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Abstract

The graphs with all equal negative or positive eigenvalues are special kind in
the spectral graph theory. In this article, several iterated line graphs Lk(G) with
all equal negative eigenvalues −2 are characterized for k ≥ 1 and their energy
consequences are presented. Also, the spectra and the energy of complement of
these graphs are obtained, interestingly they have exactly two positive eigenvalues
with different multiplicities. Moreover, we characterize a large class of equiener-
getic graphs which generalize some of the existing results. There are two different
quotient matrices defined for an equitable partition of H-join (generalized composi-
tion) of regular graphs to find the spectrum (partial) of adjacency matrix, Laplacian
matrix and signless Laplacian matrix, it has been proved that these two quotient
matrices give the same respective spectrum of graphs.
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1 Introduction

Spectral graph theory is aimed at answering the questions related to the graph theory in

terms of eigenvalues of matrices which are naturally associated with graphs. Graphs with

all equal positive or negative eigenvalues are very special kind in the study of eigenvalues

of graphs and its easy to find energy on these class of graphs. Also, the graphs with an
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exact number of positive or negative eigenvalues has applications in finding equienergetic

graphs. The line graph of a graph has a special property that its least eigenvalue is not

smaller than −2. In the last two decades graphs with least eigenvalues −2 have been well

studied [9, 10, 39]. The problem of particular interest in this class of graphs is the graphs

with all negative eigenvalues equal to −2. This problem can be restated in terms of the

eigenvalues of signless Laplacian matrix Q for line graphs as the graphs with all its signless

Laplacian eigenvalues belongs to the set [2,∞)∪ {0} with the help of the relation (1). In

[33] Ramane et al. obtained the spectra and the energy of iterated regular line graphs

Lk(G) for k ≥ 2 and presented infinitely many pairs of non-trivial equienergetic graphs

which belong to the above class of graphs. Let % be the property that a graph G has all its

negative eigenvalues equal to −2. In this paper, we are motivated to find several classes

of iterated line graphs Lk(G) with the property % for k ≥ 1, spectra of their complements

and energy consequences. As a consequence of energy of these graphs we present a large

class of equienergetic graphs which generalize some of the existing results. The energy

relation between a regular graph G and its complement were studied in [27, 28, 29, 30, 32],

we extend the results pertaining E(G) = E(G) to non-regular iterated line graphs with

the property ρ. The energy of line graphs is well studied in [11, 18, 24, 33, 34]. In this

paper, we also present hyperenergetic iterated line graphs and their complements. The

software sage math [37] is used to verify some of the results.

This paper is organized as follows. In section 2, basic definitions, equitable partition,

known results on spectra and energy of graphs are presented. In section 3, it is proved

that the two different quotient matrices defined for an equitable partition of H-join of

regular graphs give the same spectrum(partial) for adjacency matrix, Laplacian matrix

and signless Laplacian matrix. Section 4 provides the results on spectra and energy of

iterated line graphs satisfying the property ρ. Section 5 deals with the spectra and the

energy of complements of graphs which are presented in section 4. In section 6, upper

bound is given for independence number of iterated line graphs and their complements.

Also, a result on minimum order of the connected graph when its complement is connected

and line graph satisfying the property ρ.



2 Preliminaries

In this paper, simple and undirected graphs G are considered with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Let e = vivj be an edge of G with

its end vertices vi and vj. The order and size of a graph G is the number of vertices and

number of edges respectively in it. The complement G of a graph G has same vertices as

in G but two vertices are adjacent in G if and only if they are not adjacent in G. Let the

subgraph of a graph G obtained by deleting vertices v1, v2, . . . , vk, k < n and the edges

incident to them in G be G− {v1, v2, . . . , vk} and simply G− v if one vertex v and edges

incident to it are deleted. The adjacency matrix A(G) or simply A of a graph G of order

n is the n× n matrix indexed by V (G) whose (i, j)-th entry is defined as aij = 1 if vivj ∈

E(G) and 0 otherwise. The Laplacian matrix L and signless Laplacian matrix Q of a

graph is defined as L = D−A and Q = D+A respectively, where D = [di] is the diagonal

degree matrix of suitable order whose i-th diagonal entry di is the degree of the vertex vi.

The matrix Q is positive semi-definite and has real eigenvalues. Given any square matrix

M , the multiset of its eigenvalues is called the spectrum of M . Denote the characteristic

polynomial and spectrum of the matrix M , respectively by ϕ(M ;x) and Sp(M). Let

aSp(M) ± b = {aλ ± b : λ ∈ Sp(M)} for any two real numbers a and b. The spectrum

of a graph is the spectrum of its adjacency matrix A. The positive (negative) inertia of a

graph G is the number of positive (negative) eigenvalues of G denoted by n+(n−). Given

a graph G we denote the spectrum of adjacency matrix and signless Laplacian matrix

respectively by SpA(G) = {λm1
1 , λm2

2 , . . . , λmk
k } and SpQ(G) = {qm1

1 , qm2
2 , . . . , qmk

k }, where

λi’s and qi’s are indexed in descending order, and mi is the multiplicity of the respective

eigenvalue for 1 ≤ i ≤ k. Denote the least eigenvalue of signless Laplacian by qmin. The

energy [16] of a graph G is defined as

E(G) =
n∑
i=1

|λi| = 2
n+∑
i=1

λi = −2
n−∑
i=1

λn−i+1.

Two graphs G1 and G2 of same order are said to be equienergetic if their energies are

equal. A set of vertices in a graph G is independent if no two vertices in the set are

adjacent. The independence number α(G) of a graph G is the maximum cardinality

of an independent set of vertices in G. As usual the graphs Cn, Kn and Pn denote the

cycle, complete graph and path on n vertices respectively.



Definition 2.1. [26] The Turán graph Tr(n), r ≥ 1, is the complete r-partite graph of

order n with all parts of size either bn/rc or dn/re.

Definition 2.2. [20] The line graph L(G) of a graph G is the graph with vertex set

same as the edge set of G, two vertices in L(G) are adjacent if the corresponding edges

in G have a vertex in common. The k-th iterated line graph of G for k ∈ {0, 1, 2, . . .}

is defined as Lk(G) = L(Lk−1(G)), where L0(G) = G and L1(G) = L(G).

Let nk and mk denote the order and the size of Lk(G) for k ∈ {0, 1, 2, . . .}. It is

noted that nk = mk−1 for k ∈ {1, 2, . . .}. Let us denote the eigenvalues of Lk(G) and

its complement Lk(G) respectively by λk(j), λk(j) for k ∈ {1, 2, . . .} and 1 ≤ j ≤ nk. The

complement of a line graph is also called jump graph [6]. The important spectral property

of line graph is that its least eigenvalue is not less than −2 [22].

Theorem 2.3. [8] If G is a r-regular graph of order n with spectrum SpA(G) = {r, λ2, . . . , λn},

then the complement graph of G is a (n − r − 1)-regular graph with spectrum SpA(G) =

{n− r − 1,−1− λn, . . . ,−1− λ2}.

Theorem 2.4. [35] If G is a r-regular graph of order n and size m with spectrum

SpA(G) = {r, λ2, . . . , λn}, then line graph of G is a (2r − 2)-regular graph with spectrum

SpA(L(G)) = {2r − 2, λ2 + r − 2, . . . , λn + r − 2,−2m−n}.

Let n and m be the order and the size of a graph G. The following is the relation between

the eigenvalues of line graph and signless Laplacian of a graph G [7]

SpA
(
L(G)

)
= {−2m−n} ∪

(
SpQ(G)− 2

)
. (1)

the multiplicity of the eigenvalue −2 in L(G) is equal to m− n + 1 if G is bipartite and

equal to m− n if G is not bipartite [9].

Theorem 2.5. [11] Let G be a graph of order n > 2 with m edges and minimum degree

δ. If δ ≥ n
2

+ 1. Then the line graph L(G) satisfies the property ρ with energy 4(m− n).

Thus, the line graphs of all such graphs of order n and size m with property δ ≥ n
2

+ 1 are

mutually equienergetic.

Theorem 2.6. [24] Let G be a graph of order n ≥ 5 and size m. If m ≥ 2n, the line

graph L(G) is hyperenergetic.



The following is an elegant relation even though not sharp between the smallest eigenvalue

λmin of A and the smallest eigenvalue qmin of Q.

Proposition 2.7. [14] If G is a graph with minimum degree δ and maximum degree ∆,

then

qmin −∆ ≤ λmin ≤ qmin − δ.

Proposition 2.8. [13] If G is a spanning subgraph of a graph G′, then qmin(G) ≤ qmin(G′).

Theorem 2.9. [21] If G is a graph with vertex v, then qmin(G)− 1 ≤ qmin(G− v).

Let j denotes all one’s column vector.

Theorem 2.10. [19] If λ ∈ SpA(G), then −1 − λ ∈ SpA(G) if and only if jTY = 0 for

some eigenvector Y of G corresponding to the eigenvalue λ.

Proposition 2.11. [8] In the line graph L(G) of a graph G the eigenspace of the eigenvalue

−2 is orthogonal to the vector j.

The Weyl’s eigenvalue inequality [23] λj(M1) + λk(M2) ≤ λi(M1 +M2), j + k − n ≥ i for

sum of two Hermitian matrices M1 and M2 of order n gives the following useful eigenvalues

inequality on a graph G of order n and its complement G [27].

λj + λn−j+2 ≤ −1 for j ∈ {2, 3, . . . , n}. (2)

Proposition 2.12. [15] Let M be any square matrix of order n with the characteristic

polynomial ϕ(M ;x) =
n∑
r=0

(−1)nmrx
n−r. Then mr is equal to the sum of the principal

minors of M of order r.

Definition 2.13. [2] Let G be a graph with vertex set V (G) = {v1, v2, . . ., vn}. The

extended bipartite double Ebd(G) of a graph G is the bipartite graph with its partite

sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} in which two vertices xi and yj are

adjacent iff i = j or vi and vj are adjacent in G. The Ebd(G) is also called the extended

double cover [1].

Theorem 2.14. [2] Let Ebd(G) is the extended bipartite double of a graph G.

1. If G is connected, then Ebd(G) is connected.



2. The spectrum of Ebd(G) is SpA(Ebd(G)) = (−SpA(G)− 1) ∪ (SpA(G) + 1).

Definition 2.15. [36] If G is a graph of order n with labeled vertices, then the graph

G[H1, H2,. . . , Hn] called generalized composition or H-join [4] which is obtained from

the graphs H1, H2, . . . , Hn by joining every vertex of Hi to every vertex of Hj if vi is

adjacent to vj in G.

Let π = (π1, π2, . . . , πp) be a partition of a vertex set of a graph G. The partition π is

called equitable partition [5, 36] if for each i, j = 1, 2, . . . , p there exists a number cij

such that for every vertex v ∈ πi there are exactly cij edges between v and the vertices

in πj. If π is an equitable partition, then the associated p × p matrix with rows and

columns corresponding to the partite sets π1, π2, . . . , πp is called quotient matrix. Let

Aπ is the p× p matrix with (ij)-th element aπij equal to cij, and the p× p diagonal matrix

Dπ whose i-th diagonal element equal to
p∑

k=1

cik. If π is an equitable partition, we denote

the quotient matrix for adjacency, Laplacian and signless Laplacian matrices of a graph,

respectively by Aπ, Lπ and Qπ. The matrices Aπ, Lπ and Qπ are given by Aπ = [aπij] [36],

Lπ = [lπij] = Dπ − Aπ [3] and Qπ = [qπij] = Dπ + Aπ [5, 40]. It is noted that these are

non-symmetric matrices.

LetHi be ri-regular graphs of order ni for i = 1, 2, . . . , p. In case ofH-joinG[H1, H2,. . . ,

Hp], where G is a graph of order p, let us denote the quotient matrix for adjacency,

Laplacian and signless Laplacian of a graph, respectively by AHπ = [aHij ], L
H
π = [lHij ] and

QH
π = [qHij ]. These matrices are defined as [4, 41]

aHij =


cij if i = j

√
ninj if vivj ∈ E(G)

0 otherwise

,

lHij =


lπij if i = j

−√ninj if vivj ∈ E(G)

0 otherwise

and qHij =


qπij if i = j

√
ninj if vivj ∈ E(G)

0 otherwise

.

It is noted that these are symmetric matrices.

If π = (π1, π2, . . . , πp) is an equitable partition of a graph G with cardinality of πi,

|πi| = mi for i = 1, . . . , p, then π also equitable partition to its complement G. The

quotient matrix Aπ of G is given by Aπ = Jπ − I − Aπ [38], where Jπ is the matrix of



order p whose (i, j)-th element equal to mj and I is the identity matrix of order p.

Proposition 2.16. [38] Let the graphs G1 and G2 are co-spectral with equitable partitions

1π and 2π respectively. If A1π = A2π, then the graphs G1 and G2 are co-spectral.

Theorem 2.17. [41] Let G be a labeled graph of order n and Hi be ri-regular graph of

order ni for i = 1, 2, . . . , n. If G = G[H1, H2,. . . , Hn], then

SpQ(G) =
(
∪ni=1

(
(qπii − 2ri) + (SpQ(Hi) \ {2ri})

))
∪
(
Sp(QH

π )
)
.

Suppose that n ≥ 2 and M = [mij] ∈ Cn×n. The Geršgorin discs Di, i = 1, 2, . . . , n of the

matrix M are defined as the closed circular regions Di = {z ∈ C : |z −mii| ≤ Ri} in the

complex plane, where

Ri =
n∑
j=1
j 6=i

|mij| is the radius of Di.

Theorem 2.18 (Geršgorin). [23] Let n ≥ 2 and M ∈ Cn×n. All eigenvalues of the matrix

M lie in the region D = ∪ni=1Di, where Di, i = 1, 2, . . . , n are the Geršgorin discs of M .

3 Spectra of Quotient Matrices

Theorem 3.1. Let G = G[H1, H2,. . . , Hn], where Hi is ri-regular graph of order ni for

i = 1, 2, . . . , n. Then the spectrum of the quotient matrices Aπ, Lπ and Qπ equal to the

spectrum of the quotient matrices AHπ , L
H
π and QH

π respectively.

Proof. It can be easily seen that π = (V (H1), V (H2), . . . , V (Hn)) is an equitable partition

of G. Let us first prove the result for the matrices Qπ and QH
π with the help of Proposition

2.12 and similar can be applied for the remaining matrices. The entries of the matrices

Qπ and QH
π can be written as qπij = aijnj, q

H
ij = aij

√
ninj for i 6= j and qπii = qHii , where aij

is the entry of the adjacency matrix of G. Let Sn be the set of all permutations over the

set {1, 2, . . . , n} and if σ ∈ Sn denote its sign by sgn(σ). Let M
′
r be the principal minor

of order r which is obtained by deleting any n− r rows and corresponding columns of the



matrix Qπ and the respective principal minor of the matrix QH
π be M

′′
r for 1 ≤ r ≤ n.

M
′

r =
∑
σ∈Sr

sgn(σ)
r∏

k=1

qπkσ(k) =
∑
σ∈Sr

sgn(σ)
r∏

k=1

akσ(k)nσ(k)

=
∑
σ∈Sr

sgn(σ)
r∏

k=1

akσ(k)nk and

M
′′

r =
∑
σ∈Sr

sgn(σ)
r∏

k=1

qHkσ(k) =
∑
σ∈Sr

sgn(σ)
r∏

k=1

akσ(k)
√
nknσ(k)

=
∑
σ∈Sr

sgn(σ)
r∏

k=1

akσ(k)nk if k 6= σ(k) for any k = 1, 2, . . . , r.

If k = σ(k) for k = 1, 2, . . . , p and 1 ≤ p ≤ r, then we have

M
′

r = M
′′

r =
∑
σ∈Sr

sgn(σ)

r−p∏
k=1

akσ(k)nk(q
π
kk)

p.

Which shows that M
′
r = M

′′
r to each r for 1 ≤ r ≤ n. Hence, the sum of principal minors

of order r of the matrices Qπ and QH
π are equal. It shows that the matrices Qπ and QH

π

have the same characteristic polynomials by Proposition 2.12. Thus, the matrices Qπ and

QH
π have the same spectrum.

Now Theorem 2.17, with the help of above Theorem can be stated in the following

way.

Proposition 3.2. Let G be a labeled graph of order n and Hi be ri-regular graph of order

ni for i = 1, 2, . . . , n. If G = G[H1, H2,. . . , Hn], then

SpQ(G) =
(
∪ni=1

(
Ri + (SpQ(Hi) \ {2ri})

))
∪
(
Sp(Qπ)

)
where Ri is the i-th row sum excluding the diagonal entry of Qπ for i = 1, 2, . . . , n.

Proof. Proof follows by Theorem 3.1 and an observation that qπii = 2ri + Ri for i =

1, 2, . . . , n.



4 Spectra and Energy of iterated line graphs with

the property ρ

Theorem 4.1. Let G be a graph of order n0 and size m0 with du + dv ≥ 6 to each edge

e = uv in G. Then the graphs Lk(G) satisfy the property % for k ≥ 2. And all the iterated

line graphs Lk(G) of such graphs G are mutually equienergetic with energy 4(nk − nk−1)

for k ≥ 2.

Proof. If G is a graph of order n0 and size m0 with an edge e = uv, then the degree of a

vertex corresponding to an edge e in L(G) is du + dv − 2. But the condition du + dv ≥ 6

to each edge e = uv in G implies du + dv − 2 ≥ 4 which shows that the minimum degree

of each vertex in L(G) is at least four. It is well known that the least eigenvalue of the

line graph L(G) is not smaller than −2. Hence, the least eigenvalues λmin, qmin and the

minimum degree δ of L(G) by Proposition 2.7 satisfy qmin ≥ λmin + δ ≥ −2 + 4 = 2.

Now, by relation (1) L(L(G)) = L2(G) satisfies the property ρ with the multiplicity of

−2 equal to m1 − n1. One can find easily that the minimum degree δ in the line graphs

Lk(G) increases as k increases, which shows that qmin of Lk(G) increases as k increases

and which is at least 2. Hence, by relation (1) the iterated line graphs Lk(G) satisfy the

property ρ to each k ≥ 2 with their energy equal to 4(mk−1 − nk−1) = 4(nk − nk−1).

A tree graph is called caterpillar if the removal of all pendant vertices in it makes a path

graph. The spectra and energy of line graph of caterpillars is studied in [34]

Example 4.2. The graph in Figure 1 is the caterpillar C(4, 3, 4). This graph satisfies the

conditions in Theorem 4.1, therefore all the graphs Lk
(
C(4, 3, 4)

)
satisfy the property ρ

for k ≥ 2.

Corollary 4.3. Let G be a graph of order n0 and size m0 with minimum degree δ ≥ 3.

Then the graphs Lk(G) satisfy the property % for k ≥ 2. And all the iterated line graphs

Lk(G) of such graphs G are mutually equienergetic with energy 4(nk − nk−1) for k ≥ 2.



Remark 4.4. In [33] Ramane et al. obtained the spectra and energy of iterated line

graphs of regular graphs of degree r ≥ 3 and thereby characterized large class of pairs

of non-trivial equienergetic regular graphs. It is noted that the results of [33] become

particular case of Corollary 4.3.

Now, Theorem 4.1 naturally motivates to discuss when L(G) satisfies the property ρ

as Lk(G) satisfy the property ρ for k ≥ 2 in a graph G with du + dv ≥ 6 to each edge

e = uv. In this direction we have the following results.

Lemma 4.5. Let G be a labeled connected graph of order n ≥ 2 and Hi be ri-regular graph

of order ni, where ri ≥ 1, for i = 1, 2, . . . , n. Then the least eigenvalue of the quotient

matrix Qπ of the graph G[H1, H2,. . . , Hn] is at least 2.

Proof. The signless Laplacian Q of a graph G is positive semi-definite and has real eigen-

values which implies that the eigenvalues of quotient matrix Qπ are real by Proposi-

tion 3.2. Observe that in i-th row of Qπ the diagonal entry qπii satisfies the equality

qπii = 2ri + Ri, where Ri is the i-th row sum excluding qπii of Qπ for i = 1, 2, . . . , n. By

using Geršgorin Theorem, all the eigenvalues of Qπ belong to the union of the closed

intervals [2ri, 2(ri + Ri)] for i = 1, 2, . . . , n. Now, the result follows from the condition

that ri ≥ 1.

Theorem 4.6. Let G be a labeled connected graph of order n ≥ 2 and Hi be ri-regular

graph of order pi, where ri ≥ 1, for i = 1, 2, . . . , n. If G = G[H1, H2,. . . , Hn] is a graph

of order n0 and size m0, then the graphs Lk(G) satisfy the property ρ for k ≥ 1. And the

line graphs of graphs G′ of order nk and size m′k for which Lk(G) is a spanning subgraph

are mutually equienergetic with energy 4(m′k − nk) for k ≥ 0.

Proof. As G is connected graph of order n ≥ 2, for every vertex vi in G there exists at

least one adjacent vertex vj which shows that each vertex of the graph Hi is adjacent to

every vertex of Hj for at least one j in G = G[H1, H2,. . . , Hn]. But Hi are ri-regular graph

of order pi with ri ≥ 1 implies pi ≥ 2. Thus, the quotient matrix Qπ corresponding to an

equitable partition π = (V (H1), V (H2), . . . , V (Hn)) has non-diagonal entry qπij ≥ 2 in its

i-th row for at least one j. Since, the signless Laplacian matrix Q of any graph is positive

semi-definite, it has all non-negative eigenvalues. By using Proposition 3.2 and Lemma

4.5, we get that every signless Laplacian eigenvalue of G is at least 2. Now by relation (1),

the line graph L(G) satisfies the property ρ. It can be observed that the minimum order



graph G with possible least degrees is G = K2[K2, K2], which shows that minimum degree

δ of G is at least 3. Thus, by Corollary 4.3 all the iterated line graphs Lk(G) for k ≥ 1

satisfy the property ρ. Since, G is a spanning subgraph of G′, from Proposition 2.8 G′ also

has qmin at least 2 which implies that the graph L(G′) also satisfies the property ρ with

its energy equal to 4(m′k − nk) for k ≥ 0 by relation (1). This completes the proof.

Remark 4.7. Let G be a labeled connected graph of order n ≥ 2 and Hi be ri-regular

graph of order pi with ri ≥ 1, for i = 1, 2, . . . , n. Let G = G[H1, . . . , Hj, . . . , Hn] for

1 ≤ j ≤ i and Hs1 , Hs2 be two r-regular graphs of same order with r ≥ 1. If G1 = G[H1,

. . . , Hs1 , . . . , Hn] and G2 = G[H1, . . . , Hs2 , . . . , Hn], then the graphs Lk(G1) and Lk(G2)

are equienergetic for k ≥ 1. And also if Hs1 and Hs2 are non co-spectral (co-spectral)

graphs, then we get non co-spectral (co-spectral) graphs Lk(G1) and Lk(G2) respectively

for k ≥ 0 as they have same quotient matrices.

Remark 4.8. In Theorem 2.5, K. C. Das et al. characterized large class of equienergetic

line graphs of graphs of order n with the condition on minimum degree δ ≥ n
2

+1. But one

can construct equienergetic line graphs of graphs of order n with the condition δ ≤ n
2

+ 1

by using Theorem 4.6. For example if G = K2[K2, Cn], n ≥ 6 we can always construct

non-isomorphic equienergetic line graphs of graph G with energy equal to 4 × (size of

G−order of G) for δ = 4 by adding the edges between non-adjacent vertices of G.

Theorem 4.9. Let G be a labeled connected graph of order n ≥ 2 and Hi be ri-regular

graph of order pi, where ri ≥ 2, for i = 1, 2, . . . , n. If G = G[H1, H2,. . . , Hn], then the

graphs Lk(G− v) satisfy the property ρ for k ≥ 1. Moreover, if ni ≥ min{2ri : ri ≥ s, s ∈

{2, 3, . . .}}, then the graphs Lk(G− {v1, v2, . . . , v2(s−1)}) satisfy the property ρ for k ≥ 1.

Proof. All the eigenvalues of Qπ of G belongs to the union of the closed intervals [2ri, 2(ri+

Ri)] for i = 1, 2, . . . , n by Lemma 4.5 which shows that each eigenvalue of Qπ is at least

4 as ri ≥ 2. Each row of the matrix Qπ has at least one non-diagonal entry at least 3

as ri ≥ 2 and G is connected of order n ≥ 2. By Proposition 3.2 the qmin of G is at

least 3. And by Theorem 2.9 the qmin of G − v is at least 2. Hence, L(G − v) satisfies

the property ρ by relation (1). If ni ≥ min{2ri : ri ≥ s, s ∈ {2, 3, . . .}}, then the qmin

of Qπ is at least 2s, and each row of Qπ has at least one non-diagonal entry at least

2s with s ∈ {2, 3, . . .}. By Proposition 3.2 the qmin of G is at least 2s. It is easy to

observe by Theorem 2.9 that qmin(G)− 2(s− 1) ≤ qmin
(
G− {v1, v2, . . . , v2(s−1)}

)
. Hence,



L
(
G− {v1, v2, . . . , v2(s−1)}

)
satisfies the property ρ by relation (1). The graphs G− v for

ri ≥ 2 and G − {v1, v2, . . . , v2(s−1)} for ni ≥ min{2ri : ri ≥ s, s ∈ {2, 3, . . .}} both are

graphs with minimum degree δ ≥ 3. Thus by Corollary 4.3 all the iterated line graphs

Lk(G− v) and Lk(G− {v1, v2, . . . , v2(s−1)}) for k ≥ 1 satisfy the property ρ.

The following is an interesting result due to the minimum number of edges in join of two

connected graphs.

Corollary 4.10. If m,n ≥ 3, then the graphs Lk
(
K2[Pn, Pm]

)
satisfy the property ρ for

k ≥ 1.

Proof. Let G = K2, H1 = Cn+1 and H2 = Cm+1 for m,n ≥ 3 in the above Theorem.

Let v1 ∈ H1 and v2 ∈ H2, then deleting the vertices v1 and v2 and the edges incident

to them respectively in H1 and H2 we get G − {v1, v2} = K2[Pn, Pm]. Hence, the graphs

Lk(K2[Pn, Pm]) satisfy the property ρ for k ≥ 1.

Definition 4.11. [17] Let v be the vertex of the complete graph Kn, n ≥ 3 and let ei,

i = 1, . . . , p, 1 ≤ p ≤ n− 1 be its distinct edges all being incident to v. The graph Kan(p)

is obtained by deleting ei, i = 1, . . . , p from Kn, where Kan(0) = Kn.

With this notation we have the following result.

Theorem 4.12. If n ≥ 6, then the graphs Lk
(
Kan(p)

)
, 1 ≤ p ≤ n−4 satisfy the property

ρ for k ≥ 1.

Proof. All the graphs of order up to 5 with their line graphs satisfying the property ρ are

C4, K4, K3,2, K5 by Theorem 6.7. It is noted that none of these graphs are of the kind

Kan(p) for p ≥ 1. If n ≥ 6, the graph Kan(n − 4) = P3[K1, K3, Kn−4]. The quotient

matrix Qπ of Kan(n− 4) is 
3 3 0

1 n+ 1 n− 4

0 3 2n− 7


with its spectrum Sp(Qπ) = {n− 1

2
+ 1

2

√
4n(n− 7) + 73, n−2, n− 1

2
− 1

2

√
4n(n− 7) + 73}.

The signless Laplacian spectrum of Kan(n − 4) is SpQ
(
Kan(n − 4)

)
= {(n − 2)2, (n −

3)n−5} ∪ Sp(Qπ). It is clear that all signless Laplacian eigenvalues of Kan(n − 4) are

greater than or equal to 2 except the doubt about the third eigenvalue of Sp(Qπ) for



n ≥ 6. But this eigenvalue n− 1
2
− 1

2

√
4n(n− 7) + 73 ≥ 2 if n ≥ 5. Thus L

(
Kan(p)

)
for

1 ≤ p ≤ n− 4 satisfies the property ρ by using Proposition 2.8 and the relation (1). It is

easy to observe that the minimum degree of Kan(p) for 1 ≤ p ≤ n−4 is at least 3. Hence,

by Corollary 4.3 all the iterated line graphs Lk(Kan(p)) for k ≥ 1 and 1 ≤ p ≤ n − 4

satisfy the property ρ.

There are some class of graphs with least eigenvalue −2 like exceptional graphs and

generalized line graphs [9]. If minimum degree δ ≥ 4 on these class of graphs, we have

the following simple result.

Theorem 4.13. Let G be a graph with least eigenvalue −2 and minimum degree δ ≥ 4.

Then the iterated line graphs Lk(G) satisfy the property % for k ≥ 1.

Proof. The least eigenvalues λmin, qmin and the minimum degree δ of G by Proposition

2.7 satisfy qmin ≥ λmin + δ ≥ −2 + 4 = 2. Thus by using the relation (1) L(G) satisfies

the property ρ. Now by using Corollary 4.3 all the iterated line graphs Lk(G) satisfy the

property ρ for k ≥ 1.

Theorem 2.5 of K. C. Das et al. can be generalized to the iterated line graphs.

Theorem 4.14. Let G be a graph of order n0 > 2 and size m0 with minimum degree

δ ≥ n0

2
+ 1. Then the graphs Lk(G) satisfy the property ρ for k ≥ 1.

Proof. If G be a graph of order n0 > 2 and size m0 with minimum degree δ ≥ n0

2
+1, then

by Theorem 2.5 L(G) satisfies the property ρ. The existence of a graph G with minimum

degree δ ≥ n0

2
+ 1 implies n0 ≥ 4, that is the minimum degree of G is at least 3. Hence by

using Corollary 4.3 all the iterated line graphs Lk(G) satisfy the property ρ for k ≥ 1.

The following inequality was given by Leonardo de Lima et al. in [12] for Turán graph.

(r − 2)
⌊n
r

⌋
< qmin

(
Tr(n)

)
≤
(

1− 1

r

)
n.

Remark 4.15. The above inequality is not valid when r = 3, n = 6, 7, 8 and r = 4,

n = 5 as SpQ
(
T3(6)

)
= {8, 43, 22}, SpQ

(
T3(7)

)
= {9.2745, 52, 42, 3, 1.7251}, SpQ

(
T3(8)

)
=

{10.6056, 6, 54, 3.3944, 2} and SpQ
(
T4(5)

)
= {7.3723, 33, 1.6277}, which shows that

qmin
(
T3(6)

)
= 2, qmin

(
T3(7)

)
= 1.7251, qmin

(
T3(8)

)
= 2 and qmin

(
T4(5)

)
= 1.6277 but

the inequality gives strict lower bound 2 for qmin
(
Tr(n)

)
. However with the help of this

inequality we have the following result.



Proposition 4.16. If r = 3 and n ≥ 6, n 6= 7 or r = 4 and n 6= 5 or r ≥ 5, then the

graphs Lk
(
Tr(n)

)
satisfy the property ρ for k ≥ 1.

Proof. The condition on r, n in the hypothesis and the above inequality ensure that

qmin
(
Tr(n)

)
is at least 2. Thus, L

(
Tr(n)

)
satisfies the property ρ by using the relation (1).

It is easy to observe that the minimum degree of Tr(n) is at least 3. Hence by Corollary

4.3 all the iterated line graphs Lk(G) satisfy the property ρ for k ≥ 1.

4.1 Iterated regular line graphs with property ρ

Most of the results so far discussed are non-regular iterated line graphs graphs satisfying

the property ρ. One can get iterated regular line graphs Lk(G) satisfying property ρ from

Theorem 4.1 for k ≥ 2 and from Theorem 4.6, Theorem 4.13 and Theorem 4.14 for k ≥ 1.

In the Proposition 4.16 if r divides n, then we get iterated regular line graphs Lk(G)

satisfying property ρ for k ≥ 1. Here, we present some more iterated regular line graphs

Lk(G) for k ≥ 1 by taking regular graph G.

Theorem 4.17. If G is a r-regular graph of order n with 3 ≤ r ≤ n−1
3

, then the graphs

Lk(G) satisfy the property ρ for k ≥ 1.

Proof. Let SpA(G) = {r, λm2
2 , . . . , λmt

t } such that 1 +
t∑
i=2

mi = n. Then by Theorem

2.3, G is also a regular graph with SpA(G) = {n − r − 1, (−1 − λt)mt , . . . , (−1 − λ2)m2}

and by Theorem 2.4, SpA(L(G)) = {2(n − 1) − 2r − 2, (n − r − λt − 4)mt , . . . , (n − r −

λ2 − 4)m2 ,−2n(n−r−3)/2}. We shall prove that all eigenvalues of L(G) except −2 are non-

negative. Since, G is regular L(G) is also regular with degree 2(n − 1) − 2r − 2 which

implies 2(n− 1)− 2r − 2 is positive. The condition r ≤ n−1
3

gives that n ≥ 3r + 1 which

implies n − r − λi − 4 ≥ 2r − λi − 3 ≥ 0 as r ≥ 3 to each i = 2, . . . , t. Hence, L(G)

satisfies the property ρ. Now, n ≥ 3r + 1 implies n − r − 1 ≥ 2r ≥ 6 which shows that

G is a regular graph with its least degree≥ 6. This implies the graphs Lk(G) satisfy the

property ρ to each k ≥ 1 by Corollary 4.3.

Theorem 4.18. If G is a r-regular graph of order n ≥ 8 and r ≥ 1, then the graphs

Lk
(
L(G)

)
, k ≥ 1 satisfy the property ρ.

Proof. Let SpA(G) = {r, λm2
2 , . . . , λmt

t } such that 1 +
t∑
i=2

mi = n. Then by Theorem

2.4, SpA(L(G)) = {2r − 2, (λ2 + r − 2)m2 , . . . , (λt + r − 2)mt ,−2n(r−2)/2} and since L(G)



is regular by Theorem 2.3 L(G) also a regular graph with SpA
(
L(G)

)
= {nr/2 − 2r +

1, 1n(r−2)/2, (1− r− λt)mt , . . . , (1− r− λ2)m2}. Again, by Theorem 2.4, SpA
(
L
(
L(G)

))
=

{r(n−4), ((n−4)r/2)n(r−2)/2, ((n−6)r/2−λt)mt , . . . , ((n−6)r/2−λ2)m2 ,−2nr(nr−4r−2)/8}.

It is easy to see that all the eigenvalues of L
(
L(G)

)
are non-negative except −2 for n ≥ 8.

Hence L
(
L(G)

)
satisfies the property ρ. It is noted that the degree of L(G) is nr/2−2r+1

which is at least 3 for n ≥ 8 and r ≥ 1. This implies the graphs Lk
(
L(G)

)
satisfy the

property ρ for k ≥ 1 by Corollary 4.3.

Remark 4.19. One can easily construct equienergetic graphs like in Theorem 4.6 for the

results in Theorem 4.9 to Theorem 4.18.

Theorem 4.20. Let G be a graph with du + dv ≥ 6 to each edge e = uv in G, then the

graphs Lk(G) are hyperenergetic for k ≥ 2.

Proof. Since G is a graph with du + dv ≥ 6 to each edge e = uv, L(G) is a graph with

minimum degree δ ≥ 4. The number edges in L(G) is m1 = 1
2

m0∑
i=1

di ≥ 1
2
(4m0) = 2m0 =

2n1, which implies that the graph L2(G) is hyperenergetic by Theorem 2.6. Note that the

minimum degree increases in the line graphs Lk(G) as k increases for k ≥ 2 and which

is at least 4. Hence mk ≥ 2nk, by Theorem 2.6, all the iterated line graphs Lk(G) are

hyperenergetic for k ≥ 2.

5 Spectra and Energy of complement of iterated line

graphs with the property ρ

Lemma 5.1. Let L(G) be the line graph of a graph G of order n0 and size m0. If

L(G) has non-negative eigenvalue λ1(j), then its complement L(G) has negative eigenvalue

λ1(m0−j+2) for j ∈ {2, 3, . . . ,m0}. In a particular case, if L(G) has eigenvalue −2, then

its complement L(G) has eigenvalue 1.

Proof. If G is a graph of order n0 and size m0, then its line graph L(G) is the graph

of order m0. If L(G) has non-negative eigenvalue λ1(j), then its complement L(G) has

eigenvalue λ1(m0−j+2) ≤ −1−λ1(j) by inequality 2, which is negative for j ∈ {2, 3, . . . ,m0}.

If −2 is the eigenvalue of L(G), then by Proposition 2.11 its eigenspace is orthogonal to

all one’s vector j. Now by using the Theorem 2.10, the eigenvalue −1 − (−2) = 1 is the

eigenvalue of L(G). This completes the proof.



Theorem 5.2. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1 − nk−1 for k ≥ 1, then the graphs Lk(G) for k ≥ 1

have exactly two positive eigenvalues which are spectral radius and 1 with multiplicity

mk−1 − nk−1 and

E(Lk(G)) = 2λk(1) +
E(Lk(G))

2
. (3)

Proof. It is given that the iterated line graphs Lk(G) of G for k ≥ 1 have all negative

eigenvalues equal to −2 with the multiplicity mk−1 − nk−1 = nk − nk−1. This implies

the remaining nk−1 eigenvalues of Lk(G) are non-negative. Now by Lemma 5.1, the

complement of iterated line graphs Lk(G) have negative eigenvalues λk(nk−j+2) for j ∈

{2, 3, . . . , nk−1} and positive eigenvalues λk(nk−j+2) = 1 for j ∈ {nk−1 + 1, . . . , nk}. The

only remaining eigenvalue of Lk(G) is spectral radius λk(1) which must be greater than

or equal to 1 and if Lk(G) is connected, then λk(1) > 1. Thus Lk(G) have exactly two

positive eigenvalues λk(1) and 1 with multiplicity nk − nk−1 for k ≥ 1. Hence energy of

Lk(G) is E(Lk(G)) = 2(λk(1) + nk − nk−1). But E(Lk(G)) = 4(nk − nk−1) as −2 is only

the negative eigenvalue of Lk(G) with the multiplicity nk − nk−1. Now with this we get

the required energy relation between E(Lk(G)) and E(Lk(G)) for k ≥ 1.

Corollary 5.3. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1− nk−1 for k ≥ 1, then the graphs Lk(G) and Lk(G)

for k ≥ 1 are equienergetic if and only if n−(Lk(G)) = λk(1).

Proof. The energy relation (3) between E(Lk(G)) and E(Lk(G)) by Theorem 5.2 can be

written as 2E(Lk(G))−E(Lk(G)) = 4λk(1) or E(Lk(G))−E(Lk(G)) = 4λk(1) −E(Lk(G)).

Now the graphs Lk(G) and Lk(G) for k ≥ 1 are equienergetic if and only if 4λk(1) −

E(Lk(G)) = 0 or 4λk(1) = E(Lk(G)). But E(Lk(G)) = 2(λk(1) + nk − nk−1), now with this

we get λk(1) = nk − nk−1. It is given that n−(Lk(G)) = nk − nk−1 which completes the

proof.

Remark 5.4. Recently Mojallal and Hansen in [27], the necessary and sufficient condition

for a regular graph G to be equienergetic with its complement G is given. In Corollary 5.3,

we extended the same to the non-regular iterated line graphs Lk(G).

Corollary 5.5. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1 − nk−1 for k ≥ 1, then the complement of iterated



line graphs Lk(G) of such graphs G are mutually equienergetic for k ≥ 1 if and only if

they have same spectral radius.

Proof. If G is the graph of order n0 and size m0, then the graphs Lk(G) have the order nk

and size mk. If the graphs Lk(G) satisfy the property ρ with −2 multiplicity mk−1−nk−1
for k ≥ 1, then all the iterated line graphs Lk(G) of such graphs G of same order n0 and

same size m0 are mutually equienergetic with energy 4(mk−1−nk−1). Now using this fact

in the energy relation (3) between E(Lk(G)) and E(Lk(G)) by Theorem 5.2 completes the

proof.

Example 5.6. If k ≥ 1, the graphs Lk(G1) and Lk(G2) in the Remark 4.7 are equiener-

getic as they have same quotient matrices and the fact that the spectral radius of a

quotient matrix coincides with the spectral radius of corresponding graph. Moreover, in

the Remark 4.7 if Hs1 and Hs2 are non co-spectral (co-spectral) graphs, then we get non

co-spectral (co-spectral) graphs Lk(G1) and Lk(G2) respectively for k ≥ 0 by using the

Proposition 2.16.

Remark 5.7. If k ≥ 1 then the results in Theorem 5.2, Corollary 5.3 and Corollary 5.5

holds true for the iterated line graphs Lk(G) in Theorem 4.6 to Theorem 4.18. Similarly,

if k ≥ 2 these results holds true for the iterated line graphs Lk(G) in Theorem 4.1 and

Corollary 4.3.

Remark 5.8. In [31] Ramane et al. obtained equienergetic regular graphs by means of

complement of iterated regular line graphs Lk(G) for k ≥ 2 by taking regular graphs

G of same order and same degree r ≥ 3 and thereby characterized large class of pairs

of non-trivial equienergetic regular graphs. It is noted that all the results in this paper

become particular case of Corollary 5.5 and Corollary 5.3.

Theorem 5.9. Let G be a graph with du + dv ≥ 6 to each edge e = uv in G, then the

graphs Lk(G) are hyperenergetic for k ≥ 2 if λk(1) ≤ nk−1
2

.

Proof. If G is the graph with du+dv ≥ 6 to each edge e = uv, then the iterated line graphs

Lk(G) are hyperenergetic for k ≥ 2 by Theorem 4.20, that is E(Lk(G)) ≥ 2(nk − 1). And

the energy relation (3) between E(Lk(G)) and E(Lk(G)) by Theorem 5.2 is

E(Lk(G)) = 2λk(1) +
E(Lk(G))

2
≥ 2λk(1) +

1

2
2(nk − 1) = 2λk(1) + (nk − 1).



But it is well known that λk(1)+λk(1) ≥ nk−1 which implies λk(1) ≥ nk−1−λk(1) ≥ nk−1−
nk−1

2
= nk−1

2
if λk(1) ≤ nk−1

2
. By using this we get E(Lk(G)) ≥ 2nk−1

2
+(nk−1) = 2(nk−1)

which completes the proof.

6 Other results

All the results so far discussed are non-bipartite iterated line graphs. Here we study

energy of some class of bipartite graphs by using iterated line graphs.

Theorem 6.1. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1−nk−1 for k ≥ 1, then E
(
Ebd(Lk(G))

)
= 2(3mk−1−

2nk−1). Thus, the graphs Ebd(Lk(G)) of such graphs G are mutually equienergetic for

k ≥ 1.

Proof. If the graphs Lk(G) satisfy the property ρ with −2 multiplicity mk−1 − nk−1 for

k ≥ 1, then the graphs Lk(G) have non-negative eigenvalues λk(j) for j ∈ {1, . . . , nk−1}.

Now using Theorem 2.14, the graphs Ebd(Lk(G)) have positive eigenvalues λk(j) + 1 for

j ∈ {1, . . . , nk−1} and 1 with multiplicity mk−1−nk−1. Hence the energy of Ebd(Lk(G)) is

E
(
Ebd(Lk(G))

)
= 2
( nk−1∑
j=1

(λk(j)+1)+mk−1−nk−1
)

= 2
( nk−1∑
j=1

λk(j)+mk−1
)
. But

nk−1∑
j=1

λk(j)−

2(mk−1 − nk−1) = 0 for the graphs Lk(G), which implies E
(
Ebd(Lk(G))

)
= 2(3mk−1 −

2nk−1). If there are graphs G of same order n0 and same size m0, then all the graphs

Ebd(Lk(G)) of such graphs G are mutually equienergetic with energy 2(3mk−1 − 2nk−1).

Theorem 6.2. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1−nk−1 for k ≥ 1, then E
(
Ebd(Lk(G))

)
= 2
(
2(λk(1) +

1) + 3mk−1 − 4nk−1
)
. Thus, all the graphs Ebd

(
Lk(G)

)
of such graphs G are mutually

equienergetic for k ≥ 1 if and only if the graphs Lk(G) have same spectral radius.

Proof. If the graphs Lk(G) satisfy the property ρ with −2 multiplicity mk−1 − nk−1

for k ≥ 1, then the graphs Lk(G) have negative eigenvalues λk(nk−j+2) ≤ −1 for j ∈

{2, 3, . . . , nk−1} and two positive eigenvalues, spectral radius λk(1) and 1 with multiplicity

mk−1 − nk−1 by Theorem 5.2. Now using Theorem 2.14, the graphs Ebd
(
Lk(G)

)
have

non-negative eigenvalues λk(1) + 1, 2 with multiplicity mk−1− nk−1 and −(λk(nk−j+2) + 1)

for j ∈ {2, 3, . . . , nk−1}. Hence, the energy of Ebd
(
Lk(G)

)
is E
(
Ebd

(
Lk(G)

))
= 2
(
λk(1) +



1+2(mk−1−nk−1)+
nk−1∑
j=2

(−λk(nk−j+2)−1)
)

= 2
(
λk(1)+1+2(mk−1−nk−1)−

nk−1∑
j=2

λk(nk−j+2)−

nk−1 + 1
)
. But

nk−1∑
j=2

λk(nk−j+2) + λk(1) + (mk−1 − nk−1) = 0 for the graphs Lk(G), which

implies E
(
Ebd

(
Lk(G)

))
= 2
(
2(λk(1) + 1) + 3mk−1− 4nk−1

)
. If there are graphs G of same

order n0 and same size m0, then all the graphs Ebd
(
Lk(G)

)
of such graphs G are mutually

equienergetic with energy 2
(
2(λk(1) + 1) + 3mk−1− 4nk−1

)
for k ≥ 1 if and only if λk(1) is

same for all the graphs Ebd
(
Lk(G)

)
as Lk(G) have same order nk and same size mk.

Remark 6.3. Yaoping Hou and Lixin Xu in [25] studied spectra and energy of Ebd
(
L2(G)

)
and Ebd

(
L2(G)

)
, where G is a r-regular graph of degree r ≥ 3, thereby characterized large

class of pairs of non-trivial bipartite equienergetic graphs Ebd
(
Lk(G)

)
and Ebd

(
Lk(G)

)
for k ≥ 2. It is noted that all these results become particular case of Theorem 6.1 and

Theorem 6.2.

Example 6.4. The graphs Ebd
(
Lk(G1)

)
andEbd

(
Lk(G2)

)
in the Remark 4.7 are equiener-

getic for k ≥ 1 as the graphs Lk(G1) and Lk(G2) have same quotient matrices and the

fact that the spectral radius of a quotient matrix coincides with the spectral radius of

corresponding graph. Moreover, in the Remark 4.7 if Hs1 and Hs2 are non co-spectral

(co-spectral) graphs, then we get non co-spectral (co-spectral) graphs Ebd
(
Lk(G1)

)
and

Ebd
(
Lk(G2)

)
respectively for k ≥ 0 by using Proposition 2.16.

Theorem 6.5. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy the

property ρ with −2 multiplicity mk−1 − nk−1 for k ≥ 1, then the graphs Ebd
(
Lk(G)

)
and

Ebd
(
Lk(G)

)
are equienergetic for k ≥ 1 if and only if λk(1) = n−(Lk(G)).

Proof. If the graphs Lk(G) satisfy the property ρ with −2 multiplicity mk−1 − nk−1

for k ≥ 1, then by Theorem 6.1, we have E
(
Ebd(Lk(G))

)
= 2(3mk−1 − 2nk−1) and

E
(
Ebd(Lk(G))

)
= 2

(
2(λk(1) + 1) + 3mk−1 − 4nk−1

)
from Theorem 6.2. With these, we

get E
(
Ebd(Lk(G))

)
= E

(
Ebd(Lk(G))

)
+ 2
(
2(λk(1) + 1) − 2nk−1

)
or E

(
Ebd(Lk(G))

)
−

E
(
Ebd(Lk(G))

)
= 4
(
λk(1)+1−nk−1

)
. Therefore, the graphs Ebd

(
Lk(G)

)
and Ebd

(
Lk(G)

)
are equienergetic for k ≥ 1 if and only if λk(1) = nk−1 − 1. But nk−1 − 1 = n−(Lk(G)) by

Theorem 5.2, which completes the proof.

Proposition 6.6. Let G be a graph of order n0 and size m0. If the graphs Lk(G) satisfy

the property ρ with −2 multiplicity mk−1 − nk−1 for k ≥ 1, then α
(
Lk(G)

)
≤ nk−1 and

α
(
Lk(G)

)
≤ n−

(
Lk(G)

)
+ 1.



Proof. If G is a graph of order n0, it is well known that n−(G) ≤ n0 − α(G). Using this

fact for the graphs Lk(G), we get mk−1 − nk−1 = nk − nk−1 ≤ nk − α
(
Lk(G)

)
which

implies α
(
Lk(G)

)
≤ nk−1 for k ≥ 1. Again using the fact for the graphs Lk(G), we get

nk−1 − 1 ≤ nk − α
(
Lk(G)

)
or −(nk − nk−1 + 1) ≤ −α

(
Lk(G)

)
which gives α

(
Lk(G)

)
≤

n−
(
Lk(G)

)
+ 1 for k ≥ 1.

The following is an interesting result on minimum order of a graph when the graph G and

its complement both connected with L(G) satisfying the property ρ is considered.

Theorem 6.7. The least order of a connected graph G with its line graph satisfying the

property % and connected G is 7.

Proof. There are exactly 13 non-isomorphic connected graphs of order up to 6 with their

line graphs satisfying the property %. They are C4, K4, K3,2, K5, K4,2, K3,3, K6 and the

following graphs in Figure 2.

One can see that none of the above graphs have connected complement. The only

connected graph of order 7 with its line graph satisfying the property % and having

connected complement is given in Figure 3, which completes the proof.



Conclusion

Our study on eigenvalues of iterated line graphs reveals that the majority of these graphs

have exact number of negative eigenvalues which are all equal to −2. Also, complements

these graphs have exact number of positive eigenvalues one more than that of multiplicity

of −2. Although we have presented many classes of iterated line graphs which have all

negative eigenvalues equal to −2 but still the question remains to characterize all such

graphs.
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