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ITERATED RUNGE-KUTTA METHODS ON PARALLEL COMPUTERS* 

P. J. VAN DER HOUWENt AND B. P. SOMMEIJERt 

Abstract. This paper examines diagonally implicit iteration methods for solving implicit Runge-Kutta 
methods with high stage order on parallel computers. These iteration methods are such that after a finite 
number of m iterations, the iterated Runge-Kutta method belongs to the class of diagonally implicit 

Runge-Kutta methods (DIRK methods) using mk implicit stages where k is the number of stages of the 

generating implicit Runge-Kutta method (corrector method). However, a large number of the stages of this 

DIRK method can be computed in parallel, so that the number of stages that have to be computed sequentially 

is only m. The iteration parameters of the method are tuned in such a way that fast convergence to the 

stability characteristics of the corrector method is achieved. By means of numerical experiments it is also 

shown that the solution produced by the resulting iteration method converges rapidly to the corrector 
solution so that both stability and accuracy characteristics are comparable with those of the corrector. This 
implies that the reduced accuracy often shown when integrating stiff problems by means of DIRK methods 
already available in the literature (which is caused by a low stage order) is not shown by the DIRK methods 

developed in this paper, provided that the corrector method has a sufficiently high stage order. 
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I. Introduction. 

I.I. Runge-Kutta methods. Suppose that we want to solve stiff initial-value prob­
lems for systems of first-order, ordinary differential equations (ODEs), i.e., 

(1.1) dy(t) = f(t (t)) 
dt 'y ' 

by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires 
that the RK method should be sufficiently stable, preferably A-stable, and therefore 
implicit. This leads us to fully implicit RK methods (IRK methods) in which the 
Butcher array, 

(1.2) 

has a full A matrix. Most widely used are the IRK methods based on Gaussian 
quadrature formulas (such as Gauss-Legendre, Lobatto, and Radau methods), which 
are known to be A-stable for any order of accuracy. However, the high degree of 
implicitness of these methods implies that solving the implicit relations is rather costly. 
In general, a k-stage IRK method (that is, b and c are k-dimensional vectors and A 

is a k-by-k matrix) requires in each step the solution of a system of dimension kd, so 
that the computational complexity is of order (kd) 3 • This compares unfavourably with 

implicit linear multistep methods which require in each step the solution of a system 
of dimension d. 

In order to reduce the computational labour involved when using implicit RK 
methods, various people have considered diagonally implicit RK methods (DIRK 
methods) possessing a lower triangular A matrix and therefore requiring (in general) 
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in each step the solution of k systems of dimension d. Hence, the computational 

complexity is now of order kd 3 instead of order (kd)3 • Unfortunately, the price we 

have to pay for the less expensive DIRK methods is a considerable drop in accuracy 

in many stiff problems. This is caused by the phenomenon of order reduction ( cf., e.g., 

[21], [9], [ll]) which reduces the observed order of RK methods to their stage order 

(or their stage order plus one). Most DIRK methods are particularly sensitive to order 

reduction because their stage order is only one or two, which is much smaller than 

for k-stage Gauss-Legendre, Lobatto IIIA and Radau IIA methods which have all 
stage order k. 

An alternative for the DIRK methods are the singly implicit RK methods (SIRK 

methods) of Burrage [2] which possess a high stage order. By means of a transformation 

technique due to Butcher (see [5], [6]), these SIRK methods can be transformed into 

methods that are, like DIRK methods, only diagonally implicit. However, the additional 

transformations required in each step cause that the total costs per step are considerably 

higher than for DIRK methods. 

Yet another possibility is the use of parallel processors. In this paper, we shall 

show that on parallel computers the fully implicit relations associated with IRK methods 

can be solved efficiently by using the highly parallelizable iteration methods of 

diagonally implicit type proposed in van der Houwen, Sommeijer, and Couzy [13]. 

This brings us back to using IRK methods as corrector method instead of using DIRK 

or SIRK methods. In particular, we shall concentrate on iterating IRK methods 

possessing high stage orders. 

1.2. IRK methods with high stage orders. Most IRK methods are designed in such 
a way that they have a high order at the step points. However, as already remarked 

above, a high order at step points is often spoiled by order reduction, so that it seems 

more natural to look for IRK methods with as high a stage order as possible. In order 

to achieve this, we shall consider (k + 1)-stage IRK methods of the type 

(1.3) 

0 0 OT 

e a A 

where b0 is a scalar, a, b, and e are k-dimensional vectors, and A is again a k-by-k 

matrix. IRK methods of this type have roughly the same computational complexity as 

the IRK methods of type (1.2), but they possess the additional parameter vector a 

which can be used for increasing the stage order. To see that (1.2) and (1.3) are (almost) 

equally expensive, let us assume (for simplicity of notation) that (1.1) is a scalar 

problem (i.e., d = 1), and let us introduce the vectors 

Yn+1 := (Yn.i. · · ·, Yn,k)r, e:= (c1, · · ·, ck)r, 

where y,,_; denotes a numerical approximation to the exact solution value y( tn + c;h ), 

h being the stepsize. Then we can write (1.3) in the form 

(1.3') 
Yn+ 1 -hAf(etn +eh, Yn+1) = eyn + haf(tn, Yn), 

Yn+I = Yn + hbof(tn, Yn)+ hbTJ(etn +eh, Y n+1). 

Here, e is the vector with unit entries, and we used the convention that for any given 
vectors v = (v1) and t = (t1), f(t, v) denotes the vector with entries f(t1, v1). If bo= 0 and 

a=O, then it follows from (1.3') that (1.3) reduces to (1.2), so that in each step the 

computational complexity of (1.2) and (1.3) differ by the evaluation of f(t"' Yn), but 
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both methods require the solution of a system of dimension kd. Since the bulk of the 

computational effort goes into solving this system, the methods (1.2) and (1.3) may 

be considered as equally expensive. 
The vectors Yn+t and c will, respectively, be called the stage vector and the block 

point vector, and the points tn and tn + c1h will, respectively, be called step points and 

block points. The minimal order achieved at the block points and step points are, 

respectively, the stage order and step point order. 

If the method parameters are chosen in such a way that the stage order is as large 
as possible with c arbitrary, then (1.3) is equivalent to the IRK method derived from 

Lagrange quadrature formulas and will be called a Lagrange method. If c1 = j I k, then 
Lagrange methods reduce to the Newton- Cotes methods studied in Watts and Shampine 

[23], and if the components of c equal the Lobatto quadrature points, then they reduce 

to the Lobatto IIIA methods. However, Newton-Cotes and Lobatto IIIA methods are 

only weakly A-stable (i.e., the method hardly damps the highly stiff components in 

the numerical error). It is our aim to construct Lagrange methods with better stability 

properties than Newton-Cotes and Lobatto IIIA methods, i.e., methods which damp 

both nonstift and stiff components occurring in the numerical error (strongly A-stable 

methods). 
An important family of IRK methods are the so-called stiffly accurate methods 

(cf. Alexander [1]). If the IRK method is of the form (1.3), then this family is obtained 

by setting 

(1.4) b0 =e[a, bT=e[A, ck=l, 

where ek is the kth unit vector. Notice that, when represented by their Butcher array 
(1.3), the last row in (1.3) equals the preceding one. It was shown by Hairer, Lubich, 

and Roche [11] that this property implies that for certain classes of stiff problems the 

method does not suffer the effect of order reduction. Examples of stiffly accurate IRK 

methods are the Lobatto IIIA, Radau IIA and Newton-Cotes methods. 

1.3. Diagonally implicit iteration of IRK methods. After a finite number of m 

iterations of the implicit relation for Y n+t given in (1.3') by the aforementioned 

diagonally implicit iteration process (or briefly diagonal iteration) (see also § 3), the 
resulting scheme actually is an (mk+ 1)-stage DIRK method. One of these stages is 

explicit and the other mk stages are of diagonally implicit form. However, a large 

number of these mk implicit stages can be computed in parallel, resulting in a process 

where only m stages have to be computed sequentially. 

The iteration parameters of the method can be tuned in such a way that we get 

fast convergence to the stability characteristics of the corrector method, provided that 

the corrector is stiffly accurate (in § 3.3.1, we will show that the diagonal iteration 

of the type employed in this paper is not suitable for iterating nonstijfly accurate 

correctors). 

Second, it has been demonstrated that the iterated methods based on strongly 

A-stable correctors (such as the Radau IIA correctors and the Lagrange correctors 

derived in § 4) are within a few iterations strongly A-stable themselves. It is highly 

unlikely that this nice property is shared by the methods based on (weakly) A-stable 

IRK correctors because the stability function of the iterated methods should converge 
to a (weakly) A-acceptable function. In fact, for a number of Newton-Cotes and 

Lobatto IIIA correctors it was checked that the stability function becomes A-acceptable 
only after an infinite number of iterations. 

Finally, numerical experiments reveal that the drop in accuracy, exhibited in many 

stiff problems by the conventionally constructed DIRK methods, is not shown by the 
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DIRK methods constructed by the diagonal iteration process of this paper. In a 

forthcoming paper [ 4] it is intended to present a theoretical analysis of this phenomenon 

using the error analysis proposed in Burrage [3]. 

2. Accuracy and stability of the corrector. In the following two subsections, we 

discuss the stage order, step point order, and stability of the corrector equation (1.3'). 

2.1. Stage order. Let Y(tn+ 1) denote the vector with components y(tn + cih) where 

y is the locally exact solution of (1.1) satisfying y(tn) = Yn, then, following Butcher 

[7], (1.3') is said to have stage order r if the residual left upon substitution of Y(tn+i) 

into the formula for Yn+I is of order r+ 1 in h, i.e., 

The stage-order conditions for (1.3') are straightforwardly derived (cf. [22]) and are 

given by 

(2.2) Cj=O, j=l,···,r, C 1 :=a+Ae-c, Cj:=jAcj-I_cJ, j=2,3,···, 

where cj denotes the vector with components ( c;)j. Thus, to achieve stage order r for 

a given block point vector c, we have to solve rk linear equations in k2 + k unknowns, 

so that the maximal stage order equals k + 1. The corresponding methods will be called 

Lagrange methods. 

2.2. Step point order. Consider the formula for Yn+i given in (1.3'): 

(2.3) 

Since Y n+I approximates Y(tn+ 1) with (local) order r+ 1, r being the stage order (cf. 

(2.1)), we can derive that Yn+i has (at least) order p = min {r+ 1, q} if the conditions 

D. ·=1'b7 cj- 1 -1 1· = 2 3 · · · 
J • ' ' ' 

are satisfied. We remark that p may be larger than min {r+ 1, q} if the methods possess 

the property of so-called "superconvergence" which for example is the case in Gauss, 

Radau, and Lobatto methods. The error constant of (2.3) is given by 

(2.5) 
E ·= Dq+i =(q+l)b 7 cq-1 

q+I· (q+l)! (q+l)! 

Assuming that c is given, the conditions (2.4) present a linear system of q equations 

in k + 1 unknowns, so that by setting q = k + 1 we achieve at least step point order 

p = min {r+ 1, k + 1} for any block point vector c. 

As already observed in the introduction, the usual approach in exploiting the 

vector c is the maximization of the step point order (to obtain "superconvergence"). 

Alternatively, we may use c for improving the stability of the method or for the 

minimization of error constants. In this paper, we shall use c for achieving strong 

A-stability. 

In the special case of stiffiy accurate methods satisfying condition ( 1.4), Yn+I equals 

the last component of Y n+I so that the step point order p is also at least the stage order 

r, but is sometimes higher. For instance, the Newton-Cotes methods have stage order 

k + 1 and, if k is even, step point order k + 2. 
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2.3. Stability. By applying (1.3') to the test equation y' = Ay, we are led to recur­

sions of the form 

(2.6) Yn+ 1 =[1-zAr1[e+za]yn, Y11+1=(l+b0z)yn+zbrY,.+1, z:=Ah. 

Hence, 

(2.7) Yn+I = R(z)yn, R(z) := 1 + b0z+ zbT[I -zA]-1[e+ za]. 

R(z) is called the stability function of the one-step method. In the special case of 
stiffiy accurate methods where (1.4) is satisfied, (2.7) reduces to 

(2.8) Yn+I = R(z)yn, R(z) := e[[I -zAr1[e+za]. 

The stability region of the method is defined by the region where R is bounded 
by 1. In the case of the Newton-Cotes methods where the components of e are equally 
spaced, it was shown in Watts and Shampine [23) thatthey are A-stable for k~8 (but 
they are not for k = 9 and k = 10). 

We conclude this section by summarizing in Table 2.1 the characteristics of a 
number of correctors available in the literature. In this table, it is assumed that the 
IRK method is presented in the form (1.3'), so that for all methods listed the dimension 
of the implicit relation to be solved equals led, d being the dimension of the system 

of OD Es. 

3. Diagonal iteration. We shall use a diagonal iteration method to solve the stage 
vector Yn+I from the fully implicit (corrector) equation defined in (1.3'). For scalar 
differential equations, the iteration method reads 

yOl _ hDf(etn +eh, y<l)) = y,.e+ haf(t,., Yn)+ h[A- D]f(t<0>, y<o>), 

(3.la) Y(j)-hDf(etn +eh, y<il) = Yne+ haf(t,., y,.) 

+ h[A- D]f(etn +eh, yU-Jl), j = 2, 3, ... ' 

where (t<0>, yC0>) is an initial approximation to (et,.+ch, Y,.+ 1) and Dis an arbitrary 
diagonal matrix. If m iterations are performed, then Yn+i is defined by 

(3.lb) 

respectively, for nonstiffiy and stiffiy accurate correctors ( cf. (1.4) ). 
By virtue of the diagonal structure of D, the iterated method (3.1) is suitable for 

use on parallel processors because in each iteration the components of Y(j) can be 
computed in parallel. 

TABLE 2.1 

Summary of characteristics of IRK methods. 

Stage Stiffiy 
Method Stages Order p order r Stability accurate Reference 

Gauss-Legendre k 2k k A-stable for all k no Butcher [7] 
Lobatto IHA k+l 2k k+l A-stable for all k yes Dekker and Verwer [9] 
Radau IIA k 2k-1 k L-stable for all k yes Butcher [7] 
Newton-Cotes k+l 2[(k+2)/2] k+l A-stable for k ~ 8 yes Watts and Shampine [23] 
Lagrange k+l k+l k+l Strongly A-stable yes For k~4 see§ 4 
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There are many possibilities for choosing the matrix D which we summarize below: 

(i) D = 0: this is the most simple choice and yields an explicit iteration method 

(fixed point or functional iteration). This approach was followed in NtSrsett and 

Simonsen [20], Lie (18], van der Houwen and Sommeijer (12], and Burrage (3]. These 

papers deal with the iteration of implicit methods for solving nonstiff ODEs. In the 

case of stiff OD Es, we should use matrices D "#- 0. 

(ii) Dis such that for a prescribed number of iterations the method has favourable 

stability characteristics like A-stability or £-stability. This approach was followed in 

van der Houwen, Sommeijer, and Couzy [13], where the corrector only serves for 

providing its order of accuracy. In fact, it was shown that one may even use explicit 

correctors and still can obtain A- and L-stability after the particular number of iterations 

and a suitable choice of the matrix D. 

(iii) D = diag (Ae) or D = diag (A): this choice leads to nonlinear Jacobi-type 

iteration. The few experiments we performed revealed that the convergence is rather 

poor, so that we dropped this option. 

(iv) D is such that the nonstiff components in the iteration error are strongly 

damped. This type of diagonal iteration will be called nonstiff iteration. N onsti:ff iteration 

can be achieved by minimizing the spectral radius of the matrix A- D (see § 3.2). A 

large number of experiments showed that this is not the way to proceed, at least not 

in the case of the one-step initial approximations to Y n+l used in this paper. 

(v) D is such that the stability function Rm(z) of the iterated method rapidly 

converges to the stability function Rcorr(z) of the corrector. Hence, the corrector not 

only serves for providing its order of accuracy as in (13], but the iterated method also 

reflects the (assumed) nice stability properties of the corrector. Within this "stability 
function approach" there are various approaches: 

- D-1c=A-1c: this relation uniquely defines D provided that A is nonsingular. 

As observed by Hundsdorfer [15], such matrices D imply that the stability 

functions of the corrector and of the iterated method are identical at infinity. 

Although a few first experiments did not yet show satisfactory results, this option 

should be investigated more closely (see [ 4]). 

- Minimization of the spectral radius of the matrix I - v- 1 A This choice implies 

that Rm converges fast to Rcorr at infinity, but, at the same time, it also strongly 

damps the stiff components of the iteration error. This type of diagonal iteration 

will be called stiff iteration. It is the approach adopted in the present paper (see 

§ 3.3). Our experiments in§ 5 reveal that stiff iteration is suited for suppressing 

the phenomenon of order reduction within a few iterations, and in this respect, 

the methods of this paper perform much better than the methods proposed in 

[13]. 

- Other options as suggested by one of the referees, where some norm of I - n-1 A 

is minimized rather than the spectral radius, or where Rm - Rcorr is minimized 

along the negative z-axis (or larger portions of the left halfplane), has not yet 

been tested and may tum out to be still more effective. 

( vi) Dis such that the lower order error terms in the truncation error are minimized. 

Since after a finite number of iterations the iterated method (3.1) formally is still a 

DIRK method and therefore suffers from order reduction, such an approach directly 

attacks the source for order reduction. This topic will also be considered in [ 4]. 

The approach of stiff iteration followed in this paper seems to be rather effective. 

However, by no means we do claim that this is the best way to proceed. In [ 4] we 
shall present more firm theoretical and experimental evidence of the merits of the 

various approaches for choosing the matrix D. 
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3.1. Computational costs. Each step of the (outer) iteration method (3.la) requires 

the solution of a diagonally implicit relation. In order to solve this relation, we apply 

Newton iteration (inner iteration). There are various possibilities for starting the 

iteration method (3. la) and the Newton iteration method, and for choosing the Jacobian 

matrix J := af / ay needed in the Newton iteration process. Obvious choices are listed 

in Table 3.1. 
All possible combinations are equally expensive because the values of f(tn, Yn), 

f(etn +eh, yU- 1l) and diag (J) are anyhow needed. The first-order approximations will 

reduce the magnitude of the smooth error components (low frequencies) more than 

the zero-order approximations do, but, unlike the zero-order approximations, they will 

also introduce stiff error components in the case of stiff differential equations. This 

particularly applies to the Jacobian matrix and the initial inner iterate because these 

approximations are needed in each outer iteration. Therefore, we shall only consider 

zero-order approximations to the Jacobian matrix and to the initial inner iterate (notice 

that in the case of systems of equations, the matrix J becomes a block-diagonal matrix). 

Furthermore, our experiments revealed that using zero-order approximations for the 

initial outer iterate is more robust than the above first-order approximations, and yields 

comparable accuracies. However, it should be observed that the topic of choosing 

suitable initial approximations to the stage vector (including multistep approximations 

in order to reduce the number of iterations) is extremely important and needs further 

research. Burrage [3] discussed this topic in the case of a general class of explicit 

predictor-corrector methods for nonstiff problems. His approach may be used to study 

initial approximations in the case of diagonally implicit predictor-corrector methods 

for stiff problems. 
By performing m iterations, the method (3.1) may be considered as a DIRK 

method with mk + 1 stages, of which one stage is explicit and the other mk stages are 

diagonally implicit. In fact, we may represent the method by the Butcher array: 

j=O 0 

j=l c-De D 

j=2 a A-D D 

j=3 a 0 A-D D 

j=m a 0 0 A-D D 

(3.1') 

bo or or or br (nonstiffiy accurate correctors) 

e[a or or ef{A-D) e[D (stiftly accurate correctors) 

Since each iteration step in (3.1 a) essentially requires the "wall clock time" involved 

in evaluating one component of f(etn +eh, yu-o) and solving one system of dimension 

d, we conclude that, effectively, the work involved in performing one step by the DIRK 

Order of approximation 

Jacobian matrix 

Initial iterate in (3.la) 

Initial Newton iterate 

TABLE 3.1 

Starting the inner and outer iteration processes. 

0 

diag [J(er., ey. )] 
y<o> = y e t<0J =et 

y</-1) n 

diag [J(er. +eh, y.e+ hcf(t., y.))] 
ycoJ = y e+ hcf(t y ) t<0 > =et +eh 

y.e+ haf(t., y.)+.Mf(~t. +eh, y0-1l) 
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method (3.1') consists of 

(3.2) 
(evaluation off and J) +(LU decomposition of I - dihJ) 

+m[evaluation off+ N(forward/backward substitution+ evaluation of!)]. 

In this expression N is defined by 

(3.3) 
N 1+N2 +· ··+Nm 

N·--------.- m ' 

with Nj denoting the number of Newton iterations for computing that component of 

y<n which requires the largest number of Newton iterations. Usually, the m iterations 

are the most expensive part of the total effort per step, and therefore we shall say that 

a DIRK method has m effective or sequential stages if there are m diagonally implicit 

systems to be solved. 

3.1.1. Comparison with conventional DIRK methods. In the experiments reported 

in this paper, we used the stopping criterion that the Newton correction should be 

about the machine precision which is for our computer 10-14• It turned out that Nj 

rapidly decreases with j which can be explained by observing that the initial iterate 

for starting the next inner iteration becomes more accurate when j increases. This is 

an advantage when compared with conventionally constructed DIRK methods already 

available in the literature (such DIRK methods will be indicated by "conventional" 

DIRK methods), because, for conventional DIRK methods, the number of Newton 

iterations for solving the implicit relations in the successive stages do, in general, not 

decrease. 

In order to appreciate the computational costs of DIRK methods of type (3.1'), 

we should compare m with the number of sequential stages of conventional DIRK 

methods. In Table 3.2, the characteristics of such DIRK methods are listed together 

with the PARK and PDIRK methods derived in [16] and [13]. 

3.2. Order of accuracy. In order to analyse the order of accuracy of the iterated 

method (3.1), let Y(tn+i) denote the vector with components y(tn + C;h) where y is the 

locally exact solution of (1.1). Then, in first approximation, we obtain 

(3.4a) 

Order 

p =3 

p =3 

p =4 

p=4 

p =3,4, 5 

p =6, 7 

p;f;6,p=8 

p=7,8,10 

Y(tn+1) -Y(j) = [Y(tn+l)- y n+1] + [Y n+I -Y(j)] 

= [Y( tn+1) - y n+1] + Z[Y n+I - yU-l)] 

= [Y( tn+1) - Y n+1] + zi[Y n+t - ¥< 0>], 

TABLE 3.2 

j= 1, 2, ... ' 

Summary of characteristics of DIRK, PARK, and PDIRK methods of order p;;:;; 3. 

Stage Sequential 

order stages Processors Stability Reference 

p-1 A-stable NJ'irsett (19] 

2 p-1 Strongly A-stable Crouzeix [8] 

p-1 A-stable Crouzeix [8], Alexander [1] 

p-2 2 L-stable !series and N.firsett [16] 

p-1 [(p+l)/2] Strongly A-stable van der Houwen et al. [13] 

p-1 [(p+ 1)/2] Strongly A( a )-stable ibid 

p [(p+ 1)/2] L-stable ibid 

p+I [(p+ 1)/2] L-stable ibid 
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where Z is the iteration matrix defined by 

(3.4b) Z = Z(hDJ) :=[I - hDJr1[AD- 1 - I]hDJ, 

with J again denoting the Jacobian matrix of f. 
Let r be the stage order of the corrector (1.3), then (cf. (2.1)) 

Y(tn+1)-Y n+1 = O(h'+1). 

Since Z = O(h) and Y n+l -v<0> = O(h), the local error of the stage vectors satisfy the 

order relation 

(3.5) 

so that, after m iterations, (3.1) defines a method in which y<m> approximates Y(tn+ 1) 

with order r* = min {r, m}. We shall say that (3.1) has stage order r* (although formally, 

when (3.1) is considered as a DIRK method, its stage order is only 1). Thus, the 

optimal stage-order methods, that is the methods based on the Lagrange methods as 

defined above, have stage order r* = k + 1 provided that at least m = k + 1 iterations 

are performed. 

In order to get more insight into the rate of convergence of the iteration process 

(3.1), we consider the test equation 

(3.6) d~~t) = Ay(t), 

where A runs through the spectrum A(J) of J. The matrix Z assumes the form 

(3.7) Z = zD[I - zDr1[D- 1 A- I]= z[I - zDr 1[A- D], z := A.h. 

Suppose that J has a complete eigensystem, and let us call the eigenvectors of hJ 

corresponding to the eigenvalues of large and small modulus, respectively stiff and 

nonstiff components. From (3.7) we see that for the nonstiff components (i.e., corre­

sponding to small values· of lzl) the matrix Z behaves approximately as z[A- D]. 

Hence, these components in the iteration error are strongly damped if the matrix A- D 

has eigenvalues of small magnitude. Thus, rapid convergence of the nonstiff components 
is obtained by minimizing the spectral radius of A- D. However, as already remarked 

above, such a nonstiff iteration process gives a_poor overall convergence. Alternatively, 

for the stiff components (i.e., corresponding to large values of lzl), the matrix Z behaves 

as - v- 1[A - D]. Hence, a strong damping of these components requires the minimiz­

ation of the spectral radius of I - v- 1 A, leading to stiff iteration. In the following 

section, we shall see that this condition also plays a role in the stability of the iterated 

method. 

3.3. Stability. One may argue that there is no reason to continue the iteration 

process after m = r iterations, because the stage errors of the corrector and of the 

iterated method have become of the same order in h and may therefore be expected 

to be of comparable magnitude. However, there is no guarantee that after m = r 
iterations the stability properties of(l.3') are also comparable with those of the corrector. 

This brings us to consider the stability of the DIRK method (3.1'). In order to see how 

the stability depends on the number of iterations m, we apply the method to the test 
equation (3.6), so that (3.la) reduces to 

y<m>= (zme+[J-zr1[J-Zm][J-zDr1(e+za))Yn· 

We shall discuss the stability of iterating a nonstiflly accurate and a stiffly accurate 
corrector separately. 
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3.3.1. Nonstiffiy accurate correctors. If Yn+i is computed by means of the formula 

Yn+I = [l + zbo]Yn + zbTy(m), 

then it can be expressed as 

(3.8) Yn+1 = [1 + zbo+ zbT(zme+ [1-zr 1[I -zm][l -zDr1(e+ za))]Yn, 

so that the stability function is given by 

(3.9) Rm(z) := 1 + zbo+ zbT(zme+ [J -zr 1[1-zm][I -zDr1(e+ za)). 

It is easily verified that this function can be written in the form 

Rm(z) := 1 + zb0 + zbr[I -zAr 1(e+ za)- z2brzm[J - zAr 1(Ae+a). 

Assuming that the stage order of the corrector is at least one, we may set Ae +a= c 

(see (2.2)), so that 

(3.10) 

where Rcorr denotes the stability function of the corrector given by (2.7). Finally, on 

substitution of (3.7) into (3.10) we obtain 

(3.11) Rm(z) = Rcorr(z)-zm+2bT([J - zD]- 1[A- D])m[J - zAr 1c. 

From this expression we can derive the convergence behaviour of Rm to Rcorr for large 

values of lzl: 

Rm(z)=Rc0 rrCz)+zbT[J-D- 1ArA- 1c as lzl~ro, 

showing that for any fixed m the stability function becomes unbounded as lzl tends to 

infinity, unless the matrix D is such that 

bT[J-D- 1ArA- 1c=O. 

Writing this equation as 

bT[I-D- 1Ar- 1[J -D- 1A]A- 1c= bT[J -D- 1Ar- 1[A- 1c-D- 1c] =0, 

we see that it can be satisfied for all m if we choose D such that [15] 

(3.12) 

Unfortunately, a few first experiments showed that the performance of the correspond­

ing method (3.1') is not satisfactory (see § 5.3). Therefore, we conclude that diagonal 

iteration as defined by (3.1') is in general not suitable for iterating nonstiffiy accurate 

correctors and excludes the Gauss-Legendre formulas as suitable corrector methods. 

However, it should be remarked that by defining the initial iterate y<oJ implicitly, rather 

than just setting y<0 l = y,,e, the above stability problem can be avoided ( cf. [13]), so 

that the matrix D remains available for improving the performance of the iteration 

process. As observed in § 3.1, the topic of finding suitable initial approximations to 

the stage vector in diagonally iterated RK methods deserves further research, but will 

not be an issue in this paper. 

3.3.2. Stiffly accurate correctors. In the stiffiy accurate case where y11 + 1 is computed 

by means of the formula 

we arrive at the stability function 

(3.13) 



1010 P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 

where Rcorr is defined by (2.8). We may express this function in the form 

(3.13') Rm (z) = Reorr( z )-[ CTm (z) r. 
where 

o-.,.,(z) := [ze[[Z(zD)r[J-zAr 1c]11 m 

= [zm+ 1ef([I - zDr 1[A- DJr[J - zAr 1c]11 m. 

For fixed values of m and assuming that D has positive diagonal elements, the function 

c:rm(z) is bounded for all z in the closed left halfplane. This suggests to characterize 

the rate of convergence of Rm to Rcorr by means of um(z). We shall call um(z) the 

convergence factor associated with z. For example, we have 

(3.14) CTm(O) =0, am(oo):=[-ef[Z(-oo)r A-1c]11m = [-e[[J - v-I Ar A-1c]11 m. 

Ideally, in order to get fast convergence of the stability function Rm (z) to that of 

the corrector, we should try to minimize er m(z) in the closed left halfplane. However, 

since in actual computation m is determined by some error criterion, we do not know 

m in advance, so that such an approach may be unattractive, particularly for larger 

values of k where more values of m have to be considered. Nevertheless, in a future 

paper [ 4], this possibility will be studied more closely in order to get further insight 

into how crucial the choice of D really is. 

Another possibility is the minimization of c:rm(z) for the highly stiff components 

(large values of lzi), because (3.14) shows that c:rm(z) is already small for the nonstiff 

components. The most simple way to achieve this determines D according to (3.12), 

so that um (co) vanishes for all m [ 15]. In the experiments done so far, the convergence 

of the corresponding iteration process (3.1) is not satisfactory. 

However, by choosing the matrix D, for a given corrector, such that the spectral 

radius of Z(-oo)=I-D- 1A is minimized over all possible diagonal matrices D with 

positive entries, we obtained a satisfactory convergence behaviour in a large number 

of experiments (see § 5, and the Appendix to [14]). The better convergence may be 

explained by observing that in this way, not only the value of um(oo) is expected to 

be small ( cf. (3.14) ), but as already shown in§ 3.2, at the same time the stiff components 

in the iteration error are strongly damped. 

Together with the computation of the matrix D (cf. § 4), we computed, as a 

posteriori test, for a few values of m the "worst" convergence factor defined by 

(3.15) O"m := max lcrm(z)I. 
Rez:sO 

Because um(z) is an analytic function in the closed left halfplane, its maximum is 

assumed on the boundary, i.e., on the imaginary axis. 

In calculating CTm it turned out that this quantity is larger than 1 for small values 

of m but rather quickly decreases to a moderate size as m increases. The values of c:rm 

show by what factor the (maximal) difference between the two stability functions is 

reduced in each iteration if we continue to iterate when the stage order of the corrector 

has been reached. Due to the fact that er m > 1 for small m, it is likely that the 

corresponding iterated method is not A-stable. On the other hand, assuming that the 

iteration process (3.1) is convergent, we know that [crm(z)r"' 0 form"' oo, i.e., Rm(z) 

converges to the A-acceptable stability function Rcorr( z ). Therefore, it is of interest to 

know the minimal value of m such that Rm (z) is A-acceptable for all m equal to or 

larger than this minimal value. This for the iteration process critical number of iterations 

will be denoted by merit· Evidently, the value of merit is expected to be large if the 
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corrector is not strongly A-stable. In order to illustrate this, we considered the methods 

using weakly A-stable Newton-Cotes and Lobatto IIIA correctors (cf. Table 2.1) with 

minimized spectral radius of I - v- 1A. We verified that (for z in the closed left 

half plane) the value of max I Rm ( z) I! 1 as m -+ oo, so that A-stability is only obtained 

in the limit. Hence, the Lobatto IIIA and the Newton-Cotes formulas seem to be less 

suitable as corrector methods. For the strongly A-stable Lagrange correctors and the 

L-stable Radau IIA correctors however, we found modest values of merit. so that after 

a few iterations the resulting method is already A-stable (see § 4). 

4. Construction of methods. In this section, we consider a number of stiffly accurate 

correctors and we will construct the corresponding matrices D for use on two-, three­

or four-processor computers (i.e., methods of dimension k = 2, 3, 4). 

For k = 2, we shall give a rather detailed derivation, because in this case, it is still 

possible to construct suitable matrices D analytically. We derive matrices D for 

correctors of Newton-Cotes, Lobatto IIIA, strongly A-stable Lagrange, Radau IIA, 

and Gauss-Legendre type. The Gauss-Legendre method is not stiffly accurate, and 

therefore not suitable for diagonal iteration of type (3.1'), but it is included to 

demonstrate its unstable performance. For k > 2, we resort to numerical search methods 

for finding suitable matrices D. Here, we refrained from looking for D matrices for 

the Gauss-Legendre method because of the rather poor two-processor results. In § 4.4 

a summary of the main properties of the various methods is given. 

It may be of interest to note that in our numerical search for strongly A-stable 

correctors we encountered strong numerical evidence for the following conjecture. 

Conjecture. A necessary condition for a stiffly accurate Lagrange method as defined 

in § 1.2 to be strongly A-stable is 

k k+l 
I cj>--. 

j=l 2 
D 

In order to save space, the correctors are presented by means of the matrix A and 

the vectors a and c, and the iterated versions by only giving the matrix D, because, 

together with the corrector, D completely defines the iterated method. In the following, 

we only consider stiff iteration, that is, the construction of D will always b~ based on 

the minimization of the spectral radius p(I - D-1 A) of the matrix I - D.:..1 A. If the 

entries of D are not exact (i.e., for k 6; 3), then they are approximated by rational 

expressions. In addition to D, we present the values of p (I - D-1 A), the range for o-m 

with r ;;a m ;;a 10, the corresponding interval Iu on the imaginary axis where the maxima 

are assumed, and the value of merit are given (cf. § 3.3.2). Finally, the stage and step 

point orders of the method are denoted by r and p, respectively. 

4.1. Two-processor methods. 

4.1.1. Lagrange methods. Let us first consider two-dimensional Lagrange methods 

(k = 2) satisfying the condition (1.4). The stage-order conditions (2.2) can be solved 

for r = 3 and yield the stiffly accurate Lagrange method 

1 (c(3-2c) -c3
) 1 (3c-4c2 +c3

) A- a=---
- 6(1-c) c-1 2-3c ' 6(1-c) -c-1 +4-3c ' 

(4.la) 

c=G)· p = r=3, 

where c is a free parameter (recall that p = 4 if c = !). An elementary calculation shows 
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that the stability function of (4.la) is given by 

6+ 2(2-c)z+ (1-c)z2 
(4 2) R(z) - -~-'----'--~-

. - 6-2(c+l)z+cz2 

This function is A-acceptable for c ~ ! and strongly A-acceptable for c > !. 

Next, we determine the matrix D in (3.1). It is convenient to write 

1 (1/01 0 ) 
D=6(1-c) 0 1/o2 ' 

so that 

The eigenvalues of I - v- 1 A satisfy the equation 

µ,2 -Sµ,+ P = o, S:= 2-c(3-2c)o1 -(2-3c)o2, 

P := [1- c(3-2c)o1][1-(2-3c)o2]+ c2o102. 

By setting S = P = O we achieve that p(I - v- 1 A) vanishes. The parameters 81 and 82 

then satisfy the equations 

leading to 

I+Q 
81=---

c(3-2c)' 

so that the matrix D is given by 

±../6C 
Q:= 6(1-c)' 

( ) D= 1 (c(3-2c)/(l+Q) 0 ) (I D 1A) 
4-lb 6(1-c) 0 (2-3c)/(1-Q) ' p - - =O. 

The iterated Lagrange method with zero convergence factor at infinity is completely 

determined by the corrector (4.la) and the matrix (4.lb). 

For c =!we derive from (4.la) the Newton-Cotes corrector (with p =4 and r = 3) 

(4.3a) A--1 ( 8 -1) 
- 24 16 4 ' c=(D· 

We observe that this corrector coincides with the three-stage Lobatto IIIA method. 

The stability function R of (4.3a) reduces to the (2, 2) Pade approximation to the 

exponential function. Recall that R is A-acceptable but not strongly A-acceptable. 

From ( 4.1 b) we obtain the matrix 

D =!(2/(3+v'3°) 0 ) 
2 0 1/(3 -v'J) ' 

p(I-D- 1A) =0, 

(4.3b) 

Um E (0.21, 0.36), Iu = [3.9i, 5.1 i], merit= 00. 

A natural question now is, whether it is possible to choose c such that the stability 

is improved. Unfortunately, (4.la) shows that it is not possible to achieve L-stability 
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(which would require c = 1), but strong A-stability is obtained for c>1. For example, 

by choosing c =~we have R(oo)=!. The corresponding Lagrange method is defined by 

(4.4a) 1 (216 -81) A--
- 288 256 -48 ' 

1 (81) 
a= 288 80 ' c=G) 

for which p = r = 3. The iterated version is defined by 

(4.4b) 

D = ..!_ (9 / ( J2 + 1) 0 ) 
12 0 2/(J2-l) ' 

p(I-D-1A)=O, 

am E [0.21, 0.33], fu = [3.2i, 4.li], merit= 2. 

4.1.2. Gauss and Radau methods. As reference methods for our numerical experi­

ments, we take the conventional two-stage Gauss-Legendre and Radau IIA methods. 

The Gauss-Legendre corrector, and its iterated version is defined by 

(4.5a) 

(4.5b) 

A-_!_ ( 3 3-2.J3) 
-12 3+2.J3 3 ' 

1 
b=-e 

2 ' 
1 (6-2../3) c= 12 6+2../3 ' 

The Radau HA-based method is given by 

A=..!_(5 
12 9 

-1) 
3 ' 

a=O, 

(4.6a) 

c=(!). p=3, 

D = _!_ (20- 5.J6 
30 0 12+

0
3.J6)' 

(4.6b) 

a=O, b0 =0, 

p=4, r=2, 

b0 =0, bT =eJA, 

r=2, 

p(I-D- 1A) =0, 

am E [0.27, 0.35], lo-= [2.6i, 3.7i], merit= 1. 

4.2. Three-processor methods. 

4.2.1. Newton-Cotes method. For k = 3 and equidistant abscissas the corrector is 

given by 

c ~s ') a~J_(:) A=_!_ 32 8 0 ' 
72 27 

72 ' 
27 9 9 

(4.7a) 

b0 =e[a, bT =e[ A, c~~(~) 
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with p = r = 4, and with A-acceptable stability function (see Watts and Shampine [23] 

By a numerical search we found the matrix 

(
li'~3 0 

2485 
D == 0 10968 

0 0 

(4.7b) 
am E [0.49, 0.77), 

0 ) 0 , 
8980 

27627 

p(I-D- 1A) =0.01, 

I(T = [7.1 i, 8.4i], mcrit=OO. 

4.2.2. Lobatto IHA method. For k=3 and Lobatto abscissas the corrector is giv~ 

by 

( 4.8a) 

( 

25-v's 

A = - 1- 25 + 13v'5 
120 50 

b0 =e[ a, 

25 - 13..;'5 - 1 + .JS) 
25+v'5 -1-.JS ' a=-1- 11-JS (ll+J5) 

120 ' 
50 10 10 

c=J_ 5+.JS (
5 -.JS) 

10 ' 
10 

with p = 6 and r = 4, and with A-acceptable stability function (see Dekker and Verv 

[9]). The iterated version is generated by 

( ~~~i 0 0 ) 

D== 0 Ji941 0 , 

o o ~m 

{4.8b) 
am E [0.52, 0.88], I"== [8.9i, lOi], merit= co. 

4.2.3. Lagrange method. By keeping c1 and c2 free, we can construct stro1 

A-stable methods with stage order four. It can be shown that the stability functio 

A-acceptable for c1 + c2 = 1 and strongly A-acceptable for c1 + c2 > 1. A numerical sec: 

produced the block point vector c = (tz, ~, 1) 7 for which parameter values of accepti 

magnitude and a damping factor jR(oo)j=0.143 are obtained. The correspom 

corrector reads 

(4.9a) 

( 

98392 

A= 12; 960 112000 

110592 

b0 =e[a, 

-81634 31213) 

-61600 28000 , 

-48384 36288 
a= 12;960 (~~!~~)· 

22464 

'~I~(:~) 
with p = r = 4. The iterated method is generated by 

(4.9b) 

(
1 2 0~~9 0 

D = o 2531 
8794 

0 0 

<Tm E [0.49, 0.69], 

0 ) 
0 ' 

302~ 

8923 

p(I - D- 1A)=0.011, 

I"= [ 5.1 i, 6.2 i], merit= 3. 
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4.2.4. Radau method. The 3-stage Radau IIA corrector is defined by [7] 

88-7./6 296-169./6 -2+3./6 

360 1800 225 

(4.lOa) 
A= 

296+ 169./6 88+7./6 -2-3./6 

1800 360 225 

16-./6 16+./6 1 
-

36 36 9 

a=O, b0 =0, bT=e[A, c=Ae 

with p = 5, r = 3, and L-acceptable stability function. The matrix D is given by 

(4.lOb) 

(
1'?66i4 0 

D= 0 m~ 

0 0 

O"m E (0.52, 1.0], 

4.3. Four-processor methods. 

0) 
0 ' 

1887 
5077 

p(I-D- 1A) =0.0047, 

la= [ 6.6i, 9.3 i], merit= 5. 

1015 

4.3.1. Newton-Cotes method. For k = 4 and equidistant abscissas the corrector is 

given by 

c 
-264 106 

-19) ("') 1 992 192 32 -8 I 232 

A= 2880 918 648 378 -27 , a= 2880 243 ' 

1024 384 1024 224 224 

(4.lla) 

<-~m bo =er a, bT =eJA, 

with p = 6, r = 5, and with A-acceptable stability function. A numerical search did not 

produce a better matrix D than 

(4. llb) 
(
1~~~9 0 

D= 0 m~ 
0 0 

0 0 

0 0) 0 0 
2709 0 ' 
11281 

0 11!1 
5549 

p(I - D- 1A) = 0.1, 

O"m E [0.76, 1.04], Ia=[8.1i, ll.8i], merit= 00. 

4.3.2. Lobatto HA method. For k=4 and Lobatto abscissas the corrector is given 

by 

343-9v'TI 392-96v'TI 343-69v'TI -21+3v'TI 

2520 2205 2520 1960 

392+105v'TI 8 392-!05v'2f 3 

2880 45 2880 320 

(4.12a) A= 
343+69v'TI 392+96v'TI 343+9v'TI -21-3v'TI 

, 

2520 2205 2520 1960 

49 16 49 1 
- -

180 45 180 20 
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119+3./21 7-.JTI 

1960 14 

13 l 
-

320 
bo=e;fa, br =e;[A, 

2 
a= 

119-3J2I 
c= 

7+v'If 

1960 14 

1 
-
20 

1 

with p = 8, r = 5, and with A-acceptable stability function. A numerical search produced 

the matrix 

(4.12b) 
( ~~:j 1~5 ° 

0 10334 0 
D= 6os 

0 0 9403 

0 0 0 

Um E (0.87, 1.32], 

0 ) 0 

0 ' 
3799 

23419 

p(I - v- 1A)=0.021, 

Iu=[15.4i, 19i], merit= 00. 

4.3.3. Lagrange method. Numerically, we found that the stability function is 

A-acceptable for c1 + c2 + c3 = ~ and strongly A-acceptable for c1 + c2 + c3 > ~. For c = 

(t J1, tL 1) r we obtained parameter values of acceptable magnitude and a damping 

factor jR(oo)j=0.325. The corresponding corrector with p = r = 5 reads 

( "'"" -872784 926800 -5~m) 
1 17484082 13296591 -6182575 3486252 

A 49896000 16192946 22005423 7263025 -1229844 , 

16232832 21897216 9676800 598752 

(4.13a) 

C'') '=,{1} 1 6811 
b0 =eTa, br =eTA, 

a = 332640 10043 ' 

9936 

The iterated method is generated by 

(4.13b) 

( 

358~4;7 19~3 0 

D= 0 114s9 0 

0 0 i32t;o 
0 0 0 

Um E [0.59, 0.93), 

0 ) 0 

0 ' 
3086 
12339 

p(I - D-1 A)= 0.045, 

JO'= [8.2i, l 1.8i], merit= 6. 

4.3.4. Radau method. The four-stage Radau IIA corrector reads 

(4.14a) 
(

.11299947932316 -.04030922072352 .02580237742034 

.23438399574740 .20689257393536 -.04785712804854 
A= 

.21668178462325 .40612326386737 .18903651817006 

.22046221117677 .38819346884317 .32884431998006 

a=O, b0 =0, br =eTA, c=Ae 

-.0099046765073 ~ 
.01604742280652 

-.02418210489983 , 

..!.. 
16 
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with p = 7, r = 4, and with L-acceptable stability function. The iterated method is 

generated by 

(4.14b) 

(
~m o o 

D= 0 Jii6 0 

0 0 ~6~! 

0 0 0 

<Tm E [0.74, 1.31], 

0 ) 0 

0 ' 
1848 
7919 

p(I - D- 1A)=0.024, 

Iu = [10.0i, l 7.2i], merit= 7. 

4.4. Survey of methods. In Table 4.1, we have summarized a few characteristics 

of the methods derived in the preceding sections. In this table, the value of the step 

point order p corresponds to values of m equal to or greater than p, and the value of 

the stage order r corresponds to that of the corrector. From a computational point of 

view, the Lagrange and Radau IIA methods are the most attractive ones, because merit 

is relatively small. Thus, if these methods are implemented with some local error 

strategy for automatically estimating the number of iterations m and the stepsize h 

needed to meet local error tolerance, then the value of the "computational efficiency" 

quantity mL/ h for integrating an interval of length L will not be unnecessarily large 

because of the development of instabilities. This observation is confirmed by the 

numerical experiments in § 5.4. 

5. Numerical experiments. In this paragraph, the (stiff) diagonal iteration method 

developed above will be tested by integrating a number of stiff test problems. Section 

5.1 presents these test problems. Section 5.2 compares the effective orders of Gauss­

Legendre, Newton-Cotes, Lobatto IIIA, Radau IIA and Lagrange correctors, and in 

§ 5.3, the performance of the diagonal iteration process with respect to the number of 

iterations is tested for a few two-processor correctors. Finally, in § 5.4, we compare 

the efficiency of the iterated methods with a few DIRK methods from the literature. 

We recall that we only used the zero-order approximations to the Jacobian matrix 

and to the initial inner and outer iterates. In the tables of results, the accuracy of the 

TABLE 4.1 

Main characteristics of diagonally iterated IRK methods. 

Method p k p(I-D- 1A) <Tm-range (r~m~lO) mcril 

Newton-Cotes (4.3) 4 3 2 0 [0.21, 0.36] 00 

Lagrange ( 4.4) 3 3 2 0 [0.21, 0.33] 2 

Radau IIA (4.6) 3 2 2 0 [0.27, 0.35] 

Gauss (4.5) 4 2 2 0 00 00 

Newton-Cotes (4.7) 4 4 3 0.008 [0.49, 0.77] 00 

Lobatto IIIA (4.8) 6 4 3 0.0043 [0.52, 0.88] 00 

Lagrange (4.9) 4 4 3 0.01 [0.49, 0.69] 3 

Radau IIA (4.10) 5 3 3 0.0047 [0.52, 1.0] 5 

Newton-Cotes ( 4.11) 6 5 4 0.1 [0.76, 1.04] 00 

Lobatto IIIA (4.12) 8 5 4 0.021 [0.87, 1.32] 00 

Lagrange ( 4.13) 5 5 4 0.045 [0.59, 0.93] 6 

Radau IIA (4.14) 7 4 4 0.024 [0.74, 1.31] 7 
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results is given by means of the number of correct digits .ii of the numerical solution 

at the endpoint T (i.e., we write the maximum norm of the error at t = T in the form 

10-A). The computational costs are proportional to mL/ h, where h is the fixed 

step length, L := T- t0 is the length of the integration interval, and m is the fixed number 

of outer iterations per step. In actual applications of these methods, some strategy is 

needed to select h and m. However, since our test problems are such that the exact 

solution is equally smooth in the whole integration interval, it is reasonable to use 

fixed h and m. 

S.1. Test problems. We briefly discuss a few test problems partly taken from the 

literature and partly constructed in order to test some special aspect of the methods. 

All problems are defined on the interval [t0 , T]. 

Our first problem is the stability test problem of Prothero and Robinson [21] 

(5.la) 
dy 
dt = -e-1(y- g(t))+ g'(t), y( to)= g( to), to=O, T= 1, 

where the exact solution equals g(t) and e is a small parameter. Prothero and Robinson 

used this problem to show the order reduction of RK methods when e is small. In 

our experiments we set 

(5.lb) g(t) =cos (t), 

The second test problem is the nonlinearization of problem (5.1): 

(5.2a) y(to) = g(to), t0 = 0, T= 1, 

with exact solution y(t) = g(t) for all values of the parameter e. As in the preceding 

problem we set 

(5.2b) g(t) =cos (t), 

The third test problem is that of Kaps [ 17]: 

dYz 
dt = Y1 - Y2(1 + Y2), 

(5.3) 

t0 =0, T=l, 

with the smooth exact solution y 1 =exp (-2t) and y 2 =exp (-t) for all values of the 

parameter e. This problem belongs to the class of problems for which stiffly accurate 

RK methods do not suffer order reduction whatever small e is ( cf. Hairer, Lubich, 

and Roche [11]). 

The tes: s:t of Enrig~t, Hull, and Lindberg [10] contains the following system of 

ODEs descnbmg a chemical reaction: 

(5.4a) 
dy (.013+1000y3 O O ) 

dt =- 0 2500y3 0 y, 

.013 0 1000y1 +2500y2 

~~t~ y(O) = (1, 1, O) 7. s.ince we use fixed stepsizes in our experiments, we avoided the 

m1tial phase by choosmg the starting point at t0 = 1 and we used the correspondin~ 
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initial values 

(5.4b) ( 

0.990731920827 ) 

y(l) = 1.009264413846 . 

-.366532612659 x io-5 

At t = T = 51 we found the approximate solution 

( 
0.591045966680 ) 

y(51) = 1.408952165382 . 

-.186793736719 x 10--s 

In order to show the performance of the methods on PDEs we included the 

convection-diffusion problem 

(5.5) 
au a2u au 2 

-= u-,-x cos (t)--x sin (t), 
at ax· ax 

O~x~ 1, t0 = 0, T= 1, 

with Dirichlet boundary conditions and with exact solution u(x, t) = x 2 cos ( t). Stan­

dard finite difference discretization of the spatial derivatives on a uniform grid with 

meshsize 1/40 leads to a system of 39 ODEs whose exact solution is given by 

(j/40)2 cos (t),j= 1, · · · ,39. 

5.2. Effective orders of the correctors. First of all, we want to show that in many 

stiff problems the property of superconvergence does not pay because of the 

phenomenon of order reduction, and that strong stability properties may improve the 

accuracy considerably. 

The Tables 5.1 (a) and 5.1 (b) present A values for the various test problems obtained 

for L/ h = 1, 2, 4, 8, 16 by iterating the corrector to convergence. From these results we 

can derive for each test problem the effective orders by computing (A(h) -A(2h) )/0.3. 

For h we chose the smallest value for which results are available. The resulting effective 

TABLE 5.l(a) 

Problems (5.1 ), (5.2), and (5.3) with s = 10-3 . Values of!':.. for L/ h =I, 2, 4, 8, 16. 

Corrector p k (5.1) (5.2) (5.3) with s = 10-3 

( 4.3a) 4 3 2 4.7 5.4 6.0 6.7 7.7 4.7 5.3 5.9 6.6 7.5 3.3 4.3 5.1 5.9 7.0 

(4.4a) 3 2 5.1 5.9 6.8 7.8 8.8 5.0 5.8 6.7 7.7 8.7 2.7 3.6 4.4 5.3 6.2 

(4.5a) 4 2 2 1.9 2.5 3.1 3.8 4.7 1.9 2.5 3.1 3.8 4.6 1.2 1.8 2.4 3.2 4.3 

(4.6a) 3 2 2 4.2 4.7 5.3 5.9 6.5 4.2 4.7 5.2 5.8 6.4 2.4 3.2 4.1 5.0 5.9 

(4.7a) 4 4 3 6.1 7.3 8.5 9.7 6.0 7.3 8.5 9.7 4.2 5.4 6.6 7.8 

(4.8a) 6 4 3 6.1 7.3 8.6 9.8 6.1 7.3 8.5 9.7 4.7 6.0 7.3 9.3 

(4.9a) 4 4 3 6.5 7.6 8.8 10.1 6.5 7.6 8.8 10.0 3.8 5.0 6.1 7.3 

(4.lOa) 5 3 3 5.0 6.0 6.9 7.9 4.9 5.9 6.9 7.8 4.0 5.3 6.3 7.3 

(4.lla) 6 5 4 7.0 8.2 9.5 6.9 8.1 9.4 5.4 6.7 8.0 

( 4.12a) 8 5 4 7.1 8.4 9.6 7.0 8.3 9.5 5.6 6.8 8.2 

(4.13a) 5 5 4 7.5 8.9 10.5 7.4 8.9 10.4 5.8 7.2 8.8 

(4.14a) 7 4 4 6.3 7.4 8.6 6.3 7.3 8.5 5.0 6.4 7.8 
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TABLE 5.l(b) 

Problems (5.3) with e = 10-8, (5.4) and (5.5). Values of a for L/ h = 1, 2, 4, 8, 16. 

Corrector p r k (5.3) With S = 10-B (5.4) (5.5) 

(4.3a) 4 3 2 3.3 4.5 5.7 6.9 8.1 4.5 5.7 6.9 8.2 9.4 3.2 4.2 5.4 6.5 7.7 

(4.4a) 3 3 2 2.7 3.6 4.4 5.3 6.2 3.1 4.0 4.9 5.8 6.7 3.1 4.0 4.8 5.7 6.6 

(4.Sa) 4 2 2 1.2 1.8 2.4 3.0 3.6 5.0 6.1 7.3 8.5 9.7 1.9 2.6 3.2 3.9 4.8 

(4.6a) 3 2 2 2.4 3.2 4.1 5.0 5.9 3.4 4.3 5.2 6.1 7.0 2.5 3.2 4.0 4.8 5.7 

(4.7a) 4 4 3 4.2 5.4 6.7 7.9 4.7 5.9 7.1 8.3 4.6 5.9 7.2 8.4 

(4.8a) 6 4 3 5.4 7.2 9.0 10.8 6.4 8.3 10.1 11.8 4.8 6.2 7.7 9.1 

(4.9a) 4 4 3 3.9 5.0 6.2 7.3 4.2 5.4 6.6 7.8 4.5 5.6 6.8 7.9 

(4.lOa) 5 3 3 4.4 5.8 7.3 8.8 5.3 6.8 8.3 9.8 3.6 4.8 6.1 7.3 

(4.lla) 6 5 4 5.9 7.7 9.6 6.7 8.5 10.3 5.7 7.4 9.2 

(4.12a) 8 5 4 7 .8 10.2 12.6 8.6 11.0 6.0 7.7 9.5 

(4.13a) 5 5 4 6.0 7.4 8.8 6.9 8.2 9.7 6.4 7.8 9.3 

(4.14a) 7 4 4 6.6 8.7 10.8 7.9 9.8 11.8 5.2 6.5 8.0 

orders are listed in Table 5.2. For each problem, the result of the most accurate corrector 

is indicated in bold face. 

The results for the first three problems clearly demonstrate that the various methods 

often do not show their step point order, so that the property of superconvergence is 

of limited value in the case of stiff problems. 

5.3. Performance of the iteration process for two-processor correctors. In this sec­

tion, we consider the performance of the iteration method for solving the two-processor 

corrector equations. Since the rate of convergence of a particular iteration method 

turned out to be comparable for the Newton-Cotes corrector and the Lagrange 

corrector, we only present results for the most accurate one. In the case of the Gauss 

and Radau corrector, the iteration methods behaved quite differently so that we include 

TABLE 5.2 

Effective orders shown by the correctors for problems (5.1)-(5.5). 

(5.3) (5.3} 

Corrector p k (5.1) (5.2) e = 10-3 s = 10-B (5.4} (5.5) 

Newton-C. (4.3a) 4 3 2 3.3 3.0 3.7 4.0 4.0 4.0 

Lagrange (4.4a) 3 3 2 3.3 3.3 3.0 3.0 3.0 3.0 

Gauss (4.5a) 4 2 2 3.0 2.7 3.7 2.0 4.0 3.0 

Radau IIA ( 4.6a) 3 2 2 2.0 2.0 3.0 3.0 3.0 3.0 

Newton-C. (4.7a) 4 4 3 4.0 4.0 4.0 4.0 4.0 4.0 

Lobatto IIIA (4.8a) 6 4 3 4.0 4.0 6.7 6.0 5.7 4.7 

Lagrange (4.9a) 4 4 3 4.3 4.0 4.0 3.7 4.0 3.7 

Radau IIA (4.lOa) 5 3 3 3.3 3.0 3.3 5.0 5.0 4.0 

Newton-C. (4.lla) 6 5 4 4.3 4.3 4.3 6.3 6.0 6.0 

Lobatto IIIA (4.12a) 8 5 4 4.0 4.0 4.7 8.0 8.0 6.0 
Lagrange (4.13a) 5 5 4 5.3 5.0 5.3 4.7 5.0 5.0 

Radau IIA (4.14a) 7 4 4 4.0 4.0 4.7 7.0 6.7 5.0 
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results for both correctors. Moreover, the Gauss corrector was also iterated with a 

matrix D defined by the relation (3.12). Since for the two-processor Gauss corrector 

( 4.5a) we have Ae = c, i.e., A- 1c = e, it follows that D-1c = e, so that 

D - dia (c) - J_ ( 6 - 2J3 O ) 
- g -12 0 6+2J3 ' 

p(I - v- 1 A)= 0.5. 

In the Tables 5.3 and 5.4 we only present results for the problems (5.2) and (5.4) 

for which most methods, respectively, show their stage order and their step point order 

(additional results for the other test problems may be found in the Appendix to [14]). 

Divergence of the inner iteration is indicated by *, and values in bold indicate that 

the accuracy of the corrector is reached (and that Li does not change anymore). For 

several values of L/ h the accuracies corresponding to the correctors of Lagrange type 

(first column), of Gauss-Legendre with D defined by (4.Sb) (second column), of 

Gauss-Legendre with D defined above (third column), and of Radau IIA (fourth 

column) are listed. These results confirm that, in general, the Gauss corrector is not 

suited to be iterated by diagonal iteration methods when started with an explicit 

predictor. 

5.4. Efficiency of diagonally iterated IRK correctors. In this final section, we 

compare the efficiency of the diagonally iterated IRK correctors with three fourth-order 

TABLE 5.3 

Values of ll. for problem (5.2) obtained by iterating the Lagrange corrector (4.4a), Gauss corrector (4.Sa), and 

Radau !IA corrector ( 4.6a). 

m L/h = 1 L/h =2 L/h =4 L/h =8 LI h = 16 

1 3.5 0.3 0.3 3.8 4.1 -2.2 -2.2 5.3 4.0 * * 4.8 3.6 * * 5.0 2.7 * 5.3 

2 5.0 1.0 0.7 4.2 5.8 -1.1 1.1 4.7 6.5 * 1.1 5.2 6.7 * 0.6 5.9 6.7 * * 6.7 

3 1.9 1.0 2.4 2.2 6.7 2.9 2.6 7.7 3.9 3.2 5.8 8.4 1.9 3.8 6.4 

4 1.4 2.5 1.9 3.1 2.5 3.8 3.1 8.7 4.6 3.8 

5 1.8 2.1 2.6 3.2 3.9 

10 1.9 2.6 3.2 4.1 5.3 

20 2.5 3.1 3.8 4.6 

TABLE 5.4 

Values of ll. for Problem (5.4) obtained by iterating the Lagrange corrector (4.4a), Gauss corrector (4.5a), and 

Radau IIA corrector (4.6a). 

m L/h = 1 L/h=2 L/h =4 L/h=8 L/ h = 16 

1 2.1 1.2 1.2 1.7 2.3 1.5 1.5 2.1 2.6 * * 2.4 2.8 * * 2.7 3.1 * * 3.0 

2 3.4 2.6 2.2 2.9 3.9 2.9 2.8 3.5 4.5 * 3.4 4.1 5.2 * 4.0 4.7 5.8 * 4.5 5.3 

3 4.3 3.8 3.0 3.6 5.4 4.8 3.8 4.5 6.4 5.7 4.7 5.4 7.4 6.6 5.6 6.3 8.3 6.9 6.5 7 .2 

4 4.5 4.7 3.8 3.4 5.7 5.9 4.9 4.3 6.9 7.1 6.1 5.2 8.1 8.3 7 .2 6.1 9.3 9.5 8.4 7.0 

5 5.0 4.4 6.1 5.7 7.3 7.1 8.2 8.5 8.3 9.4 9.7 9.5 

6 4.8 6.1 7.3 8.5 9.5 

7 5.0 9.7 
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DIRK methods from the literature, viz. the three-stage method generated by the Butcher 

array: 

1 
2 (1 +g) ~ (1 + g) 

1 1 !o +g) - --g 
2 2 2 

1 
(1 + g) -(1 +2g) ! (1 +g) -(1-g) 

g=~vl3 cos ( ~) 2 2 
(5.6) 

1 1 1 3 18 

6e 1-3g2 6g2 

(cf. Crouzeix [8) and Alexander [l]), and the four-stage, parallel DIRK methods of 

Iserles and Nrlrsett [16): 

1 

2 

1 

1 
-
2 

0 

(5.7) 

1 
-
2 

2 
-
3 

1 
-
2 

1 

3 

(5.8) 

1 -
2 

0 

3 -
2 

-3 

1 -
3 

1 -
2 

0 

5 

2 

5 

3 

-1 

1 

3 1 

2 2 

2 0 1 

1 

6 

2 

3 

1 

3 

5 1 

2 2 

4 

3 

3 

2 

0 

-1 

1 

6 

2 

3 

3 

2 

The method (5.6) is A-stable and requires three sequential stages per step. The methods 

(5.7) and (5.8) are A-stable and L-stable, respectively, and require only two sequential 

stages per step (when run on a two-processor computer). 

We restrict our considerations to the above three DIRK methods and to the 

Newton-Cotes, Lobatto IIIA, Lagrange, and Radau IIA correctors where each method 

uses a fixed number of m iterations per step. Recalling that iterating an IRK corrector 

by means of m diagonal iterations in each step yields a method that is in fact a DIRK 

method with m sequential stages, we conclude that all methods have in common that 

they belong to the class of DIRK methods. However, in the case of the "genuine" 

DIRK methods (5.6), (5.7), and (5.8), the number of sequential stages per step is 
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known in advance, whereas in the case of the DIRK methods based on iteration the 

number of sequential stages m that yields acceptable accuracies, is not known in 

advance and, in actual computation, it should be determined on the basis of some 

local error strategy. On the other hand, as we shall see, the accuracy of the iterated 

methods is less sensitive to the phenomenon of order reduction. 

In the Tables 5.5 and 5.6, m always denotes the number of sequential stages per 

step. Hence, all results in one column of these tables correspond to DIRK methods 

that use m sequential stages per step, so that all results corresponding to the same 

value of mL/ h required roughly the same computational effort. In the tables, the 

highest value of A corresponding to the same mL/ h value, that is, the "most efficient" 

TABLE 5.5(a) 

Problem (5.2): results for diagonally iterated correctors and for the methods (5.6), (5.7), and (5.8). 

Method k L/h m=l m=2 m=3 m=4 m=5 m=6 m=1 m=8 m=9m=IO ···m=oo 

Crouzeix-Alex. (5.6) I 1.0 

Iserles-N.dr:sett (5.7) 2 1.5 

Iserles-N.drsett (5.8) 2.1 

Newton-C. (4.3) 3.4 4.7 4.7 

Lagrange (4.4) 3.5 s.o 5.0 

Radau IIA (4.6) 3.8 4.2 4.2 

Newton-C. (4.7) 3.2 3.7 S.6 6.1 6.0 6.0 

Lobatto IIIA ( 4.8) 3.0 2.7 4.7 6.0 6.0 6.1 6.1 

Lagrange (4.9) 3.2 3.9 5.5 6.7 6.S 6.5 

Radau IIA (4.10) 3.4 3.1 5.0 4.9 4.9 

Newton-C. (4.11) 4 3.1 3.6 4.9 4.7 5.2 6.0 7.2 7.0 6.9 6.9 

Lobatto IIIA (4.12) 2.7 2.2 2.3 3.9 4.6 5.4 6.8 6.9 7.0 7.0 

Lagrange ( 4.13) 3.0 2.8 3.1 3.9 5.0 6.4 7.1 7.3 7.4 7.4 

Radau IIA (4.14) 2.9 2.8 3.0 4.7 5.6 6.8 6.3 6.3 

Crouzeix-Alex. (5.6) 2 2.5 

Iserles-Nisrsett (5.7) 2 2.4 

!series-N.tSrsett ( 5 .8) 2.7 

Newton-C. (4.3) 4.0 5.3 5.3 
Lagrange ( 4.4) 4.1 S.8 5.8 

Radau IIA (4.6) S.3 4.7 4.7 

Newton-C. (4.7) 3 3.4 3.5 6.4 8.1 7.2 7.3 7.3 

Lobatto IIIA (4.8) 3.0 2.2 5.3 6.0 7.3 7.3 

Lagrange (4.9) 3.5 3.8 5.9 7.5 7.6 7.6 

Radau IIA (4.10) 3.8 2.8 5.9 5.7 5.9 5.9 

Newton-C. (4.11) 4 3.3 3.3 5.2 5.2 5.3 5.9 6.7 7.8 8.3 8.1 8.1 

Lobatto IIIA (4.12) 2.3 I.l 1.4 4.0 4.5 5.5 6.9 7.3 8.4 8.3 8.3 

Lagrange (4.13) 2.9 2.3 2.7 4.9 5.2 6.5 8.3 8.9 8.9 

Radau IIA (4.14) 2.8 2.2 2.6 5.0 6.0 7.0 7.5 7.3 7.3 

Crouzeix-Alex. (5.6) 4 2.8 

Iserles-N.drsett (5.7) 2 3.0 

Iserles-Nllrsett (5.8) 3.2 

Newton-C. (4.3) 3.9 5.8 5.9 5.9 

Lagrange ( 4.4) 4.0 6.5 6.7 6.7 

Radau JIA (4.6) 4.8 5.2 5.2 

Newton-C. (4.7) 3 3.1 3.0 6.6 7.7 8.4 8.5 8.5 

Lobatto IIIA (4.8) 2.3 0.7 5.5 6.2 7.7 8.1 8.5 8.5 

Lagrange (4.9) 3.2 3.5 6.2 7.7 9.9 8.8 8.8 

Radau IIA (4.10) 3.6 2.0 5.6 6.2 6.8 6.9 6.9 

Newton-C. (4.11) 4 2.9 2.5 5.0 5.5 5.5 6.0 6.8 7.7 8.7 9.8 9.4 

Lobatto IIIA (4.12) 1.1 * * 5.0 4.3 5.6 6.4 7.2 8.3 9.0 9.5 

Lagrange (4.13) 2.3 0.8 1.5 5.1 5.6 6.8 7.9 8.8 9.7 10.8 lOA 

Radau IIA (4.14) 2.1 0.6 1.2 5.2 6.3 7.9 8.4 8.5 8.5 
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TABLE 5.5(b) 

Problem (5.2): efficiency test of fourth-order methods. 

Method p m k mL/h =4 mL/h =8 mL/h = 16 

Iserles-NtSrsett (5.7) 4 2 2 2.4 3.0 3.6 

Iserles-NtSrsett (5.8) 4 2 2 2.7 3.2 3.8 

Newton-C. (4.3) 4 4 2 4.7 5.3 5.9 

Newton-C. (4.7) 4 4 3 6.1 8.1 7.7 

Lobatto IIIA ( 4.8) 4 4 3 6.0 6.0 6.2 

Lagrange ( 4.9) 4 4 3 6.7 7.5 7.7 

Radau IIA (4.10) 4 4 3 4.9 5.7 6.2 

Newton-C. (4.11) 4 4 4 4.7 5.2 5.5 

Lobatto IIIA (4.12) 4 4 4 3.9 4.0 5.0 

Lagrange (4.13) 4 4 4 3.9 4.9 5.1 

Radau IIA (4.14) 4 4 4 4.7 5.0 5.2 

integration result, is indicated in bold. As in the preceding section, we only present 
results for the problems (5.2) and (5.4). Results for the additional test problems may 

be found in the Appendix to [14}. 

In the case of the nonlinear Prothero-Robinson problem, Table 5.5(a) shows that 

the number of iterations needed by the iterated methods to "reach" the accuracy of 

the corrector solution increases with k, that is, the higher-order methods need more 

iterations to solve the corrector; moreover, they have a "slow start": after two iterations 
the accuracy is still rather modest, whereas the lower-order methods have already 
converged, showing full corrector-precision. This can be explained by observing that 
we used a zero-order predictor for y<ol for all k, so that the "distance" between predictor 

and corrector solution increases with k. Thus, for this problem, the lower-order methods 

are more efficient than the higher-order ones, unless very high accuracies are requested. 

Furthermore, when we compare the various types of iterated methods (Newton-Cotes, 

Lobatto, Lagrange, or Radau), then the Lobatto IIIA methods perform not as well 

whereas the strongly A-stable Lagrange methods are slightly superior to the others. In 

the case of the "genuine" DIRK methods (5.6), (5.7) and (5.8), the Iserles-Nflrsett 

methods are more accurate than the Crouzeix-Alexander method, which is presumably 

due to the L-stability property of the Iserles-N£5rsett method. 

It is of particular interest to see how the iterated methods compare with the 

"genuine" DIRK methods. For example, Table 5.5(a) shows that the Newton-Cotes, 

Lobatto IIIA, Lagrange and Radau IIA based methods, respectively, produce 5, 0, 21 

and 4 "most efficient" results, whereas the "genuine" DIRK methods none. A further 

indication of the superiority of the iterated methods is given by Table 5.5(b) where 

we list results for the iterated methods with m = 4 and for the parallel DIRK methods 
(5.7) and (5.8). All these methods have step point order p = 4, but the accuracies 

obtained for the same computational-costs value of mL/ h differ largely, which is 

caused by the order reduction exhibited by the "genuine" DIRK methods. 

For the more innocent chemical reaction problem (5.4) the order reduction is not 

shown. Table 5.6(a) shows that the high-order iterated methods again require more 

iterations to obtain the corrector precision than the lower-order methods, however, 

here for low values of m, all iterated methods are roughly equally efficient. Furthermore, 

the scores of "most efficient" results for the Newton-Cotes, Lobatto IHA, Lagrange, 
and Radau IIA based methods are, respectively, 8, 5, 6, and 7, and among the DIRK 
methods only (5.7) scores twice. The analogue of Table 5.5(b) is given by Table 5.6(b). 
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TABLE 5.6(a) 

Problem (5.4): results for diagonally iterated correctors and for the methods (5.6), (5.7), and (5.8). 

Method k L/h m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9m=l0 · · · m=co 

Crouzeix-Alex. (5.6) 1 3.4 

Iserles-Nrlrsett (5.7) 2 3.4 

Iserles-Nrlrsett (5.8) 3.3 

Newton-C. (4.3) 2.1 3.4 4.3 4.5 4.5 
Lagrange ( 4.4) 2.1 3.5 3.1 3.1 
Radau IIA (4.6) 1.7 2.9 3.6 3.4 3.4 
Newton-C. (4.7) 1.8 3.5 5.1 4.7 4.7 

Lobatto IIIA (4.8) 1.6 3.1 4.3 5.6 6.3 6.4 6.4 
Lagrange (4.9) 1.8 3.5 4.3 4.2 4.2 
Radau IIA (4.10) 2.0 3.2 4.3 5.9 5.3 5.3 

Newton-C. (4.11) 4 1.7 3.6 5.2 6.5 6.7 6.7 

Lobatto IIIA ( 4.12) 1.4 2.7 4.6 6.0 7.1 8.3 8.6 8.6 

Lagrange ( 4.13) 1.6 3.1 S.8 6.6 7.0 6.9 6.9 

Radau !IA (4.14) 1.5 3.2 4.8 7.4 7.8 7.9 7.9 

Crouzeix-Alex. (5.6) 2 4.4 

Iserles-Nrlrsett (5.7) 2 4.S 

Iserles-Nrlrsett (5.8) 4.4 

Newton-C. (4.3) 2.3 3.9 5.4 5.7 5.7 

Lagrange ( 4.4) 2.3 4.5 4.0 4.0 

Radau !IA ( 4.6) 2.1 3.5 4.5 4.3 4.3 

Newton-C. (4.7) 2.0 4.2 6.2 5.9 5.9 

Lobatto IIIA (4.8) 1.9 3.8 5.1 6.8 8.1 8.3 8.3 

Lagrange ( 4. 9) 2.1 4.1 5.5 5.4 5.4 

Radau !IA (4.10) 2.2 3.8 5.1 6.9 6.8 6.8 

Newton-C. (4.11) 4 2.0 4.S 6.7 7.9 8.5 8.5 

Lobatto llIA (4.12) 1.7 3.3 5.4 7.2 8.5 10.0 10.9 11.0 11.0 

Lagrange ( 4.13) 1.9 3.7 6.3 7.5 8.3 8.2 8.2 

Radau !IA (4.14) 1.8 3.7 5.6 8.0 8.8 10.1 9.8 9.8 

Crouzeix-Alex. (5.6) 4 5.5 

Iserles-Nrlrsett (5.7) 2 5.7 

Iserles-Nrlrsett (5.8) 5.6 

Newton-C. (4.3) 2.6 4.5 6.4 6.9 6.9 

Lagrange ( 4.4) 2.6 4.7 4.9 4.9 

Radau IIA ( 4.6) 2.4 4.1 5.4 5.2 5.2 

Newton-C. ( 4. 7) 2.3 5.0 7.2 7.1 7.1 

Lobatto IIIA ( 4.8) 2.2 4.4 6.0 7.9 9.7 10.1 10.l 

Lagrange (4.9) 2.4 4.8 6.8 6.6 6.6 

Radau IIA (4.10) 2.5 4.5 6.0 7.9 8.3 8.3 

Newton-C. (4.11) 4 2.3 5.4 7.1 8.9 10.6 10.3 10.3 

Lobatto lllA (4.12) 2.0 4.0 6.1 8.4 10.1 11.9 12.3 12.3 

Lagrange (4.13) 2.2 4.2 7.2 8.7 9.9 9.7 9.7 

Radau IIA (4.14) 2.1 4.3 6.6 9.1 10.2 12.2 11.8 11.8 

------· 

It reveals that the iterated methods are usually much more efficient than the parallel 

DIRK methods, and in any case they are at least competitive. 

6. Concluding remarks. In this paper we have derived a diagonally implicit iter-

ation scheme to solve a fully implicit Runge-Kutta method. The structure of this 

iteration process is such that a parallel computer can be fully exploited. Starting with 

an implicit RK method with k implicit stages (the corrector), each iteration requires 

the solution of k systems of equations of dimension equal to the number of ODEs. 

Since these systems can be solved completely independently, the effective computational 

work per iteration equals the solution of one such system, provided that k processors 

are available. 
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TABLE 5.6(b) 

Problem (5.4): efficiency test of fourth-order methods. 

Method p m k mL/h=4 mL/h=8 mL/h = 16 

Iserles-Nilrsett (5.7) 4 2 2 4.5 5.7 6.9 

Iserles-Nilrsett (5.8) 4 2 2 4.4 5.6 6.7 

Newton-C. (4.3) 4 4 2 4.5 5.7 6.9 

Newton-C. (4.7) 4 4 3 4.7 5.9 7.1 

Lobatto IIIA (4.8) 4 4 3 5.6 6.8 7.9 

Lagrange (4.9) 4 4 3 4.2 5.4 6.6 

Radau IIA (4.10) 4 4 3 5.9 6.9 7.9 

Newton-C. (4.11) 4 4 4 6.5 7.9 8.9 

Lobatto IIIA (4.12) 4 4 4 6.0 7.2 8.4 

Lagrange (4.13) 4 4 4 6.6 7.5 8.7 

Radau IIA (4.14) 4 4 4 7.4 8.0 9.1 

The free parameters in the iteration scheme are chosen in such a way that the 

corresponding stability functions converge as quickly as possible to the stability function 

of the corrector, which is chosen to be (at least) A-acceptable. Although we have 

numerical evidence that this is not a bad choice, we do not claim that it is the best 

possible. In a forthcoming paper it is intended to give theoretical support for this choice. 

A second aspect considered in this paper, is the choice of the particular corrector 

method. The well-known implicit RK methods of high classical order, such as the 

Gauss-Legendre, Radau, and Lobatto methods, seem to be suitable candidates. 

However, since it is the stage order which usually determines the order behaviour in 

integrating stiff differential equations, these methods are not necessarily optimal correc­

tors. Because the stage order is significantly smaller than the classical order for these 

methods, we will encounter the phenomenon of order reduction. Therefore, we also 

considered Newton-Cotes and Lagrange correctors, which have-for the same number 

of implicit relations per iteration-a stage order which is one higher than for Gauss­

Legendre and Radau methods and is equal to the stage order of Lobatto methods. 

Apart from these order considerations, it turned out that the stability behaviour 

of the iterated scheme largely depends on the choice of the corrector. For example, it 

is shown that the Gauss-Legendre corrector is not suitable in this context, since it is 

not stiffly accurate. Consequently, only for very "innocent" stiff problems, where we 

have no order reduction, the Gauss-Legendre corrector is useful, but as a method for 

general stiff problems it is disadvantageous. 

The other four types of correctors are all stifily accurate, which has the effect that 

certain classes of stiff problems can be integrated without order reduction. For such 

problems the classical order should be a decisive factor, viz. in these cases the Lobatto 

IIIA corrector is superior and also the Newton-Cotes corrector is a good choice. 

However, these correctors are only A-stable and it is shown that the stability function 

of the iterated method is not A-acceptable unless the corrector is really solved. This 

means that the iteration process based on these correctors easily encounters stability 

problems. Hence, a corrector possessing better stability characteristics, such as the 

Radau IIA method (L-stable) and the Lagrange method (strongly A-stable), will be 

much more robust. We showed that after a few iterations the stability function of the 

iterated methods based on these correctors is A-acceptable. 

Since the stage order of the Lagrange corrector is one larger than that of the 

Radau IIA corrector, we think that it is a good choice for integrating general stiff 
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equations; it combines adequate stability characteristics with a relatively high stage 
order. Our numerical experiments confirm this advice. 

Furthermore, we have compared our methods with sequential and parallel DIRK 
methods from the literature. This comparison is rather obvious since the effective 
computational work per iteration equals the work per stage in a DIRK method. It 
turned out that the diagonally iterated RK methods are much more efficient than the 
"conventional" DIRKs. The reason is that only low order "conventional" DIRKs with 
good stability properties are available in the literature and, more importantly, these 
DIRKs have a stage order equal to 1. This property gives these methods a very poor 
performance in case of general stiff problems. 

Finally, we remark that the construction of diagonally iterated methods of 
arbitrarily high order is straightforward, and we observed in our experiments that, 
especially the high order methods, showed remarkably high accuracies. 
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