

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/159840

Ruiz García, R.; Pan, Q.; Naderi, B. (2019). Iterated Greedy methods for the distributed
permutation flowshop scheduling problem. Omega. 83:213-222.
https://doi.org/10.1016/j.omega.2018.03.004

https://doi.org/10.1016/j.omega.2018.03.004

Elsevier

Iterated Greedy methods for the distributed
permutation flowshop scheduling problem

Rubén Ruiza,∗, Quan-Ke Panb, Bahman Naderic

aGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.
bState Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong

University of Science & Technology, Wuhan 430074, PR China.
cDepartment of Industrial Engineering, Faculty of Engineering, Kharazmi University,

Tehran, Iran.

Abstract
Large manufacturing firms operate more than one production center. As a
result, in relation to scheduling problems, which factory manufactures which
product is an important consideration. In this paper we study an extension of
the well known permutation flowshop scheduling problem in which there is a
set of identical factories, each one with a flowshop structure. The objective is
to minimize the maximum completion time or makespan among all factories.
The resulting problem is known as the distributed permutation flowshop
and has attracted considerable interest over the last few years. Contrary to
the recent trend in the scheduling literature, where complex nature-inspired
or metaphor-based methods are often proposed, we present simple iterated
greedy algorithms that have performed well in related problems. Improved
initialization, construction and destruction procedures, along with a local
search with a strong intensification are proposed. The result is a very effective
algorithm with little problem-specific knowledge that is shown to provide
demonstrably better solutions in a comprehensive and thorough computational
and statistical campaign.
Keywords: distributed flowshop, makespan, metaheuristics, iterated greedy

∗Corresponding author. Tel: +34 96 387 70 07. Fax: +34 96 387 74 99
Email addresses: rruiz@eio.upv.es (Rubén Ruiz), 2281393146@qq.com (Quan-Ke

Pan), bahman_naderi62@yahoo.com (Bahman Naderi)

Preprint submitted to an international journal March 1, 2018

1. Introduction1

Machine scheduling problems have been studied intensively for more2

than 60 years since the seminal work of Johnson (1954). Usually, production3

scheduling appears at an operational level inside operations management de-4

partaments within manufacturing companies. Resources, typically machines,5

are limited and costly and efficient scheduling of production activities con-6

tributes to profitability and higher customer satisfaction. The importance7

of optimized scheduling decisions is highlighted in Framinan et al. (2014);8

Pinedo (2016) or in McKay et al. (2002), among many others. In scheduling9

problems, clients’ orders, lots or products to manufacture are modeled as jobs.10

Given the nature of production lines, one of the most studied production11

scheduling problems is the flowshop. In a flowshop problem we have a known12

number n of jobs, indexed by j = {1, . . . , n}. The machines on the production13

floor are disposed in series and jobs start at machine 1, continue with machine14

2 and go through the shop visiting all machines in the same order. Each15

job j requires a known amount of processing time pij at each machine i,16

i = {1, . . . ,m}. A job can visit the next machine in the sequence only after it17

has been completed in the previous machine. Machines cannot process more18

than one job at the same time and preemption is not allowed, i.e., once started19

at any machine, jobs cannot be interrupted. The completion time of a job Cj20

denotes the time at which the job is finished at the last machine m. With21

this in mind, the most commonly studied objective in the flowshop literature22

is the minimization of the maximum completion time, commonly referred to23

as makespan or Cmax = max{C1, C2, . . . , Cn}. Flowshop problems have been24

thoroughly studied judging from the many reviews available (Reisman et al.,25

1997; Framinan et al., 2004; Ruiz and Maroto, 2005; Hejazi and Saghafian,26

2005; Gupta and Stafford, 2006; Fernandez-Viagas et al., 2017). The flowshop27

problem or FSP with Cmax criterion is NP-Complete in the strong sense28

(Garey et al., 1976). There are n! possible sequences for each machine and29

a total of (n!)m solutions to the problem. A more constrained version is30

the Permutation Flowshop Scheduling Problem or PFSP by which the same31

permutation of jobs is maintained for all machines and hence n! solutions32

are explored. This much more common variant is denoted as F/prmu/Cmax33

(Graham et al., 1979; Pinedo, 2016) and belongs to the same complexity class34

as the general flowshop.35

In order to bridge the gap between practical and academic scheduling (McKay36

et al., 1988; MacCarthy and Liu, 1993), authors have been studying extensions37

2

of the flowshop problem so as to tackle more and more realistic problems. One38

such extension is the Distributed Permutation Flowshop Problem or DPFSP39

proposed for the first time by Naderi and Ruiz (2010). The DPFSP explores40

a key issue in modern manufacturing which is the fact that large companies41

have several production centers and one has to decide the production allo-42

cated to each factory along with the scheduling. Distributed manufacturing43

is a hot topic today and several studies approach the many implications of44

having more than one factory. Interested readers are referred to Chan and45

Chung (2013) for a survey. It is therefore of interest to study distributed46

variants of flowshop problems. More specifically, in the DPFSP (denoted as47

DF/prmu/Cmax by Naderi and Ruiz, 2010), there are F identical factories48

each one with the same m machine flowshop. The processing times for the49

jobs do not change from factory to factory. The additional dimension is to50

decide which jobs should go to each factory with the objective of minimizing51

the global makespan, i.e., minimizing the maximum makespan among the F52

factories. Since typically n >> F the problem is far from trivial. It follows53

that the DPFSP is also an NP-Hard problem as the specific case where F = 154

is the well known PFSP.55

Since the initial work of Naderi and Ruiz (2010), there has been a lot of56

interest in this problem. While Naderi and Ruiz (2010) only proposed some57

mathematical models and some local search approaches, other authors pre-58

sented more advanced algorithms and metaheuristics, including some very59

highly performing methods. Of particular interest are the simple yet very ef-60

fective Iterated Greedy (IG) algorithms from Ruiz and Stützle (2007). Despite61

its simplicity, IG has demonstrated state-of-the-art performance for many62

different flowshop problems and variants (Fernandez-Viagas et al., 2017). Un-63

like complex metaphor-based methods –currently subject to severe criticism,64

(Sörensen, 2015)–, IG is simply an iterated search method with no memory65

and few structures. It is very easy to code and to understand. Results are easy66

to replicate and to extend to other problems, in which lies its appeal. Some67

authors have already presented IG methods for the DPFSP, most notably Lin68

et al. (2013) and Fernandez-Viagas and Framinan (2015), with good results.69

However, recently some more advanced IG methods have been proposed.70

Pan et al. (2017) postulated that hybrid scheduling problems require the71

combination of different search strategies within an IG. These ideas have been72

explored before for other problems and settings, like in Urlings et al. (2010).73

Given the excellent results obtained by these papers, the idea of proposing74

IG methods with different search strategies in the DPFSP seems promising75

3

and hence is the main objective of this paper. As we will show, the two76

stage IG method proposed in this paper is able to significantly outperform77

all other presented approaches by a wide margin, while maintaining most of78

its simplicity.79

The rest of the paper is organized as follows. The next section reviews the80

existing literature for the DFPSP. Section 3 presents the IG methods which81

are calibrated and thoroughly computationally tested in Section 4. Section 582

concludes the paper and proposes lines of further research.83

2. Literature review84

As mentioned, from the initial paper of Naderi and Ruiz (2010) on the85

DPFSP there has been a large number of publications focusing on this prob-86

lem. Naderi and Ruiz (2010) introduced some simple constructive heuristics,87

basically by adding factory assignment rules to the well known NEH heuristic88

of Nawaz et al. (1983). Also, two Variable Neighborhood Descent (VND,89

Mladenović and Hansen, 1997) procedures were given, VND(a) being the best90

of the two while at the same time using small CPU times. A rather convoluted91

Electromagnetism Method (EM) procedure combining several local search92

neighborhoods was presented in Liu and Gao (2010). A Hybrid Genetic Algo-93

rithm (HGA) was proposed by Gao and Chen (2011a). An improved version94

of the NEH2 of Naderi and Ruiz (2010) was put forward by Gao and Chen95

(2011b). An improved GA was introduced by Gao et al. (2012b) and another96

improved VND by Gao et al. (2012a). A Tabu Search method was proposed by97

Gao et al. (2013) and a rather complex Estimation of Distribution Algorithm98

(EDA) was published by Wang et al. (2013). The same year Lin et al. (2013)99

presented an IG method.100

Almost all of the aforementioned algorithms were independently recoded and101

tested against a Scatter Search (SS) procedure in Naderi and Ruiz (2014).102

A total of 11 methods were compared using the 720 original instances of103

Naderi and Ruiz (2010) which are, in turn, based on the well known 120104

instances of Taillard (1993). In a comprehensive computational and statistical105

test (requiring almost 165 days of CPU time), the SS procedure was shown106

to statistically outperform all other compared methods. As a matter of fact,107

SS improved 719 of the best known original results of the 720 instances of108

Naderi and Ruiz (2010) with an average CPU time of just 0.61 seconds. For109

larger CPU times of 1.22 seconds on average, all 720 best known results were110

improved. Xu et al. (2014) introduced a hybrid immune algorithm (HIA). The111

4

authors claimed it improved 585 out of the 720 instances of Naderi and Ruiz112

(2010). However, the only comparison carried out is against VND(a) for which113

better results are obtained, at the expense of significantly larger CPU times.114

Fernandez-Viagas and Framinan (2015) presented an advanced IG procedure,115

referred to as BSIG. This method incorporates several different local search116

procedures. To reduce the CPU time used in these searches, some clever117

properties of the DPFSP are exploited in the form of restricted (bounded)118

local search procedures which save almost a third of CPU time. While BSIG119

was not compared against SS, it was compared against the EDA of Wang et al.120

(2013), the IG of Lin et al. (2013) and the best methods presented in Naderi121

and Ruiz (2010). The results provided show the clear superiority of BSIG122

over the other three tested methods. The authors also improved 263 of the123

original 720 best known solutions. More recently, other authors have presented124

new methodologies. Bargaoui et al. (2016) have proposed a rather bizarre125

“Chemical Reaction Optimization” or CRO. The authors test their proposed126

approach against VND(a) of Naderi and Ruiz (2010) and the HGA of Gao and127

Chen (2011a). CRO is shown to work better than the other two methods in128

up to 50 jobs but it is bested by HGA on the large instances. The authors did129

not test their approach against the SS of Naderi and Ruiz (2014) or the BSIG130

of Fernandez-Viagas and Framinan (2015). Given the previous results, where131

the SS of Naderi and Ruiz (2014) was shown to clearly outperform the HGA132

of Gao and Chen (2011a) (average relative percentage deviation found at133

Table 2 of Naderi and Ruiz, 2014 for HGA being 3.5% vs. the deviation of SS134

being 1.31%) it is clear that CRO is outperformed by SS and BSIG. Another135

recent method is a Hybrid Discrete Cuckoo Search (HDCS) method by Wang136

et al. (2016a). The algorithm includes a number of operators such as crossover137

and several local search procedures among others. HDCS is compared against138

the EDA of Wang et al. (2013) and all of the methods from Naderi and Ruiz139

(2010). HDCS is shown to be slightly better than EDA. Once again, Naderi140

and Ruiz (2014) showed SS to be superior to EDA in their evaluations so it141

is safe to assume that HDCS is also outperformed.142

From this review, an important question is how BSIG and SS compare. Data143

indicates that BSIG should outperform SS but as with all previous results, only144

a fair comparison using the same codes, same computer and same stopping145

criterion can tell. HIA seems to be comparable in performance to the EDA of146

the same authors but it has not been compared either. Additionally, BSIG147

includes three different local searches and considers some problem-specific148

knowledge of the DPFSP that allows for faster local search schemes. An149

5

important research question is if better performance can be obtained with150

simple versions of the IG procedure.151

Note that there are other recent papers proposed for variations of the DPFSP152

like the assembly variant (Hatami et al., 2013, 2015), multi-objective (Rifai153

et al., 2016; Deng and Wang, 2017), machine breakdowns (Wang et al., 2016b),154

and blocking (Ribas et al., 2017), etc. However, for the sake of brevity, these155

are not comprehensively reviewed here. The interested reader can see updated156

reviews with many more references (not limited to flowshops) published by157

Wang et al. (2016c) and Behnamian and Fatemi Ghomi (2016).158

3. Iterated Greedy Procedures159

As mentioned, the Iterated Greedy (IG) algorithm of Ruiz and Stützle160

(2007) is among the best methods for many different flowshop problems.161

Furthermore, it is very simple. Figure 1 shows the basic outline of the IG.162

procedure Iterated_Greedy
π0 := GenerateInitialSolution
π := LocalSearch(π0)
while (termination criterion not satisfied) do
πD := Destruction(π)
π′ := Reconstruction(πD, πR)
π′′ := LocalSearch(π′)
π := AcceptanceCriterion(π′′, π)

endwhile
end

Figure 1: Iterated Greedy (IG) algorithm of Ruiz and Stützle (2007).

In a nutshell, IG uses a high performing heuristic to initialize the search.163

Most of the IG literature employs variants of the NEH procedure of Nawaz164

et al. (1983). Some form of local search is applied to this initial solution.165

The main loop of the IG is the iterative application of four operators. 1)166

Destruction, where the incumbent solution is partially destroyed, i.e., some167

elements of the solution are removed, resulting in two partial permutations,168

one containing the jobs that have been removed (πR) and another one with the169

leftover jobs from the original permutation (πD). 2) Reconstruction, where170

a heuristic (usually a greedy one) is applied in order to reintroduce the171

removed elements back into the solution resulting in a new complete solution.172

3) Local search is used again to improve this newly reconstructed solution. 4)173

6

Finally, a decision about accepting the new solution has to be made. If the174

new solution is better than the best solution obtained so far it is obviously175

accepted. However, it might be the case that the new solution is not better176

than the incumbent and yet still be accepted probabilistically, like in simulated177

annealing, so as to be able to explore other regions of the solution space.178

Most proposed IG methods for scheduling problems introduce variations179

in the aforementioned operators. In the case of the DPFSP, the IG of Lin180

et al. (2013) proposed two main changes. First, the elements to remove in the181

destruction operator are not fixed but controlled during the algorithm. Second,182

the acceptance criterion contains a more elaborate procedure rather than the183

fixed temperature simulated annealing-like method of Ruiz and Stützle (2007).184

The BSIG of Fernandez-Viagas and Framinan (2015) introduces changes in185

the local search procedure by applying three different local search operators186

consecutively. Most of the other operators are very similar or identical to187

those of the original IG of Ruiz and Stützle (2007), in particular, IG and188

BSIG employ the NEH2 initialization procedure, reconstruction and many of189

the operators of Naderi and Ruiz (2010)190

In what follows we describe different proposed IG alternatives that expand on191

the original initialization of Naderi and Ruiz (2010) and different destruction,192

reconstruction and local search operators. Finally we present a two stage IG193

exploiting the hybrid nature of the DPFSP.194

3.1. Representation and initialization procedure195

As for the solution representation, most of the DPFSP literature employs196

the original representation introduced by Naderi and Ruiz (2010). This is197

simply a set of F lists, one per factory. Each list contains the jobs assigned198

to each factory, in the order in which they have to be processed. This repre-199

sentation is very efficient and we also employ it in this paper.200

201

As for the initialization procedure we test the NEH2 procedure of Naderi202

and Ruiz (2010) but with a simple extension. After inserting a job into the203

best position among all the F factories, either the previous or the following job204

(at random) is extracted and tested in all positions in the same factory. This is205

somehow similar to the FRB4k of Rad et al. (2009) or more precisely, it would206

be a DPFSP adaptation of an FRB4 1
2
inspired by Pan and Ruiz (2014). We207

also employ the accelerations presented in Fernandez-Viagas and Framinan208

(2015) (BSIG). We refer to this NEH2 improvement as NEH2_en and is209

depicted in Figure 2. Note that the worst case computational complexity is210

7

the same as NEH2 (O(n2mF)).211

We tried more extensive solution initialization procedures, for example a

procedure NEH2_en
Calculate Pj =

∑m
i=1 pij ,∀n ∈ N

πLP T := Sort the n jobs according to Pj in decreasing order
for f := 1 to F do πf := ∅ % (empty initial solution)
π := {π1, π2, . . . , πF }
for step := 1 to n do

j := πLP T [step]
for f := 1 to F do

Test job j in all possible positions of πf % (Taillard-BSIG accelerations)
Cf

max is the lowest Cmax obtained
pf is the position where the lowest Cmax is obtained

endfor
fmin = arg

(
minF

f=1(Cf
max)

)
Insert job j in πfmin at position pfmin resulting in the lowest Cmax
Extract at random job h from position pfmin − 1 or pfmin + 1 from πfmin

Test job h in all possible positions of πfmin % (Taillard-BSIG accelerations)
Insert job h in πfmin at the position resulting in the lowest Cmax

endfor
end

Figure 2: Procedure NEH2_en to generate an initial solution.

212

full FRB42 but observed little effect. After all, in IG algorithms, the effect213

of the initial solution is quickly neutralized by the local search procedures.214

This is not to say that a random or low quality solution is enough but rather215

that once a high quality starting solution is obtained, there is little to be216

gained in spending more CPU time on improving this initial solution. Still,217

for large or difficult instances, the effect of the solution initialization is clearly218

measurable. This was recently observed by Fernandez-Viagas et al. (2017)219

where elaborate constructive heuristics are outperformed by the combination220

of a simple constructive method and a few iterations of IG methods. In any221

case, in later sections we will statistically test the effect of employing the222

regular NEH2 or the proposed NEH2_en initialization procedures.223

It is important to note that similar to most previous DPFSP literature, all224

insertion procedures employ the well known Taillard accelerations of the225

insertion neighborhood in order to significantly increase the speed of the226

procedures. Interested readers are referred to Taillard (1990) for more details.227

8

3.2. Destruction228

We test three different destruction operators. The first one is the original229

from Ruiz and Stützle (2007) in which a given number d of jobs are randomly230

extracted (each one from its factory) and put into a list πR of jobs that have231

been removed. The number d has to be calibrated. This is identical to the232

destruction operator used in the BSIG of Fernandez-Viagas and Framinan233

(2015).234

The second operator is the one employed by the IG of Lin et al. (2013).235

As mentioned, the authors employed a destruction operator where d varies236

randomly. More specifically, the destruction operator works as follows: d is237

randomly set following a uniform distribution between 2 and 7 (as per their238

original experiments) at each iteration. Then, the F factories are sorted from239

highest to lowest Cmax. A random job is extracted from the factory with the240

highest Cmax, another job is randomly extracted from the factory with the241

second highest Cmax and so on. The procedure stops if d ≤ F . If d > F the242

remaining d−F jobs are extracted at random from the F factories. Basically,243

the destruction is biased towards the factories with largest Cmax values.244

The third operator is a new one. We prefer simple operators that do not245

result in a significantly more complex IG algorithm. It makes sense to bias246

the destruction towards factories with larger Cmax values. Therefore, the third247

operator simply removes, at random, d/2 jobs from the factory with the248

largest Cmax value (there is no attempt at tie breaking if there is more than249

one factory with the largest Cmax) and the remaining d/2 jobs are randomly250

removed from the remaining F − 1 factories, i.e., excluding the factory with251

the largest Cmax value.252

3.3. Reconstruction253

We tested a simple reconstruction based on the original IG of Ruiz and254

Stützle (2007), which is, in turn, similar to the reconstruction employed by255

the IG of Lin et al. (2013) and the BSIG of Fernandez-Viagas and Framinan256

(2015). The procedure is simple, every job in πR that was removed during257

the destruction phase is tested in every position in all the F factories, using258

Taillard’s accelerations. Note that BSIG uses the bounded search procedure to259

save on some insertions. However, we again found that the previously detailed260

procedure NEH2_en yielded better results (including the BSIG accelerations).261

Basically, after the next job in πD is placed in the best position in the best262

factory (with the least Cmax increase), we randomly extract either the previous263

or the following job and this job is tested in all positions in the factory. This264

9

small change was able to improve solutions, especially in the hardest cases as265

will be shown later.266

3.4. Local search methods267

Akin to what Fernandez-Viagas and Framinan (2015) carried out in the268

BSIG procedure, we significantly improve upon the basic insertion local search269

of the original IG of Ruiz and Stützle (2007) as this is clearly key in improving270

results in the DPFSP. However, in order to test these improvements, we try271

three local search procedures. Note that we use BSIG accelerations whenever272

possible in all tested methods.273

The first one is the VND(a) presented originally in Naderi and Ruiz (2010).274

This VND is composed of two neighborhoods: LS_1 and LS_2. LS_1 rein-275

serts all jobs within each factory using the insertion neighborhood, i.e., each276

job in each factory is extracted and tested in all possible positions of its277

corresponding factory list. In LS_2 all jobs from the factory generating the278

Cmax are extracted and inserted into all positions in all the other factories.279

These movements have a special acceptance criterion. Basically, a movement280

is accepted if the makespan of the complete problem is improved. This local281

search will be referred to as VND(a) to respect the original name given in282

Naderi and Ruiz (2010)283

The second local search tested is a seemingly minor but nevertheless important284

variation of VND(a). In both LS_1 and LS_2 jobs are extracted in order,285

starting from job 1, then job 2 and so on until the last job in each factory.286

Both local searches are applied until there are no improvements in the Cmax287

value, i.e., if an improvement move is carried out, the search starts again from288

the first job and the search finishes when all jobs have been reinserted with no289

gains. Also, if an improvement is found in LS_2, the search goes back to LS_1290

and hence the VND structure. For the second local search procedure tested,291

jobs are not extracted in order but at random and without repetition. This is a292

fundamental change that transforms the local search into a first-improvement293

pivoting rule. Therefore, if there are nf jobs in a given factory f , we carry out,294

in a single pass of LS_1 or LS_2, nf iterations. At each iteration, a random295

job (without repetition) is extracted and tested in all positions in the same296

factory (in the case of LS_1) or in all other factories (LS_2). This second297

local search is slightly more complex to code but has the same computational298

complexity and, as we will see, produces better results. This second local299

search will be referred to as VND(a)R to denote the random extraction of jobs.300

301

10

The third local search tested incorporates parts of the previous LS_1 and302

LS_2. We refer to this method as LS3. It considers the dimensions of factory303

assignment and job sequencing simultaneously. The factory generating the304

Cmax is selected. A job is randomly extracted from this factory and is inserted305

into all possible positions in all factories (including the one generating the306

makespan). If the best Cmax in all these insertions is better than the starting307

Cmax, the job is relocated and the search starts again from the beginning308

otherwise the job is reinserted back into its original position and the search309

continues. The procedure iterates until all jobs from the factory generating310

the Cmax have been tested (at random and without repetition). Note that LS3311

does not deal with two neighborhoods in an VND loop and it is, therefore,312

faster as regards CPU time requirements. A pseudocode of LS3 is given in313

Figure 3

procedure LS3(π = {π1, π2, . . . , πF })
C∗

max = maxF
f=1{Cmax(π1), Cmax(π2), . . . , Cmax(πF)}

fmax = arg(C∗
max) % (factory with the largest Cmax)

Cnt := 0
while Cnt < |πfmax | do % (all jobs in factory fmax)

Randomly extract, without repetition, a job j from position k of πfmax

for f := 1 to F do
Test job j in all possible positions of πf % (Taillard-BSIG accelerations)
Cf

max is the lowest Cmax obtained
pf is the position where the lowest Cmax is obtained

endfor
fmin = arg

(
minF

f=1(Cf
max)

)
if Cf

max < C∗
max then

Place job j at position pf of factory fmin
C∗

max = maxF
f=1{Cmax(π1), Cmax(π2), . . . , Cmax(πF)}

fmax = arg(C∗
max) % (factory with the largest Cmax)

Cnt := 0
elseif

Return job j to position k of fmax
Cnt := Cnt+ 1

endif
endwhile

end

Figure 3: Third local search procedure LS3.
314

3.5. Acceptance criterion315

Ruiz and Stützle (2007) proposed a very simple constant temperature316

11

acceptance criterion based on a parameter T as follows: Temperature =317

T ·
∑m

i=1

∑n

j=1 pij

n·m·10 , where T is to be calibrated but has been shown to be rather318

robust (mostly any value different from zero and not overly high works well).319

Other authors, most notably Hatami et al. (2013) and Hatami et al. (2015)320

have presented acceptance criteria without parameters. However, our initial321

testing did not yield significant improvements using these alternate acceptance322

criteria and we decided to stick with the classic acceptance criterion proposed323

in Ruiz and Stützle (2007).324

3.6. Two stage iterated greedy325

As we will later show in the computational tests, the previous improved326

initialization, destruction and reconstruction operators, along with LS3 im-327

proved the best known solutions for the DPFSP. However, we detected that328

all IG variants that we tested reached a point at which no improvements329

could be found. Upon closer inspection we reached the conclusion that the330

iteration of the destruction-reconstruction-local search operators is not enough331

to reduce the Cmax in the factory that has the largest makespan value among332

all factories. We started experimenting with nested and two-stage Iterated333

Greedy methods. A nested Iterated Greedy is basically an IG within an IG.334

Of course, applying a whole IG is much more CPU time consuming than a335

few iterations of a local search procedure. Therefore, such approaches have to336

be applied with caution as otherwise valuable CPU time is lost. Let us first337

describe the nested/two stage IG that we propose and then we detail how it338

was incorporated into the regular IG.339

340

The nested/two stage IG is applied to the factory generating the Cmax341

and only to this factory. All the operators are applied to this factory and342

are a simplification of all previously detailed methods. Destruction is the343

original Ruiz and Stützle (2007) procedure by which d jobs are removed, at344

random, from the factory generating the Cmax and introduced into a partial345

permutation of removed jobs πR. The remaining jobs stay in the partial346

solution πD. The reconstruction is a random and improved variant of the347

original reconstruction of Ruiz and Stützle (2007). A random job is selected348

from πR and tested in all positions in the partial solution πD. The job is349

placed into the position resulting in the best partial Cmax. Similarly to the350

aforementioned reconstruction operator and to the NEH2_en of Figure 2, the351

job in either the previous or next position (at random) is extracted and tested352

12

in all possible positions of πD, and is finally placed in the position resulting353

in the lowest partial Cmax. The procedure continues until πR is empty. After354

this destruction-reconstruction we apply a simple local search, which is the355

random variant of LS_1 detailed in Section 3.4. The acceptance criterion356

is very simple, as the new solution for the Cmax generating factory is only357

accepted if the Cmax value is improved. Again, BSIG accelerations are used358

throughout the methods.359

360

We tried several possibilities/combinations of this nested/second stage361

IG. The first and obvious one is to apply the proposed IG and the second362

stage IG sequentially at each iteration, i.e., first carry out an iteration of the363

proposed IG and then the second stage that focuses on the Cmax generating364

factory. The second straightforward nested IG is the case in which the nested365

IG is applied only when a new best solution is found. Another option is to366

set up a probability and apply the nested IG at each iteration according to367

this probability. We tried all these as well as several other possibilities. Our368

results were mixed and not as promising as expected. The main reason is369

that the nested IG consumes a lot of time (we tested it applying it for a370

few iterations and for a limited time) when compared to the local search371

steps and therefore the total number of regular IG iterations that one can372

do is severely reduced. Additionally, it makes relatively little sense to carry373

out a deep intensification with the nested IG over a solution that is to be374

improved later after a few iterations. In a sense, all this CPU time is wasted.375

In the end we found that it was better to apply the proposed IG for a portion376

ρ of the given CPU time and for the remaining 1 − ρ fraction of the CPU377

time apply the second stage simplified IG (working over the Cmax generating378

factory). With this very basic two stage IG we obtained better solutions in379

most situations. Basically, we let the original IG do most of the work and in380

the last moments a few iterations of the second stage IG allow for a few key381

improvements to get a very high quality final solution.382

4. Computational and statistical experimentation383

Metaheuristics in general, and Iterated Greedy methods in particular, need384

comprehensive computational and statistical testing to validate the results.385

Following the excellent paper of Kendall et al. (2016) we apply several of386

their good laboratory practices to ensure the maximum reproducibility of the387

13

presented approaches and generalization of results. In the following sections388

we give comprehensive details of all the experiments carried out.389

4.1. Experimental settings and tested methods390

Naderi and Ruiz (2010) presented 420 small instances of up to 16 jobs,391

5 machines and 4 factories. They also proposed 720 larger instances after392

adding the number of factories F to the 120 well known instances of Taillard393

(1993). There are 6 sets with values of F = {2, 3, 4, 5, 6, 7}. For each set we394

have the 120 instances of Taillard ranging from 20 jobs and 5 machines to395

500 jobs and 20 machines. In Naderi and Ruiz (2014) the authors added a396

set of 50 different instances intended for calibration with n, m and F values397

randomly sampled from the set of 720 instances. Small instances are easily398

solved by most existing metaheuristics for the DPFSP and therefore are not399

used in this work. We will use the large test and calibration instances which400

are, along with the new best solutions that have been obtained over the course401

of this paper, available for download at http://soa.iti.es.402

403

We test two variants of the proposed IG method. The first one is the404

single stage IG, referred to as IG1S. The second is the two stage IG or IG2S.405

Both methods need calibration, which will be detailed in the next section.406

We will also study a vanilla variant of IG1S which uses the regular NEH2407

initialization procedure and the VND(a)R local search. This version, referred408

to as IG1S− is used to assess the contribution of the improved initialization409

and LS3 local search present in IG1S. In order to fully clarify these variants,410

we detail the operators used for these algorithms in Table 1.

Algorithm Variant Two Stage Initialization Local Search
IG1S− No NEH2 VND(a)R

IG1S No NEH2_en LS3
IG2S Yes NEH2_en LS3

Table 1: Variants of the proposed algorithm along with their operators (all other not
mentioned operators are the same).

411

We test these proposed methods against the HIA of Xu et al. (2014), SS of412

Naderi and Ruiz (2014) and BSIG of Fernandez-Viagas and Framinan (2015).413

Note that the proposd methods, as well as the BSIG, use the accelerations414

proposed in Fernandez-Viagas and Framinan (2015)so as to keep all methods415

as close to their original versions as possible. As explained in Section 2, all416

14

http://soa.iti.es

other existing methods from the literature have been shown to be outper-417

formed by either SS or BSIG and therefore it is not necessary to test them.418

419

All compared algorithms HIA, BSIG, SS, IG1S, IG1S− and IG2S have420

been coded in C++ language and have been compiled with Visual Studio421

2015 with the x64 compiler with all optimization flags enabled. All methods422

use the same important functions in the codes, like Taillard’s accelerations.423

HIA was independently recoded by the authors. For BSIG, the original424

authors were extremely supportive and provided us with source codes in425

C# which allowed us to recode their method with great accuracy in C++.426

We ran their version against ours and we found our C++ code to be more427

effective, most probably due to C++ compiler generating faster code than C#.428

429

As a response variable in the experiments we measure the Relative Per-430

centage Deviation (RPD) as follows: RPD = Somesol−Bestsol

Bestsol
·100. Here Somesol431

is the Cmax obtained by an algorithm for a given instance and Bestsol is432

the best known Cmax value for the same instance. All tested metaheuristic433

methods need a stopping criterion. This is set as a maximum elapsed CPU434

time following the expression n ·m · C milliseconds where C is a parameter435

that will be tested at several levels. For the calibration experiments, we set436

C = 10. For the comparisons among the algorithms we test 5 levels for C: 20,437

40, 60, 80 and 100. Considering that the smallest instances have 20 jobs and438

5 machines and the largest instances 500 jobs and 20 machines, the range of439

C values translates into CPU times as short as 2 seconds for C = 20 and the440

smallest instances all the way up to 1000 seconds for the largest instances441

and C = 100. All runs are independent, i.e., each run is started from scratch442

(5 separated runs for each C value). All calibration instances are run for 5443

different replicates, maintaining the random seed value for each replicate444

as a variance reduction technique. Similarly, for the comparisons we run 10445

independent replicates.446

447

The experiments in this paper are performed on virtual machines with 2448

virtual processing cores and 8 GBytes of RAM running Windows 10 Enter-449

prise 64 bits operating system. Virtual machines are run in an OpenStack450

virtualization platform supported by 12 blades, each one with four 12-core451

AMD Opteron Abu Dhabi 6344 processors running at 2.6 GHz. and 256452

GB of RAM, for a total of 576 cores and 3 TBytes of RAM. There is no453

parallel computing, just a random distribution of all computations among the454

15

virtual machines so as to speed up the completion of all the experimentation.455

Considering that all algorithms share most of the code, are coded in the same456

language, compiled in the same environment and run on the same hardware457

for the same length of CPU time we can conclude that the comparisons are fair.458

459

The proposed experimental settings imply a massive undertaking. If we460

consider only the final testing, each metaheuristic algorithm is run for 10461

replicates on each one of the 720 instances and for 5 values of C. Therefore,462

there are 36,000 results for each algorithm and 216,000 results in total. The463

total CPU time employed for testing all algorithms is almost 6,600 hours.464

The complete results, summary files, logs and excel files are available as465

accompanying online materials.466

4.2. Calibration of the proposed IG methods467

IG1S and IG2S have several parameters that might affect their perfor-468

mance. In particular, IG1S has 5 controlled factors. These are 1) The type469

of initialization (InitType), tested at 2 variants, NEH2 and NEH2_en, 2)470

Type of destruction (DType) tested at 3 variants, original, Lin (from Lin471

et al., 2013) and new, 3) Type of local search (LSType), tested at 3 variants,472

VND(a), VND(a)R and LS3, 4) number of jobs to remove in the destruction473

(d), tested at 3 levels, 4, 5, and 6 and finally 5) Temperature (T) tested at474

3 levels, 0.1, 0.2 and 0.4. Considering all possible combinations there are475

2× 3× 3× 3× 3 = 162 possible IG1S configurations. Each configuration is476

run for 45 independent replicates on the 50 calibration instances. Therefore,477

the total number of results is 162 · 45 · 50 = 364, 500. The instance factors478

n, m and F are considered as noise factors and are not controlled in the479

experiment in order to avoid an instance-specific calibration. Recall that all480

algorithm configurations are run for the same CPU time with C = 10 and481

that the response variable is the RPD.482

IG2S shares the factors of IG1S but with some additional levels and two more483

additional factors. More specifically, factors InitType, DType and LSType484

are the same as in IG1S. However, factor d is tested at 4 levels, 4, 5, 6, and 7485

and factor T also at 4 levels, 0.1, 0.2, 0.3 and 0.4. There are two new factors,486

the proportion of CPU time that we give to the first stage (ρ) tested at three487

levels, 0.9, 0.95 and 1.0 (note that this last level means that there is no second488

stage, so it will help us in assessing the contribution of the second stage) and489

the factor of the number of jobs to remove in the second stage (d2) tested at490

three levels, 2, 4, and 6. In total there are 2× 3× 3× 4× 4× 3× 3 = 2, 592491

16

IG2S configurations. This time, only 5 replicates are needed for a total of492

2, 592 · 5 · 50 = 648, 000 results.493

494

The set of results is scrutinized with a powerful statistical tool which is495

the Design of Experiments (DOE) coupled with the Analysis of Variance496

(ANOVA) technique (Montgomery, 2012). ANOVA is based on a statistical497

model and is therefore parametric. Three main hypotheses have to be met:498

normality, homoskedasticity and independence of the residuals. In computer499

experimentation these hypotheses are easy to accept. ANOVA is frequently500

used in the scheduling literature to calibrate metaheuristics. Even though501

we are analyzing a large number of results with a powerful technique, the502

process is far from being a fine tuned calibration as we are basically using a503

simple full factorial design of experiments. The interested reader can refer to504

Bartz-Beielstein et al. (2010) for a detailed description of far more advanced505

methodologies.506

507

Detailed ANOVA tables are omitted due to space considerations. In-508

stead, we provide as online materials the complete datasets resulting from509

the calibration. Figure 4 shows the relevant means plots with 95% Tukey’s510

Honest Significant Difference (HSD) confidence intervals for IG1S. It has to511

be stressed that if the confidence intervals among two means overlap, the512

observed difference among the overlapped means is not statistically significant513

and is therefore, meaningless. The means plots of Figure 4 are presented

0.1 0.2 0.4
T

0.7

0.74

0.78

0.82

new Lin original
DType

0.69

0.73

0.77

0.81

4 5 6
d

0.72

0.74

0.76

LS3 VND(a) VND(a)R

LSType

0.73

0.738

0.746

0.754

NEH2 NEH2_en
InitType

0.739

0.743

0.747

0.751

A
ve

ra
ge

 R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
ti

on
 (

A
V

R
P

D
)

Figure 4: Means plots for all the factors in the ANOVA IG1S calibration. All means have
Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.

514

from left to right in order of significance. Therefore, factor T is the most515

statistically significant with 0.2 being the best value. The next factor is the516

type of destruction operator DType. We can see how the destruction operator517

17

of Lin et al. (2013) is indeed better than the original operator of Ruiz and518

Stützle (2007) but the new proposed operator is significantly better. Con-519

sidering that the new destruction operator is much simpler, this is a very520

interesting outcome. The number of jobs to remove d is set at 5 as it is the521

best value. For the local search operator LSType we observe that LS3 and522

VND(a)R are statistically better than VND(a). Even though in the overall523

plot VND(a)R and LS3 partially overlap, for the hardest instances and some524

settings, LS3 is statistically better. Therefore, we select LS3 as the local search525

in IG1S. Finally, we see that we obtain a slightly better performance with a526

statistically significant difference if the improved NEH2_en initialization is527

used. All these results show that the proposed improvements over the regular528

IG methodology pay off and better solutions are obtained. We will check later529

how IG1S compares with SS or BSIG.530

531

Carrying out a similar analysis for IG2S we obtain the means plots of532

Figure 5. For IG2S, the most significant factor is the type of destruction which

0.1 0.2 0.3 0.4
T

0.61

0.63

0.65

0.67

0.69

0.71

0.73

new Lin original
DType

0.6

0.62

0.64

0.66

0.68

0.7

2 4 6
d2

0.64

0.644

0.648

0.652

0.656

0.66

0.664

LS3 VND(a) VND(a)R

LSType

0.64

0.644

0.648

0.652

0.656

0.66

NEH2 NEH2_en
InitType

0.649

0.650

0.651

0.652

0.653

0.654

0.655

0.656

0.657

A
ve

ra
ge

 R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
ti

on
 (

A
V

R
P

D
)

0.61

0.63

0.65

0.67

0.69

0.71

4 5 6 7
d

0.64

0.65

0.66

0.67

0.68

0.9 0.95 1
�

A
ve

ra
ge

 R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
ti

on
 (

A
V

R
P

D
)

Figure 5: Means plots for all the factors in the ANOVA IG2S calibration. All means have
Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.

533

again shows that the proposed destruction is statistically superior. T is also534

set at 0.2 and d to 5 as in the IG1S calibration. Of interest is the means plot535

18

of the ρ factor. The plot shows that removing the second stage (ρ = 1) results536

in an algorithm which is clearly worse. The best value is ρ = 0.95, i.e., only537

5% of the allotted CPU time is dedicated to the second stage IG. The number538

of jobs to remove in the second stage d2 is set to the best value 6. Also,539

as in the previous IG1S calibration, the best local search and initialization540

operators are LS3 and NEH2_en respectively.541

4.3. Comparison of methods542

We now test the calibrated versions of IG1S and IG2S against the HIA543

of Xu et al. (2014), the SS of Naderi and Ruiz (2014) and the BSIG of544

Fernandez-Viagas and Framinan (2015). Recall that there are 5 values of545

C, 720 instances and that each algorithm is run 10 independent times on546

each instance. Table 2 shows the Average Relative Percentage Deviation for547

each method, grouped per C and F . Each cell within the table is the average548

RPD over 1200 results. The complete spreadsheets with all detailed results549

are available as on-line materials. Naderi and Ruiz (2014) used a CPU time550

termination criterion following the expression n ·m · F · C and therefore they551

used from 2 to 7 times more CPU time than in our results. Still, SS has552

not improved results significantly, with a global AV RPD of 1.59% in this553

work compared to the 1.31% of Naderi and Ruiz (2014). The difference is554

due to the improved best solutions in this work which increase the relative555

deviations. One striking result is the poor performance of HIA with a global556

AV RPD of almost a 10%. Our hypothesis is that HIA starts from a random557

solution and it is therefore hard for HIA to converge to good solutions in a558

limited CPU time. Note however that the average CPU time when C = 60559

is about 110 seconds, very similar to the 101 seconds reported by Xu et al.560

(2014) in their paper. Still, for C = 60 the AV RPD of HIA is 9.78% which is561

not competitive.562

Our results confirm that BSIG is significantly better than SS. Actually, the563

global AV RPD of BSIG is about half. If we take the best result obtained564

for all 10 replicates of each algorithm, BSIG obtains, over the 720 instances,565

580 better results than SS. Both methods tie in 135 cases and only in 5 cases566

does SS give a better result. Therefore, BSIG is better than SS by a wide567

margin. Furthermore, BSIG is much simpler and easier to code. While the568

accelerations present in BSIG could be implemented into the SS, this would569

not be enough to make SS competitive. As shown in Fernandez-Viagas and570

Framinan (2015), accelerations basically reduce CPU times by a third and571

we observe that BSIG has an AV RPD of 0.97% for C = 20 while SS gives a572

19

C F HIA SS BSIG IG1S− IG1S IG2S

20 2 8.28 1.05 0.60 0.54 0.52 0.50
3 10.26 1.57 0.83 0.65 0.62 0.59
4 11.04 1.82 0.98 0.68 0.62 0.61
5 11.39 2.03 1.14 0.70 0.65 0.63
6 11.31 2.14 1.10 0.70 0.64 0.62
7 10.94 2.21 1.19 0.72 0.65 0.63

Average 10.54 1.80 0.97 0.66 0.62 0.60

40 2 7.98 0.93 0.46 0.43 0.41 0.39
3 9.81 1.39 0.70 0.51 0.47 0.45
4 10.46 1.63 0.83 0.51 0.47 0.46
5 10.77 1.85 1.01 0.53 0.49 0.47
6 10.83 1.96 0.95 0.53 0.48 0.46
7 10.53 2.06 1.05 0.55 0.48 0.46

Average 10.06 1.64 0.83 0.51 0.47 0.45

60 2 7.77 0.87 0.40 0.36 0.34 0.33
3 9.63 1.30 0.63 0.44 0.40 0.38
4 10.19 1.54 0.77 0.43 0.39 0.38
5 10.53 1.76 0.94 0.44 0.40 0.39
6 10.38 1.85 0.87 0.44 0.39 0.37
7 10.19 1.96 0.98 0.45 0.39 0.38

Average 9.78 1.55 0.77 0.43 0.39 0.37

80 2 7.59 0.81 0.36 0.32 0.30 0.28
3 9.45 1.24 0.58 0.38 0.34 0.33
4 9.98 1.48 0.74 0.38 0.34 0.32
5 10.35 1.68 0.90 0.39 0.35 0.33
6 10.17 1.81 0.83 0.38 0.33 0.32
7 9.95 1.92 0.93 0.39 0.33 0.32

Average 9.58 1.49 0.72 0.37 0.33 0.32

100 2 7.35 0.77 0.34 0.29 0.26 0.25
3 9.21 1.20 0.53 0.34 0.31 0.29
4 9.78 1.45 0.71 0.34 0.29 0.28
5 10.12 1.64 0.88 0.35 0.30 0.29
6 10.04 1.77 0.80 0.33 0.29 0.27
7 9.74 1.87 0.89 0.35 0.29 0.28

Average 9.37 1.45 0.69 0.33 0.29 0.28

Tot. average 9.87 1.59 0.80 0.46 0.42 0.40

Table 2: Average Relative Percentage Deviation (AV RPD) for the tested methods grouped
by CPU time limit C and number of factories F (best values in bold).

20

1.45% for C = 100, i.e., significantly worse results even when CPU times are573

quintupled. Therefore, while the accelerations might reduce the differences,574

they are surely not enough to bridge such a large performance gap.575

When looking at the results of the two proposed methods, the single stage576

IG1S and the two stage IG2S, we observe that they obtain the best results.577

From the results of Table 2, IG1S has, for all combinations of C and F , a578

lower AV RPD than BSIG. More specifically, for the shortest CPU times of579

C = 20, the AV RPD of BSIG is 0.97% while that of IG1S is 0.62%. While580

it might seem that the difference between 0.97% and 0.62% is just 0.35%,581

in relative terms, the AV RPD of IG1S when C = 20 is 36.71% lower than582

that of BSIG. Furthermore, the differences increase with the value of C. For583

example, for C = 100, the AV RPD of BSIG is 0.69% and IG1S gives 0.29%,584

i.e., a reduction of a 57.98%. When comparing the best results obtained for585

the 10 replicates for the 720 instances of BSIG and IG1S, we observe that586

IG1S yields better Cmax values in 531 cases, both methods tie in 182 cases587

and only in 7 instances out of the 720 does BSIG yield better results.588

Another way of looking at the superiority of IG1S is that IG1S is able to589

obtain a slightly better AV RPD for C = 20 compared to BSIG for C = 100.590

In other words, IG1S is able to produce results that are more than 50% better591

than BSIG, halving the AV RPD values or to obtain comparable results in592

one fifth of the CPU time.593

An interesting comparison is the version without the LS3 local search and594

the NEH2_en initialization of IG1S−. Recall that the only difference between595

IG1S and IG1S− is that the later uses VND(a)R local search and NEH2596

initialization. These two small changes yield tangible benefits as IG1S has597

AV RPD values that are between 7% and 12% lower than IG1S−, depending598

on the value of C. The two stage IG2S also improves results. Just dedicating599

5% of the available CPU time for the second stage (ρ = 0.95 as per the600

calibration of IG2S) generates reductions in the AV RPD when compared601

to IG1S of between 3% and almost 5%, and between 39% and 60% when602

compared to BSIG, depending on the C value.603

604

While the differences are large enough to be statistically significant, it is605

still advisable to do the test. We carry out a multifactor ANOVA with RPD606

as the response variable, controlling the factors Algorithm (main factor to607

study), n ×m, F and C. HIA is removed from the experiment as its large608

RPD values were creating normality problems in the ANOVA. SS is also609

removed as it is clearly worse than the other methods. The means plot of610

21

the interaction between the algorithm and C factor is shown in Figure 6.611

The statistical analysis confirms that intervals do not overlap and that all

C

0.27

0.47

0.67

0.87

1.07

20 40 60 80 100

Algorithm
BSIG
IG1S¯

IG1S
IG2S

C

0.27

0.37

0.47

0.57

0.67

20 40 60 80 100A
ve

ra
g

e
R

el
at

iv
e

P
er

ce
nt

ag
e

 D
ev

ia
tio

n
(A

V
R

P
D

)

Figure 6: Means plots for the interaction between algorithms BSIG, IG1S−, IG1S, IG2S and
CPU time C. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals. On the right plot BSIG is removed.

612

observed differences in the AV RPD values of Table 2 are indeed statistically613

significant. It has to be noted that even though the differences in AV RPD614

values between IG1S and IG2S are small (between 3% and almost 5%), they615

are large enough to be considered statistically significant, as can be seen from616

the right plot of Figure 6. Similarly, the differences between IG1S− and IG1S617

are clearly significant.618

5. Conclusions and future research619

In this paper we have studied a generalization of the permutation flowshop620

scheduling problem in which a manufacturing company operates several621

identical factories and the additional decision of where to produce each job622

arises. The distributed permutation flowshop scheduling problem was proposed623

initially by Naderi and Ruiz (2010) and many authors have presented new624

methods over the course of the last 7 years. Of particular interest are the625

simple and effective Iterated Greedy methods, which require little instantiation626

and yet produce excellent results. We have proposed two IG algorithms that627

incorporate an enhanced initialization, a biased destruction operator that628

simply extracts 50% of the jobs to be removed from the factory generating629

the Cmax, an improved reconstruction and a local search with a higher degree630

of intensification. Also, we have explored the concept of a second stage IG631

22

where, once the first stage is finished and for a limited amount of time, a632

second stage IG focusing on the factory generating the Cmax is able to squeeze633

out additional performance.634

We have observed how since the initial work of Naderi and Ruiz (2010), the635

state-of-the-art has improved considerably. Naderi and Ruiz (2014) managed636

to improve all 720 best upper bounds of the original results of Naderi and Ruiz637

(2010) and now with the results of the proposed IG2S, 497 new upper bounds638

have been found. Average Relative Percentage Deviations have been reduced639

by 60% when compared to the best competitor, the BSIG of Fernandez-Viagas640

and Framinan (2015) and by 81% when compared to the SS of Naderi and641

Ruiz (2014). These improvements have not required complex algorithms or642

deep problem specific constructions but rather an increased diversification643

and intensification in the main IG operators.644

Additional research lines open from the consideration of other optimization645

objectives, for which very little work exists for the DPFSP. Also, the joint646

consideration of sequence dependent setup times and non-identical factories647

in this problem is of interest as it would bring the problem closer to real-life648

settings.649

Acknowledgments650

Rubén Ruiz is partially supported by the Spanish Ministry of Economy651

and Competitiveness, under the project “SCHEYARD – Optimization of652

Scheduling Problems in Container Yards” (No. DPI2015-65895-R) financed653

by FEDER funds. Quan-Ke Pan is supported by the National Natural Science654

Foundation of China (Grant No. 51575212).655

References656

Bargaoui, H., Belkahla Driss, O., and Ghedira, K. (2016). Minimizing makespan in multi-factory657
flow shop problem using a chemical reaction metaheuristic. In 2016 IEEE Congress on Evolu-658
tionary Computation, CEC 2016; Vancouver; Canada, pages 2919–2926. Institute of Electrical659
and Electronics Engineers.660

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and Preuss, M., editors (2010). Experimental661
Methods for the Analysis of Optimization Algorithms. Springer, New York.662

Behnamian, J. and Fatemi Ghomi, S. (2016). A survey of multi-factory scheduling. Journal of663
Intelligent Manufacturing, 27(1):231–249.664

Chan, H. and Chung, S. (2013). Optimisation approaches for distributed scheduling problems.665
International Journal of Production Research, 51(9):2571–2577.666

Deng, J. and Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed667
permutation flow shop scheduling problem. Swarm and Evolutionary Computation, 32:121–131.668

23

Fernandez-Viagas, V. and Framinan, J. M. (2015). A bounded-search iterated greedy algorithm for669
the distributed permutation flowshop scheduling problem. International Journal of Production670
Research, 53(4):1111–1123.671

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. M. (2017). A new vision of approximate meth-672
ods for the permutation flowshop to minimise makespan: State-of-the-art and computational673
evaluation. European Journal of Operational Research, 257(3):707–721.674

Framinan, J. M., Gupta, J. N. D., and Leisten, R. (2004). A review and classification of heuristics675
for permutation flow-shop scheduling with makespan objective. Journal of the Operational676
Research Society, 55(1):1243–1255.677

Framinan, J. M., Leisten, R., and Ruiz, R. (2014). Manufacturing Scheduling Systems: An Inte-678
grated View on Models, Methods and Tools. Springer, New York.679

Gao, J. and Chen, R. (2011a). A hybrid genetic algorithm for the distributed permutation flowshop680
scheduling problem. International Journal of Computational Intelligence Systems, 4(4):497–681
508.682

Gao, J. and Chen, R. (2011b). An NEH-based heuristic algorithm for distributed permutation683
flowshop scheduling problems. Scientific Research and Essays, 6(14):3094–3100.684

Gao, J., Chen, R., and Deng, W. (2013). An efficient tabu search algorithm for the distributed685
permutation flowshop scheduling problem. International Journal of Production Research,686
51(3):641–651.687

Gao, J., Chen, R., Deng, W., and Liu, Y. (2012a). Solving multi-factory flowshop problems with688
a novel variable neighbourhood descent algorithm. Journal of Computational Information689
Systems, 8(5):2025–2032.690

Gao, J., Chen, R., and Liu, Y. (2012b). A knowledge-based genetic algorithm for permutation691
flowshop scheduling problems with multiple factories. International Journal of Advancements692
in Computing Technology, 4(7):121–129.693

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The Complexity of Flowshop and Jobshop694
Scheduling. Mathematics of Operations Research, 1(2):117–129.695

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization696
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete697
Mathematics, 5:287–326.698

Gupta, J. N. D. and Stafford, Jr, E. F. (2006). Flowshop scheduling research after five decades.699
European Journal of Operational Research, 169(3):699–711.700

Hatami, S., Ruiz, R., and Andrés-Romano, C. (2013). The distributed assembly permutation701
flowshop scheduling problem. International Journal of Production Research, 51(17):5292–5308.702

Hatami, S., Ruiz, R., and Andrés-Romano, C. (2015). Heuristics and metaheuristics for the703
distributed assembly permutation flowshop scheduling problem with sequence dependent setup704
times. International Journal of Production Economics, 169:76–88.705

Hejazi, S. R. and Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion:706
A review. International Journal of Production Research, 43(14):2895–2929.707

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times708
included. Naval Research Logistics Quarterly, 1(1):61–68.709

Kendall, G., Bai, R., Błażewicz, J., De Causmaecker, P., Gendreau, M., John, R., Li, J., McCollum,710
B., Pesch, E., Qu, R., Sabar, N., Vanden Berghe, G., and Yee, A. (2016). Good laboratory711
practice for optimization research. Journal of the Operational Research Society, 67(4):676–689.712

Lin, S.-W., Ying, K.-C., and Huang, C.-Y. (2013). Minimising makespan in distributed permuta-713
tion flowshops using a modified iterated greedy algorithm. International Journal of Production714
Research, 51(16):5029–5038.715

Liu, H. and Gao, L. (2010). A discrete electromagnetism-like mechanism algorithm for solving716
distributed permutation flowshop scheduling problem. In Proceedings - 6th International Con-717
ference on Manufacturing Automation, ICMA 2010; Hong Kong; China, pages 156–163. IEEE718
Computer Society.719

MacCarthy, B. L. and Liu, J. (1993). Addressing the gap in scheduling research: a review of opti-720
mization and heuristic methods in production scheduling. International Journal of Production721
Research, 31(1):59–79.722

24

McKay, K. N., Pinedo, M., and Webster, S. (2002). Practice-focused research issues for scheduling723
systems. Production and Operations Management, 11(2):249–258.724

McKay, K. N., Safayeni, F. R., and Buzacott, J. A. (1988). Job-shop scheduling theory: What is725
relevant? Interfaces, 18(4):84–90.726

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations727
Research, 24(11):1097–1100.728

Montgomery, D. C. (2012). Design and Analysis of Experiments. Wiley, eight edition.729

Naderi, B. and Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Com-730
puters & Operations Research, 37(4):754–768.731

Naderi, B. and Ruiz, R. (2014). A scatter search algorithm for the distributed permutation732
flowshop scheduling problem. European Journal of Operational Research, 239(2):323–334.733

Nawaz, M., Enscore, Jr, E. E., and Ham, I. (1983). A Heuristic Algorithm for the m-Machine,734
n-Job Flow-shop Sequencing Problem. OMEGA, The International Journal of Management735
Science, 11(1):91–95.736

Pan, Q.-K. and Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle per-737
mutation flowshop scheduling problem. OMEGA, The International Journal of Management738
Science, 44(1):41–50.739

Pan, Q.-K., Ruiz, R., and Alfaro-Fernández, P. (2017). Iterated search methods for earliness740
and tardiness minimization in hybrid flowshops with due windows. Computers & Operations741
Research, 80:50–60.742

Pinedo, M. (2016). Scheduling: Theory, Algorithms and Systems. Springer, New York, fifth edition.743

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuristics for minimizing744
makespan in permutation flowshopns. OMEGA, The International Journal of Management745
Science, 37(2):331–345.746

Reisman, A., Kumar, A., and Motwani, J. (1997). Flowshop scheduling/sequencing research: A747
statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management,748
44(3):316–329.749

Ribas, I., Companys, R., and Tort-Martorell, X. (2017). Efficient heuristics for the parallel block-750
ing flow shop scheduling problem. Expert Systems with Applications, 74:41–54.751

Rifai, A., Nguyen, H.-T., and Dawal, S. (2016). Multi-objective adaptive large neighborhood752
search for distributed reentrant permutation flow shop scheduling. Applied Soft Computing753
Journal, 40:42–57.754

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop755
heuristics. European Journal of Operational Research, 165(2):479–494.756

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permu-757
tation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–758
2049.759

Sörensen, K. (2015). Metaheuristics-the metaphor exposed. International Transactions in Oper-760
ational Research, 22(1):3–18.761

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. Eu-762
ropean Journal of Operational Research, 47(1):67–74.763

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational764
Research, 64:278–285.765

Urlings, T., Ruiz, R., and Stützle, T. (2010). Shifting representation search for hybrid flexible766
flowline problems. European Journal of Operational Research, 207(2):1086–1095.767

Wang, J., Wang, L., and Shen, J. (2016a). A hybrid discrete cuckoo search for distributed permuta-768
tion flowshop scheduling problem. In 2016 IEEE Congress on Evolutionary Computation, CEC769
2016; Vancouver; Canada, pages 2240–2246. Institute of Electrical and Electronics Engineers.770

Wang, K., Huang, Y., and Qin, H. (2016b). A fuzzy logic-based hybrid estimation of distribution771
algorithm for distributed permutation flowshop scheduling problems under machine breakdown.772
Journal of the Operational Research Society, 67(1):62–82.773

Wang, L., Deng, J., and Wang, S.-y. (2016c). Survey on optimization algorithms for distributed774

25

shop scheduling. Control and Decision, 31(1):1–11.775

Wang, S.-Y., Wang, L., Liu, M., and Xu, Y. (2013). An effective estimation of distribution776
algorithm for solving the distributed permutation flow-shop scheduling problem. International777
Journal of Production Economics, 145(1):387–396.778

Xu, Y., Wang, L., Wang, S.-y., and Liu, M. (2014). An effective hybrid immune algorithm for779
solving the distributed permutation flow-shop scheduling problem. Engineering Optimization,780
46(9):1269–1283.781

26

