
UC Irvine
ICS Technical Reports

Title
Iterated nearest neighbors and finding minimal polytopes

Permalink
https://escholarship.org/uc/item/53z9k4zq

Authors
Eppstein, David
Erickson, Jeff

Publication Date
1992-06-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53z9k4zq
https://escholarship.org
http://www.cdlib.org/

Iterated Nearest Neighbors and

Finding Minimal Polytopes

David OEppstein and Jeff Erickson

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 92-71

June 30, 1992

Abstract

We introduce a new method for finding several types of optimal

k-point sets, minimizing perimeter, diameter, circumradius, and re

lated measures, by testing sets of the 0(k) nearest neighbors to each
point. We argue that this is better in a number of ways than pre

vious algorithms, which were based on high order Voronoi diagrams.
Our technique allows us for the first time to efficiently dynamize our

algorithms, to generalize them to higher dimensions, to find minimal

convex k-vertex polygons and polytopes, and to improve many previous
results. We achieve many of our results via a new algorithm for find

ing rectilinear nearest neighbors in the plane in time O(nlogn +kn).
Finally, we demonstrate a related method for finding k-point sets with

minimum boundary measure or volume in arbitrary dimensions, gen

eralizing our results for minimizing perimeter and an earlier result of

the first author for minimizing area.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

1 Introduction

A number of recent papers have discussed problems of selecting, from a set

of n points, the k points optimizing some particular criterion [2, 10, 13, 14].

Criteria that have been studied include diameter [2], variance [2], area of

the convex hull [13, 14], convex hull perimeter [2, 10, 14], and rectilinear

diameter and perimeter [2]. Such problems are useful in clustering, line
detection, statistical data analysis, and other geometric applications.

We study and improve known algorithms for many of these problems.

We also introduce dynamic versions of these problems, in which the optimum

must be maintained as the point set is updated. Our methods further gener

alize to higher dimensional versions of these problems. Our techniques apply

to "one-dimensional" measures including all of the problems cited above, ex

cept for the two-dimensional area measure, for which the best known time

bound remains O(n2 logn+k3 n2) [13].

Previous algorithms for these problems used the following method. An

ad hoc algorithm was determined, with time bounded by a polynomial 0(nc).

Then, it was shown that the optimum k-point set is contained in the set of

points labeling a single region of the order-O(k) Voronoi diagram. Con

structing the Voronoi diagram and searching the O(kn) such regions takes

a total time of O(nlogn + kc+ln). Aggarwal et al. [2] reduced the num

ber of regions to be searched from O(kn) to O(n). Thus the time becomes

0 (n log n + ken). However, there remains an anomaly in these time bounds:

if k is E>(n), the time is worse than the original O(nc) by a factor of n.

Thus at some point the device of higher order Voronoi diagrams becomes

worthless, and one must use a simpler algorithm.

We argue that, in this formulation, Voronoi diagrams should be replaced

by sets of the O(k}nearest neighbors to each point. There are several reasons

why we believe this. First, the reduction to O(n) regions to be searched is

immediate, and avoids the complicated analysis of Aggarwal et al. [2].

Second, by finding neighbors of neighbors, we show that the number of

regions can be further reduced to O(n/k), improving the time bounds by a

factor of k and eliminating the anomaly described above.

Third, our time bounds can be improved in a different way. The k nearest

neighbors can be found in time 0(kn log n), using Vaidya's algorithm [22].

For the rectilinear (L1 or L00) metric, we further improve this to 0 (n log n +

kn). Thus we get faster time bounds in the plane, even for problems such

as circumradius for which the reduction to Voronoi diagrams is immediate.

1

Fourth, our method lends itself well to dynamization. As points are

inserted one at a time, the neighbors of each new point may be computed

quickly using standard techniques. In contrast, the Voronoi diagram may

change by as many as n(n) edges at each insertion. Dynamic algorithms

have been studied for many important geometric optimization problems,

such as the closest pair, diameter, minimum spanning tree, and convex hull,

but this is the first time that dynamic algorithms have been described for

minimum measure subset problems.

Fifth, our approach generalizes to higher dimensions in a way that does

not work for Voronoi diagrams. In dimension d, even first order Voronoi

diagrams can have complexity !l(nrd/21); whereas, the nearest neighbors

can still be found in time O(nlogn) using Vaidya's algorithm [22].

Finally, by applying an old combinatorial result of Erdos and Szek

eres [15], we can generalize our techniques to find minimum measure convex

polygons and polytopes.

A slight variant of our approach provides a natural generalization of

our new minimum perimeter algorithm and the first author's minimum area

algorithm [13] into arbitrary dimensions. Instead of using the neighbors to

each point, we let each set of r points in the set define a particular polytope,

for some constant r defined by the measure we are trying to minimize, and

we examine the nearest neighbors to each polytope thus defined.

2 New Results

We present algorithms for the following problems.

• We find the k nearest rectilinear neighbors to each of a set of n points in

the plane, in time 0(n log n +kn), improving the previous O(kn log n)

bound [22].

• Given a set of n points in the plane, we find the k-point set minimizing

perimeter, L00 perimeter, circumradius, diameter, L00 diameter, or

variance. Our results are summarized in the first column of Table 1.

We improve all previous results [2, 10, 14], except for variance, which

we improve for certain values of k.

• We maintain minimal point sets in the plane as points are inserted,

under a variety of "one-dimensional" measures. Our results are sum-

2

Measure Static time bound Dynamic time bound

perimeter O(n logn + k3 n) O(k4 + log;.1 n)

L 00 perimeter O(n log n + k2n) O(k3 + log2 n)

circumradius O(n log n +kn log k) O(k2 log k + log2 n)

diameter O(n log n + k2n log2 k) O(k3 log2 k + log2 n)

L 00 diameter O(min{n log n +kn, n log2 n}) O(k log2 k + log2 n)

variance 0(k312n log n + k3 /2+t n) O(k3+t + log2 n)

Table 1. New results for finding minimum measure k-point sets, given n points in

the plane. (g is an arbitrarily small positive constant.)

Measure Time bounds

circumradius O(knlogn + kd- 1 nlog" k)

diameter O(kn log n + 20(k)n)

L 00 diameter O(knlogn + kd/ 2- 1 nlog2 k)

variance O(k(d+l)/ 2nlogn + kO(d~)nlogk)

boundary measure O(nd + 2ul.tJnd-l)

L 00 boundary measure O(nd + k2d-lnd-1)

volume O(knd logd+l n + 20(k)nd)

Table 2. New results for finding minimum measure k-point sets, given n points in

nd, for all d > 2.

marized in the second column of Table 1. No previous bounds are

known for any of these problems.

• Given a set of n points in Rd, with d > 2, we find the k-point set

minimizing circumradius, diameter, L 00 diameter, variance, boundary

measure, L00 boundary measure, or volume. Our results are summa

rized in Table 2. We improve previous algorithms for circumradius and

variance based on Voronoi diagrams, which run in time 0(nd+l) [2].

No previous bounds were known for the other problems. Our mini

mum volume algorithm generalizes previous results of the first author

on minimum area polygons [13].

• We generalize all of our results to k-point convex polygons and poly

topes. We derive time bounds with the same dependence on n as the

corresponding k-point set algorithms, but with an exponential depen-

3

dence on k. We know of no previous results for these problems, except

for a O(kn3) time bound on finding minimum perimeter k-gons [14],

which we improve for small k.

3 Rectilinear Nearest Neighbors

We now describe a data structure for finding m rectilinear nearest neighbors

in the plane. In the L1 metric, above and to the right of any point p, points

(x, y) are sorted by distance top by the values of the function x + y. If we

sort all points by these values, the nearest neighbors above and to the right

. of each point will be a subsequence of this sorted list. We combine neighbors

from each of the four directions to find the nearest neighbors overall.

Our data structure is in the form of a balanced binary tree over the

points, sorted by their y-coordinates. The tree root covers all n points, and

for each tree node with i points we split the points into two slabs, consisting

of the top i/2 and the bottom i/2 points. We build a data structure for each

slab, and recursively subdivide slabs until we reach sets of a single point.

Each input point will be in O(log n) slabs, and the points above and to the

right of any query point p can be interpreted as the union of points to the

right of p in 0 (log n) slabs above p.

We assume mis fixed. Without loss of generality m > log n. In each slab,

we wish to determine, for a query point p, the m nearest points to the right
of p. If we did this for all slabs, we would generate 0(m log n) neighbors, and

queries would be slower than we wish. Instead, we partition the neighbors

into chunks of 0(m/ log n) points. Our data structure will enable us to find

each succeeding chunk quickly, and we then combine chunks from different

slabs to give the final set of m neighbors.

Within a single slab, we sweep from left to right, maintaining a list of

points ordered by x + y. As we sweep across each point in the slab, we add

it to the list. The positions to add new points into the list can be found in

time 0(n) if the points are already sorted by x-coordinate. We would like

our data structure to reconstruct the state of this list at each time in the

sweep. This is a persistent offiine data structure problem [12], in which we

perform a number of updates (insertions into a linked list) and must then

query different versions of the data structure (the list at different times in
the sweep).

We maintain, at each point in the left to right sweep, a partition of the

4

sorted list of points into chunks of between m/ log n and 2m/ log n points

each. When a new point is inserted in the list, it is added to a chunk.

When this addition causes a chunk to have too many points, it is split into

smaller chunks. As we only need remember at most m neighbors to each

query point, we only need keep log n chunks, so as one chunk is split another

chunk may be removed from the end of the list.

To remember these manipulations we store the list of points in each

chunk just before the chunk is split, and the list of all log n chunks at the

same time. To find the neighbors for a query point p, we determine the next

time t after our left-to-right sweep crosses p, at which some chunk is split.

We then step through the sequence of chunks existing at time t. Each chunk

contains between m/ log n and 2m/ log n points, of which at least m/ log n

existed at the last time the chunk was split and hence are to the right of p.

We eliminate the other points to the left of p. Thus in time O(m/logn) we

can find each successive set of n(m/logn) neighbors in the slab.

The time and storage for remembering the points in each chunk is 0 (n).
However if m is small there are 0(n) times at which a chunk may split, and

hence 0 (n log n) storage for remembering the sequence of chunks at each

time. We remove this unwanted logarithmic factor with a data structure for

maintaining lists of O(logn) elements in a persistent offiine manner.

Lemma 3.1. Given a sequence of n insert and delete operations on a list,

such that the list length is always O(log n), we can construct in time and

space 0(n) a data structure such that, for any version of the list, we can

step through the list in time 0 (1) per step.

Proof: Break the sequence into O(n/logn) subsequences of O(logn) oper

ations each, and treat each subsequence separately. Within a subsequence,

there are O(log n) items initially, and O(log n) items inserted. List all items

by processing all the insert operations and none of the delete operations.

Represent this list as an array of pointers to items, so that the item in a

given position can be found in 0(1) time. Now represent each version of the

list by an O(logn)-bit integer, in which a one bit represents the presence of

the item at that position. Each insert or delete can be performed with 0(1)

steps of integer arithmetic, as can the operation of moving from one element

to the next in a given version of the list. D

By analogy to the atomic heaps of Fredman and Willard [17] we call this

data structure an atomic list. This completes the description of each slab,

which we summarize below.

5

Lemma 3.2. Given n points in the plane, sorted from left to right, we can

in O(n) time and space construct a data structure for which, given a value

x, we can find the points with the smallest values of x + y, in chunks of

0(m/ log n) points at a time, in time 0(m/ log n) per chunk. O

To finish the description of our data structure, we combine results from

the O(log n) slabs into which space above the query is divided. We use a

priority queue of one chunk from each slab. Each chunk's priority is the

largest value of x + y for any point in the chunk. We remove chunks one by

one from the queue; when we remove a chunk we insert the next chunk from

the same slab. Once we have removed chunks totalling at least m points,

any remaining neighbors will have smaller values of x + y than the priorities

of the chunks left in the queue. Such points must be in chunks already in the

queue, and we remove these chunks as well. This gives us O(log n) chunks

and hence 0(m) potential neighbors. We reduce this to m neighbors using

a linear time selection algorithm. Using a global list of all points, sorted by

x+y, we can represent priorities as O(logn)-bit integers, so we can perform

priority queue operations in 0 (1) time using atomic heaps [17].

Lemma 3.3. For any fixed m, we can preprocess a set of n points in the

plane, in time 0 (nlog n), so that the m nearest rectilinear neighbors to any

query point can be found in time O(m + logn).

Proof: The query time is O(m + logn), once we have determined the

version of the chunk list to use in each slab. For each slab, we maintain an

index from the left to right order of points into this sequence of versions. We

also index, for each slab, the relation between positions in the left to right

order of points in the slab, and the same positions in the two smaller slabs

into which it is divided. The position of the query point in the root slab

can be found by binary search, after which we can follow the indices to find

the list versions for all 0 (log n) slabs queried in 0 (log n) time. The time

to construct each slab is 0(n) assuming the points are sorted from left to

right. This sorted order can be maintained as slabs are split recursively, in

O(nlogn) total time. Thus all slabs can be constructed in time O(nlogn).
0

Theorem 3.1. We can find the m nearest rectilinear neighbors to each of

a set of n points in the plane, in time O(nlogn + mn). D

4 Iterated Neighbors

We now show that in any point set, in any dimensions, there is some point

for which there are few neighbors of neighbors. We state the result more gen

erally, in terms of spheres satisfying certain properties. Given two spheres

A and B, we say that A is entirely within B if the closure of A is contained

in the interior of B.

Lemma 4.1. Let S be a set of spheres, so that no sphere is entirely within

another sphere, and so that no sphere contains more than m centers of

spheres. Let S be the smallest sphere in S, and let U be the union of

spheres in Shaving centers in S. Then U contains O(m) sphere centers.

Proof: Let R denote the radius of S. Because no sphere in U contains S,

it follows that U is contained in a sphere of radius 3R. This larger sphere

can be partitioned into 0(1) regions, each with diameter R. If any of these

regions contained more than m centers, any sphere centered in such a region

either would contain too many centers or would be smaller than S. D

This result applies more generally to any family of homothetic convex

bodies, and hence to "spheres" in any metric. We apply this result to sets of

m nearest neighbors as follows. Given a point set, put a sphere around each

point at a radius determined by its mth nearest neighbor. This sphere will

contain exactly the m nearest neighbors of the point, and the set of all such

spheres will satisfy the conditions of the lemma. Therefore there is some

point for which them nearest neighbors have O(m) neighbors altogether.

This suggests the following algorithm outline. Suppose we can prove

that the optimal k-point set (according to some specified criterion), if it

contains a point, is contained in them nearest neighbors of that point. Sort

the points by the size of their neighbor spheres. Collect the neighbors of

the points in the smallest neighbor sphere, search for the optimal set among

them, and throw out the m + 1 points in the sphere. Repeat the preceding

step until all points are gone, but if a smallest neighbor sphere ever contains

less than k points, we throw out its center immediately, since that point

cannot possibly be in the optimal set. The size of the sets tested increases

by a constant factor, but the number of sets decreases from n to f n/kl
Thus we achieve a savings in time of O(k) over the nai.'ve algorithm.

In general, we will be able to use rectilinear nearest neighbors, even

for problems defined in the Euclidean metric; by our results above these

7

neighbors can be found in time 0(n log n + mn) in the plane. In higher

dimensions, we use Vaidya's 0(mn log n)-time algorithm [22].

Lemma 4.2. Letµ be a measure having the property that the minimum

measure k-point set is contained in the m nearest neighbors of each of its

points, and let f(m) be the time required to find the optimal k-point set

among m points. Then, given a set of n points in J?_d, we can find the

k-point subset minimizingµ, in time O(mnlogn + nf(m)/k), or in time

O(nlog n + mn + nf(m)/k) if d = 2. D

5 Finding Minimum Measure Sets

5 .1 Perimeter

We first demonstrate our technique on the minimum perimeter k-point set

proble~. The problem is to find, given a set of n points in the plane, a set

of k points for which the perimeter of the convex hull is minimized. This

was previously solved in O(k2nlog n + k5n) time by Dobkin et al. [10]; this

was improved by Aggarwal et al. [2] to 0(n log n + k4n). Eppstein et al. [14]

describe a dynamic programming algorithm that solves the problem in time

O(kn3); we use this algorithm as a subroutine.

Lemma 5.1. If a point p is in the minimum perimeter k-point set, then

the set is contained in the 0(k) nearest rectilinear neighbors of p.

Proof: Let q be the farthest point from p in the optimal set. Then the

entire set fits in a circle around p, of radius IPql, and the perimeter must be

at least 2lpqj. But we can partition the circle into 16 squares of perimeter

jpqj; if q is not among the 16k nearest points then some square must contain

at least k points, and would supply a k-point set with smaller perimeter. D

Theorem 5.1. We can find the minimum perimeter k-point subset of a

set of n points in the plane, in time O(nlogn + k3 n). D

This algorithm generalizes to minimize perimeter in any metric, but

we can do better in L 00 • The minimum L00 perimeter k-point set is the

set enclosable in the minimum perimeter axis-aligned rectangle. Aggarwal

et al. [2] solve this problem in time O(k2nlog n). We use their O(n3)-time

brute force algorithm as a subroutine.

8

Theorem 5.2. We can find the minimum L00 perimeter k-point subset of

a set of n points in the plane, in time O(nlogn + k2n). D

5.2 Circumradius

We now describe our algorithms for finding the k-point set contained in the

smallest sphere, given a set of n points in 'Rd. We improve previous time

bounds, due to Aggarwal et al. [2], of 0(n log n + k2n) in the plane and

0(nd+I) in higher dimensions. Their algorithms are based on higher order

Voronoi diagrams.

First we develop a new algorithm to use as a subroutine within each

neighbor set. Consider the related problem of placing a fixed-size sphere

so that it covers the maximum number of a given set of points. Once we

have a solution to this problem, we can apply Megiddo's parametric search

technique [19] to find the smallest sphere whose optimal placement covers k
(or more) points.

Lemma 5.2. We can find the minimum circumradius k-point subset of a

set of n points in R,d, in time 0(nd log2 n), or in time 0(n2 log n) if d = 2.

Proof: First consider the sphere placement problem. We fix each set of

d - 1 points and rotate a sphere around its affine hull, stopping whenever

a point enters or leaves the sphere. Each sweep requires time 0(n log n).

Degenerate cases, where the optimal sphere cannot be forced to be tangent

to d points, are handled in total time 0(nd-l). Thus, the entire sweep

algorithm takes time O(ndlogn). In the plane, we can solve this problem

in time O(n2), using a more complicated algorithm developed by Chazelle

and Lee [7].

To find minimum circumradius sets, we apply parametric searching with

Cole's trick [8]. Our sweep algorithm can be parallelized to run in O(log n)

steps on 0(nd) processors. Thus, the total time is 0(nd log2 n) in general,

and O(n2 logn) in the plane. D

Lemma 5.3. If a point pis in the minimum circumradius k-point set, then

the set is contained in the 0 (k) nearest neighbors of p.

Proof: Let R be the optimal circumradius. The minimum circumradius

set is contained in a sphere of radius 2R, centered at p. This sphere can

9

be covered by a constant number of spheres of radius R, none of which can

contain more than k points. O

Theorem 5.3. We can find the minimum circumradius k-point subset of a

set of n points in 'Rd, in time O(kn log n+kd-ln log2 k), or in time 0(n log n+

knlogk) if d = 2. o

5.3 Diameter

The diameter of a set is the largest distance between any two points in

the set. In the plane, Aggarwal et al. [2] show how to find the minimum

diameter k-point set, in time O(nlogn + k2·5 nlogk). It is noteworthy that

the problem can even be solved in polynomial time: the diameter must be

one of only 0(n 2) point distances, but it is not clear how to find a large set

of points having a given distance as diameter. Indeed, we know of no fully

polynomial algorithm for this problem in dimensions greater than two, so

we are forced to use a brute force approach.

Lemma 5.4. If p is in the minimum diameter k-point set, the set is con

tained in the 0(k) nearest neighbors of p.

Proof: Let D be the optimal diameter. The minimum circumradius set is

contained in a sphere of radius D, centered at p. This sphere can be covered

by a constant number of spheres of diameter D, none of which can contain

more thank points. O

Theorem 5.4. We can find the minimum diameter k-point subset of a set

ofn points in Rd, in time O(knlogn + 20(k)n), for all d > 2. D

We can do considerably better than this in the plane. Aggarwal et al.

solve this problem by reducing it to one of finding a maximum independent

set in a certain bipartite graph. For bipartite graphs, the maximum inde

pendent set and maximum matching are closely related (their cardinalities

add to the size of the point set) so matching techniques can be applied to

this problem.

We improve on the algorithm of Aggarwal et al. by solving a dynamic

matching problem. Given a point set S, and a distance D, let the graph

Gv(S) be defined as follows. The vertices of Gv(S) are simply the points

in S. An edge (p, q) will exist in the graph exactly when lpql > D; i.e., the

graph connects points that are sufficiently far apart.

10

Lemma 5.5. Given a set S of n points, and a maximum matching in

G v(S), we can insert or delete a single point in S, and update the maximum

matching, in time O(nlogn).

Proof: The update can only change the matching cardinality by one. If

the update is a deletion of a matched point, we remove its edge from the

matching and mark its mate as unmatched. Then whether the update is an
insertion or a deletion, the remaining problem is to find a single alternating

path connecting two unmatched points. If such a path is found, the matehing

size can be increased by changing the unmatched edges in it to matched

edges, and vice versa.

We will go through a process of marking points as odd or even. A point

is labeled odd (even) if it can be reached from an unmatched vertex by an

alternating path of odd (even) length. In each case we remember the last

edge on the path, so that the entire path can be reconstructed quickly. Once

we have performed this labeling, the existence of an alternating path can be

tested by testing if any two even points share an edge. This can be done in

0(n log n) time by finding the farthest pair of even points.

We will maintain a data structure for a point set P with the following
operations: (1) given point p, find some point in P farther than D from p,

or report that no such point exists; (2) delete a given point from P. As

noted by Aggarwal et al. [2], these operations can be performed in 0 (log n)

amortized time using the circular hull data structure of Hershberger and

Suri [18].

We start the labeling process by marking each unmatched point as even

(it has a zero length path to an unmatched point). We build the data

structure above, letting P consist of all unmarked points (initially, that is

simply the matched points). We then process each marked point in turn,

maintaining a queue of points that require processing. Processing an odd

point consists simply of marking its match even, adding it to the queue,

and removing it from P. We process the even points as follows. While an

unmarked point adjacent to the even point exists, we mark it odd, add it to

the queue, and remove it from P. Such a point can be found using the find

operation described above.

Once the queue is empty, all points are either marked or unreachable via

an alternating path. The number of data structure operations is O(n), as

each find operation either discovers a new point to be marked and removed

from P, or it is the last such operation performed in processing a given

11

point. Therefore the total time used is O(nlogn). D

Lemma 5.6. We can find the minimum diameter k-point subset of a set

of n points in the plane, in time O(n3 log2 n).

Proof: There are O(n2) possible diameters; we select among them using

binary search. To test a given diameter D, we test each point p separately

to see whether there is some k-point set with diameter lpql shorter than D.

If so, the set is contained in the lune formed by intersecting two circles of

diameter D, one centered on p and one centered at distance D from p. We

sweep a lune around p, covering in turn O(n) different point sets; we must

test if any of these sets contains a small diameter k-point subset.

As noted by Aggarwal et al. [2], if Sis the point set contained in a given

lune, then Gv(S) is bipartite, and a subset of S with diameter less than D

is exactly an independent set in Gv(S). If Mis the maximum matching in

Gv(S), the size of the maximum independent set is ISl-IMI. Thus to test if

there is a large subset with small diameter, we may compute this matching.

We do this for all 0(n) positions of the lune around p, in time 0(n2 log n),
using the dynamic matching algorithm of Lemma 5.5.

There are 0(n) points for which this must be done, so the time to test a

single distance D is 0(n3 log n). The binary search used to find the optimal

distance adds a further logarithmic factor to this bound. D

Theorem 5.5. We can find the minimum diameter k-point subset of a set

of n points in the plane, in time O(nlogn + k2 nlog2 k). D

5.4 L00 Diameter

The algorithms. in the previous two sections generalize to circumradius and

diameter in any metric, but we can make a significant improvement in L00 •

The minimum L00 diameter (equivalently, minimum L00 circumradius) k

point set is the set enclosable in the smallest axis-aligned hypercube. In.
the plane, Aggarwal et al. [2] give an algorithm for this problem, based on

higher order L00 Voronoi diagrams, that takes time 0(k 2n log n).

Our approach is almost identical to that used to find minimum circum

radius sets. We sta.rt with the problem of placing a fixed-size axis-aligned

hypercube so that it covers the maximum number of points. Once we solve

12

this problem, we can parameterize it to find the smallest axis-parallel hy

percube that covers at least k points. Instead of parametric search, we use

a much simpler binary search among the possible L 00 diameters.

Lemma 5.7. We can find the minimum L00 diameter k-point subset of a
set of n points in R,d, in time O(nd/2 log2 n).

Proof: Finding the optimal placement of a hypercube is equivalent to find

ing the deepest point in an arrangement of hypercubes. We can easily adapt

an algorithm of Overmars and Yap [21], originally applied to Klee's measure

problem, to find the deepest point in an arrangement of axis-aligned boxes

in time O(ndf2 Iogn).

To find the optimal hypercube size, we search along each coordinate

axis as follows. We sort the points by the appropriate coordinate, and

define a triangular matrix M of coordinate differences. These differences

are potential L 00 diameters. We will not actually build M, since that would

require time fl(n2), but we can access any entry in constant time. We binary

search through M for the optimal diameter. Since the rows and columns of

Mare sorted, we can select any element in time O(nlogn) [16]. Thus, each

step of the search is dominated by Overmars and Yap's algorithm, and the

entire search requires time O(ndf2 Iog 2 n). D

Theorem 5.6. We can find the minimum L 00 diameter k-point subset of

a set of n points in nd, in time O(kniogn + kd/2- 1nlog2 k), or in time

O(min{nlogn +kn, nlog2 n}) if d = 2. D

5.5 Variance

The variance of a set of points is defined as the sum of the squares of the

distances between pairs of points, divided by the number of points in the

set. Equivalently, the variance is the sum of the squares of the distances

from each point to the centroid of the set [2].

Lemma 5.8. If a point pis in the minimum variance k-point set, then the

set is contained in the O(kdf2+1) nearest neighbors of p.

Proof: Let V and R be the variance and circumradius of the minimum

variance set, and let p be any point in the set. We easily verify that 2R2 <

13

V $ kR2 • The set is contained in a sphere centered at p with radius 2R.

We can cover the sphere with O(kdf2) spheres of radius R../27k. If any of

these spheres contain k points, their variance is at most 2R2 , which is less

than V. D

Aggarwal et al. [2] prove that the minimum variance k-point set corre

sponds to one of the cells in the kth order Voronoi diagram of the original n

points and derive an algorithm that uses time 0(n log n + k 2 n) in the plane.

Agarwal and Matousek [1] recently discovered an algorithm for constructing

planar order-k Voronoi diagrams in time O(kn 1 +~). 1 Combining their algo

rithm with our techniques, we can find minimum variance sets in the plane

in time 0 (n log n + k 2 +~ n), which is slightly worse than the existing bound.

Lemma 5.9. Let p be a point in the minimum variance k-point set, and

let V be the set's variance. Suppose for some constant c > O, the distance

between p and the set's centroid is cVV{k. Then the set is contained in the

0(ck(d+I)/2) nearest Euclidean neighbors of p.

Proof: Let S be the sphere, centered at the optimal set's centroid, which

just contains the set, and let R be the radius of S. S contains exactly k

points [2]. Then S is contained in a sphere centered at p with radius R +
2cVV{k. The space between the two spheres can be covered by 0(ck(d-l)/2)

spheres of radius VV{k, none of which can contain k points. D

The two previous bounds are tight in the worst case. Consider a sphere

S1 of radius ./k, containing a smaller sphere S2 of radius ./k /2 tangent to S1.
There is a cluster of k - 2 points with arbitrarily small variance around the

center of S2, but excluding the center itself. The surface of 82 and the space

between the two spheres are both filled with as many clusters of k/2 points

as possible, such that every two clusters have at least unit distance between

them. One of these clusters contains the center of S1 ; another contains the

tangent point of the two spheres. The minimum variance set consists of

the large cluster, the center of S1 , and the tangent point. For each point

p in this set, every sphere centered at p that contains the set also contains

n(k(d+l)/2) other points, and the set contains the 0(kd/2+1)th neighbor of

the center of S1.

1 Throughout this paper, e: represents an arbitrarily small positive constant. Multi

plicative constants hidden by the 0-notation may depend on e:.

14

To find the minimum variance set quickly, we need to find a center point

within radius cJVTf of the optimal set's centroid, for some constant c > O,
so that we can search for the optimal set among its 0(ck(d+l)/2) nearest

neighbors. We describe an algorithm for finding a set of 0(n/ k) points

which contains at least one center point.

Theorem 5.7. We can fi.nd the minimum variance k-point subset of a set

of n points in the plane, in time 0 (k312n log n + k312+E n).

Proof: We begin by finding the k/2 neighbors to every point, in time

O(nlogn +kn). Repeatedly find the point p with the smallest neighbor

sphere. If neither p nor any of the neighbors of p are already marked non

central, mark pas a potential center point, and mark its neighbors as noncen

tral. Each central point marks k /2 noncentral points, so this process gives

us O(n/k) potential center points. The entire marking process requires time

O(nlog'n +kn).

Most of the points in the minimal set are within y'2V/ k of the centroid,

so every point within this radius has at least k/2 neighbors within 2y'2V/k.

Let p be one of these points. When the marking algorithm reaches p, one

of two things happens. (1) We could mark p as a potential center point.

(2) We could ignore p because p or one of its neighbors is marked noncentral,

in which case some point within 5y'2V/ k of the centroid is already marked

central. Thus, at least one of the potential center points is an actual center

point.

After we find the potential center points, we find the O(k312) nearest

Euclidean neighbors of each potential center point in time O(k312nlogn).

We then test each of the O(n/k) neighbor sets in time O(k5/2+E) using

Agarwal and Matousek's Voronoi diagram algorithm [1]. D

This matches or improves previous time bounds for all k in 0(nE) n
fl(log2 n). For smaller values of k, the O(nlogn + k2 n)-time algorithm of

Aggarwal et al. is faster. For larger values of k, Agarwal and Matousek's

Voronoi diagram algorithm is faster. Finally, for k = n(n1-E), the fastest

algorithm is based on another Voronoi algorithm of Chazelle and Edelsbrun

ner [5] and runs in time O(n2 log2 n).

Mulmuley describes an algorithm that constructs the kth order Voronoi

diagram of a set of n points in Rd, in time O(krE1¥-lnL ¥J log n+ kdn2) [20].

To find minimum variance sets in higher dimensions, we use Mulmuley's

15

algorithm as a subroutine within each neighbor set. We improve the previous

time bound of O(nd+I) [2].

Theorem 5.8. We can find the minimum variance k-point subset of a set

of n points in 'Rd, in time O(k(d+I)/2 nlog n + p(d)nlog k), where v(d) =

d2t3d if dis even, and d2+:d-l if dis odd. D

6 Dynamization

We now show how to turn our planar algorithms into dynamic data struc

tures, that can maintain the minimum measure k-point set as points are

inserted. Our algorithm is simply to maintain a data structure that can de

termine, for each new point, its O(k) nearest neighbors. Then if that point

is part of a set improving the previous optimum, that set will be a subset of

these neighbors, and can be found using the methods already described.

Lemma 6.1. Letµ be a measure having the property that the minimum

measure k-point set is contained in the m nearest neighbors of each of its

points, and let f(m) be the time required to find the optimal k-point set

among m points. Then in the plane, we can maintain the k-point set min

imizing µ as points are inserted in time O(f(m) + log2 n + mlogn) per

insertion.

Proof: We apply a standard dynamic-to-static reduction technique for de

composable searching problems [3] to the rectilinear nearest neighbor data

structure of Lemma 3.3. D

Theorem 6.1. We can maintain the minimum measure k-point set in the

plane as points are inserted, with the following insertion times: 0(k4 +
log2 n) for perimeter, 0 (k3 + log2 n) for L00 perimeter, 0 (k2 log k + log2 n)

for circumradius, O(k3 log2 k + log2 n) for diameter, O(klog2 k + log2n) for

L00 diameter, and O(k3±e + log2 n) for variance. D

We can dynamize our higher dimensional results in a similar manner, us

ing a dynamic nearest neighbor data structure of Agarwal and Matousek [1],

with results that are just slightly better than brute force.

16

Figure l. Extremal points, extremal simplices, and bounding boxes in 'R3

7 Minimizing Volume and Boundary Measure

Eppstein [13] proves that the minimum area k-point subset of a set of points

in the plane is contained in the O(k) nearest neighbors to the line segment

connecting its two farthest points. In this section, we demonstrate a natural

generalization of this result to arbitrary dimensions. We also generalize our

results for finding minimum perimeter sets in the plane.

Let T be some r-dimensional polytope in Rd, with r < d. Given a

point p, we define the orthogonal distance from p to T to be the Euclidean

distance from p to its orthogonal projection onto aff(T), which we denote p'.

We call p an orthogonal neighbor of T if and only if p' E T. We can compute

the nearest orthogonal neighbors to any polytope with fixed complexity in

linear time.

Given a set of points A in Rd, and an arbitrary point p0 EA, we define

the series of extremal points, extremal simplices, and bounding boxes of A

with respect to po, denoted Pi, Si, and Bi, respectively. While these se

quences depend on the initial point po, the properties we derive hold for all

initial points.

We define Bo = So = p0 • For each i ~ d, Pi is the point in A farthest

from the affine hull of Si-l· Si= conv(Si-l,Pi)· Bi is the convex hull of two

copies of Bi_1, one containing Pi and one and equal distance from Bi-1 in

the opposite direction, situated so that Bi-l C Bi, and adjacent facets of Bi

meet at right angles. For any set A, we have Sd(A) C conv(A) C Bd(A).

See Figure 1.

Volume and boundary measure share the following property. For some

constant r, the minimum measure k-point set is contained in them nearest

orthogonal neighbors to the bounding box of its first r extremal points (with

respect to any point in the set). For measures with this property, we have

17

the following algorithm outline for finding minimum measure sets. For each

set of r points, there are r possible bounding boxes. For each box, we find

its m nearest orthogonal neighbors, and search for the minimum measure

set among them.

Lemma 7.1. Letµ be a measure having the property that the minimum

measure k-point set A is contained in the m nearest orthogonal neighbors

of Br(A), and let f(m) be the time required to find the optimal k-point

set among m points. Then, given a set of n points in Rd, we can find the

k-point subset minimizingµ, in time O(nr+I + nr f(m)). 0

We know of no fully polynomial time algorithm to find minimum volume

or boundary measure sets, except in the plane [14, 13]. A nai."ve algorithm

runs in time O(G)kld/21), by explicitly computing the convex hull of every

k-point subset [4]. We use this algorithm as a subroutine.

Throughout this section, we let IAI and l8AI denote the volume and

boundary measure of the convex hull of A. The following lemma relates the

volumes of bounding boxes and extremal simplices.

Proof: The volume of ad-dimensional cone is bh/d, where bis the (d-1)

dimensional measure of the base and h is the distance between the apex

and the affine hull of the base. The volume of a d-dimensional box with the

same base measure and height is bh.

We prove the lemma by induction. The lemma holds (trivially) when

d = 0. Let hd denote the distance between Pd and aff(Sd-1). Using the

volume formulae above, we have ISdl = hdlSd-11/d and IBdl = 2hd1Bd-II·
Therefore, IBdl/ISdl = 2dlBd-1 l/ISd-1I· The closed form follows directly
from the inductive hypothesis. D

7 .1 Boundary Measure

Given a set A in Rd, we define its bounding cylinder C(A) as the set of

points no farther orthogonally from Bd_ 2 (A) than Pd-1(A), and we define

B'(A) as the smallest box containing C(A). We have Sd-i(A) C conv(A) C

C(A) c B'(A). See Figure 2.

The following lemma relates the boundary measure of any set A with

the boundary measure of B'(A).

18

Figure 2. A bounding cylinder and its box in R,3

Lemma 7.3. For all Ac nd, l8B'(A)I < 2d-1d!l8AI.

Proof: B' has 2d facets. Four of the facets have measure equal to IBd-11·

Let hi denote the distance between Pi and aff (Si-l). Since hd-1 < hi for

all i < d - 1, the rest of the facets of B' have measure smaller than IBd-1 I·
Therefore, l8B'I < 2dlBd-1I = 2ddlSd-1I, by Lemma 7.2. The lemma follows

from the observation that l8AI > 2ISd_1(A)I. D

Lemma 7 .4. The minimum boundary measure set A is contained in the

O(k) nearest orthogonal neighbors to Bd_ 2(A).

Proof: Let s(d) denote f2 · d! <f-rl We divide B' (A) into s(d)d congruent

pieces by slicing parallel to each opposite pair of facets s(d) times. Each

piece has boundary measure l8B'(A)l/s(d)d-l < l8B'(A)l/2d-1d!. By the

previous lemma, this is less than l8AI, so no piece can contain more than

k - 1 points. Thus, B'(A) contains at most s(d)d(k - 1) = O(k) points.

Since C(A) C B'(A), C(A) also contains O(k) points. The points in C(A)

are the nearest orthogonal neighbors of Bd-2(A). D

Theorem 7.1. We can find the minimum boundary measure k-point sub

set of a set of n points in 'Rd, in time 0(nd + 20(k)nd-l). o

We can generalize L00 perimeter into higher dimensions as follows. We

define the L00 boundary measure of a set A as the boundary measure of the

smallest axis-parallel hyperrectangle enclosing A. Using techniques similar

to those used to prove the previous theorem, we have the following result.

Theorem 7.2. We can find the minimum L00 boundary measure k-point

subset of a set of n points in 'Rd, in time 0(nd + k2d-lnd-l). o

19

7.2 Volume

While it is possible to derive a relatively efficient minimum volume algorithm

using orthogonal neighbors, we can do better if we use vertical neighbors, as

Eppstein [13] does in his minimum-area algorithm. We say that a point pis

a vertical neighbor of a polytope T if the line through p parallel to the dth

coordinate axis intersects T.

Given a set A in nd and an arbitrary point Po E A, we define a series of

vertical extremal points, extremal simplices, and bounding boxes, which we

denote p'[, Si, and Bi, respectively. As before, we define S0 = B0 = p0. For

all 1 :::; i :::; d, p'[is the point in A farthest along the ith coordinate axis from

aff(Si_1). Si= conv(Si_1 ,p'[). B'[is the convex hull of two copies of B'f_ 1 ,

displaced equal distances in opposite directions along the ith coordinate axis,

one containing p'[. For any set A, we have SJ(A) C A C BJ(A). Clearly,

Lemma 7.1 still holds if we consider vertical neighbors to B~(A) instead

of orthogonal neighbors to Br(A), and Lemma 7.2 also applies to vertical

bounding boxes and extremal simplices.

Lemma 7.5. The minimum volume set A is contained in the O(k) nearest

vertical neighbors of BJ_1 (A).

Proof: We divide BJ(A) into 2dd! congruent convex pieces. By Lemma 7.2,

each piece has the same volume as SJ(A). Since IAI 2:: ISJ(A)I, no piece can

contain more than k points. The points in BJ(A) are the nearest vertical

neighbors of BJ_1 (A). D

We now describe an efficient algorithm for finding nearest vertical neigh

bors to (d-1)-dimensional boxes. First consider the simpler problem of find

ing nearest neighbors to hyperplanes. We use geometric duality to transform

the problem into finding, in an arrangement of hyperplanes, the k closest

hyperplanes above some query point. Vertical point-hyperplane distances in

the dual space are the same as the corresponding vertical hyperplane-point

distances in the primal space. Thus, we can solve this problem by vertical

ray-shooting in the dual space. We will use the following result of Agarwal

and Matousek [1].

Lemma 7.6 (Agarwal and Matousek [1]). We can preprocess a set of

n points in nd, in time O(nld/2J+e:), so that the k nearest neighbors to a

query hyperplane can be found in time O(klogn). D

20

We make use of a technique devel_oped by Chazelle et al. [6] for answer

ing simplex range queries. Given a data structure to solve some arbitrary

geometric problem, they build on top of it another structure that limits the

problem to the points within an arbitrary halfspace. The resulting data

structure can be built in time O(nd+e + P(n)), where P(n) is the prepro

cessing time required for the original structure; and queries are answered in

time O(Q(n)logn), where Q(n) is the original query time.

Lemma 7.7. We can preprocess a set ofn points in Rd, in time O(nd-l+e),

so that the k nearest vertical neighbors to a query (d - !)-dimensional box

can be found in time O(klogd+l n).

Proof: It suffices to find vertical neighbors to simplices, since every box

can be split into a constant number of simplices, and neighbors can be

merged in time 0 (k). We build d levels of the half space data structure of

Chazelle et al. one for each (d - 2)-face of the query simplex, on top of

Agarwal and Matousek's vertical ray shooting data structure. Since all the

hyperplanes are vertical, we actually apply the halfspace construction in

Rd-I, by ignoring the dth coordinate of every point. O

Theorem 7.3. We can fi.nd the minimum volume k-point subset of a set

ofn points in Rd, in time O(kndlogd+i n + 20(k)nd). o

8 Finding Minimal Convex Sets

We achieve results for finding minimal k-vertex convex polygons and poly

topes by applying one of the oldest results in combinatorial geometry.

Lemma 8.1 (Erdos and Szekeres [15]). Given ES2(k):::; (2;_.=-24)+1 points

in general position in the plane, some k points form the vertices of a convex

polygon. D

Lemma 8.2. Given ESd(k):::; (2;_.=-24) + 1 points in general position in Rd,

some k points form the vertices of a convex polytope.

Proof: Project a set of ES2 (k) points in Rd down to any plane. By

Lemma 8.1, some k points in the projection form a convex polygon. The

preimage of those k points forms a convex polytope in Rd. D

21

This gives us an upper bound of ESd(k) = 0(4k). Erdos and Szekeres

also conjecture that ES2(k) = 2k-2 +1 and prove that this is a lower bound.

Tightening the bounds on this function remains one of the outstanding open

problems in combinatorial geometry [9]. We know of no bounds on ESd(k)
other than those stated here, but it is clear that the function decreases with

increasing d. Clearly, any reduction of the upper bound on ESd(k) would

speed up our algorithms.

Using the previous lemma, we can generalize all of our results, both

static and dynamic, to find minimum measure convex sets. The resulting

time bounds have the same dependence on n as the corresponding k-point

set results, but with an exponential dependence on k.

For each of the measures we consider, if the minimum measure set is

contained in the m nearest neighbors to each of its points, then the mini

mum measure convex set is contained in the O(m4k /k) nearest neighbors to

each of its points. Our proof technique is identical to the one used for our

earlier neighbor counting lemmas. We describe a convex body, typically a

sphere, that contains the minimum measure set. We then divide the body

into small pieces, such that if any piece contains 0(4k) pieces, then it neces

sarily contains a k-point convex set with smaller measure then the original

minimum measure set.

Theorem 8.1. We can find the convex k-gon with minimum perimeter or

L 00 perimeter, in time O(nlogn+26kn). We can maintain the convex k-gon

with minimum perimeter or L 00 perimeter as points are inserted, in time

0(26kk + log2 n) per insertion.

Proof: The minimum perimeter convex k-gon is contained in the 0(4k)

nearest neighbors to each of its points. Eppstein et al. (14] describe a dy

namic programming algorithm to find minimum perimeter k-gons in time

O(kn3). Using their algorithm as a subroutine, we achieve a static time

bound of O(nlogn + k(4k)3n/k) = O(nlogn + 26kn). The dynamic time

bound follows directly from Lemma 6.1. Our algorithms work under any

metric. O

Theorem 8.2. vf'e can find the convex k-gon with minimum circumradius

or L 00 diameter, in time O(nlogn + 210kn/k). We can maintain the convex

k-gon with minimum circumradius or L 00 diameter as points are inserted,

in time 0(210k + log2 n) per insertion.

22

Measure Static time bound Dynamic time bound

perimeter O(nlogn+26.cn) 0(26.ck +log" n)

Loo perimeter O(nlogn + 26,.n) 0(26,. k + log2 n)

circumradius O(nlogn + 210,.n/k) 0(210,. + log2 n)

L00 diameter O(nlogn+210,.n/k) 0(210,. + log2 n)

diameter O(n log n + 221cl+O(k)n) 0(221cl+o(r.) + log2 n)

variance O(n logn + 221cl+r. lg k+O(k)n) 0(221cl+r. lg r.+o(r.) + log2 n)

Table 3. New results for finding minimum measure convex k-gons, given n points

in the plane. (Compare Table 1.)

Proof: The minimum circumradius convex k-point set is contained in the

0(4k) nearest neighbors to each of its points. Edelsbrunner and Guibas [11]

describe an algorithm that finds, given a set of n points, the largest (car

dinality) convex subset that includes a given leftmost point, in time O(n2).

For each point p and each circumcircle containing it, rotate the points within

the circle so that pis leftmost, and find the largest convex subset contain

ing p. Since each point is on O(n2) circumcircles, the resulting algorithm

finds the minimum circumradius convex k-gon in time O(n5). We use this

algorithm as a subroutine. D

We are unable to generalize our planar diameter and variance algorithms,

or any of our algorithms in higher dimensions, to find minimal convex sets.

Consequently, we must use brute force within the neighbor sets, and our

resulting time bounds are heavily exponential in k. Nevertheless, for suffi

ciently small k, our algorithms are faster than brute force. We summarize

our planar results in Table 3, and our higher dimensional results in Table 4.

9 Conclusions and Open Problems

We have presented several algorithms for finding minimum measure k-point

sets under a variety of measures, both in the plane and in higher dimensions.

Our results are based on a common method. Given a set of points, we

compute the nearest neighbors to each subset of r points, where r is a small

constant determined by the relevant measure, and then search within each

neighbor set using another algorithm. For most of the measures we have

examined, r = 1. For these measures, we can reduce the number of neighbor

23

Measure Time bound

circumradius 0(22kn log n + 22k·+o(k)n)

diameter 0(22kn log n + 22k2+0(k)n)

L 00 diameter 0(22kn log n + 22k2+0(k)n)

variance 0(4kk(d-l)/2nlogn + 22k2+~klgk+O(k)n)
boundary measure O(nd + 22P+O(k)nd-1)

L 00 boundary measure O(nd + 22k2+o(k)nd-1)

volume 0(22knd logd+l n + 221:,+0(k)nd)

Table 4. New results for finding minimum measure k-vertex convex polytopes, given

n points in nd, for all d > 2. (Compare Table 2.)

sets to search down to 0(n/ k) by finding neighbors of neighbors. Our planar

results were achieved through the use of a new algorithm that finds the m

nearest rectilinear neighbors to n points, in time 0(n log n + mn). We have

also presented versions of our algorithms which maintain minimum measure

sets as points are inserted and versions which find, or dynamically maintain,

minimum measure convex sets.

Our results suggest several open problems. None of our results is known

to be optimal. Faster algorithms, or matching lower bounds, would be in

teresting. In particular, is it possible to find higher-dimensional k-point sets
with minimum diameter, volume, or boundary measure without resorting to

brute force? Eppstein et al. [14] present a dynamic programming algorithm

for solving a variety of minimum and maximum measure problems in the

plane, but it seems highly unlikely that their approach can be adapted to

higher dimensional problems. Similarly, we have been unable to general

ize our minimum diameter algorithm, or the earlier algorithms of Aggarwal

et al. [2], into higher dimensions.

Are there faster algorithms for finding nearest neighbors? An efficient

technique for finding neighbors to (d - 2)-fl.ats might also lead to a faster

minimum boundary measure algorithm. Finally, is it possible to find recti

linear neighbors to points in higher dimensions in o(mn log n) time?

References

[1] P. K. Agarwal and J. Matousek. Ray shooting and parametric search.

24

In 24th ACM Symp. Theory Comput., pages 517-526, 1992.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with min

imum diameter and related problems. J. Algorithms, 12:38-56, 1991.

(3] J. L. Bentley and J. B. Saxe. Decomposable searching problems I:

Static-to-dynamic transformation. J. Algorithms, 1:301-358, 1980.

(4] B. Chazelle. An optimal convex hull algorithm and new results on

cuttings. In 32nd IEEE Symp. Found. Comput. Sci., pages 29-38, 1991.

(5] B. Chazelle and H. Edelsbrunner. An improved algorithm for construct

ing kth_order Voronoi diagrams. IEEE Trans. Comput., C-36:1349-

1354, 1987.

[6] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for

simplex range searching and new zone theorems. In 6th ACM Symp.

Co'mput. Geom., pages 23-33, 1990.

[7] B. M. Chazelle and D. T. Lee. On a circle placement problem. Com

puting, 36:1-16, 1986.

[8] R. Cole. Slowing down sorting networks to obtain faster sorting algo

rithms. J. ACM, 34:200-208, 1987.

(9] H. P. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in

Geometry. Springer-Verlag, 1990.

[10] D. P. Dobkin, R. L. Drysdale, and L. J. Guibas. Finding smallest

polygons. In Advances in Computing Research, Vol. 1, pages 181-214.

JAI Press, 1983.

[11] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrange

ment. J. Comput. Syst. Sci., 38:165-194, 1989.

[12] D. Eppstein. Persistence, offi.ine algorithms, and space compaction.

Technical Report 91-54, Dept. Information and Comput. Sci., U. C.

Irvine, 1991.

[13] D. Eppstein. New algorithms for minimum area k-gons. In 3rd ACM

SIAM Symp. Discrete Algorithms, pages 83-88, 1992.

[14) D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding mini

mum area k-gons. Discrete Comput. Geom., 7:45-58, 1992.

25

[15] P. Erdos and G. Szekeres. A combinatorial problem in geometry. Com

positio Math., 2:463-470, 1935.

(16] G. N. Frederickson and D. B. Johnson. The complexity of selection

and ranking in X + Y and matrices with sorted rows and columns.

J. Comput. Syst. Sci., 24:197-208, 1982.

[17] F. W. Fredman and D. E. Willard. Trans-dichotomous algorithms

for minimum spanning trees and shortest paths. In 31st IEEE Symp.

Found. Comput. Sci., pages 719-725, 1990.

[18] J. Hershberger and S. Suri. Finding tailored partitions. In 5th ACM

Symp. Comput. Geom., pages 255-265, 1989.

[19] N. Megiddo. Applying parallel computation algorithms in the design of

serial algorithms. J. ACM, 30:852-865, 1983.

[20] K. Mulmuley. Output sensitive construction of levels and Voronoi di

agrams in Rd of order 1 to k. In 22nd ACM Symp. Theory Comput.,

pages 322-330, 1990.

[21] M. H. Overmars and C.-K. Yap. New upper bounds in Klee's measure

problem. SIAM J. Comput., 20:1034-1045, 1991.

[22] P. M. Vaidya. An 0(n log n) algorithm for the all-nearest-neighbors

problem. Discrete Comput. Geom., 4:101-115, 1989.

26

