over a
general alphabet. The latter case has been already algorithmized completely in Ref. 18, even not
needing any special choice of the basis. The second-order structures can be mapped to | solutions
under conditions presented in this paper. We have outlined the algorithmic analytic solution in this
case in terms of iterative integrals over partly non-iterative letters. Indeed this holds even for much
more general solutions than those of the F type. One is usually interested in representing the
analytic solution for a certain interval of a (dimensionless) kinematic variable x € R, e.g., for x € [0,
1]. The solutions may have different singularities in this range, including branch points. Yet piecewise
analytic series expansions of the type

m [oe]
Zlnk(x)zak,l(x—b)l, bel0,1],meN, 8.1)
k=0 1=0
are possible, which overlap in finite regions allowing us to obtain a very high accuracy by expand-
ing to a sufficient finite degree. The simple form of (8.1) is very appealing for many physics
applications, despite the potentially involved structure described by the corresponding differential
equations.

The question arises whether one may find a fully analytic diagonalization of the integral describ-
ing the solution in the inhomogeneous case. If the ,F'; solutions can be mapped to complete elliptic
integrals using triangle group relations for the homogeneous solution and the inhomogeneity normal-
ized by the Wronskian can be represented in terms of elliptic polylogarithms, the inhomogeneous
solution is given in terms of elliptic polylogarithms of the nome ¢, solving the integral over the inho-
mogeneity. Also here, all necessary steps are known. The building blocks appearing in the present
case are not all of this type due to which modifications are necessary.

In the present case, the kinematic variable x is determined from the rational function k% = z(x)
appearing in the complete elliptic integral K(k?). A related, but different, approach has been followed
in Ref. 37. Our choice has the advantage to obey the symmetry

xe-x) = @eo-9 (8.2)

by sign change in deriving the g-forms of the harmonic polylogarithms. The kinematic variable x is
obtained applying a cubic elliptic transformation. Next, one has to derive the elliptic integral rep-
resentation of all factors appearing in the integrand of the inhomogeneous solution, and in some
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cases further integrals and derivations of the inhomogeneous solution in the g-representation. We
map all building blocks to modular forms separating off a factor 1/7*(t) if necessary and obtain
analytic solutions in terms of n-weighted Lambert-Eisenstein series. As we have shown, in the
present case, the emergence of the elliptic integral of the second kind, E(k?), cannot be avoided
in the solutions. This is one source of the n-factor mentioned. While the multiplication relation
(6.57) allows forming the final elliptic polylogarithms in the case of Yk = 0, in general one obtains
n-weighted elliptic polylogarithms. Because of the appearance of the g-Pochhammer symbol in
the denominator, the occurring g-integrals are not of the class of the elliptic polylogarithms in
general.

The main work went into the determination of elliptic polylogarithm representations of the g-
series for the different building blocks. In the present case, we also had to represent a square root
term, which was possible using the structure of the rational function z(x). In this way, functions of
Dedekind n-ratios are expanded into g-series trying to match them into linear combinations of elliptic
polylogarithms. This is done for the most elementary factors, building the more complex ones using
the relations (6.57). Here an essential issue is to prove the equality of two g-series, which can be done
mapping to modular forms and comparing a number of non-vanishing coefficients up to the predicted
bound.

We have referred to a special choice for a basis in representing the occurring modular forms in
M(k, N, x). In this way, we were able to find the representation of every n-ratio for any modular form
completely algorithmically. This has been our main goal here. As it is well known, there are a very
large number of relations between modular forms, which may be used to derive potentially shorter
representations. One possible demand would be to find a minimal representation in terms of elliptic
polylogarithms of, e.g., the kind

ELi,0(x;v: @), ELipn(x: ¢*: ¢)), and ELin(q':q*:¢)), m.n.k.j,l€Z, x,yeC,  (8.3)

referring to the class of elliptic polylogarithms which appeared in the present paper. To synchronize
the g-argument of the occurring elliptic polylogarithms is easily possible, but will usually lead to a
proliferation of terms.

We remark that the Mellin moments in the case of elliptic contributions to the solutions
also contribute, cf. Ref. 165, map for fixed values of the Mellin variable N to rational numbers
and multiple zeta values. Large amounts of moments can be calculated using the algorithm of
Ref. 171, also providing a suitable method to quantify the corresponding physical problem, cf. also
Ref. 172.

For higher topologies, we envisage extensions to more general structures, as has been briefly
discussed in Sec. VII. Structures of this kind are expected in solving differential equations of higher
than second order, which may arise from Feynman diagrams, in the ongoing adventure to map out the
mathematical beauty of the renormalizable quantum field theories of the microcosmos, as initiated
by Stueckelberg!”® and Feynman.!”*

Note added. After completion of the present paper, the preprint”°® appeared. In this paper, more
special cases, compared to those in the present paper, are considered, which allow representations
in terms of modular forms and powers of In(g) only. The latter terms, appearing also in the present
case, are related to Eichler integrals'®" in Ref. 186.

In Ref. 186, Eq. (195), Weinzierl et al. changed their earlier representation for 7(x) to the
convention we have introduced in (6.91) in 2017, which we have derived exactly, cf. Sec. VI
A 3, by identifying \/m2/t=x. In this way, they now also refer to the congruence subgroup
I'1(6) if compared to I';(12) earlier. Accordingly, their representation of the harmonic polylog-
arithms, in case of the kite-graph, will change to the ones we use, upon observing obvious
relations.>!0?

t186
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APPENDIX A: ,F{ SOLUTIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS
WITH MORE THAN THREE SINGULARITIES

In the following, we describe an algorithm which allows mapping an ordinary second-order
differential equation into > F'| solutions. We are going to explain it referring to an extended example.
For this reason, we consider the following homogeneous linear differential equation with rational
function coefficients:

2
0=256x(3x+10)(15x —4)(x + 4)%5(}0
X

d
+ (30 240x + 164160 x> + 182784 x — 25 600) —-S@)
+4725x% + 17910 x + 6000 = L[S(x)]. (A1)

A hypergeometric solution of (A1) is a closed form solution

S(x)=exp (/r(x)dx) (ro(x). oF] [Cllb,lﬂlz 3 F(0)

+ri):- 2F1'[‘“I;f‘2 ;f(x)]), (A2)

where r(x), ro(x), r1(x),f(x) € Q(x), and ay,as,b; € Q. The algorithm in Ref. 58 first tries to find
solutions of (A1) of the form

S(x) =exp ( / r(x)dx) 5F) [“‘b’l‘”; f(x)]. (A3)

If it finds no solutions of the form (A3), then it tries to transform (A1) to a simpler differential operator
L and tries to find solutions of L of the type (A3), which then leads to solutions of (A1) of type (A2).

If (A1) has solutions of type (A3), then there exists a GauB hypergeometric differential operator
Lp such that solutions of (A1) can be obtained from solutions of Lg via a change of variables and an
exp-product transformations. This means that

is a solution of Lpg, and the change of variables x — f(x) sends Lp to an equation L’; with a
solution

ay,az,

2Fl|: bl ,f(-X):|,

and the exp-product transformation sends LJ; to an equation with solutions (A3).

The operator (A1) has four non-removable singularities at x = —4,-10/3, 0, 4/15 and no removable
singularities. The exponent-differences are 1/2, 1/4, 3/8, and 1/4, respectively. For example at x =0,
there are formal solutions (power series solutions) x? - (1 + ﬁx +..)andx¥% . (1 + %x +...), 80
the exponents are 0 and 3/8 and the exponent-difference is 3/8.

Section 3.3 of Ref. 58 gives relations between deg(f), exponent-differences of Lp, and exponent-
differences of (Al). If f(x) is a rational function, then sub-algorithm 3.2 in Sec. 3.4 of Ref. 58

produces candidates Lp’s compatible with those relations. The algorithm in Ref. 58 finds the following
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candidates:

311
== Z’Z)’ deg(f(x)) =2,

(ep, €1,€00) =

)
) deg(f(x)) =35,

—_—

(ep, €1,€00) =

), deg(f(x)) =6,

111

(eo, €1, €00) = (8’ 3 2), deg(f(x))=15.
Here e, €1, e are the exponent-differences of a Gaull hypergeometric differential operator Lg at x
=0, x =1, and x = co. They determine Ly up to an exp-product transformation. The deg(f(x)) of a
rational function f(x) is the maximum of the degree of its numerator and degree of its denominator.
For (A1), the algorithm finds six Gaufl hypergeometric differential operators. Then the algorithm
loops over each case and tries to recover f(x) in (A3).

The fourth case (e, €1, ex) = (1/8, 1/4, 1/2) and deg(f(x)) = 5 gives a Gaull hypergeometric

differential operator Lp, where
4> 35x-3)d 33

Lp=-2 < Ad
B T 8x—Ddx  256x(x-1) (A

with an associated degree 5 for f(x). One can always compute formal solutions of differential operators
around a singular point. The algorithm in Ref. 58 chooses a true singularity of (A1), moves it to x =
0, and then computes formal solutions of (A4) and (A1) at x = 0. The point x = 0 is a true singularity
of (A1). Formal solutions of (A4) at x = 0 are

3 11
16° 16 11 1881
y1(x)=2F] 0 ;x] =X0(1+%X+m)€2+...), (AS)
8
1 9
16> 16 255
yz(x)zx_% 2 F ; 3 X =x_%(l+%x+mx2+...). (A6)
8

The exponents at x = 0 are 0 and —1/8; see (AS) and (A6). Formal solutions of (A1) at x = 0 are

15 3825 , 3905875
Yi(x)=x (1+ X+ X )

64" 8192 3670016

249 329697 , 774249529
Ya(x) = x8(l +— x? X )

320" 204 800" * 196608 000"

After a change of variable transformation x — f(x) and exp-product transformation, one gets
Yi(x) =exp ( / r(x)dX)m(f(X)), (AT)

Y5(x) =exp ( / F(X)dX)yz(f (x)). (A8)
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If one takes the quotients of formal solutions of Y (x), Y2 (x) of (A1) and y;(x), y2(x) of (A4), then
the effect of exp ([ r(x)dx) disappears,

_ @) 2 »fx) _

_h®: - , A
0w =5+ 28 = g (A9)
where
g0 = 2% (A10)
y1(x)

This suggests f (x) = g~ (Q(x)); however, the quotients of formal solutions, (A9) and (A 10), are unique
up to a constant. So, the correct equation is

f@=q""(c-0w)), (A11)

where ¢ € C* (here ¢ € Q). If one knows the value of ¢, then (A11) gives a power series expansion
for f(x). That can be converted to a rational function, provided that one has a degree (bound) for
f(x), which is 5. However, the value of ¢ € QQ is unknown and there are infinitely many candidates for
c. If one chooses a suitable prime number p and works modulo p, then there are a finite number of
candidates for the unknown constant c. The algorithm in Ref. 58 chooses p = 13 as the first suitable
prime number and it loops over c =1, . . ., p — 1 and for each c tries to recover f(x) modulo p from its
series expansion (A11) modulo p. If this succeeds for at least one c, then the algorithm uses Hensel
lifting techniques'”> to obtain f(x) modulo higher powers of p. After that, it tries rational function
and rational number reconstruction to find f(x) € Q(x). After five Hensel lifting steps, the algorithm
finds
3 2
Fla) = x°(3x+10)

C+ (B2 +4x-2)7

(A12)

Note that deg (f(x)) = 5.
In order to find r(x) € Q(x), one can use Sec. 3.7 of Ref. 58. The algorithm in Ref. 58 finds

45 x* +330x3 + 690 x2 + 300 x + 480

") = e+ 6031 10) (32 +4x — 2)x
and so
3/8 1/4
exp / r(0)dx | = ¥ Gx+10) . (A13)
(x+ 410352 +4x-2)

In the last step, the algorithm in Ref. 58 forms solutions of (A1) from solutions (AS5), (A6) of
(A4). Then (A7) and (A8):

31
16> 1

—_

[=))

Y1 (x) =exp ( / V(X)dX) 2k of (X)] (Al4)

L9
16° 16

Ya(x) =exp ( / r(x)dx) )7 o F

3f (X)] (A15)

are solutions of (A1) of type (A3) with exp (f r(x)dx) as in (A13) and f(x) as in (A12).

Remark A.1. The algorithm in Ref. 58 first simplifies the homogeneous parts of the differential
equations studied, cf., e.g., (2.14) and (2.16). Then it finds the hypergeometric solutions of the simpli-
fied equations of type (A3), and then uses these solutions to form the solutions of their homogeneous
parts of type (A2).

Since the differential equation (A1) has more than three singularities, the argument f(x) of the
»F1 solution has to have singularities. The expression in F| form has the advantage, that various
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FIG. 11. The transformation of special o F; functions under the triangle group.

properties of Gaul3” hypergeometric functions can be used in subsequent calculations, would not be
known otherwise.

The parameters a, b, c of the solution are rational numbers, and we will now investigate whether
it is possible to map the homogeneous solutions (A14), (A15) into complete elliptic integrals, which
has been possible in all examples being discussed in Sec. III.

We would like to finally discuss a series of ,F| transformations in the case of the appear-
ance of special rational parameters a, b, c, illustrated by the graph, Fig. 11, cf. Refs. 56, 57,
and 176.

If (a, b; ¢) and (a’, b’; ¢’) are the endpoints of an edge labeled [ in the diagram, with the latter
endpoint above the former, then

oF) [“’cb ;x] =R@)2F) [“ g ;f(x)] (A16)

for x sufficiently close to 0, where R, f are given in Table I.
Here w solves
W +w+1=0 (A17)

and d is the degree of f, the maximum of the degrees of the numerator and denominator. The relations
displayed in the above diagram can be used to map a wider class of , /| solutions to elliptic solutions.
In various cases, also the other relation obeyed by »F| has to be applied and one often ends up with
complete elliptic integrals of the first and second kinds, as in the cases dealt with in the present

paper.
APPENDIX B: THE EQUAL MASS SUNRISE: FROM KINEMATICS TO ELLIPTIC
POLYLOGARITHMS

In the following, we summarize the necessary variable transformations in the case of the equal
mass sunrise diagram, dealt with in Refs. 32 and 37. In the case of the kite diagram,39 the treatment

TABLE I. The functions R and f for the different hypergeometric transfor-
mations of degree d depicted in Fig. 11.

l d R i
A 2 1 4x(1 - x)

B 2 (1-x)"176 12/ = 1)

C 2 (1-x)1/8 12/ = 1)

D 2 (1-x)112 12/ -1

E 2 (1 —x/2)7172 X2 /(x = 2)?

F 3 (1 +3x)71/4 27x(1 — x)2/(1 + 3x)>
G 3 (1 +wx)"1/2 - (x+w)/(x+@)
H 4 (1 - 8x/9)~1/4 64x3(1 — x)/(9 — 8x)>
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is analogous. The intention is to represent the result in terms of the variable ¢, Eq. (1.5). In different
problems, the module k% = z(x) will refer to different expressions. Even dealing with the same case,
different integration variables can be used, with consequences for the form of x(g). The inhomogeneity
N(x) will consequently have a different representation as a function of ¢, despite the final results
are expressed in elliptic polylogarithms. In particular, all contributing functions, such as harmonic
polylogarithms, may obtain a different representation in g.

We briefly discuss the results of Refs. 32 and 37, adding in some cases a few details.

1. The treatment by Bloch and Vanhove

Bloch and Vanhove?? perform a treatment comparable to Ref. 37, but with differences in the
definition of the variable 7, leading to a somewhat different expression for I(g) and also finally
leading to elliptic polylogarithms. In obtaining their rational expressions of i functions, they refer to
the work of Maier!>> and obtain

5.7q4(3
1) = 77(37)774(71)77 (27)
n*(57)

I(q) is of w = 3 and belongs to I'yg(3). We first transform (B1) using the relation by Rogers,”7
Eq. (4.21), and obtain

(BI)

9(3
’(37) G0
+ =
173(%7') n°(7)
A generating function representation in g, using the first terms, is given in Ref. 157 A106402, which
finally yields

I(q)=

(B2)

> ¢ g%
I(@)= ) k + . B3
(@) ; (1+qk+q2k 1+q2k+q4k) (B3)
This result is now transformed into a generalized Lambert series representation®*13°-141 by using
- G i
LO= TR "G [Lio(psx) - Lio(p3)] (B4)
with
I(q)= " K*[Lo(¢") + Lo(@™)], (BS)
k=1
where one has
Lio(aq") = ELigo(a: 15 9). (B6)

Further logarithmic g-integrals, cf. (6.59), lead to higher weight elliptic polylogarithms. Equation (B5)
is closely related to corresponding expressions given in Ref. 37 to which we turn now.

2. The treatment by Adams et al.
In Ref. 37 the variable T

72
= iII((((]ZZ)) = % In(q), (B7)
is related to the integration variable ¢ = m?y by the product of the modules squared
©\( 24 4
pro 16y :16{77(7)77( T>} :{ﬂz(T)W(T)}’ -
(1-y30-y) n()? D3(7)

in Ref. 37 while calculating the sunrise-integral. Equation (B8) is a modular function for I'g(4) which

is inverted for y
4
{ (o (3 )n(67) }
VEN—T (-

(BY)
n(5)n@omGo)
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amodular function for I'g(12). It is also the variable of the inhomogeneity, and in general of harmonic
polylogarithms and related functions, depending on the complexity of the problem. The validity
of (B9) can be proven by applying a similar treatment, as shown in Sec. IV. Note that the cubic
Legendre-Jacobi cubic transformation, cf. Ref. 30, cannot be used directly, unlike the case in (6.87)
and (6.88).

The integrand of the special solution has been obtained by

n''(1)n’ 31)
S (5)n () @omen)

It is useful to consult Sloan’s On-line Encyclopedia of Integer Sequences'>’ for this exam-
ple. The corresponding solution has been given by Zagier in 2009'7® by entry A214262'%7 for the

Seriesl79,181,211
I(q)=-3V3 ZZ( 1y 1( ; d)d2< 9, (B11)

n=1 d|n

I(q)=3V3

(B10)

where (%) denotes the Legendre symbol.'®> The inner sum in (B11) can be carried out, resulting

in
1(q)=3V3 Zkz

Note that somewhat different integrands 7 (q) appear in the treatment in Refs. 32 and 37, which are
related, however. The modular form (B10) is of I'g(12).

Next the g-dependent part of (B12) is again transformed into the Lambert form, cf. (B4), and
two integrals are performed to obtain a special solution,?’

Sspecial = /)q 4 /ql @I( )= Z(_l)k [LiZ (p3(_(’I)k) - Li, (PEI(—Q)k)] (B13)
k=1

I+ q>k+q2'< 12

——Ezo(pa, ;=) (B14)

where we have dropped a common pre-factor.
To be able to incorporate the inhomogeneity into the solution, it is necessary to express the
harmonic polylogarithms depending on y as a function of g. The lowest weight HPLs are in this

0218637

Ho(y) =In(~9¢) ~ 4Eq;-12(p3; ~1: =q), (B15)

H1(Y)=3[El;0(—l;1;—6])—51;0(96;1;—6])], (B16)
Ho1 () =3[E2:1(~1; 1:=q) - E2:1(pe; 15 —q)]

—12[50,1;—1,0;2(93, ~1;-1,1;-9) — Eo.1:-102(p3, pe; =1, 1; —61)], etc. (B17)

They are different to those obtained in the case presented in Sec. VI. In Ref. 37, only HPLs over the
alphabet {0, 1} occur. We note that the kinematic variable (B9) does not have the symmetry like the
one obtained in (6.103).

APPENDIX C: A SERIES OF SUMS

In arecent paper,® on the sunrise graph, which belongs to the context of the present paper, several
sum-representations were presented, which could not yet be calculated. In the following, we give the
solutions for all single infinite sums in terms of polylogarithmic expressions with root arguments,
limited to at most Lia(z). They can be calculated with the techniques made available in the package
HarmonicSums.m, which were developed in the context of binomial sums,0:18.183-185.212

These sums may be represented referring to harmonic sums,’”® defined by

b
Spa(N)= Z(mz%;; V5,00, SuN) =1, SaN)co =0, (1)
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We use the replacements for the poly-gamma functions,’

SIN)=¢(N + 1) + v, (€2

Sy = S )w“RN+1)+aH,keﬁik>l (C3)

with yg being the Euler-Mascheroni number. Furthermore, single cyclotomic harmonic sums
contribute.’> They are defined by

(sign(c))*
MMW)Zw“mW (C4)
with
3 .
l!f(z +l) =2Sp1,11() +YE (C5)

as one example.
One obtains the following relations:

8(1 +i)
(1 +20)3 +2i)

i+ l)'
$100= Z Qi+3)

+281() = 251(20) + ln(x)]

! 4;;‘12[ (24 T+ - x)]_;ln[g(um_x)]

(2(=4 + x)x2)
X{S —4+/(4 —x)x + \/(4 —x)Px+ \/(4 - x)x3] —2(4 — x)\/(4 — x)In(x)
44— —Bxxzm[%(_mﬂ) }+ 3/2{zlm;2
+2Vx(=2 + In(x)) — 2iV4 — xle[ (2+ V(=4 +x)x — x)

2+ { -5 -21i - 39i> - 32/° + 12/° +4if’) 2

$20) = Z 3+2i)! (1 + )22+ D)2(1 + 2i)? 3
4(1 +4l+212)

A 02+

}, 0<x<l, (Co)

, 2(1 +4i +2i2)
Si21 1;(l)+4S{21 1@ =28 12,1.2)() + [_m

2
In(x) + In“(x) + T+)2+])

—48(2,1,1,(0)

— 4810y +2 ln(x)]Sl (i) + S3(i)

+%S2(i) - 2S2(2i)}

= Z—Zx{—u + 77 (=2 +x = (=4 +x)x) + 3y(=4 + x)x In*(2) + 3 In(x)[-4

+H(=2+x) In(x)] = 34— 4+x)x[ 21n[1 - w/ Aty 21n[1 + w/_4;’5
x[In(4x) = 21n[x — V(=4 + x| | +In[-2+x - \/(—4 + )]
xIn[=2+x + /(=4 + x| = 124/(=4+ 0)xLiy [% (2-x++(-4+ x)x)] } (C7)
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Q2+ 13 + 16i + 4i%
53(x) = Z SR

+281(0) - 2512i) + ln(x)]

(3+21)' T+ i)(1+20)(3+2i)
=ﬁ{—2i(—2+x)§z+2i(—2+x)1n[1—\/\/g_ky [\/\/glﬁ}
+(1 )1 Z[QH/_ +/@ —x)xIn(x) — i(-2 +x)In [\/\/g;ﬁ In(x)
—2|:m+i(2—x)Li2 %‘g“} 0<x<1, (C8)

@21 6 _ 6l ) 5 .
s4(x)_;i!(2+i)!xi{ Grraen T Gr iz TS0

12

_m +41In(x) - 851(21')]51 @+

m -4 ln(x)] S] (2l)

+452(2i) +255(i) — 452(21')}

= _);+x{12 —4+x+7r2\/)_c(—2+x - \/(—4+x)x) = 3(=2+x)Vx

2
X ln(l —i1/—1 +i)—ln(1+i1/—1 +i’ +6(—2+x)\/)_c[—ln(1 —1/1 - i)
X X X

+ln(1 +4/1- ;)] In(x) — 3V=4 + x In(x)(—=4 + x In(x)) — 12(=2 + x)Vx

[m(l - i@) - ln(l + i@)] ln[%(x - M)]

+12(- 2+x)\/_L12[1(2 x+ /(= 4+x)x)]} x>9, (C9)
i+ [ 2 . .

55(x)=; (2+2i)!x T30 +281(0) —251(21)+1n(x)]
_ 1 {Ziln I_VT-I-x—\/)_c " Va4 +x—Vx i V=d+x-+x

VA& —0x Vaarx+vx| | V4+x+vx| 2 |[VAtx++x

V-4 +x { | V4 —x+ivx }}

—iln In(x) - 2i{ & — Lis | ———— | o<x <1, C10
’ [m+f A e N 1 o

1
s6(x) = Z (2“),)61 T 20 - ln(x)]

=(1 —x)xlnz(l - l) —xIn(x) —x(1 —x) ln(l - l)(l — (1 = x)x1In(x))

+X

1+L12(1)],xz9, (C11)
X
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o a2 1 3+4i n* 1 :
=2, iz(l+i)!xi{_(1+i)2(1+2i)2 "3 +[_(1+i)(1+2i) +2510)
2
—28(2i) +In(x)| +28,(0) - 4S2(2i)}

=—N -7 x\/—4+x—3)c\/—4+)cln2(x)+)c3/2{7r2 —3[—ln 1‘\/1 - =
6\/—4+x{ X

2
+1In 1+\[1—4—L +6[—ln 1- 1—‘—‘ +1n 1+‘/1—‘—1 HZln(2)+ln(x)
X X X
—21n(x—\/(—4+x)x> +12Li2[%(2—x+\/(—4+x)x)]}}, x>0, (C12)

i+ ) 2
SS(X)z‘”lZ (1 +D) xz+2:_”lx 3F2|:1,1,2.)_C:|

 (3+D!I(3+20)! 36 4,3°3
1 .V4_.x(2+.x) V—4+x_\/z 1—x 5 m_\/x
=uy——@+7x)—i In N In |
! 2Vx V=4 +x+x x V=4 +x++x
where x=us/u;. o)

The last sum does not form a genuine generalized hypergeometric function, but obeys a logarithmic
representation. All the yet uncalculated double sums in Ref. 89 cannot be solved completely in terms
of iterative integrals, as has been checked by the algorithms used in Ref. 18, and will therefore involve
non-iterative integrals.
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