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Tech. Report 92-71 
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Abstract 

We introduce a new method for finding several types of optimal 

k-point sets, minimizing perimeter, diameter, circumradius, and re

lated measures, by testing sets of the 0( k) nearest neighbors to each 
point. We argue that this is better in a number of ways than pre

vious algorithms, which were based on high order Voronoi diagrams. 
Our technique allows us for the first time to efficiently dynamize our 

algorithms, to generalize them to higher dimensions, to find minimal 

convex k-vertex polygons and polytopes, and to improve many previous 
results. We achieve many of our results via a new algorithm for find

ing rectilinear nearest neighbors in the plane in time O(nlogn +kn). 
Finally, we demonstrate a related method for finding k-point sets with 

minimum boundary measure or volume in arbitrary dimensions, gen

eralizing our results for minimizing perimeter and an earlier result of 

the first author for minimizing area. 
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may be protected 
by Copyright Law 
(Title 17 U.S.C.) 





1 Introduction 

A number of recent papers have discussed problems of selecting, from a set 

of n points, the k points optimizing some particular criterion [2, 10, 13, 14]. 

Criteria that have been studied include diameter [2], variance [2], area of 

the convex hull [13, 14], convex hull perimeter [2, 10, 14], and rectilinear 

diameter and perimeter [2]. Such problems are useful in clustering, line 
detection, statistical data analysis, and other geometric applications. 

We study and improve known algorithms for many of these problems. 

We also introduce dynamic versions of these problems, in which the optimum 

must be maintained as the point set is updated. Our methods further gener

alize to higher dimensional versions of these problems. Our techniques apply 

to "one-dimensional" measures including all of the problems cited above, ex

cept for the two-dimensional area measure, for which the best known time 

bound remains O(n2 logn+k3 n2) [13]. 

Previous algorithms for these problems used the following method. An 

ad hoc algorithm was determined, with time bounded by a polynomial 0( nc). 

Then, it was shown that the optimum k-point set is contained in the set of 

points labeling a single region of the order-O(k) Voronoi diagram. Con

structing the Voronoi diagram and searching the O(kn) such regions takes 

a total time of O(nlogn + kc+ln). Aggarwal et al. [2] reduced the num

ber of regions to be searched from O(kn) to O(n). Thus the time becomes 

0 ( n log n + ken). However, there remains an anomaly in these time bounds: 

if k is E>(n), the time is worse than the original O(nc) by a factor of n. 

Thus at some point the device of higher order Voronoi diagrams becomes 

worthless, and one must use a simpler algorithm. 

We argue that, in this formulation, Voronoi diagrams should be replaced 

by sets of the O(k}nearest neighbors to each point. There are several reasons 

why we believe this. First, the reduction to O(n) regions to be searched is 

immediate, and avoids the complicated analysis of Aggarwal et al. [2]. 

Second, by finding neighbors of neighbors, we show that the number of 

regions can be further reduced to O(n/k), improving the time bounds by a 

factor of k and eliminating the anomaly described above. 

Third, our time bounds can be improved in a different way. The k nearest 

neighbors can be found in time 0( kn log n ), using Vaidya's algorithm [22]. 

For the rectilinear ( L1 or L00 ) metric, we further improve this to 0 ( n log n + 

kn). Thus we get faster time bounds in the plane, even for problems such 

as circumradius for which the reduction to Voronoi diagrams is immediate. 
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Fourth, our method lends itself well to dynamization. As points are 

inserted one at a time, the neighbors of each new point may be computed 

quickly using standard techniques. In contrast, the Voronoi diagram may 

change by as many as n( n) edges at each insertion. Dynamic algorithms 

have been studied for many important geometric optimization problems, 

such as the closest pair, diameter, minimum spanning tree, and convex hull, 

but this is the first time that dynamic algorithms have been described for 

minimum measure subset problems. 

Fifth, our approach generalizes to higher dimensions in a way that does 

not work for Voronoi diagrams. In dimension d, even first order Voronoi 

diagrams can have complexity !l(nrd/21); whereas, the nearest neighbors 

can still be found in time O(nlogn) using Vaidya's algorithm [22]. 

Finally, by applying an old combinatorial result of Erdos and Szek

eres [15], we can generalize our techniques to find minimum measure convex 

polygons and polytopes. 

A slight variant of our approach provides a natural generalization of 

our new minimum perimeter algorithm and the first author's minimum area 

algorithm [13] into arbitrary dimensions. Instead of using the neighbors to 

each point, we let each set of r points in the set define a particular polytope, 

for some constant r defined by the measure we are trying to minimize, and 

we examine the nearest neighbors to each polytope thus defined. 

2 New Results 

We present algorithms for the following problems. 

• We find the k nearest rectilinear neighbors to each of a set of n points in 

the plane, in time 0( n log n +kn), improving the previous O(kn log n) 

bound [22]. 

• Given a set of n points in the plane, we find the k-point set minimizing 

perimeter, L00 perimeter, circumradius, diameter, L00 diameter, or 

variance. Our results are summarized in the first column of Table 1. 

We improve all previous results [2, 10, 14], except for variance, which 

we improve for certain values of k. 

• We maintain minimal point sets in the plane as points are inserted, 

under a variety of "one-dimensional" measures. Our results are sum-

2 



Measure Static time bound Dynamic time bound 

perimeter O(n logn + k3 n) O(k4 + log;.1 n) 

L 00 perimeter O(n log n + k2n) O(k3 + log2 n) 

circumradius O(n log n +kn log k) O(k2 log k + log2 n) 

diameter O(n log n + k2n log2 k) O(k3 log2 k + log2 n) 

L 00 diameter O(min{n log n +kn, n log2 n}) O(k log2 k + log2 n) 

variance 0( k312n log n + k3 /2+t n) O(k3+t + log2 n) 

Table 1. New results for finding minimum measure k-point sets, given n points in 

the plane. (g is an arbitrarily small positive constant.) 

Measure Time bounds 

circumradius O(knlogn + kd- 1 nlog" k) 

diameter O(kn log n + 20(k)n) 

L 00 diameter O(knlogn + kd/ 2- 1 nlog2 k) 

variance O(k(d+l)/ 2nlogn + kO(d~)nlogk) 

boundary measure O(nd + 2ul.tJnd-l) 

L 00 boundary measure O(nd + k2d-lnd-1) 

volume O(knd logd+l n + 20(k)nd) 

Table 2. New results for finding minimum measure k-point sets, given n points in 

nd, for all d > 2. 

marized in the second column of Table 1. No previous bounds are 

known for any of these problems. 

• Given a set of n points in Rd, with d > 2, we find the k-point set 

minimizing circumradius, diameter, L 00 diameter, variance, boundary 

measure, L00 boundary measure, or volume. Our results are summa

rized in Table 2. We improve previous algorithms for circumradius and 

variance based on Voronoi diagrams, which run in time 0( nd+l) [2]. 

No previous bounds were known for the other problems. Our mini

mum volume algorithm generalizes previous results of the first author 

on minimum area polygons [13]. 

• We generalize all of our results to k-point convex polygons and poly

topes. We derive time bounds with the same dependence on n as the 

corresponding k-point set algorithms, but with an exponential depen-
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dence on k. We know of no previous results for these problems, except 

for a O(kn3 ) time bound on finding minimum perimeter k-gons [14], 

which we improve for small k. 

3 Rectilinear Nearest Neighbors 

We now describe a data structure for finding m rectilinear nearest neighbors 

in the plane. In the L1 metric, above and to the right of any point p, points 

(x, y) are sorted by distance top by the values of the function x + y. If we 

sort all points by these values, the nearest neighbors above and to the right 

. of each point will be a subsequence of this sorted list. We combine neighbors 

from each of the four directions to find the nearest neighbors overall. 

Our data structure is in the form of a balanced binary tree over the 

points, sorted by their y-coordinates. The tree root covers all n points, and 

for each tree node with i points we split the points into two slabs, consisting 

of the top i/2 and the bottom i/2 points. We build a data structure for each 

slab, and recursively subdivide slabs until we reach sets of a single point. 

Each input point will be in O(log n) slabs, and the points above and to the 

right of any query point p can be interpreted as the union of points to the 

right of p in 0 (log n) slabs above p. 

We assume mis fixed. Without loss of generality m > log n. In each slab, 

we wish to determine, for a query point p, the m nearest points to the right 
of p. If we did this for all slabs, we would generate 0( m log n) neighbors, and 

queries would be slower than we wish. Instead, we partition the neighbors 

into chunks of 0( m/ log n) points. Our data structure will enable us to find 

each succeeding chunk quickly, and we then combine chunks from different 

slabs to give the final set of m neighbors. 

Within a single slab, we sweep from left to right, maintaining a list of 

points ordered by x + y. As we sweep across each point in the slab, we add 

it to the list. The positions to add new points into the list can be found in 

time 0( n) if the points are already sorted by x-coordinate. We would like 

our data structure to reconstruct the state of this list at each time in the 

sweep. This is a persistent offiine data structure problem [12], in which we 

perform a number of updates (insertions into a linked list) and must then 

query different versions of the data structure (the list at different times in 
the sweep). 

We maintain, at each point in the left to right sweep, a partition of the 
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sorted list of points into chunks of between m/ log n and 2m/ log n points 

each. When a new point is inserted in the list, it is added to a chunk. 

When this addition causes a chunk to have too many points, it is split into 

smaller chunks. As we only need remember at most m neighbors to each 

query point, we only need keep log n chunks, so as one chunk is split another 

chunk may be removed from the end of the list. 

To remember these manipulations we store the list of points in each 

chunk just before the chunk is split, and the list of all log n chunks at the 

same time. To find the neighbors for a query point p, we determine the next 

time t after our left-to-right sweep crosses p, at which some chunk is split. 

We then step through the sequence of chunks existing at time t. Each chunk 

contains between m/ log n and 2m/ log n points, of which at least m/ log n 

existed at the last time the chunk was split and hence are to the right of p. 

We eliminate the other points to the left of p. Thus in time O(m/logn) we 

can find each successive set of n(m/logn) neighbors in the slab. 

The time and storage for remembering the points in each chunk is 0 ( n). 
However if m is small there are 0( n) times at which a chunk may split, and 

hence 0 ( n log n) storage for remembering the sequence of chunks at each 

time. We remove this unwanted logarithmic factor with a data structure for 

maintaining lists of O(logn) elements in a persistent offiine manner. 

Lemma 3.1. Given a sequence of n insert and delete operations on a list, 

such that the list length is always O(log n ), we can construct in time and 

space 0( n) a data structure such that, for any version of the list, we can 

step through the list in time 0 ( 1) per step. 

Proof: Break the sequence into O(n/logn) subsequences of O(logn) oper

ations each, and treat each subsequence separately. Within a subsequence, 

there are O(log n) items initially, and O(log n) items inserted. List all items 

by processing all the insert operations and none of the delete operations. 

Represent this list as an array of pointers to items, so that the item in a 

given position can be found in 0(1) time. Now represent each version of the 

list by an O(logn)-bit integer, in which a one bit represents the presence of 

the item at that position. Each insert or delete can be performed with 0(1) 

steps of integer arithmetic, as can the operation of moving from one element 

to the next in a given version of the list. D 

By analogy to the atomic heaps of Fredman and Willard [17] we call this 

data structure an atomic list. This completes the description of each slab, 

which we summarize below. 
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Lemma 3.2. Given n points in the plane, sorted from left to right, we can 

in O(n) time and space construct a data structure for which, given a value 

x, we can find the points with the smallest values of x + y, in chunks of 

0( m/ log n) points at a time, in time 0( m/ log n) per chunk. O 

To finish the description of our data structure, we combine results from 

the O(log n) slabs into which space above the query is divided. We use a 

priority queue of one chunk from each slab. Each chunk's priority is the 

largest value of x + y for any point in the chunk. We remove chunks one by 

one from the queue; when we remove a chunk we insert the next chunk from 

the same slab. Once we have removed chunks totalling at least m points, 

any remaining neighbors will have smaller values of x + y than the priorities 

of the chunks left in the queue. Such points must be in chunks already in the 

queue, and we remove these chunks as well. This gives us O(log n) chunks 

and hence 0( m) potential neighbors. We reduce this to m neighbors using 

a linear time selection algorithm. Using a global list of all points, sorted by 

x+y, we can represent priorities as O(logn)-bit integers, so we can perform 

priority queue operations in 0 ( 1) time using atomic heaps [17]. 

Lemma 3.3. For any fixed m, we can preprocess a set of n points in the 

plane, in time 0 ( nlog n), so that the m nearest rectilinear neighbors to any 

query point can be found in time O(m + logn). 

Proof: The query time is O(m + logn), once we have determined the 

version of the chunk list to use in each slab. For each slab, we maintain an 

index from the left to right order of points into this sequence of versions. We 

also index, for each slab, the relation between positions in the left to right 

order of points in the slab, and the same positions in the two smaller slabs 

into which it is divided. The position of the query point in the root slab 

can be found by binary search, after which we can follow the indices to find 

the list versions for all 0 (log n) slabs queried in 0 (log n) time. The time 

to construct each slab is 0( n) assuming the points are sorted from left to 

right. This sorted order can be maintained as slabs are split recursively, in 

O(nlogn) total time. Thus all slabs can be constructed in time O(nlogn). 
0 

Theorem 3.1. We can find the m nearest rectilinear neighbors to each of 

a set of n points in the plane, in time O(nlogn + mn). D 



4 Iterated Neighbors 

We now show that in any point set, in any dimensions, there is some point 

for which there are few neighbors of neighbors. We state the result more gen

erally, in terms of spheres satisfying certain properties. Given two spheres 

A and B, we say that A is entirely within B if the closure of A is contained 

in the interior of B. 

Lemma 4.1. Let S be a set of spheres, so that no sphere is entirely within 

another sphere, and so that no sphere contains more than m centers of 

spheres. Let S be the smallest sphere in S, and let U be the union of 

spheres in Shaving centers in S. Then U contains O(m) sphere centers. 

Proof: Let R denote the radius of S. Because no sphere in U contains S, 

it follows that U is contained in a sphere of radius 3R. This larger sphere 

can be partitioned into 0(1) regions, each with diameter R. If any of these 

regions contained more than m centers, any sphere centered in such a region 

either would contain too many centers or would be smaller than S. D 

This result applies more generally to any family of homothetic convex 

bodies, and hence to "spheres" in any metric. We apply this result to sets of 

m nearest neighbors as follows. Given a point set, put a sphere around each 

point at a radius determined by its mth nearest neighbor. This sphere will 

contain exactly the m nearest neighbors of the point, and the set of all such 

spheres will satisfy the conditions of the lemma. Therefore there is some 

point for which them nearest neighbors have O(m) neighbors altogether. 

This suggests the following algorithm outline. Suppose we can prove 

that the optimal k-point set (according to some specified criterion), if it 

contains a point, is contained in them nearest neighbors of that point. Sort 

the points by the size of their neighbor spheres. Collect the neighbors of 

the points in the smallest neighbor sphere, search for the optimal set among 

them, and throw out the m + 1 points in the sphere. Repeat the preceding 

step until all points are gone, but if a smallest neighbor sphere ever contains 

less than k points, we throw out its center immediately, since that point 

cannot possibly be in the optimal set. The size of the sets tested increases 

by a constant factor, but the number of sets decreases from n to f n/kl 
Thus we achieve a savings in time of O(k) over the nai.'ve algorithm. 

In general, we will be able to use rectilinear nearest neighbors, even 

for problems defined in the Euclidean metric; by our results above these 
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neighbors can be found in time 0( n log n + mn) in the plane. In higher 

dimensions, we use Vaidya's 0( mn log n )-time algorithm [22]. 

Lemma 4.2. Letµ be a measure having the property that the minimum 

measure k-point set is contained in the m nearest neighbors of each of its 

points, and let f( m) be the time required to find the optimal k-point set 

among m points. Then, given a set of n points in J?_d, we can find the 

k-point subset minimizingµ, in time O(mnlogn + nf(m)/k), or in time 

O(nlog n + mn + nf(m)/k) if d = 2. D 

5 Finding Minimum Measure Sets 

5 .1 Perimeter 

We first demonstrate our technique on the minimum perimeter k-point set 

proble~. The problem is to find, given a set of n points in the plane, a set 

of k points for which the perimeter of the convex hull is minimized. This 

was previously solved in O(k2nlog n + k5n) time by Dobkin et al. [10]; this 

was improved by Aggarwal et al. [2] to 0( n log n + k4n ). Eppstein et al. [14] 

describe a dynamic programming algorithm that solves the problem in time 

O(kn3 ); we use this algorithm as a subroutine. 

Lemma 5.1. If a point p is in the minimum perimeter k-point set, then 

the set is contained in the 0( k) nearest rectilinear neighbors of p. 

Proof: Let q be the farthest point from p in the optimal set. Then the 

entire set fits in a circle around p, of radius IPql, and the perimeter must be 

at least 2lpqj. But we can partition the circle into 16 squares of perimeter 

jpqj; if q is not among the 16k nearest points then some square must contain 

at least k points, and would supply a k-point set with smaller perimeter. D 

Theorem 5.1. We can find the minimum perimeter k-point subset of a 

set of n points in the plane, in time O(nlogn + k3 n). D 

This algorithm generalizes to minimize perimeter in any metric, but 

we can do better in L 00 • The minimum L00 perimeter k-point set is the 

set enclosable in the minimum perimeter axis-aligned rectangle. Aggarwal 

et al. [2] solve this problem in time O(k2nlog n). We use their O(n3)-time 

brute force algorithm as a subroutine. 
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Theorem 5.2. We can find the minimum L00 perimeter k-point subset of 

a set of n points in the plane, in time O(nlogn + k2n). D 

5.2 Circumradius 

We now describe our algorithms for finding the k-point set contained in the 

smallest sphere, given a set of n points in 'Rd. We improve previous time 

bounds, due to Aggarwal et al. [2], of 0( n log n + k2n) in the plane and 

0( nd+I) in higher dimensions. Their algorithms are based on higher order 

Voronoi diagrams. 

First we develop a new algorithm to use as a subroutine within each 

neighbor set. Consider the related problem of placing a fixed-size sphere 

so that it covers the maximum number of a given set of points. Once we 

have a solution to this problem, we can apply Megiddo's parametric search 

technique [19] to find the smallest sphere whose optimal placement covers k 
(or more) points. 

Lemma 5.2. We can find the minimum circumradius k-point subset of a 

set of n points in R,d, in time 0( nd log2 n ), or in time 0( n2 log n) if d = 2. 

Proof: First consider the sphere placement problem. We fix each set of 

d - 1 points and rotate a sphere around its affine hull, stopping whenever 

a point enters or leaves the sphere. Each sweep requires time 0( n log n ). 

Degenerate cases, where the optimal sphere cannot be forced to be tangent 

to d points, are handled in total time 0( nd-l ). Thus, the entire sweep 

algorithm takes time O(ndlogn). In the plane, we can solve this problem 

in time O(n2 ), using a more complicated algorithm developed by Chazelle 

and Lee [7]. 

To find minimum circumradius sets, we apply parametric searching with 

Cole's trick [8]. Our sweep algorithm can be parallelized to run in O(log n) 

steps on 0( nd) processors. Thus, the total time is 0( nd log2 n) in general, 

and O(n2 logn) in the plane. D 

Lemma 5.3. If a point pis in the minimum circumradius k-point set, then 

the set is contained in the 0 ( k) nearest neighbors of p. 

Proof: Let R be the optimal circumradius. The minimum circumradius 

set is contained in a sphere of radius 2R, centered at p. This sphere can 
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be covered by a constant number of spheres of radius R, none of which can 

contain more than k points. O 

Theorem 5.3. We can find the minimum circumradius k-point subset of a 

set of n points in 'Rd, in time O(kn log n+kd-ln log2 k), or in time 0( n log n+ 

knlogk) if d = 2. o 

5.3 Diameter 

The diameter of a set is the largest distance between any two points in 

the set. In the plane, Aggarwal et al. [2] show how to find the minimum 

diameter k-point set, in time O(nlogn + k2·5 nlogk). It is noteworthy that 

the problem can even be solved in polynomial time: the diameter must be 

one of only 0( n 2 ) point distances, but it is not clear how to find a large set 

of points having a given distance as diameter. Indeed, we know of no fully 

polynomial algorithm for this problem in dimensions greater than two, so 

we are forced to use a brute force approach. 

Lemma 5.4. If p is in the minimum diameter k-point set, the set is con

tained in the 0( k) nearest neighbors of p. 

Proof: Let D be the optimal diameter. The minimum circumradius set is 

contained in a sphere of radius D, centered at p. This sphere can be covered 

by a constant number of spheres of diameter D, none of which can contain 

more thank points. O 

Theorem 5.4. We can find the minimum diameter k-point subset of a set 

ofn points in Rd, in time O(knlogn + 20(k)n), for all d > 2. D 

We can do considerably better than this in the plane. Aggarwal et al. 

solve this problem by reducing it to one of finding a maximum independent 

set in a certain bipartite graph. For bipartite graphs, the maximum inde

pendent set and maximum matching are closely related (their cardinalities 

add to the size of the point set) so matching techniques can be applied to 

this problem. 

We improve on the algorithm of Aggarwal et al. by solving a dynamic 

matching problem. Given a point set S, and a distance D, let the graph 

Gv(S) be defined as follows. The vertices of Gv(S) are simply the points 

in S. An edge (p, q) will exist in the graph exactly when lpql > D; i.e., the 

graph connects points that are sufficiently far apart. 

10 



Lemma 5.5. Given a set S of n points, and a maximum matching in 

G v( S), we can insert or delete a single point in S, and update the maximum 

matching, in time O(nlogn). 

Proof: The update can only change the matching cardinality by one. If 

the update is a deletion of a matched point, we remove its edge from the 

matching and mark its mate as unmatched. Then whether the update is an 
insertion or a deletion, the remaining problem is to find a single alternating 

path connecting two unmatched points. If such a path is found, the matehing 

size can be increased by changing the unmatched edges in it to matched 

edges, and vice versa. 

We will go through a process of marking points as odd or even. A point 

is labeled odd (even) if it can be reached from an unmatched vertex by an 

alternating path of odd (even) length. In each case we remember the last 

edge on the path, so that the entire path can be reconstructed quickly. Once 

we have performed this labeling, the existence of an alternating path can be 

tested by testing if any two even points share an edge. This can be done in 

0( n log n) time by finding the farthest pair of even points. 

We will maintain a data structure for a point set P with the following 
operations: (1) given point p, find some point in P farther than D from p, 

or report that no such point exists; (2) delete a given point from P. As 

noted by Aggarwal et al. [2], these operations can be performed in 0 (log n) 

amortized time using the circular hull data structure of Hershberger and 

Suri [18]. 

We start the labeling process by marking each unmatched point as even 

(it has a zero length path to an unmatched point). We build the data 

structure above, letting P consist of all unmarked points (initially, that is 

simply the matched points). We then process each marked point in turn, 

maintaining a queue of points that require processing. Processing an odd 

point consists simply of marking its match even, adding it to the queue, 

and removing it from P. We process the even points as follows. While an 

unmarked point adjacent to the even point exists, we mark it odd, add it to 

the queue, and remove it from P. Such a point can be found using the find 

operation described above. 

Once the queue is empty, all points are either marked or unreachable via 

an alternating path. The number of data structure operations is O(n), as 

each find operation either discovers a new point to be marked and removed 

from P, or it is the last such operation performed in processing a given 
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point. Therefore the total time used is O(nlogn). D 

Lemma 5.6. We can find the minimum diameter k-point subset of a set 

of n points in the plane, in time O(n3 log2 n). 

Proof: There are O(n2) possible diameters; we select among them using 

binary search. To test a given diameter D, we test each point p separately 

to see whether there is some k-point set with diameter lpql shorter than D. 

If so, the set is contained in the lune formed by intersecting two circles of 

diameter D, one centered on p and one centered at distance D from p. We 

sweep a lune around p, covering in turn O(n) different point sets; we must 

test if any of these sets contains a small diameter k-point subset. 

As noted by Aggarwal et al. [2], if Sis the point set contained in a given 

lune, then Gv(S) is bipartite, and a subset of S with diameter less than D 

is exactly an independent set in Gv(S). If Mis the maximum matching in 

Gv(S), the size of the maximum independent set is ISl-IMI. Thus to test if 

there is a large subset with small diameter, we may compute this matching. 

We do this for all 0( n) positions of the lune around p, in time 0( n2 log n ), 
using the dynamic matching algorithm of Lemma 5.5. 

There are 0( n) points for which this must be done, so the time to test a 

single distance D is 0( n3 log n ). The binary search used to find the optimal 

distance adds a further logarithmic factor to this bound. D 

Theorem 5.5. We can find the minimum diameter k-point subset of a set 

of n points in the plane, in time O(nlogn + k2 nlog2 k). D 

5.4 L00 Diameter 

The algorithms. in the previous two sections generalize to circumradius and 

diameter in any metric, but we can make a significant improvement in L00 • 

The minimum L00 diameter (equivalently, minimum L00 circumradius) k

point set is the set enclosable in the smallest axis-aligned hypercube. In. 
the plane, Aggarwal et al. [2] give an algorithm for this problem, based on 

higher order L00 Voronoi diagrams, that takes time 0( k 2n log n ). 

Our approach is almost identical to that used to find minimum circum

radius sets. We sta.rt with the problem of placing a fixed-size axis-aligned 

hypercube so that it covers the maximum number of points. Once we solve 
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this problem, we can parameterize it to find the smallest axis-parallel hy

percube that covers at least k points. Instead of parametric search, we use 

a much simpler binary search among the possible L 00 diameters. 

Lemma 5.7. We can find the minimum L00 diameter k-point subset of a 
set of n points in R,d, in time O(nd/2 log2 n). 

Proof: Finding the optimal placement of a hypercube is equivalent to find

ing the deepest point in an arrangement of hypercubes. We can easily adapt 

an algorithm of Overmars and Yap [21], originally applied to Klee's measure 

problem, to find the deepest point in an arrangement of axis-aligned boxes 

in time O(ndf2 Iogn). 

To find the optimal hypercube size, we search along each coordinate 

axis as follows. We sort the points by the appropriate coordinate, and 

define a triangular matrix M of coordinate differences. These differences 

are potential L 00 diameters. We will not actually build M, since that would 

require time fl( n2 ), but we can access any entry in constant time. We binary 

search through M for the optimal diameter. Since the rows and columns of 

Mare sorted, we can select any element in time O(nlogn) [16]. Thus, each 

step of the search is dominated by Overmars and Yap's algorithm, and the 

entire search requires time O(ndf2 Iog 2 n). D 

Theorem 5.6. We can find the minimum L 00 diameter k-point subset of 

a set of n points in nd, in time O(kniogn + kd/2- 1nlog2 k), or in time 

O(min{nlogn +kn, nlog2 n}) if d = 2. D 

5.5 Variance 

The variance of a set of points is defined as the sum of the squares of the 

distances between pairs of points, divided by the number of points in the 

set. Equivalently, the variance is the sum of the squares of the distances 

from each point to the centroid of the set [2]. 

Lemma 5.8. If a point pis in the minimum variance k-point set, then the 

set is contained in the O(kdf2+1) nearest neighbors of p. 

Proof: Let V and R be the variance and circumradius of the minimum 

variance set, and let p be any point in the set. We easily verify that 2R2 < 
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V $ kR2 • The set is contained in a sphere centered at p with radius 2R. 

We can cover the sphere with O(kdf2 ) spheres of radius R../27k. If any of 

these spheres contain k points, their variance is at most 2R2 , which is less 

than V. D 

Aggarwal et al. [2] prove that the minimum variance k-point set corre

sponds to one of the cells in the kth order Voronoi diagram of the original n 

points and derive an algorithm that uses time 0( n log n + k 2 n) in the plane. 

Agarwal and Matousek [1] recently discovered an algorithm for constructing 

planar order-k Voronoi diagrams in time O(kn 1 +~). 1 Combining their algo

rithm with our techniques, we can find minimum variance sets in the plane 

in time 0 ( n log n + k 2 +~ n), which is slightly worse than the existing bound. 

Lemma 5.9. Let p be a point in the minimum variance k-point set, and 

let V be the set's variance. Suppose for some constant c > O, the distance 

between p and the set's centroid is cVV{k. Then the set is contained in the 

0( ck(d+I)/2 ) nearest Euclidean neighbors of p. 

Proof: Let S be the sphere, centered at the optimal set's centroid, which 

just contains the set, and let R be the radius of S. S contains exactly k 

points [2]. Then S is contained in a sphere centered at p with radius R + 
2cVV{k. The space between the two spheres can be covered by 0( ck(d-l)/2) 

spheres of radius VV{k, none of which can contain k points. D 

The two previous bounds are tight in the worst case. Consider a sphere 

S1 of radius ./k, containing a smaller sphere S2 of radius ./k /2 tangent to S1. 
There is a cluster of k - 2 points with arbitrarily small variance around the 

center of S2, but excluding the center itself. The surface of 82 and the space 

between the two spheres are both filled with as many clusters of k/2 points 

as possible, such that every two clusters have at least unit distance between 

them. One of these clusters contains the center of S1 ; another contains the 

tangent point of the two spheres. The minimum variance set consists of 

the large cluster, the center of S1 , and the tangent point. For each point 

p in this set, every sphere centered at p that contains the set also contains 

n( k(d+l)/2) other points, and the set contains the 0( kd/2+1 )th neighbor of 

the center of S1. 

1 Throughout this paper, e: represents an arbitrarily small positive constant. Multi

plicative constants hidden by the 0-notation may depend on e:. 
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To find the minimum variance set quickly, we need to find a center point 

within radius cJVTf of the optimal set's centroid, for some constant c > O, 
so that we can search for the optimal set among its 0( ck(d+l)/2) nearest 

neighbors. We describe an algorithm for finding a set of 0( n/ k) points 

which contains at least one center point. 

Theorem 5.7. We can fi.nd the minimum variance k-point subset of a set 

of n points in the plane, in time 0 ( k312n log n + k312+E n). 

Proof: We begin by finding the k/2 neighbors to every point, in time 

O(nlogn +kn). Repeatedly find the point p with the smallest neighbor 

sphere. If neither p nor any of the neighbors of p are already marked non

central, mark pas a potential center point, and mark its neighbors as noncen

tral. Each central point marks k /2 noncentral points, so this process gives 

us O(n/k) potential center points. The entire marking process requires time 

O(nlog'n +kn). 

Most of the points in the minimal set are within y'2V/ k of the centroid, 

so every point within this radius has at least k/2 neighbors within 2y'2V/k. 

Let p be one of these points. When the marking algorithm reaches p, one 

of two things happens. (1) We could mark p as a potential center point. 

(2) We could ignore p because p or one of its neighbors is marked noncentral, 

in which case some point within 5y'2V/ k of the centroid is already marked 

central. Thus, at least one of the potential center points is an actual center 

point. 

After we find the potential center points, we find the O(k312 ) nearest 

Euclidean neighbors of each potential center point in time O(k312nlogn). 

We then test each of the O(n/k) neighbor sets in time O(k5/2+E) using 

Agarwal and Matousek's Voronoi diagram algorithm [1]. D 

This matches or improves previous time bounds for all k in 0( nE) n 
fl(log2 n). For smaller values of k, the O(nlogn + k2 n)-time algorithm of 

Aggarwal et al. is faster. For larger values of k, Agarwal and Matousek's 

Voronoi diagram algorithm is faster. Finally, for k = n(n1-E), the fastest 

algorithm is based on another Voronoi algorithm of Chazelle and Edelsbrun

ner [5] and runs in time O(n2 log2 n). 

Mulmuley describes an algorithm that constructs the kth order Voronoi 

diagram of a set of n points in Rd, in time O(krE1¥-lnL ¥J log n+ kdn2 ) [20]. 

To find minimum variance sets in higher dimensions, we use Mulmuley's 
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algorithm as a subroutine within each neighbor set. We improve the previous 

time bound of O(nd+I) [2]. 

Theorem 5.8. We can find the minimum variance k-point subset of a set 

of n points in 'Rd, in time O(k(d+I)/2 nlog n + p(d)nlog k), where v(d) = 

d2t3d if dis even, and d2+:d-l if dis odd. D 

6 Dynamization 

We now show how to turn our planar algorithms into dynamic data struc

tures, that can maintain the minimum measure k-point set as points are 

inserted. Our algorithm is simply to maintain a data structure that can de

termine, for each new point, its O(k) nearest neighbors. Then if that point 

is part of a set improving the previous optimum, that set will be a subset of 

these neighbors, and can be found using the methods already described. 

Lemma 6.1. Letµ be a measure having the property that the minimum 

measure k-point set is contained in the m nearest neighbors of each of its 

points, and let f( m) be the time required to find the optimal k-point set 

among m points. Then in the plane, we can maintain the k-point set min

imizing µ as points are inserted in time O(f(m) + log2 n + mlogn) per 

insertion. 

Proof: We apply a standard dynamic-to-static reduction technique for de

composable searching problems [3] to the rectilinear nearest neighbor data 

structure of Lemma 3.3. D 

Theorem 6.1. We can maintain the minimum measure k-point set in the 

plane as points are inserted, with the following insertion times: 0( k4 + 
log2 n) for perimeter, 0 ( k3 + log2 n) for L00 perimeter, 0 ( k2 log k + log2 n) 

for circumradius, O(k3 log2 k + log2 n) for diameter, O(klog2 k + log2n) for 

L00 diameter, and O(k3±e + log2 n) for variance. D 

We can dynamize our higher dimensional results in a similar manner, us

ing a dynamic nearest neighbor data structure of Agarwal and Matousek [1], 

with results that are just slightly better than brute force. 

16 



Figure l. Extremal points, extremal simplices, and bounding boxes in 'R3 

7 Minimizing Volume and Boundary Measure 

Eppstein [13] proves that the minimum area k-point subset of a set of points 

in the plane is contained in the O(k) nearest neighbors to the line segment 

connecting its two farthest points. In this section, we demonstrate a natural 

generalization of this result to arbitrary dimensions. We also generalize our 

results for finding minimum perimeter sets in the plane. 

Let T be some r-dimensional polytope in Rd, with r < d. Given a 

point p, we define the orthogonal distance from p to T to be the Euclidean 

distance from p to its orthogonal projection onto aff(T), which we denote p'. 

We call p an orthogonal neighbor of T if and only if p' E T. We can compute 

the nearest orthogonal neighbors to any polytope with fixed complexity in 

linear time. 

Given a set of points A in Rd, and an arbitrary point p0 EA, we define 

the series of extremal points, extremal simplices, and bounding boxes of A 

with respect to po, denoted Pi, Si, and Bi, respectively. While these se

quences depend on the initial point po, the properties we derive hold for all 

initial points. 

We define Bo = So = p0 • For each i ~ d, Pi is the point in A farthest 

from the affine hull of Si-l· Si= conv(Si-l,Pi)· Bi is the convex hull of two 

copies of Bi_1, one containing Pi and one and equal distance from Bi-1 in 

the opposite direction, situated so that Bi-l C Bi, and adjacent facets of Bi 

meet at right angles. For any set A, we have Sd(A) C conv(A) C Bd(A). 

See Figure 1. 

Volume and boundary measure share the following property. For some 

constant r, the minimum measure k-point set is contained in them nearest 

orthogonal neighbors to the bounding box of its first r extremal points (with 

respect to any point in the set). For measures with this property, we have 
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the following algorithm outline for finding minimum measure sets. For each 

set of r points, there are r possible bounding boxes. For each box, we find 

its m nearest orthogonal neighbors, and search for the minimum measure 

set among them. 

Lemma 7.1. Letµ be a measure having the property that the minimum 

measure k-point set A is contained in the m nearest orthogonal neighbors 

of Br(A), and let f(m) be the time required to find the optimal k-point 

set among m points. Then, given a set of n points in Rd, we can find the 

k-point subset minimizingµ, in time O(nr+I + nr f(m)). 0 

We know of no fully polynomial time algorithm to find minimum volume 

or boundary measure sets, except in the plane [14, 13]. A nai."ve algorithm 

runs in time O(G)kld/21), by explicitly computing the convex hull of every 

k-point subset [4]. We use this algorithm as a subroutine. 

Throughout this section, we let IAI and l8AI denote the volume and 

boundary measure of the convex hull of A. The following lemma relates the 

volumes of bounding boxes and extremal simplices. 

Proof: The volume of ad-dimensional cone is bh/d, where bis the (d-1)

dimensional measure of the base and h is the distance between the apex 

and the affine hull of the base. The volume of a d-dimensional box with the 

same base measure and height is bh. 

We prove the lemma by induction. The lemma holds (trivially) when 

d = 0. Let hd denote the distance between Pd and aff(Sd-1). Using the 

volume formulae above, we have ISdl = hdlSd-11/d and IBdl = 2hd1Bd-II· 
Therefore, IBdl/ISdl = 2dlBd-1 l/ISd-1I· The closed form follows directly 
from the inductive hypothesis. D 

7 .1 Boundary Measure 

Given a set A in Rd, we define its bounding cylinder C(A) as the set of 

points no farther orthogonally from Bd_ 2 (A) than Pd-1(A), and we define 

B'(A) as the smallest box containing C(A). We have Sd-i(A) C conv(A) C 

C(A) c B'(A). See Figure 2. 

The following lemma relates the boundary measure of any set A with 

the boundary measure of B'(A). 
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Figure 2. A bounding cylinder and its box in R,3 

Lemma 7.3. For all Ac nd, l8B'(A)I < 2d-1d!l8AI. 

Proof: B' has 2d facets. Four of the facets have measure equal to IBd-11· 

Let hi denote the distance between Pi and aff ( Si-l). Since hd-1 < hi for 

all i < d - 1, the rest of the facets of B' have measure smaller than IBd-1 I· 
Therefore, l8B'I < 2dlBd-1I = 2ddlSd-1I, by Lemma 7.2. The lemma follows 

from the observation that l8AI > 2ISd_1(A)I. D 

Lemma 7 .4. The minimum boundary measure set A is contained in the 

O(k) nearest orthogonal neighbors to Bd_ 2(A). 

Proof: Let s( d) denote f2 · d! <f-rl We divide B' (A) into s( d)d congruent 

pieces by slicing parallel to each opposite pair of facets s( d) times. Each 

piece has boundary measure l8B'(A)l/s(d)d-l < l8B'(A)l/2d-1d!. By the 

previous lemma, this is less than l8AI, so no piece can contain more than 

k - 1 points. Thus, B'(A) contains at most s(d)d(k - 1) = O(k) points. 

Since C(A) C B'(A), C(A) also contains O(k) points. The points in C(A) 

are the nearest orthogonal neighbors of Bd-2(A). D 

Theorem 7.1. We can find the minimum boundary measure k-point sub

set of a set of n points in 'Rd, in time 0( nd + 20(k)nd-l ). o 

We can generalize L00 perimeter into higher dimensions as follows. We 

define the L00 boundary measure of a set A as the boundary measure of the 

smallest axis-parallel hyperrectangle enclosing A. Using techniques similar 

to those used to prove the previous theorem, we have the following result. 

Theorem 7.2. We can find the minimum L00 boundary measure k-point 

subset of a set of n points in 'Rd, in time 0( nd + k2d-lnd-l ). o 
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7.2 Volume 

While it is possible to derive a relatively efficient minimum volume algorithm 

using orthogonal neighbors, we can do better if we use vertical neighbors, as 

Eppstein [13] does in his minimum-area algorithm. We say that a point pis 

a vertical neighbor of a polytope T if the line through p parallel to the dth 

coordinate axis intersects T. 

Given a set A in nd and an arbitrary point Po E A, we define a series of 

vertical extremal points, extremal simplices, and bounding boxes, which we 

denote p'[, Si, and Bi, respectively. As before, we define S0 = B0 = p0. For 

all 1 :::; i :::; d, p'[ is the point in A farthest along the ith coordinate axis from 

aff(Si_1 ). Si= conv(Si_1 ,p'[). B'[ is the convex hull of two copies of B'f_ 1 , 

displaced equal distances in opposite directions along the ith coordinate axis, 

one containing p'[. For any set A, we have SJ(A) C A C BJ(A). Clearly, 

Lemma 7.1 still holds if we consider vertical neighbors to B~(A) instead 

of orthogonal neighbors to Br(A), and Lemma 7.2 also applies to vertical 

bounding boxes and extremal simplices. 

Lemma 7.5. The minimum volume set A is contained in the O(k) nearest 

vertical neighbors of BJ_1 (A). 

Proof: We divide BJ(A) into 2dd! congruent convex pieces. By Lemma 7.2, 

each piece has the same volume as SJ(A). Since IAI 2:: ISJ(A)I, no piece can 

contain more than k points. The points in BJ(A) are the nearest vertical 

neighbors of BJ_1 (A). D 

We now describe an efficient algorithm for finding nearest vertical neigh

bors to (d-1)-dimensional boxes. First consider the simpler problem of find

ing nearest neighbors to hyperplanes. We use geometric duality to transform 

the problem into finding, in an arrangement of hyperplanes, the k closest 

hyperplanes above some query point. Vertical point-hyperplane distances in 

the dual space are the same as the corresponding vertical hyperplane-point 

distances in the primal space. Thus, we can solve this problem by vertical 

ray-shooting in the dual space. We will use the following result of Agarwal 

and Matousek [1]. 

Lemma 7.6 (Agarwal and Matousek [1]). We can preprocess a set of 

n points in nd, in time O(nld/2J+e:), so that the k nearest neighbors to a 

query hyperplane can be found in time O(klogn). D 
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We make use of a technique devel_oped by Chazelle et al. [6] for answer

ing simplex range queries. Given a data structure to solve some arbitrary 

geometric problem, they build on top of it another structure that limits the 

problem to the points within an arbitrary halfspace. The resulting data 

structure can be built in time O(nd+e + P(n)), where P(n) is the prepro

cessing time required for the original structure; and queries are answered in 

time O(Q(n)logn), where Q(n) is the original query time. 

Lemma 7.7. We can preprocess a set ofn points in Rd, in time O(nd-l+e), 

so that the k nearest vertical neighbors to a query (d - !)-dimensional box 

can be found in time O(klogd+l n). 

Proof: It suffices to find vertical neighbors to simplices, since every box 

can be split into a constant number of simplices, and neighbors can be 

merged in time 0 ( k). We build d levels of the half space data structure of 

Chazelle et al. one for each ( d - 2)-face of the query simplex, on top of 

Agarwal and Matousek's vertical ray shooting data structure. Since all the 

hyperplanes are vertical, we actually apply the halfspace construction in 

Rd-I, by ignoring the dth coordinate of every point. O 

Theorem 7.3. We can fi.nd the minimum volume k-point subset of a set 

ofn points in Rd, in time O(kndlogd+i n + 20(k)nd). o 

8 Finding Minimal Convex Sets 

We achieve results for finding minimal k-vertex convex polygons and poly

topes by applying one of the oldest results in combinatorial geometry. 

Lemma 8.1 (Erdos and Szekeres [15]). Given ES2(k):::; (2;_.=-24)+1 points 

in general position in the plane, some k points form the vertices of a convex 

polygon. D 

Lemma 8.2. Given ESd(k):::; (2;_.=-24) + 1 points in general position in Rd, 

some k points form the vertices of a convex polytope. 

Proof: Project a set of ES2 (k) points in Rd down to any plane. By 

Lemma 8.1, some k points in the projection form a convex polygon. The 

preimage of those k points forms a convex polytope in Rd. D 
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This gives us an upper bound of ESd(k) = 0(4k). Erdos and Szekeres 

also conjecture that ES2(k) = 2k-2 +1 and prove that this is a lower bound. 

Tightening the bounds on this function remains one of the outstanding open 

problems in combinatorial geometry [9]. We know of no bounds on ESd(k) 
other than those stated here, but it is clear that the function decreases with 

increasing d. Clearly, any reduction of the upper bound on ESd(k) would 

speed up our algorithms. 

Using the previous lemma, we can generalize all of our results, both 

static and dynamic, to find minimum measure convex sets. The resulting 

time bounds have the same dependence on n as the corresponding k-point 

set results, but with an exponential dependence on k. 

For each of the measures we consider, if the minimum measure set is 

contained in the m nearest neighbors to each of its points, then the mini

mum measure convex set is contained in the O(m4k /k) nearest neighbors to 

each of its points. Our proof technique is identical to the one used for our 

earlier neighbor counting lemmas. We describe a convex body, typically a 

sphere, that contains the minimum measure set. We then divide the body 

into small pieces, such that if any piece contains 0( 4k) pieces, then it neces

sarily contains a k-point convex set with smaller measure then the original 

minimum measure set. 

Theorem 8.1. We can find the convex k-gon with minimum perimeter or 

L 00 perimeter, in time O(nlogn+26kn). We can maintain the convex k-gon 

with minimum perimeter or L 00 perimeter as points are inserted, in time 

0(26kk + log2 n) per insertion. 

Proof: The minimum perimeter convex k-gon is contained in the 0( 4k) 

nearest neighbors to each of its points. Eppstein et al. (14] describe a dy

namic programming algorithm to find minimum perimeter k-gons in time 

O(kn3 ). Using their algorithm as a subroutine, we achieve a static time 

bound of O(nlogn + k(4k)3n/k) = O(nlogn + 26kn). The dynamic time 

bound follows directly from Lemma 6.1. Our algorithms work under any 

metric. O 

Theorem 8.2. vf'e can find the convex k-gon with minimum circumradius 

or L 00 diameter, in time O(nlogn + 210kn/k). We can maintain the convex 

k-gon with minimum circumradius or L 00 diameter as points are inserted, 

in time 0(210k + log2 n) per insertion. 
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Measure Static time bound Dynamic time bound 

perimeter O(nlogn+26.cn) 0(26.ck +log" n) 

Loo perimeter O(nlogn + 26,.n) 0(26,. k + log2 n) 

circumradius O(nlogn + 210,.n/k) 0(210,. + log2 n) 

L00 diameter O(nlogn+210,.n/k) 0(210,. + log2 n) 

diameter O(n log n + 221cl+O(k)n) 0(221cl+o(r.) + log2 n) 

variance O(n logn + 221cl+r. lg k+O(k)n) 0(221cl+r. lg r.+o(r.) + log2 n) 

Table 3. New results for finding minimum measure convex k-gons, given n points 

in the plane. (Compare Table 1.) 

Proof: The minimum circumradius convex k-point set is contained in the 

0( 4k) nearest neighbors to each of its points. Edelsbrunner and Guibas [11] 

describe an algorithm that finds, given a set of n points, the largest (car

dinality) convex subset that includes a given leftmost point, in time O(n2 ). 

For each point p and each circumcircle containing it, rotate the points within 

the circle so that pis leftmost, and find the largest convex subset contain

ing p. Since each point is on O(n2 ) circumcircles, the resulting algorithm 

finds the minimum circumradius convex k-gon in time O(n5 ). We use this 

algorithm as a subroutine. D 

We are unable to generalize our planar diameter and variance algorithms, 

or any of our algorithms in higher dimensions, to find minimal convex sets. 

Consequently, we must use brute force within the neighbor sets, and our 

resulting time bounds are heavily exponential in k. Nevertheless, for suffi

ciently small k, our algorithms are faster than brute force. We summarize 

our planar results in Table 3, and our higher dimensional results in Table 4. 

9 Conclusions and Open Problems 

We have presented several algorithms for finding minimum measure k-point 

sets under a variety of measures, both in the plane and in higher dimensions. 

Our results are based on a common method. Given a set of points, we 

compute the nearest neighbors to each subset of r points, where r is a small 

constant determined by the relevant measure, and then search within each 

neighbor set using another algorithm. For most of the measures we have 

examined, r = 1. For these measures, we can reduce the number of neighbor 
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Measure Time bound 

circumradius 0(22kn log n + 22k·+o(k)n) 

diameter 0(22kn log n + 22k2+0(k)n) 

L 00 diameter 0(22kn log n + 22k2+0(k)n) 

variance 0(4kk(d-l)/2nlogn + 22k2+~klgk+O(k)n) 
boundary measure O(nd + 22P+O(k)nd-1) 

L 00 boundary measure O(nd + 22k2+o(k)nd-1) 

volume 0(22knd logd+l n + 221:,+0(k)nd) 

Table 4. New results for finding minimum measure k-vertex convex polytopes, given 

n points in nd, for all d > 2. (Compare Table 2.) 

sets to search down to 0( n/ k) by finding neighbors of neighbors. Our planar 

results were achieved through the use of a new algorithm that finds the m 

nearest rectilinear neighbors to n points, in time 0( n log n + mn ). We have 

also presented versions of our algorithms which maintain minimum measure 

sets as points are inserted and versions which find, or dynamically maintain, 

minimum measure convex sets. 

Our results suggest several open problems. None of our results is known 

to be optimal. Faster algorithms, or matching lower bounds, would be in

teresting. In particular, is it possible to find higher-dimensional k-point sets 
with minimum diameter, volume, or boundary measure without resorting to 

brute force? Eppstein et al. [14] present a dynamic programming algorithm 

for solving a variety of minimum and maximum measure problems in the 

plane, but it seems highly unlikely that their approach can be adapted to 

higher dimensional problems. Similarly, we have been unable to general

ize our minimum diameter algorithm, or the earlier algorithms of Aggarwal 

et al. [2], into higher dimensions. 

Are there faster algorithms for finding nearest neighbors? An efficient 

technique for finding neighbors to (d - 2)-fl.ats might also lead to a faster 

minimum boundary measure algorithm. Finally, is it possible to find recti

linear neighbors to points in higher dimensions in o( mn log n) time? 
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