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Abst rac t .  In this paper the possible nondegenerated limit distributions for 
the n-fold mapping of a given probability distribution are considered. If the 
mapping used for the iteration procedure is a probability generating function 
of a positive integer-valued random variable then the results can be applied 
to the max-stability of distributions of random variables with random sample 
size. 
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1. Introduction 

It is well known that for many real-world situations stable distributions are a 
useful tool for modeling (e.g. Kruglov and Korolev (1990), Rachev (1991)). For 
example, sum-stable and especially geometric-sum-stable distributions are used for 
financial modeling like asset or stock returns (Mittnik and Rachev (1991, 1993), 
Rachev and Sen Gupta (1992) and references therein). For geometric-sum-stability 
some results on limit distributions, rate of convergence and domains of attraction 
can be found for example in Gnedenko (1982, 1983), Rachev and Samorodnitsky 
(1992), Rachev and Sen Gupta (1992). 

In many cases, however, not sum-stability but max-stability is the proper 
concept. For example, if X 1 , X 2 , . . .  are insurance claims and N the (random) 
number of claims, then the distribution of 

XN, N ~-- m a x  Xk 
l<k<N 

must be known in order to calculate the insurance premium for reinsurance treaties 
based on ordered claims (like in the ECOMOR or LCR case, e.g. Kremer (1983)). 
For modeling possible reinsurance situations therefore those probability distribu- 
tions are of special interest which remain unchanged (up to some linear transfor- 
mation) by taking the maximum with respect to a given class of integer-valued 
random variables. 
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146 B. R A U H U T  

To be precise, let X1,X~,...  be i.i.d, random variables with cumulative dis- 
tribution function (cdf) F(x). Moreover, let ¢(t) = E(t N) be the probability gen- 
erating function (pgf) of a nonnegative integer-valued random variable N. Then 
the cdf G(x) of XN, N is 

(1.1) G(x) = ~b(F(x)), x E ~. 

Now let Af = {¢e 1 0 E O} be a parameterized set of pgf's of nonnegative integer- 
valued random variables No, ~ E O C •. A cdf G is called H-max-stable,  if there 
exist measurable functions a(0), b(O) such that  

(1.2) ¢0(c (a (e )x  + b(e))) = c ( x ) ,  w E a,  Ve e e .  

In the literature, several authors investigated the possible N-max-stable distribu- 
tions for a given set Af (Saringhaus (1980), Gnedenko (1982), Voorn (1987, 1989), 
Rachev and Resnick (1991), Bunge (1993), Briicks (1993)). 

Let, for example, Co be the pgf of a geometric distribution with parameter 
0 E (0, 1). The only max-stable-distributions with respect to Af = {Ca I ~ E (0, 1)} 
are the logistic, the loglogistic and the negative loglogistic distribution. 

In order to extend the known results we embed the above mentioned problem 
in the following framework, replacing the set Af of pgf's by the class ~ of cdf- 
preserving mappings: 

(1.3) Let G = {g ] g :  [0, 1] ~ [0, 1], g(0) -- 0, g(1) -- 1, g strictly 

increasing and continuous}. 

(i) Given g E G and nondegenerate cdf's F and G, are there 

c o n s t a n t s  an > O, bn E R s u c h  t h a t  

lim gn(F(anx + bn)) = G(x), Vx E Ca 
n-~oc 

(with Ca = {x I x E ~, G(x) is continuous in x} 

and gn = g o g o . . .  o g n-times)? 

(ii) Given g E 6, are there constants an > O, bn E R and a 

nondegenerate cdf G such that  

g~(a(anx+bn)):G(x) ,  VxER,  nEN? 

As in extreme value theory with non-random sample size it turns out that  the 
problems (1.3)(i) and (ii) are linked in the following way: 

Let ~" be the set of all nondegenerate cdf's F on •1. We say that  F E 
belongs to the g-domain of attraction of G (F E DAg(G)) if (1.3)(i) is fulfilled 
and G is called g-stable if (1.3)(ii) holds. Then it can be shown that  G is g-stable 
iff the g-domain of attraction DAg(G) is nonempty; clearly G E DAa(G). For a 
given g E G therefore the set of all g-stable cdf's is of main interest. 

In this paper we first deal with the existence and uniqueness of g-stable dis- 
tributions for a given g E G. Taking into account only g E G without any fixed 
point in (0, 1) we get a result on the support  of stable distributions. It is easy to 
see that  for every g there is a noncountable set of types of g-stable distributions. 
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By restricting attention to proper subsets ~* C G of functions gs with a group 
structure in s it turns out that there exist exactly three types of stable distributions 
depending on the set ~*. Thus, if ~* is a set of pgf's it uniquely characterizes 
three different types of ~*-max-stable distributions where ~*-max-stability means 
g-stability for all g • G*. 

The paper is organized as follows: in Section 2 some results on iterating cdf's 
by a given g • ~ are obtained. Section 3 deals with the stability of nondegenerated 
cdf's with respect to some subset ~* C G. Finally, Section 4 shows the application 
of the results of Section 3 to the max-stability of distributions for samples with 
random sample size. 

2. Iterated distributions and stability 

Let g be defined as in (1.3) and let ~" be the set of all nondegenerate cdf's F 
on R 1. If G • 9 v is g-stable for g • ~, then only two cases occur: 

(2.1) (i) These exists b E R, b ¢ 0, such that 

gn(G(x ) )=G(x÷nb) ,  x E ~ ,  nET]. 

(ii) There exist a > 0, a ~ 1 and b E R, such that 

gn(G(x))  = G ( a n ( x -  b) + b), x • R, nET].  

This follows from the fact that the stability condition means 

g(G(alx +/31)) = G(x) for all x E R, for some a l  > 0, ~1 E ~, 

which is equivalent to 

g(G(x)) = G(ax + d) with a = a l  1, d = - g l a l  1. 

Hence, induction leads to 

g'~(G(x)) = G(hn(x)), x E ~, n E 7/, with h(x) = ax + d. 

(For negative integers, the mapping g-N, n E •, denotes the n-fold mapping 
g-1 o g-1 o . . .  o g-1 (n times) where g-1 always exists due to the definition of G.) 
The distinction between a = 1 and a ~ 1 gives the desired result. 

The assertions in (2.1)(i) and (ii) correspond to a = 1 and a ~ 1 and we call 
a cdf G g[1, b]-stable or g[a, b]-stable (a ~ 1) respectively. Let 

type(G) = {F I F E ~ , 3 a  > 0,b E •: F(ax +b) = G(x),x E R} 

then it is easy to see that all members of type(G) for a given g E ~ have the same 
stability property. That means that in every type-equivalence class of g[1, b]-stable 
distribution there is a g[1,-1J-stable one and likewise a g[a, 0]-stable distribution 
in every g[a, b]-stable class for a given a > 0, a ~ 1. 

When considering the existence of g-stable distributions as well as their struc- 
ture it is necessary to have a closer look at g E G. If, for example, g has a fixed 
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point in the interior of [0, 1], then there does not exist a continuous g[1, b]-stable 
distribution: 

Let Yo E (0, 1) with g(Yo) = Yo, G be g[1, b]-stable and x E R with G(x) = yo. 
The stability condition yields 

Yo = gn(Yo) = gn(G(x)) = G(x + nb) for all n E 7/, 

which is a contradiction to G E ~'. 
Therefore we restrict ourselves to g E G without any fixed point in (0, 1). That  

is, instead of ~ we consider the set 

~U-~ = { g i g  E G,g l(0,1)< id ](0,1)} U { g i g  E G,g l(0,1)> id l(0,1)}. 

For g E ~ we have g-1 E ~ and vice versa. It suffices to consider g E ~, since 
g and g-1 belong to the sane  stability class. (In this case we have b < 0 for all 
g[1, b]-stable distributions.) 

The following theorem shows that  the structures of g-stable distributions and 
max-stable distributions with non-random sample size coincide (Gensler (1992)). 

THEOREM 2.1. Let g E ~, G E JZ, b ¢ O, a > O, a ¢ l, and c E R. 
(i) I f  G is g[1, b]-stable, then 0 < G(x) < 1 for all x E R. 

(ii) I f  G is g[a, c]-stable, then 

= 0  f o r  x <_ c 
G(x) if a < 1, 

E (0, 1) f o r x > c  

E (0,1) f o r x < c  
C(x) /f a > 1. 

= 1  for x >_ c 

Moreover, G is continuous in c. 

PROOF. 
(i) G(x) E (0, 1) follows from the fact that  0 and 1 are the only fixed points 

of g. 
(ii) The g[a, c]-stability of G is equivalent to 

g~(G(x)) = G(a~(x - c) + c) for all x E R, n e 7/. 

Thus, 
g"(C(c)) = G(c) e {0,1} because of g E 6- 

For the same reason it is 

G(x)  > gn (G(x ) )  = G(an (x  - c) --~ c) 

sinceg(y) < y for g E 6, y E C 0,1). 
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Thus, we find x > a~(x - c) + c which leads to either 

(a < 1 and x > c) or (a > 1 and x < c). 

The result is obtained by considering the two possible cases G(c) = 0 and G(c) = 
1.[2 

There are more similarities between max-stable and g-stable distributions: 
e.g., the different types of g-stable distributions can be transformed into each 
other by some bijective function as shown in the following lemma. 

LEMMA 2.1. Under the assumptions of Theorem 2.1 let 

( c , c ¢ )  for a < l 
T(a,b,~) : R -~ I = 

( -c¢ ,c)  for a > 1 

T(a,b,c) (X) = C + sign(1 -- a)a b-l~ 

for x e R  

defined by 

I 
1 

with s ign (x )=  0 

- 1  

for x < O 

f o r x  -- 0 

for x < O. 

Then the following holds: 
(i) g G  is g[a, el-stable, then C;(x)  = C(T(a,b,c)(x)) is g[1, hi-stable. 

(ii) I f  G is g[a, b]-stable, then G*,c(x) is g[a, c]-stable where 

0 

a * A x )  = a(T;~b,~)(x)) 

G*,~(x) = { G(T~a~b'c)(X))l 

for x < c 
f o r a < l  

fOT X ~>_ C 

for x < c 
f o r a > l .  

for x > e 

and 

PROOF. Since T(a,b,c)(x) is continuous, strictly increasing and bijective, (i) 
and (ii) follow by straight forward calculations. [] 

We may use Lemma 2.2 to conclude that  G is continuous in c (cf. Theorem 
2.1). 

Besides the structure of g-stable distributions, the existence and uniqueness 
(in the sense of type uniqueness) is of main interest. Due to the simple conditions 
for the stability we obtain the following result. 

LEMMA 2.2. For g e ~ the set of type-equivalence classes of g[1,b]-stable 
distributions is noncountable. 

PROOF. Let g C 2,  a E (0, 1), ~ ---- g - l ( o ~ )  and T~ : [0, 1) ~ (0, 1) for 
E (~, ~3] be a family of functions which are strictly increasing, right-continuous 

and for which T~(0) = a and limx-~l T~(x) = )~ are satisfied. 
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GA(x) : g - n ( T ) ~ ( x  - n)) for x E [n, n ÷ 1), n E 7/, 

leads to a family of g[1, 1f-stable distributions for A E (~, ~] with 

type(G~)~type(G~, )  for A ¢ ~ ' ,  ~,~ 'E(c~,~] .  

(A similar construction is used by Voorn (1987), p. 841.) [] 

3. Continuous stability 

In comparison with Lemma 2.3, the situation changes if the stability condition 
(1.3)(i) is required to be fulfilled for proper subsets ~* C ~ as in the N-max-stable 
case (1.2). Let 

~* = {g~ I g~ E G, s > O, g~ o gt = g~.t, s, t > O, g~ pointwise continuous in s}. 

Such a class is called M-class. Obviously, we have gl = id, g-~l = g~-i and 
g~ = gsn for all n E N. 

The following stability concept is defined for M-classes: 

DEFINITION. Let G* be a M-class. A cdf G E 9 ~ is called G*-stable if there 
exist measurable functions a(s) > 0, b(s) for s > 0 such that 

g ~ [ e ( a ( s ) x  + b(s))] = C(x) ,  Vx e R, ~ > 0. 

Remark. In suffices to require the condition in Definition for all s = n E 
as in the case of max-stability with non-random sample size. 

By analogy with (2.1), two different cases are possible: 

LEMMA 3.1. I f  G E .~ is ~*-stable then one of the following cases occurs. 
(i) There exists b E R, b ~ 0, such that 

g~(V(x))  = v ( x  + b ins ) ,  Vx e R, ~ > 0. 

(ii) There exist d E R, d ¢ 0 and c E • such that 

g~(o (x ) )  = G(sd (x  - c) + c), Vx E R, s > O. 

PROOF. 
yield 

For s, t > 0 the property of M-classes and the stability condition 

G(x) = gst(G(hst(x))) and 

G(x) = gst(G( (hs o ht)(x) ) ) 
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with 
ha(x) = a(s )x  + b(s). 

Hence, 
G(x)  = G[(h~ o ht o h~l(x)] for all x • •. 

Using the stability condition it turns out that  

hs o ht o h-~ 1 = id or equivalently 

a(s) [a(t)x + b(t)] + b(s) = a ( s t ) x  + b(st). 

The distinction between a(s) --- 1 and a(s) ~ 1 gives the desired result. [] 

According to these two different cases, G is called 6* [1, b]-stable or G* [d, c]- 
stable, respectively. 

A comparison with (2.1) shows the connection between the two stability con- 
cepts: 

(3.1) For ~* M-class, G c ~', b, c, d E ~ with b, c ~ 0 we have 

(i) G is ~*[1,b]-stable iff G is gs[1, blns]-stable for all s > 0, s ~ 1. 

(ii) G is ~* [d, c]-stable iff G is g8 [s d, c]-stable for all s > 0, s ¢ 1. 

Therefore, the results of Section 2 can be applied to characterize ~*-stable distri- 
butions. For example, cdf's of the same type possess the same stability property. 
Moreover, restricting to 

~_*={glgEG*,g l (0 ,1)<id l (0 ,1)  for a l l s > l o r a l l s < l }  

it turns out that  Theorem 2.1 is valid here, too. Referring to the support, there 
are three types of G*-stable distributions which can be transformed to each other 
by the transformations T(a,b,¢) used in Lemma 2.1. 

Putting b~ = blns, a~ = s d we obtain 

T(a~,b~,c)(X ) = c + sign(1 - as)a~" b:lx = c - sign(d)e db-~x = T(ed,b,c)(x ) 

which does not depend on s. 
This leads to the main result of this section: 

THEOREM 3.1. For G_* the set of all G*-stable distributions is either empty 
or consists of exactly three different types. 

PROOF. First it can be shown that every ~* [1, b]-stable distribution is of the 
same type for all b > 0. Then the assertion follows from Theorem 2.1 and Lemma 
2.1.[3 

Looking for possible G*-stable distributions for a given M-class G* we first 
investigate the structure of G* itself. Thus we have to regard a function 

[0,1] × (0, - .  [0,1] 
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(i) g(O,s)=O,g(1,  s ) =  1, Vs > 0 ,  

(ii) g(y, s) is strictly monotone in y given s and continuous 

in s given y, 

(iii) g(g(y,s) , t)  = g(y, s .  t), Vs, t > 0, y • [0, 1]. 

Thus, g(y, s) is a slight modification of the translat ion equation in AczC1 ((1961), 
Chapter  6), and we get the following 

LEMMA 3.2. The solutions of (3.2) are of the form 
(i) g(y, s) = G(G -1 (y) + In s) for y • [0, 1], s > 0, with G continuous, strictly 

increasing, 0 < G(x) < 1, Vx • R and 

lim G(x) = O, l i m  G(x) = 1 
X - - - +  - -  C O  X - - - +  ( X )  

or 
(ii) g(y,s)  = G(c + s ( G - l ( y )  - c ) ) ,  y • [0, 11, 8 > 0 for 8ome c • R, with G 

used in (i) or those with the properties 

f = 0 f o r  x < c 
G(x) 

• (0, 1) f o r x > c ,  

continuous, strictly increasing for x >_ c and limx--,~ G(x) = 1 or 

] • (0,1) f o r  x < c 
G(x) 

I = 1  for x > c, 

continuous, strictly increasing for x < c and limx-._o¢ G(x) = O. 

An immediate  consequence of Lemma 3.2 is 

COROLLARY 3.1. Every continuous cdf G on R which is either strictly in- 
creasing for all x • R or strictly increasing for x > c (and equal to 0 for x < c) 
or strictly increasing for x < d (and equal to 1 for x > d) for some c, d • R is 
~*-stable with respect to some M-class ~* = g* ( G). 

Example. Let G(x) = e x p ( - e x p ( - x ) ) ,  x • R. Then G is G*-stable with 
respect to 

(3.3) 
C - l ( y ) = - l n ( - l n y )  for y e  [0,1) and 
G*(G) = {g(., .) [ g(y ,s )  --- yS,s  > O,y • [0, 1]}. 
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4. Max-stable distributions with random sample size 

It is well known that  a function 

¢ :  [0,1] ~ R 

is a pgf of a nonnegative integer-valued random variable N iff 
(i) ¢([0, 1]) C [0, 1], 

(ii) 0(1) = 1 and 
(iii) ¢ is absolutely monotone in [0, 1]. 

Therefore, the N-max-stabili ty (1.2) coincides with the G*-stability in Definition 
whenever G* is a set of pgf's with ¢(0) = 0 for all ¢ E G*. Obviously, the absolute 
monotonicity of the pgf's yields ¢ [(o,1)< id [(0,1). 

Thus, the characterization in Theorem 3.1 can be applied which means that 
for any set Af = {¢0 ] 0 E O} of pgf's with Ce(0) = 0, V0 E O the set of all 
N-max-stable distributions is either empty or consists of exactly three different 
types of distributions. 

Moreover, Lemma 3.2 together with Corollary 3.1 yields uniqueness results 
concerning the max-stability when random sample sizes are considered: 

Whenever some function g(y, s) = g~(y) which is formed by Lemma 3.2 for 
some proper cdf G turns out to be a pgf for s < 1 or s > 1 (or s = n E N) we 
know immediately all types of random-max-stable distributions with respect to 
g~ (y) using the transformations T(~,b,c). 

For example, we get the following results: 

COROLLARY 4.1. Let 

G~ = {g( . , . ) ig (y , s )  = 1 - ( 1  - y ) S , s  > O,y e [0, 1]}. 

Then g(y, s) is a pgf for 0 < s < 1 and the only G~-max-stable distributions are 
the minimum-stable distributions in the non-random sample case. 

PROOF. g~ is a M-class and g(y, s) can be shown to be the pgf of the so- 
called Waring-distribution with the probability function 

n - 1  . 

P ( N~ = n ) = -nS ~.= z - i s  for n E M ,  0 < s < l .  

Since the exponential distribution with the cdf F(x) -- 1 - exp( -x )  for x _> 0, is 
minimum-stable in the non-random case, we have 

g(y,s) = F ( s F - l ( y ) )  = l -  ( 1 -  y) ~ for s > 0 .  

(The result was already obtained by Briicks (1993) using the method of Voorn 
(1989).) [] 

Remark. Analogously, some more known results can be shown very easily: 
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(i) Let ~* 2 = {9(-,  ) I ~ (y ,8 )  = 8 - y ( 1  - (1 - s )y)  -1 s > 0 , y  e [0,1]} be the 
set of pgf's of geometric distributions with the probability function 

P ( N s = n ) = s ( 1 - s )  n, nErN0, 0 < s < _ l .  

Then the only geometric-max-stable distributions are logistic, loglogistic and neg- 
ative loglogistic distributions, because for the loglogistic distribution with cdf 
F(x) = x(1 + x) -1 for x _> 0 we have 

g(y ,  8) : g ( s g - l ( y ) )  ~--- 8y(1 - (1 - 8 ) y )  -1 ,  

This result was obtained for example by Gnedenko (1982) and Rachev and Resnick 
(1991). 

(ii) Example (3.3) also implies the uniqueness of the three known types of 
max-stable distributions in the non-random sample case, since g(y, s) = y~ is for 
s = n E N the pgf of the degenerate random variable Nn with P(Nn = n) = 1. 

(iii) There is no unique correspondence between some M-class ~* and the cdf's 
F which are G*-stable. 

For example, the logistic distribution with the cdf F(x)  = (1 + exp( -x) )  -1 
for x E R is 

0]  taU,e 
6~ [1, In s]-stable 

for ~ = {gl( ' ,  ") I gfy,  8) : yS[yS + (1 - y ) S ] - l }  

for 9" 2 as in (i). 

and 

gl(Y, s) however, is not a pgf since it has a fixed point at y = ½ for all s > 0. 
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