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ITERATED SMOOTHED BOOTSTRAP CONFIDENCE INTERVALS
FOR POPULATION QUANTILES

BY YVONNE H. S. HO AND STEPHENM. S. LEE1

The University of Hong Kong

This paper investigates the effects of smoothed bootstrap iterations on
coverage probabilities of smoothed bootstrap and bootstrap-t confidence
intervals for population quantiles, and establishes the optimal kernel band-
widths at various stages of the smoothing procedures. The conventional
smoothed bootstrap and bootstrap-t methods have been known to yield one-
sided coverage errors of ordersO(n−1/2) and o(n−2/3), respectively, for
intervals based on the sample quantile of a random sample of sizen. We
sharpen the latter result toO(n−5/6) with proper choices of bandwidths at the
bootstrapping and Studentization steps. We show further that calibration of
the nominal coverage level by means of the iterated bootstrap succeeds in re-
ducing the coverage error of the smoothed bootstrap percentile interval to the
orderO(n−2/3) and that of the smoothed bootstrap-t interval toO(n−58/57),
provided that bandwidths are selected of appropriate orders. Simulation re-
sults confirm our asymptotic findings, suggesting that the iterated smoothed
bootstrap-t method yields the most accurate coverage. On the other hand, the
iterated smoothed bootstrap percentile method interval has the advantage of
being shorter and more stable than the bootstrap-t intervals.

1. Introduction. It is generally known that under Bhattacharya and Ghosh’s
(1978) smooth function model, the bootstrap percentile method confidence
interval is subject to a one-sided coverage error of orderO(n−1/2), rendering it
indistinguishable from the classical normal approximation method. Hall (1986)
shows that Studentization can be employed to reduce this error toO(n−1).
The iterated bootstrap offers an alternative to error correction by calibrating the
nominal coverage level iteratively; see Beran (1987). Hall and Martin (1988)
show that each such iteration reduces the one-sided coverage error by an
order of O(n−1/2) successively. On the other hand, smoothing the bootstrap,
which amounts to drawing bootstrap samples from a kernel-smoothed empirical
distribution, instead of sampling with replacement from the raw data, does
not affect the coverage accuracy of bootstrap intervals in general. Polansky
and Schucany (1997) propose smoothed bootstrap strategies to yield intervals
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of O(n−1) coverage error. Their methods, however, require sophisticated tuning
of the smoothing bandwidths, rendering the improvement less stable than that
resulting from Studentization or the iterated bootstrap.

In contrast to problems in the context of smooth function models, conventional
bootstrap confidence intervals for theqth population quantile, for a fixed
q ∈ (0,1), have notably poor coverages; see Hall and Martin (1989). Here the
percentile method gives coverage error of orderO(n−1/2), which cannot be
improved upon by nominal coverage calibration using the iterated bootstrap.
Indeed, more generally, thisO(n−1/2) coverage error is inherent in any confidence
interval procedure based directly on order statistics as a consequence of their
binomial-type discreteness. See, for example, De Angelis, Hall and Young (1993)
for a more detailed account of the above phenomenon. On the other hand, either the
smoothed bootstrap or Studentization extends considerably the domain from which
we derive the confidence limits, and may therefore be able to make asymptotic
improvement over the conventional bootstrap percentile method.

In the context of estimating the varianceσ 2
n of the sampleqth quantile, Hall,

DiCiccio and Romano (1989) show that sufficiently high-order smoothing of the
bootstrap succeeds in reducing the relative error of the unsmoothed bootstrap
estimate fromO(n−1/4) to O(n−1/2+ε) for arbitrarily smallε > 0. Falk and Janas
(1992) show that smoothing the bootstrap percentile method returns the same
order, O(n−1/2), of coverage error as in the unsmoothed case. Studentization
of the sample quantile involves estimation ofσ 2

n , which admits an expansion
n−1q(1− q)f (F−1(q))−2 + O(n−3/2) under proper regularity conditions, where
f = F ′ and F denotes the distribution function underlying the given random
sample. In practiceσ 2

n has to be estimated from the sample by, for example,
bootstrapping or explicit estimation of the leading term in its expansion above. Hall
and Martin (1991) show that confidence intervals based on normal approximation
of the sample quantile Studentized by the unsmoothed bootstrap variance estimate
yield coverage error of orderO(n−1/2). Falk and Janas (1992) show that a
similar result holds when the variance is estimated by plugging in the kernel
density estimate off . However, application of the smoothed bootstrap to the
Studentized sample quantile in the latter case, which we shall term the smoothed
bootstrap-t method, succeeds in improving the error order too(n−2/3), if second-
order kernels are used in conjunction with appropriately selected bandwidths at
both the Studentization and bootstrapping steps; see Janas (1993). This result will
be sharpened in Section 2.4, where we prove that the smoothed bootstrap-t method
can indeed yield a coverage error of precise orderO(n−5/6).

We investigate further in this paper the asymptotic effects on coverage error
of iterating the smoothed bootstrap or bootstrap-t methods, with the objective
of generating confidence intervals with improved coverage accuracy. De Angelis,
Hall and Young (1993) remark in passing without proof that iterating the smoothed
bootstrap percentile method might reduce coverage error. They mention neither the
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degree of improvement nor the choices of kernel bandwidths, and implementation
of the iterated smoothed bootstrap remains impractical. Iterating the smoothed
bootstrap-t has not been explored in the literature. We formalize the theory of
the iterated smoothed bootstrap and bootstrap-t methods by stating explicitly
the orders of their coverage errors, and derive therefrom the optimal sizes of
kernel bandwidths at the two levels of smoothed bootstrapping and also at the
Studentization step where applicable. Specifically, we show for the smoothed
bootstrap method that calibration of the nominal coverage level by one extra
level of smoothed bootstrapping can reduce the coverage error fromO(n−1/2)

to O(n−2/3), provided that the bandwidths are chosen of order ranging fromn−2/9

to n−1/12 at the outer level of bootstrapping, and of ordern−1/3 at the inner
level. For the smoothed bootstrap-t method, such coverage calibration succeeds
in reducing the coverage error fromO(n−5/6) to O(n−58/57), provided that the
bandwidths are chosen of ordern−2/19 at the outer level, of ordern−11/57 at
the inner level and of order ranging fromn−11/19 to n−1/2 at the Studentization
step. The latter result signifies thus by far the best coverage accuracy achievable
by bootstrap confidence intervals proposed in the literature for the population
quantile. It also outperforms Beran and Hall’s (1993) interpolated confidence
interval, which is based on a convex combination of sample quantiles and
yields a coverage error of orderO(n−1). Chen and Hall’s (1993) smoothed
empirical likelihood interval, which is based on smoothing the standard empirical
likelihood procedure, has two-sided coverage error of orderO(n−1). They show
also that Bartlett correction reduces the error further toO(n−2) and a simple
approximation to the correction results in error slightly smaller thanO(n−1).
However, the one-sided coverage error of the smoothed empirical likelihood
interval, Bartlett-corrected or not, remains of orderO(n−1/2). For, as we can
see from (6.10) and (6.14) of Chen and Hall (1993), the one-sided coverage
expansion for the interval consists of a nonvanishing term of ordern−1/2.
This term persists even after Bartlett correction, which affects only terms of
order O(n−1). Our iterated smoothed bootstrap and bootstrap-t intervals thus
compare favorably with the smoothed empirical likelihood approach in terms of
one-sided coverage accuracy. Moreover, our approaches have the further advantage
of being extendable by additional bootstrap iterations to yield successively more
accurate coverages, subject only to availability of computer resources and the
extent to which asymptotic implications can be realized in practice.

Simulation results suggest that our two iterated bootstrap methods yield cover-
ages much more accurate than their noniterated counterparts. The improvement is
more significant in the non-Studentized case. In general our methods have accu-
racies comparable to the interpolation or smoothed empirical likelihood methods,
but improving at a faster rate asn increases. Despite its impressive coverage ac-
curacy, the iterated smoothed bootstrap-t method suffers, as expected, from the
problem of instability pertinent to variance estimation for a sample quantile, which
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often results in overly long and highly variable confidence intervals. On the other
hand, the iterated smoothed bootstrap percentile approach, albeit slightly less accu-
rate, is relatively much more stable than both the noniterated and iterated smoothed
bootstrap-t methods.

Success of the iterated bootstrap in the present context extends its scope
of application beyond the traditional regular problem settings and beyond the
conventional, unsmoothed bootstrap procedures, yielding asymptotic improve-
ment of a problem-specific nature. This confirms the potential of the iterated
bootstrap as a general strategy for improving upon the bootstrap not just in cases
where the conventional bootstrap works satisfactorily, such as in smooth function
model settings, but also in cases where it does not work as satisfactorily, such
as in the quantile case, and where a modified form of the bootstrap, such as the
smoothed bootstrap, is required.

Section 2.1 introduces notation and states the regularity conditions required
for the asymptotic theory. Sections 2.2 and 2.3 establish asymptotic expansions
for the coverage probabilities of the noniterated and iterated smoothed bootstrap
percentile method intervals, respectively, while their Studentized counterparts
are treated in Sections 2.4 and 2.5. Based on our asymptotic results, we derive
for each type of interval the optimal orders of kernel bandwidths at each level
of bootstrapping and, where applicable, at the Studentization step in order to
minimize coverage error. Section 2.6 discusses an alternative approach, which
bases the confidence set root on a smoothed version of the sample quantile,
to constructing bootstrap confidence intervals. Section 3 addresses the issue
of empirical determination of bandwidths and suggests a bootstrap solution to
the problem. Section 4 reports two simulation studies. The first demonstrates
the bootstrap procedure for setting optimal bandwidths. The second shows that the
iterated bootstrap improves upon the smoothed bootstrap and bootstrap-t methods
in terms of coverage accuracy. The iterated smoothed bootstrap interval also excels
in terms of other indicators of interval performance. Section 5 concludes our
findings. All technical details are given in the Appendix.

2. Theory.

2.1. Notation and assumptions. Let X = {X1, . . . ,Xn} be independent and
identically distributed from an unknown distributionF with density f = F ′.
The parameter of interest is theqth population quantileF−1(q) ≡ inf{x ∈ R :
F(x) ≥ q}, for a fixedq ∈ (0,1). We wish to construct a nominal level 1− α

upper confidence interval forF−1(q), where 0< α < 1.
Let Fn be the empirical distribution ofX, which assigns a probability mass

of n−1 to eachXi , i = 1, . . . , n, and letF̂n,η be its kernel-smoothed version with
densityf̂n,η, such that

F̂n,η(t) = n−1
n∑

i=1

K
(
(t − Xi)/η

)
and f̂n,η(t) = (nη)−1

n∑
i=1

k
(
(t − Xi)/η

)
,
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for a kernel functionk, K(t) = ∫ t
−∞ k(x) dx and a bandwidthη > 0. See

Silverman (1986) for a general exposition of kernel density estimation. Note that
the unsmoothed and smoothed sampleqth quantiles are given, respectively, by
F−1

n (q) andF̂−1
n,η(q).

Write q̄ = min(q,1 − q). Let � be the standard normal distribution function
and letφ = �′ be its density. Define, forε ∈ (0, q̄), D1,D2 > 0 andj = 1,2, . . . ,

Fj (ε,D1,D2) to be the class of distribution functions̄F satisfying the following
smoothness conditions: (i)̄F−1 is j times continuously differentiable in(q−ε, q+
ε), (ii) (F̄−1)′(q) ≥ D1 and (iii) maxi=1,...,j supp∈(q−ε,q+ε) |(F̄−1)(i)(p)| ≤ D2.
It is clear thatFj+1(ε,D1,D2) ⊂ Fj (ε,D1,D2) for j = 1,2, . . . . We shall
establish coverage expansions for our iterated and noniterated bootstrap intervals
underF ∈ F2(ε,D1,D2) for the non-Studentized case andF ∈ F4(ε,D1,D2) for
the Studentized case.

We make the following assumptions on the kernelk throughout the paper:

(A1) k is nonnegative, symmetric about zero and has compact support[−a, a],
for somea > 0;

(A2) k(j) exists and is bounded on[−a, a] for j = 1,2,3,4;
(A3)

∫ ∞
−∞ k(x) dx = ∫ ∞

−∞ x2k(x) dx = 1.

Note that the above assumptions require thatk be a proper density function,
symmetric about 0, on the interval[−a, a].

2.2. Smoothed bootstrap percentile method. Let X† = {X†
1, . . . ,X

†
n} be a

random sample simulated from̂Fn,η. We may set in practiceX†
i = Y ∗

i + ηW ∗
i ,

i = 1, . . . , n, where theY ∗
i and theW ∗

i are independent random numbers drawn
from the distributionsFn and K , respectively. Denote byF ∗

n,η the empirical
distribution ofX†. Define

Gn(t) = P
{
n1/2(F−1

n (q) − F−1(q)
) ≤ t

}
, t ∈ R.

The smoothed bootstrap version ofGn(t) substitutesF̂n,η for F , and is given by

Ĝn,η(t) = P
{
n1/2(F ∗−1

n,η (q) − F̂−1
n,η(q)

) ≤ t |X}
.

Following Beran’s (1987) prepivoting idea, the rootn1/2(F−1
n (q) − F−1(q)) can

be transformed, by prepivoting witĥGn,η, into a random variable approximately
uniformly distributed over[0,1]. It is clear in the context of confidence interval
construction that the above action of prepivoting amounts to smoothed bootstrap
estimation of the quantile ofn1/2(F−1

n (q) − F−1(q)). This defines a noniterated
smoothed bootstrap percentile upper confidence interval, of nominal level 1− α,
to be

I1,α = (−∞,F−1
n (q) − n−1/2Ĝ−1

n,η(α)
]
.
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Write for brevity σq = {q(1 − q)}1/2. The following theorem establishes an
asymptotic expansion for the distribution of the prepivoted root, and hence the
coverage probability ofI1,α .

THEOREM 1. Under conditions (A1)–(A3) and assuming that η ∝ n−�η with
1/4 < �η < 1/2, we have that, for α ∈ (0,1),

P
{
Ĝn,η

(
n1/2[F−1

n (q) − F−1(q)]) ≥ α
}

= P{F−1(q) ∈ I1,α}

= 1− α + n−1/2
(

2q − 1

2σq

+ σqf ′(F−1(q))

f 2(F−1(q))

)
�−1(α)2φ

(
�−1(α)

)
+ O(η2 + n−2η−4 + n−1/2η1/2)

(1)

uniformly in F ∈ F2(ε,D1,D2), for any ε ∈ (0, q̄) and D1,D2 > 0.

We see from Theorem 1 thatI1,α has coverage error of precise orderO(n−1/2),
provided thatF ∈ F2(ε,D1,D2) and the bandwidthη ∝ n−�η is chosen such that
1/4 < �η ≤ 3/8. Falk and Janas (1992) obtain an expansion similar to (1) for
the coverage probability, up to ordero(n−1/2), under the restrictive condition that
η = o(n−1/3). The expansion (1) in our Theorem 1 gives an error term that reveals
the explicit influence of the bandwidthη on the coverage, which is crucial to our
subsequent study of the effects of bootstrap iterations.

2.3. Iterating the smoothed bootstrap percentile method. In standard situa-
tions, the iterated bootstrap has been known to be very effective in enhancing cov-
erage accuracy of confidence intervals. It operates by calibrating either the nominal
level or the interval end points, with the use of an additional level of bootstrapping.
We shall focus only on the former approach, which conforms exactly to Beran’s
(1987) prepivoting idea.

DefineĜn,η as in Section 2.2 based on a generic smoothed bootstrap sampleX†

drawn from F̂n,η. Let X∗ = {X∗
1, . . . ,X∗

n} be a generic outer-level smoothed
bootstrap sample drawn from̂Fn,β , for a kernel bandwidthβ > 0, and letF ∗

n,β be

its empirical distribution. Define, forη > 0, Ĥn,η by Ĥn,η(t) = n−1 ∑n
i=1 K((t −

X∗
i )/η), which corresponds to a smoothed empirical distribution ofX∗. Similarly

we denote byX∗∗ a generic inner-level smoothed bootstrap sample drawn
from Ĥn,η, and byH ∗

n,η the (unsmoothed) empirical distribution ofX∗∗. Define

Ĝ∗
n,η(t) = P

{
n1/2(H ∗−1

n,η (q) − Ĥ−1
n,η(q)

) ≤ t |X,X∗}
, t ∈ R.

Then the smoothed bootstrap estimates the distribution function of the prepivoted
root Ĝn,η(n

1/2[F−1
n (q) − F−1(q)]) by the conditional distribution,̂Jn,β,η say, of

Ĝ∗
n,η(n

1/2[F ∗−1
n,β (q)− F̂−1

n,β(q)]) givenX. Prepivoting withĴn,β,η leads to a twice-

prepivoted rootĴn,β,η(Ĝn,η(n
1/2[F−1

n (q) − F−1(q)])), which is asymptotically
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uniformly distributed over[0,1]. In the context of confidence interval construction,
this amounts to estimation of theαth quantile ofn1/2(F−1

n (q) − F−1(q)) by
Ĝ−1

n,η(Ĵ
−1
n,β,η(α)). The corresponding iterated smoothed bootstrap upper confidence

interval, of nominal level 1− α, is

I2,α = (−∞,F−1
n (q) − n−1/2Ĝ−1

n,η

(
Ĵ−1

n,β,η(α)
)]

.

Note that in the above procedure we have allowed use of two different bandwidths,
β andη, for the two levels of smoothed bootstrapping. This proves to be crucial
to achieving asymptotic improvement in terms of coverage accuracy by means
of the iterated bootstrap. The following theorem states in asymptotic terms how
close the twice-prepivoted root is to a uniform random variable, and hence
establishes the coverage error ofI2,α .

THEOREM 2. Assume the conditions in Theorem 1, that F ∈ F2(ε,D1,D2)

for some ε ∈ (0, q̄) and D1,D2 > 0, and that β ∝ n−�β with 0< �β < 1/3. Then
we have

P
{
Ĵn,β,η

(
Ĝn,η

(
n1/2[F−1

n (q) − F−1(q)])) ≥ α
}

= P{F−1(q) ∈ I2,α}
= 1− α + O(η2 + n−2η−4 + n−1/2η1/2 + n−1/2β2 + n−1β−3/2).

We see from Theorem 2 that the two levels of smoothed bootstrapping
contribute separately to the coverage error ofI2,α , which can be minimized to
achieveO(n−2/3) by settingη ∝ n−1/3 andβ ∝ n−�β with 1/12≤ �β ≤ 2/9. The
iterated smoothed bootstrap method thus improves upon the noniteratedI1,α . We
note, however, that application of the iterated smoothed bootstrap in the quantile
problem does not yield the same level of improvement as has been well known
in smooth function model situations, where each iteration of the (unsmoothed)
bootstrap reduces coverage error by an order ofO(n−1/2).

2.4. Smoothed bootstrap-t method. We review in this section the smoothed
bootstrap-t method and derive explicitly the optimal orders of bandwidths that
minimize its coverage error. Janas (1993) establishes that the smoothed bootstrap-t

method yields coverage error of ordero(n−2/3). Our results sharpen those of Janas
(1993) by giving the precise order, namelyO(n−5/6), of the minimum coverage
error. Noting that

σ 2
n = Var

(
F−1

n (q)
) = n−1q(1− q)f

(
F−1(q)

)−2 + O(n−3/2),

we may estimatenσ 2
n , on plugging in a kernel density estimate forf , by

ŝ2
ξ = q(1− q)(nξ)2

{
n∑

i=1

h
((

F−1
n (q) − Xi

)
/ξ

)}−2

,

for some bandwidthξ > 0 and kernel functionh, which is assumed to satisfy:
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(B1) h is nonnegative, symmetric about zero and has a compact support[−b, b],
for someb > 0;

(B2) for some decomposition−b = x0 < x1 < · · · < xm = b, h′ exists on each
interval (xj−1, xj ), is bounded and is either strictly positive or strictly
negative there;

(B3)
∫ ∞
−∞ h(x) dx = ∫ ∞

−∞ x2h(x) dx = 1.

Recall thatX† = {X†
1, . . . ,X

†
n} denotes a random sample from̂Fn,η. Then the

smoothed bootstrap version ofŝ2
ξ is given by

ŝ
†2
ξ = q(1− q)(nξ)2

{
n∑

i=1

h
((

F ∗−1
n,η (q) − X

†
i

)
/ξ

)}−2

.

Define, fort ∈ R,

Kn,ξ (t) = P
{
n1/2(F−1

n (q) − F−1(q)
)
/ŝξ ≤ t

}
and

K̂n,η,ξ (t) = P
{
n1/2(F ∗−1

n,η (q) − F̂−1
n,η(q)

)
/ŝ

†
ξ ≤ t |X}

.

Then the smoothed bootstrap-t upper confidence interval of nominal level 1−α is

I3,α = (−∞,F−1
n (q) − n−1/2ŝξ K̂

−1
n,η,ξ (α)

]
.

Janas (1993) shows that if bothh andk are chosen to be second-order,β ∝ n−1/3

andη ∝ n−1/5, the coverage error ofI3,α achieves an order ofo(n−2/3). We shall
show that the minimum order of this coverage error is in factO(n−5/6), provided
that the orders of bandwidthsη, ξ are chosen properly.

Similar to Theorem 1, the following theorem establishes an asymptotic
expansion for the distribution of the prepivoted rootK̂n,η,ξ (n

1/2[(F−1
n (q) −

F−1(q))/ŝξ ]), and hence the coverage probability ofI3,α .

THEOREM 3. Assume conditions (A1)–(A3), (B1)–(B3),and that η ∝ n−�η

and ξ ∝ n−�ξ , with 0< �η < 1/5 < �ξ < 1. Then, for α ∈ (0,1),

P
{
K̂n,η,ξ

(
n1/2[(F−1

n (q) − F−1(q)
)
/ŝξ

]) ≥ α
}

= P{F−1(q) ∈ I3,α}
= 1− α + (nη)−1D1,1(F ) + (nξ)−1η2D2,2(F )

+ n−1/2η2D3,3(F ) + n−1D4,2(F ) + n−3/2ξ−1D5,1(F )

+ O
(
(nξ)−5/2 + nξ5 + ξ5/2 + n−1/2η4

+ n−1η1/2 + n−3/2η−5/2 + n−3/2ξ−1/2η−1

+ (nξ)−1η4 + n−1ξ−1/2η2 + (nη)−1ξ1/2

+ n−1/2ξ1/2η2 + n−3/2ξ−1η1/2 + n−1/2ξ2η−5/2 + (nξ)−3/2η2)

(2)
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uniformly in F ∈ F4(ε,D1,D2), for any ε ∈ (0, q̄) and D1,D2 > 0. Here, for
each j = 1, . . . ,5, Dj,i(F ) denotes a smooth function of the density derivatives
{f (F−1(q)), f ′(F−1(q)), . . . , f (i)(F−1(q))}.

We see from Theorem 3 thatI3,α has coverage error of orderO(n−5/6),
provided that �η = 1/6 and 3/8 ≤ �ξ ≤ 1/2. This suggests thatI3,α is
asymptotically more advantageous than bothI1,α and I2,α . Note the different
choices of bandwidth orders here as compared to Janas’ (1993) recommendation,
which yields only ano(n−2/3) coverage error forI3,α .

It may be possible to further reduce the coverage error of either the iterated
smoothed bootstrap or the smoothed bootstrap-t method if a higher-order kernel
function k is employed. In fact, Janas (1993) shows that the error ofI3,α can be
made as small asO(n−1+ε), for anyε > 0, based on kernels of sufficiently high
order. Similar results hold for the iterated smoothed bootstrap, suggesting that both
I2,α and I3,α are essentially indistinguishable in terms of asymptotic coverage
accuracy when high-order kernels are used. Our discussion nevertheless focuses
on the practically more important second-order kernels, which have the virtue
of being nonnegative and therefore allow straightforward Monte Carlo simulation
from the resulting smoothed empirical distributions.

Studentization byŝξ requires no direct simulation from the kernelh. We
may therefore relax the second-order condition onh without inflicting extra
computational difficulty. Hall, DiCiccio and Romano (1989) show that use of a
higher-order kernelh can actually speed up the convergence rate ofŝξ . However,
we see from (2) that the best achievable coverage error ofI3,α is determined
critically by the(nη)−1 andn−1/2η2 terms. Increasing the order ofh affects only
terms involving its bandwidthξ , and can therefore not reduce the coverage error
further.

It would be intriguing to explore the possibility of iterating the smoothed
bootstrap-t method to produce even more accurate confidence intervals for
quantiles. We address this issue in the next section.

2.5. Iterating the smoothed bootstrap-t method. We follow the definitions
used in Section 2.3 for bootstrap samplesX†, X∗ andX∗∗. The iterated smoothed
bootstrap version of̂s2 is given by

ŝ∗∗2
ξ = q(1− q)(nξ)2

{
n∑

i=1

h
((

H ∗−1
n,η (q) − X∗∗

i

)
/ξ

)}−2

.

Define

K̂∗
n,η,ξ (t) = P

{
n1/2(H ∗−1

n,η (q) − Ĥ−1
n,η(q)

)
/ŝ∗∗

ξ ≤ t |X,X∗}
, t ∈ R.

Similar to the construction of the iterated smoothed bootstrap intervalI2,α ,
we set L̂n,β,η,ξ to be the conditional distribution ofK̂∗

n,η,ξ (n
1/2[F ∗−1

n,β (q) −
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F̂−1
n,β(q)]/ŝ∗

ξ ) givenX, where

ŝ∗2
ξ = q(1− q)(nξ)2

{
n∑

i=1

h
((

F ∗−1
n,β (q) − X∗

i

)
/ξ

)}−2

.

The required twice-prepivoted root is given by

L̂n,β,η,ξ

(
K̂n,η,ξ

(
n1/2[F−1

n (q) − F−1(q)]/ŝξ ))
,

and the αth quantile of n1/2(F−1
n (q) − F−1(q))/ŝξ is estimated by

K̂−1
n,η,ξ (L̂

−1
n,β,η,ξ (α)), whereK̂n,η,ξ and ŝξ are defined as in Section 2.4. The cor-

responding iterated smoothed bootstrap-t upper confidence interval, of nominal
level 1− α, is

I4,α = (−∞,F−1
n (q) − n−1/2ŝξ K̂

−1
n,η,ξ

(
L̂−1

n,β,η,ξ (α)
)]

.

Note that construction ofI4,α involves three different bandwidths:ξ at the
Studentization step,β at the outer level andη at the inner level of smoothed
bootstrapping. The following theorem establishes the order of the coverage error
of I4,α in terms of the three bandwidths.

THEOREM 4. Assume the conditions of Theorem 3, that F ∈ F4(ε,D1,D2)

for some ε ∈ (0, q̄) and D1,D2 > 0, and that β ∝ n−�β with 0< �β < 1/7. Then

P
{
L̂n,β,η,ξ

(
K̂n,η,ξ

(
n1/2[F−1

n (q) − F−1(q)]/ŝξ )) ≥ α
}

= P{F−1(q) ∈ I4,α}
= 1− α + O

([(nη)−1 + n−3/2ξ−1](β2 + n−1/2β−3/2)

+ [(nξ)−1η2 + n−1](β2 + n−1/2β−5/2)

+ n−1/2η2(β2 + n−1/2β−7/2)

+ (nξ)−5/2 + nξ5 + ξ5/2 + n−1/2η4

+ n−1η1/2 + n−3/2η−5/2 + n−3/2ξ−1/2η−1

+ (nξ)−1η4 + n−1ξ−1/2η2

+ (nη)−1ξ1/2 + n−1/2ξ1/2η2 + n−3/2ξ−1η1/2

+ n−1/2ξ2η−5/2 + (nξ)−3/2η2).

(3)

We see from Theorem 4 that the iterated smoothed bootstrap-t interval I4,α

can achieve ano(n−1) coverage error. For instance, setting�η = 11/57, 1/2 ≤
�ξ ≤ 11/19 and�β = 2/19 guarantees a coverage error of orderO(n−58/57).
The precise minimum order of coverage error ofI4,α can be derived from a more
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TABLE 1
Optimal bandwidth orders, on the − logn scale, and corresponding

coverage errors of Ij,α , for j = 1,2,3,4

− logn(bandwidth)

I1,α I2,α I3,α I4,α

Outer-level — [1/12,2/9] — 2/19
Inner-level (1/4,3/8] 1/3 1/6 11/57
Studentization step — — [3/8,1/2] [1/2,11/19]
Coverage error O(n−1/2) O(n−2/3) O(n−5/6) O(n−58/57)

detailed but uninspiring asymptotic expansion than that displayed in (3), which we
omit here for simplicity.

We remark that the above iterated smoothed bootstrap-t construction gives
the fastest convergence rate of coverage as compared to other, smoothed or
unsmoothed, bootstrap constructions thus far proposed in the literature. Not even
the use of a high-order kernelk, which typically yields a coverage error of order
O(n−1+ε) for an arbitrarily smallε > 0 and a sufficiently high kernel order, is able
to surpass this result. Successive iterations of the smoothed bootstrap procedure
reduce the coverage error ofI4,α further. The forbidding task of managing a large
number of bandwidths in a single asymptotic expansion prevents us from exploring
this option further, although we recognize its potential in producing asymptotic
improvement. The interpolation method proposed by Beran and Hall (1993) gives
a confidence interval ofO(n−1) coverage error, which cannot be improved upon
by higher-order interpolations.

We see from (3) that theO(n−58/57) coverage error ofI4,α is determined strictly
by terms of ordersn−1η−1β2, n−1η2β−7/2 andn−3/2η−5/2. Similar to the case of
smoothed bootstrap-t construction, the coverage error ofI4,α cannot be further
reduced by increasing the order of the kernel functionh used for Studentization,
which affects only terms involvingξ .

Table 1 above summarizes the optimal choices of bandwidth orders and
the corresponding one-sided coverage errors for the four intervalsI1,α , I2,α ,
I3,α andI4,α .

2.6. Smoothing the sample quantile: an alternative. Define

f̃n,ζ (t) = (nζ )−1
n∑

i=1

κ
(
(t − Xi)/ζ

)
and F̃n,ζ (t) =

∫ t

−∞
f̃n,ζ (x) dx,

for a kernel functionκ and a bandwidthζ > 0. A smoothed version of the
sample quantileF−1

n (q) may be defined bỹF−1
n,ζ (q), which we term the smoothed

sampleqth quantile. We now examine the effects on coverage error of basing
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the bootstrap confidence intervals on the rootn1/2(F̃−1
n,ζ (q) − F−1(q)) instead

of n1/2(F−1
n (q) − F−1(q)). Define

Gn,ζ (t) = P
{
n1/2(F̃−1

n,ζ (q) − F−1(q)
) ≤ t

}
, t ∈ R,

and Ĝn,η,ζ to be the smoothed bootstrap version ofGn,ζ with F substituted
by F̂n,η. The corresponding smoothed bootstrap percentile upper confidence
interval, of nominal level 1− α, is

I κ
1,α = (−∞, F̃−1

n,ζ (q) − n−1/2Ĝ−1
n,η,ζ (α)

]
.

The following theorem establishes an asymptotic expansion for the coverage
probability ofI κ

1,α .

THEOREM 5. Suppose that F ∈ F2(ε,D1,D2) for some ε ∈ (0, q̄) and
D1,D2 > 0, and that κ is a second-order nonnegative kernel function. Under
conditions (A1)–(A3) and assuming that η ∝ n−�η with 1/4 < �η < 1/3 and
ζ ∝ n−�ζ with �ζ > 3/8, we have, for α ∈ (0,1), that

P{F−1(q) ∈ I κ
1,α} = 1− α + n−1/2Eκ + o(n−1/2) + O(n3/2ζ 4 + η−3/2ζ 2),(4)

for some nontrivial constant Eκ independent of n, ζ .

We see from Theorem 5 thatI κ
1,α has coverage error of precise ordern−1/2

provided that�ζ ≥ 1/2. In any case, the order of the coverage error cannot
be reduced further by adjusting the bandwidthζ . The best achievable coverage
errors of bothI1,α and I κ

1,α are of orderO(n−1/2), so that basing the smoothed
bootstrap interval on the smoothed sample quantile does not yield any asymptotic
improvement upon that derived from the sample quantile. We conjecture that
arguments similar to those proving Theorem 5 can be employed to show that the
smoothed sample quantile approach has no advantage either in the Studentized
case.

3. Empirical determination of bandwidths. We now turn to the problem
of empirical determination of the optimal bandwidths in practice. Many different
practical strategies have been proposed for bandwidth selection in other problem
settings, which often permit natural adaptation to our present context. Plausible
approaches include, for example, cross-validation, an extra level of bootstrapping
and plugging-in of sample quantities into asymptotic expansions of optimal
bandwidths, among others.

Despite its computational intensity, the bootstrap approach is arguably the most
straightforward method for setting optimal bandwidths. A smoothed bootstrap
procedure for setting bandwidths is as follows. First, we generate an outermost
level of smoothed bootstrap samples from̂Fn,γ , for some bandwidthγ > 0.
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The collection of such samples, denoted generically byX◦, forms the basis
for our estimation of coverage probabilities and hence the determination of the
best bandwidths. With reference to the optimal orders of bandwidths provided in
Table 1, we set up a grid of pilot values of bandwidths for use in our procedure.
For example, when consideringI2,α , we may selectβr ’s to be evenly spaced
points within the range[An−2/9,Bn−1/12] and ηs ’s to be evenly spaced points
within the range[Cn−1/3,Dn−1/3], for someA,B > 0 and D > C > 0. The
outermost bandwidthγ can be fixed to be some multiple,M say with M > 1,
of the largest pilot bandwidth attempted at the outer level of the smoothed
bootstrap. In our example we can setγ = MBn−1/12. This is in line with
our perception that the parent sample is drawn from an underlying distribution
smoother than the smoothed empirical distribution used for bootstrapping. For
each combination(β, η) = (βr, ηs) and each sampleX◦, we constructI2,α and
check if F̂−1

n,γ (q) ∈ I2,α . The coverage probability ofI2,α , for each bandwidth
pair (βr, ηs), is estimated by averaging over all samplesX◦. The required
bootstrap confidence intervalI2,α is then constructed using the pair of bandwidths
(βr, ηs) that gives the minimum coverage error as estimated above. We note that
this procedure explicitly ensures that the bandwidths selected have the optimal
asymptotic orders as displayed in Table 1. Selection of bandwidths for construction
of the other three bootstrap intervals can be dealt with in a similar way.

4. Simulation studies. Two simulation studies were conducted to investigate
the finite-sample performances of our proposed intervals. The first study con-
centrated on intervals constructed using empirically determined bandwidths and
computed their resulting coverage probabilities. The second study investigated the
effects of the iterated smoothed bootstrap on coverage probabilities of both one-
and two-sided confidence intervals, with bandwidths fixed in advance. In both
studies, we choseα = 0.05, 0.1, 0.9 and 0.95, and simulated 1000 random samples
of sizen from each of three underlying distributions—the standard normal distri-
bution, the double exponential distribution of unit rate and the standard lognormal
distribution—in order to estimate the coverage probabilities. The kernelsh, k were
all taken to be the triangular density functionx �→ 1− |x|, defined on[−1,1].

In the first study, we setq = 0.5, n = 15 and computed the coverage
probabilities ofI1,α and I3,α constructed using bandwidths determined by the
smoothed bootstrap procedure suggested in Section 3. We attempted empirically a
wide range of values ofM and found that the choiceM = 1.5 yielded reasonable
results under most combinations ofF andα. We setM = 1.5 henceforth. Each
interval was constructed using 500 smoothed bootstrap samples, and its coverage
probability estimated from 500 outermost bootstrap samplesX◦. For I1,α , the
bandwidthη for final adoption was searched from 20 evenly spaced values between
0.2n−3/8 and 2n−1/4. For I3,α , the pilot bandwidths(ξ, η) were selected from
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TABLE 2
Estimated coverage probabilities of Ij,α , j = 1,3, with bandwidths

determined by smoothed bootstrap, for q = 0.5 and
α = 0.05,0.10,0.90,0.95

Interval 1 − α = 0.05 1 − α = 0.10 1 − α = 0.90 1 − α = 0.95

Standard normal data,N(0,1)

I1,α 0.057 0.137 0.957 0.955
I3,α 0.051 0.079 0.943 0.968

Double-exponential data,12 exp(−|x|)
I1,α 0.035 0.101 0.974 0.948
I3,α 0.058 0.112 0.904 0.955

Lognormal data, exp{N(0,1)}
I1,α 0.053 0.104 0.966 0.972
I3,α 0.071 0.094 0.809 0.893

the 20× 20 grid of evenly spaced values over the rectangle[0.2n−1/2,2n−3/8] ×
[0.2n−1/6,2n−1/6]. Table 2 reports the coverage probabilities of the two intervals,
which agree in general with our theoretical result that the StudentizedI3,α is more
accurate than the non-StudentizedI1,α . An exception is found for the lognormal
data, for which variance estimation is unstable, especially for small samples, and
rendersI3,α less accurate.

In the second study all four intervalsIi,α , i = 1, . . . ,4, were constructed for
the qth population quantiles, forq = 0.5 and 0.75. We also included for refer-
ence Beran and Hall’s (1993) interpolated interval, denoted byIBH,α , and Chen
and Hall’s (1993) smoothed empirical likelihood intervals, denoted byIEL,α if
the interval is not Bartlett-corrected and byIEL(B),α if it is. Three sample sizes,
n = 15, 30 and 100, were considered. Each smoothed bootstrap or bootstrap-t in-
terval was constructed using 1000 bootstrap samples. Each iterated interval was
constructed using 1500 outer-level and, for each outer-level sample, 1000 inner-
level bootstrap samples. For each bootstrap-t interval, we estimated the Studentiz-
ing variance by its asymptotic expansion as provided in Sections 2.4 and 2.5, thus
avoiding the need for one more level of bootstrapping. Throughout the study, all
bandwidths were fixed to be their asymptotically optimal orders for convenience:
η = n−1/3 for I1,α ; (β, η) = (n−1/5, n−1/3) for I2,α ; (η, ξ) = (n−1/6, n−1/2)

for I3,α ; and (β, η, ξ) = (n−2/19, n−11/57, n−1/2) for I4,α . For each empirical
likelihood interval, we fixed the bandwidth atn−1/2, by which Chen and Hall
(1993) have produced reasonable results. Tables 3 and 4 summarize the cover-
age figures forq = 0.5 and 0.75, respectively, for the casesα = 0.05 and 0.95.
Coverage probabilities of two-sided intervals of nominal level 0.9, constructed as
I2·,0.9 = I·,0.05\I·,0.95, are also reported. Similar findings were obtained forα = 0.1
and 0.9, and are therefore omitted from this paper. In the case of two-sided inter-
vals, we estimated also the means and variances of the interval lengths.
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TABLE 3
Estimated coverage probabilities of Ij,α for 1− α = 0.05 (“lower”) and 0.95 (“upper”), and of

the 90% two-sided interval I2
j,0.9 (“overall”), for j = 1,2,3,4,BH,EL,EL(B)

Interval lower upper overall lower upper overall lower upper overall

n = 15 n = 30 n = 100

Standard normal data,N(0,1)

I1,α 0.096 0.894 0.798 0.089 0.901 0.812 0.082 0.913 0.831
I2,α 0.067 0.938 0.871 0.064 0.941 0.877 0.059 0.952 0.893
I3,α 0.057 0.932 0.875 0.054 0.935 0.881 0.058 0.935 0.877
I4,α 0.049 0.942 0.893 0.037 0.927 0.890 0.051 0.940 0.889
IBH,α 0.046 0.952 0.906 0.051 0.950 0.899 0.046 0.950 0.904
IEL,α 0.061 0.939 0.878 0.049 0.943 0.894 0.049 0.944 0.895
IEL(B),α 0.058 0.942 0.884 0.049 0.945 0.896 0.047 0.945 0.898

Double-exponential data,12 exp(−|x|)
I1,α 0.065 0.934 0.890 0.065 0.928 0.872 0.055 0.953 0.904
I2,α 0.046 0.954 0.908 0.050 0.950 0.887 0.044 0.964 0.914
I3,α 0.044 0.955 0.908 0.049 0.951 0.899 0.040 0.952 0.916
I4,α 0.042 0.943 0.901 0.040 0.946 0.906 0.042 0.947 0.905
IBH,α 0.031 0.957 0.926 0.059 0.951 0.892 0.046 0.957 0.911
IEL,α 0.041 0.947 0.906 0.062 0.943 0.881 0.053 0.958 0.905
IEL(B),α 0.039 0.951 0.912 0.060 0.945 0.885 0.053 0.958 0.905

Lognormal data, exp{N(0,1)}
I1,α 0.066 0.801 0.820 0.059 0.853 0.863 0.066 0.876 0.851
I2,α 0.059 0.873 0.825 0.052 0.900 0.868 0.057 0.933 0.860
I3,α 0.046 0.888 0.865 0.045 0.918 0.881 0.055 0.927 0.871
I4,α 0.044 0.926 0.882 0.036 0.934 0.898 0.049 0.941 0.892
IBH,α 0.047 0.956 0.909 0.051 0.950 0.899 0.046 0.951 0.905
IEL,α 0.062 0.940 0.878 0.052 0.945 0.893 0.053 0.945 0.892
IEL(B),α 0.060 0.943 0.883 0.051 0.946 0.895 0.053 0.945 0.892

Sample quantile of interest isF−1(0.5).

We see from Tables 3 and 4 thatI2,α is much more accurate thanI1,α in most of
the cases although the latter is slightly shorter and less variable. This confirms
the finite-sample gain acquired by iterating the smoothed bootstrap percentile
method. Similar observations are found for the bootstrap-t cases, where the effect
of iteration is more notable at the upper end point. However, the degree of
improvement of the iteratedI4,α over the noniteratedI3,α is less remarkable than
that achieved by iterating the percentile method, which is not surprising given the
very satisfactory coverage already registered byI3,α . The coverage figures also
demonstrate thatI2,α competes closely withI3,α in terms of coverage accuracy.
In generalI4,α has coverage probabilities comparable to those of the interpolated
intervalsIBH,α . Despite their asymptotically inferior one-sided coverage accuracy,
the empirical likelihood intervalsIEL,α and IEL(B),α are found to be slightly
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TABLE 4
Estimated coverage probabilities of Ij,α for 1− α = 0.05 (“lower”) and 0.95 (“upper”), and of

the 90% two-sided interval I2
j,0.9 (“overall”), for j = 1,2,3,4,BH,EL,EL(B)

Interval lower upper overall lower upper overall lower upper overall

n = 15 n = 30 n = 100

Standard normal data,N(0,1)

I1,α 0.087 0.858 0.771 0.085 0.888 0.803 0.081 0.906 0.825
I2,α 0.052 0.923 0.871 0.058 0.941 0.883 0.056 0.947 0.891
I3,α 0.044 0.885 0.841 0.061 0.926 0.865 0.062 0.949 0.887
I4,α 0.042 0.905 0.863 0.043 0.930 0.887 0.058 0.962 0.904
IBH,α 0.039 0.979 0.940 0.053 0.950 0.897 0.046 0.944 0.898
IEL,α 0.050 0.925 0.875 0.052 0.941 0.889 0.053 0.932 0.878
IEL(B),α 0.046 0.932 0.886 0.052 0.944 0.892 0.053 0.936 0.883

Double-exponential data,12 exp(−|x|)
I1,α 0.089 0.862 0.773 0.079 0.848 0.769 0.068 0.883 0.815
I2,α 0.062 0.914 0.852 0.048 0.911 0.863 0.049 0.926 0.877
I3,α 0.044 0.890 0.846 0.065 0.927 0.862 0.060 0.938 0.878
I4,α 0.049 0.912 0.863 0.056 0.923 0.867 0.065 0.940 0.875
IBH,α 0.035 0.974 0.939 0.057 0.961 0.904 0.049 0.944 0.895
IEL,α 0.044 0.933 0.889 0.061 0.950 0.889 0.053 0.928 0.875
IEL(B),α 0.044 0.939 0.895 0.057 0.952 0.895 0.052 0.931 0.879

Lognormal data, exp{N(0,1)}
I1,α 0.091 0.746 0.655 0.069 0.798 0.729 0.058 0.851 0.793
I2,α 0.045 0.847 0.802 0.052 0.906 0.854 0.052 0.937 0.885
I3,α 0.049 0.844 0.795 0.042 0.899 0.857 0.053 0.928 0.875
I4,α 0.050 0.883 0.833 0.048 0.901 0.853 0.053 0.954 0.901
IBH,α 0.039 0.979 0.940 0.053 0.950 0.897 0.046 0.945 0.899
IEL,α 0.051 0.918 0.867 0.053 0.944 0.891 0.051 0.933 0.882
IEL(B),α 0.044 0.922 0.878 0.053 0.949 0.896 0.051 0.934 0.883

Sample quantile of interest isF−1(0.75).

more accurate than the bootstrap intervals. Nevertheless the accuracy of the latter
improves at a faster rate asn increases compared to that of the empirical likelihood
intervals. There is no clear winner in any case, especially for small samples. The
two-sided non-Studentized intervalsI2

1,0.9 andI2
2,0.9 are usually shorter and more

stable compared to the Studentized intervalsI2
3,0.9 andI2

4,0.9. Note lastly thatI2
4,0.9

is in general more accurate thanI2
EL(B),0.9, although both intervals have coverage

errors of orders slightly smaller thann−1.

5. Conclusion. We have examined the asymptotic effects of iterating the
smoothed bootstrap on confidence intervals for quantiles, and established the
optimal bandwidth orders which minimize the coverage error. Our construction
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combines two well-known techniques for modifying the conventional bootstrap,
smoothing and iteration, in a bootstrap procedure to produce very accurate
confidence intervals. Through iterating the smoothed bootstrap, the percentile and
bootstrap-t methods yield coverage errors of ordersO(n−2/3) and O(n−58/57),
respectively. The latter indeed surpasses all bootstrap methods proposed thus far
in the literature as well as Beran and Hall’s (1993) interpolated interval and Chen
and Hall’s (1993) smoothed empirical likelihood intervals with or without Bartlett-
correction. The asymptotic gain acquired by iterating the bootstrap in the present
context is somewhat nonstandard in the sense that the reduction in coverage error
is of an order smaller thanO(n−1/2) as is commonly the case in regular settings.
Table 1 gives a summary of the nonstandard asymptotic improvement effected by
smoothed bootstrap iteration.

We have also discussed the effects of using smoothed sample quantiles instead
of sample quantiles in the construction of bootstrap intervals or using higher-
order instead of second-order kernels for Studentization in the construction of
bootstrap-t intervals. Both approaches are shown to yield no asymptotic gain.

Empirical findings of our simulation study agree broadly with the asymptotic
theory. Bootstrap-t intervals are in general more accurate than percentile method
intervals; and iterated intervals are more accurate than noniterated intervals. On
the other hand, the percentile method intervals do not require variance estimation
for the sample quantile and hence possess the extra advantage of being stable and
short compared to the bootstrap-t intervals of the same nominal level.

Bootstrap iteration requires an additional level of bootstrapping, resulting in
a computationally more intensive procedure. The apparent computational cost of
simulating two batches of outer-level bootstrap samples, theX†’s and theX∗’s,
can be alleviated as follows. First simulate one single batch of samples(Y∗,W∗)’s,
whereY∗ = (Y ∗

1 , . . . , Y ∗
n ) andW∗ = (W ∗

1 , . . . ,W ∗
n ) denote independent random

samples fromFn andK , respectively. CombineY∗ andW∗ using the appropriate
bandwidths to form the smoothed bootstrap samplesX† = (Y ∗

1 + ηW ∗
1 , . . . , Y ∗

n +
ηW ∗

n ) and X∗ = (Y ∗
1 + βW ∗

1 , . . . , Y ∗
n + βW ∗

n ). Studentization does not pose a
computational problem due to the availability of an explicit asymptotic formula
for the variance of a sample quantile, which can be readily estimated in practice.

Optimal orders of kernel bandwidths in our construction are specific to the types
of intervals being considered. In general, the outer-level smoothed bootstrapping
step requires a bandwidth wider than the inner level. For the bootstrap-t method,
the bandwidth used for Studentization should be narrower than the bandwidths
required by both levels of bootstrapping. The iterated bootstrap typically imposes
stricter conditions on our choices of bandwidths. It would be interesting to
compare the optimal orders of bandwidths in the quantile problem with those
typically recommended for more conventional problems. For instance, density
estimation requires a bandwidth of the familiar ordern−1/5. Under smooth
function model settings, asymptotic improvement over the unsmoothed bootstrap
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can only be effected by a bandwidth of the ordern−1/4 for the one-sided smoothed
bootstrap percentile method interval, and of the ordern−1/2 for either the two-
sided smoothed bootstrap percentile method or bootstrap-t intervals; see Polansky
and Schucany (1997).

While we acknowledge the importance of the issue of bandwidth selection and
have suggested a bootstrap approach to empirically setting optimal bandwidths,
our empirical experience derived from the second simulation study suggests that
significant improvement in terms of coverage accuracy can still be acquired, even
for small samples, by our simplistic specification of the bandwidths to an arbitrary
multiple, which we set as 1 in the above study, of their optimal orders.

APPENDIX

PROOF OF THEOREM 1. We follow the proof of Theorem 3.1 in Falk and
Janas (1992). Define the distribution function of the standardized sampleqth
quantile by

�n,f (t) ≡ P
{
n1/2f

(
F−1(q)

)[F−1
n (q) − F−1(q)]/σq ≤ t

}
, t ∈ R.

Under the assumed continuity property ofF , Reiss [(1989), page 119] established
an Edgeworth expansion for�n,f as

�n,f (t) = �(t) + n−1/2
[(

δn − q

σq

+ 2(2q − 1)

3σq

)

+
(

2q − 1

3σq

+ σqf ′(F−1(q))

2f 2(F−1(q))

)
t2

]
φ(t)

+ O(n−1),

(A.1)

whereδn = 1 + nq − nq� andx� denotes the smallest integer greater than or
equal tox. Close examination of the proof of (A.1) shows that the expansion is
actually valid uniformly forF ∈ F2(ε,D1,D2) for anyε ∈ (0, q̄) andD1,D2 > 0,
a result analogous to Theorem 2.1 of Janas (1993). Such uniform validity carries
over to all the expansions which follow, and we presume this fact without mention.
We write�n for �n,f if f is the uniform density function over the interval[0,1].
To start with, we require the following bounds for the distances between different
versions of sample quantiles, distribution functions and density derivatives:

F̂−1
n,η(q) − F−1

n (q) = Op(η2 + n−1/2η1/2 + n−1),(A.2)

F−1
n (q) − F−1(q) = Op(n−1/2),(A.3)

F̂n,η(q) − Fn(q) = Op(η2 + n−1/2η1/2),(A.4)

f̂ (d)
n,η − f (d) = Op(η2 + n−1/2η−d−1/2) for d = 0,1.(A.5)
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For details of the above bounds, see Falk and Janas (1992) for (A.2) and (A.3),
Zhou (1997) for (A.4) and Jones (1994) for (A.5).

Now we outline the key steps of the proof. Under the condition thatη ∝ n−�η

with 1/4 < �η < 1/2, straightforward Taylor expansion in conjunction with the
bounds (A.2)–(A.5) gives that

P
{
Ĝn,η

(
n1/2[F−1

n (q) − F−1(q)]) < x
}

= P

{
n1/2

σq

[
f̂n,η

(
F−1

n (q)
)(

F−1
n (q) − F−1(q)

)

+ 1

2
f̂ ′

n,η

(
F−1(q)

)(
F−1

n (q) − F−1(q)
)2

]
< �−1

n (x)

}

+ O(η2 + n−1/2η1/2).

(A.6)

Conditioning on the event that(n1/2/σq)(F
−1
n (q) − F−1(q))f (F−1(q)) = u,

followed by integrating the conditional probability overu ∈ R with respect to the
distribution of the standardized sample quantile, the probability in (A.6) equals∫

P
{
f̂n,η(un)u/f

(
F−1(q)

)
+ 1

2n−1/2f̂ ′
n,η

(
F−1(q)

)
u2σq/f

(
F−1(q)

)2

< �−1
n (x)|F−1

n (q) = un

}
�n,f (du),

(A.7)

where un = F−1(q) + un−1/2σq/f (F−1(q)). Reiss [(1989), page 119] argues
that conditional onF−1

n (q) = un, X can be treated as a collection ofn
independent random variablesY1, . . . , Yn, where {Y1, . . . , Ynq�−1} constitutes
a random sample from the right truncated densityf (x)/F (un)1{x < un},
Ynq� = un and {Ynq�+1, . . . , Yn} is a random sample from the left truncated
densityf (x)/(1 − F(un))1{x > un}, with 1{·} denoting the indicator function.
It follows that the conditional probability in (A.7) equals the unconditional
probability that

∑n
i=1 Tn,u,i < �−1

n (x), for a sum of independent random variables
Tn,u,i = Tn,u,i(Yi). Let µn,u andσ 2

n,u be the mean and variance of
∑n

i=1 Tn,u,i ,
respectively. We find by the delta method thatµn,u = u{1 + Rn(u)} andσn,u =
|u|an(u), where

Rn(u) = n−1/2
(

2q − 1

2σq

+ 3σqf ′(F−1(q))

2f 2(F−1(q))

)
+ O(η2 + n−2η−4)

and

an(u) = (nη)−1/2
( ∫

k(v)2 dv

f (F−1(q))

)1/2

+ O(n−1/2η1/2 + n−3/2η−5/2).

Standardizing
∑n

i=1 Tn,u,i to Sn,u = (
∑n

i=1 Tn,u,i − µn,u)/σn,u and decomposing
the characteristic function ofSn,u into factors contributed, respectively, by the
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partial sums
∑nq�−1

j=1 Tn,u,j , Tn,u,nq� and
∑n

j=nq�+1 Tn,u,j , we can derive an
Edgeworth expansion for the distribution ofSn,u using standard arguments and
rewrite (A.7) as∫

P
(
Sn,u < ϑn(u) + �n(u)

)
�n,f (du)

=
∫ {

�
(
ϑn(u)

) +
m1∑
i=1

�(i)(ϑn(u)
)
�n(u)i/i!

+
m2∑
j=0

(pn,uφ)(j)(ϑn(u)
)
�n(u)j /j !

}
�n,f (du)

+ O(η2 + n−2η−4 + n−1/2η1/2)

=
∫ {

�
(
ϑn(u)

) + ζn(u)
}
�n,f (du)

+ O(η2 + n−2η−4 + n−1/2η1/2) say,

(A.8)

whereϑn(u) = (�−1
n (x) − u)/(|u|an(u)), �n(u) = −sign(u)Rn(u)/an(u),

pn,u(z) = (nη)−1/2
{

sign(u)f (F−1(q))
∫

k(v)3 dv

(f (F−1(q))
∫

k(v)2 dv)3/2

}(
z2 − 1

6

)
φ(z)

+ Op(n−3/2η−7/2),

and themi are chosen such that(η−2 + n2η4 + n1/2η−1/2)�n(u)mi+1 → 0, for
i = 1,2.

Note thatζn(u) is bounded by terms of the form|ϑn(u)|j |�n(u)|�φ(ϑn(u)),
for positive integersj, �. For any fixedu ∈ (−∞,2y] ∪ [2y/3,∞) and any
fixed y < 0, |ϑn(u)|j |�n(u)|�φ(ϑn(u)) has orderO(n−λ), for any fixedλ > 0
and sufficiently largen. The same applies to�(ϑn(u)) if u ≥ 2y/3, and to
1 − �(ϑn(u)) if u ≤ 2y. Assuming without loss of generality�−1

n (x) < 0
and writing y = �−1

n (x), it follows from the above bounds and (A.8) that the
integral (A.7) equals

∫ 2y/3

y
�

(
ϑn(u)

)
�n,f (du) +

∫ y

2y

(
�

(
ϑn(u)

) − 1
)
�n,f (du)

+
∫ 2y/3

2y
ζn(u)�n,f (du) + �n,f (y) + O(η2 + n−2η−4 + n−1/2η1/2)

= In + IIn + IIIn + �n,f (y)

+ O(η2 + n−2η−4 + n−1/2η1/2) say.

(A.9)



SMOOTHED BOOTSTRAP FOR QUANTILES 457

It follows from term-by-term integration with the aid of (A.1) that

In = −IIn + O
(
(nη)−1)

= (2π)−1/2(nη)−1/2
( ∫

k(v)2 dv

f (F−1(q))

)1/2

|y|�′
n,f (y) + o

(
(nη)−1/2)(A.10)

and

IIIn = −n−1/2
(

2q − 1

2σq

+ 3σqf ′(F−1(q))

2f (F−1(q))2

)
y2φ(y)

+ O(η2 + n−2η−4 + n−1/2η1/2).

(A.11)

Inverting�n and substituting into (A.1), we get

�n,f (y) = x + n−1/2
(

σqf
′(F−1(q))

2f (F−1(q))2

)(
�−1(x)

)2
φ

(
�−1(x)

) + O(n−1).(A.12)

The expansion (1) then follows by combining (A.6), (A.9)–(A.12), puttingx = α

and taking the complement of the probability.�

PROOF OF THEOREM 2. Arguing as in Janas (1993), we see that the
conditions onk and β imply that P(F̂n,β ∈ F2(ε,D1,D2)) = 1 − o(n−λ) for
anyλ > 0. It follows that, on substitution of̂Fn,β for F in (1), the iterated version
of the probability has the expansion

Ĵn,β,η(x) = x − n−1/2
(

2q − 1

2σq

+ σqf̂
′
n,β(F̂−1

n,β(q))

f̂n,β(F̂−1
n,β(q))2

)
�−1(x)2φ

(
�−1(x)

)

+ Op(η2 + n−2η−4 + n−1/2η1/2).

(A.13)

It follows from the bounds (A.2)–(A.5) that̂J−1
n,β,η(α) differs from theαth quantile

of the prepivoted rootĜn,η(n
1/2[F−1

n (q) − F−1(q)]) by an order ofOp(η2 +
n−2η−4 +n−1/2η1/2 +n−1/2β2 +n−1β−3/2). Theorem 2 then follows by the delta
method. �

PROOF OF THEOREM 3. We denote in the sequel byC1,i (F ),C2,i(F ), . . .

generic smooth functions of density derivatives{f (F−1(q)), f ′(F−1(q)), . . . ,

f (i)(F−1(q))}, for eachi = 0,1, . . . . In cases whereCj,i(F ) assumes the form
of a polynomial in a variablex, we writeCj,i(F ) = Cj,i(F )(x). As in (A.7), we
defineun = F−1(q) + un−1/2σq/f (F−1(q)) and write

Kn,ξ (x) =
∫

P
{
f̂n,ξ (un)u/f

(
F−1(q)

)
< x|F−1

n (q) = un

}
�n,f (du).(A.14)
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Arguing as in the proof of Theorem 1, we show that the conditional distribution
of the standardized form of̂fn,ξ (un)u/f (F−1(q)), given F−1

n (q) = un, has an
Edgeworth expansion

�(y) + (nξ)−1/2C1,0(F )(y)

+ (nξ)−1C2,0(F )(y) + n−1/2ξ1/2C3,0(F )(y)

+ (nξ)−3/2C4,0(F )(y) + n−1ξ−1/2C5,1(F )(y)

+ Op

(
n−1 + n−3/2ξ−1 + (nξ)−2 + n−1/2ξ3/2).

(A.15)

Plugging (A.15) into (A.14) and splitting the integral as in (A.9), we see in the
present context that

In + IIn = (nξ)−1C6,0(F )(x)

+ (nξ)−3/2C7,0(F )(x) + (nξ)−2C8,0(F )(x)

+ n−1C9,0(F )(x) + n−3/2ξ−1C10,1(F )(x)

+ O
(
n−1ξ1/2 + n−2ξ−3/2 + (nξ)−5/2)

(A.16)

and

IIIn = (nξ)−1C11,0(F )(x) + n−1/2C12,1(F )(x)

+ (nξ)−3/2C13,0(F )(x) + n−1ξ−1/2C14,1(F )(x)

+ n−1/2ξ1/2C15,1(F )(x) + n−1C16,2(F )(x)

+ n−3/2ξ−1C17,1(F )(x) + ξ2C18,2(F )(x)

+ n−1/2ξC19,1(F )(x) + (nξ)−2C20,0(F )(x)

+ O
(
n−3/2ξ−1/2 + (nξ)−5/2 + n−1/2ξ3/2

+ n−2ξ−3/2 + n1/2ξ9/2 + ξ5/2 + n3/2ξ19/2)
.

(A.17)

It follows by noting (A.1) and combining (A.16) and (A.17) that

Kn,ξ (x) = �(x) + (nξ)−1C21,0(F )(x)

+ n−1/2C22,1(F )(x) + (nξ)−3/2C23,0(F )(x)

+ n−1ξ−1/2C24,1(F )(x)

+ n−1/2ξ1/2C25,1(F )(x) + n−3/2ξ−1C26,1(F )(x)

+ (nξ)−2C27,0(F )(x) + n−1C28,2(F )(x) + ξ2C29,2(F )(x)

+ n−1/2ξC30,1(F )(x)

+ O
(
n−2ξ−3/2 + (nξ)−5/2 + n1/2ξ9/2 + ξ5/2 + n3/2ξ19/2)

.

(A.18)
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Note that (A.18) extends the expansion given in Theorem 2.1 of Janas (1993)
by including higher-order terms. Arguments similar to those provided by Janas
(1993) can be used to show that (A.18) holds uniformly inF ∈ F3(ε,D1,D2). The
assumptions (A1)–(A3) and that�η ∈ (0,1/5) imply that F̂n,η /∈ F3(ε,D1,D2)

with negligible probability. An asymptotic expansion similar to (A.18) thus holds
for K̂n,η,ξ (x), with F substituted byF̂n,η. Standard Taylor expansion together with
bounds (A.2)–(A.5), with (A.5) strengthened to include casesd = 2,3, yields an
expansion for the difference

K̂−1
n,η,ξ (x) − K−1

n,ξ (x)

= κ̂n,η,ξ (x) + Op

(
(nξ)−1η4 + n−1/2η4 + n−3/2ξ−1η1/2 + n−1η1/2

+ (nξ)−5/2 + ξ5/2 + nξ5 + n−3/2η−5/2

+ n−1/2ξ2η−5/2 + n−1/2ξ1/2η2 + (nξ)−3/2η2),
where

κ̂n,η,ξ (x) = {(nξ)−1C31,0(F )(x) + n−1/2C32,1(F )(x)

+ (nξ)−3/2C33,0(F )(x) + n−1ξ−1/2C34,1(F )(x)

+ n−1/2ξ1/2C35,1(F )(x)}
× [

f̂n,η

(
F−1

n (q)
) − f

(
F−1(q)

)]
+ {n−1/2C36,1(F )(x) + n−1ξ−1/2C37,1(F )(x)

+ n−1/2ξ1/2C38,1(F )(x)}
× [

f̂ ′
n,η

(
F−1

n (q)
) − f ′(F−1(q)

)]
+ {(nξ)−1η2C39,1(F )(x) + n−1/2η2C40,1(F )(x)}f̂ ′

n,η

(
F−1

n (q)
)

+ n−1/2η2C41,1(F )(x)f̂ ′′
n,η

(
F−1

n (q)
)
.

Note, by conditioning and integrating as in (A.14), that

P
{
K̂n,η,ξ

(
n1/2[(F−1

n (q) − F−1(q)
)
/ŝξ

]) ≥ α
}

=
∫

P
{
f̂n,ξ (un)u/f

(
F−1(q)

)
− κ̂n,η,ξ (α) ≥ K−1

n,ξ (α)|F−1
n (q) = un

}
�n,f (du)

+ O
(
(nξ)−1η4 + n−1/2η4 + n−3/2ξ−1η1/2

+ n−1η1/2 + (nξ)−5/2 + ξ5/2 + nξ5 + n−3/2η−5/2

+ n−1/2ξ2η−5/2 + n−1/2ξ1/2η2 + (nξ)−3/2η2).

(A.19)
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Consider first the integral

K̃n,η,ξ (y) =
∫

P
{
f̂n,ξ (un)u/f

(
F−1(q)

) − κ̂n,η,ξ (α) ≤ y|F−1
n (q) = un

}
�n,f (du).

Proceeding, with lengthy algebra, as in establishing the Edgeworth expansion
for the conditional probability in (A.7), we see that the conditional distributions
of the standardized̂fn,ξ (un)u/f (F−1(q)) andf̂n,ξ (un)u/f (F−1(q)) − κ̂n,η,ξ (α),
given thatF−1

n (q) = un, have the same Edgeworth expansion up toOp((nξ)−2 +
n−1/2ξ3/2 + n−3/2ξ−1/2η−1 + n−1ξ1/2η−1 + n−1ξ3/2η−3). It follows, by lengthy
algebra again, that the extra term̂κn,η,ξ (α) in (A.19) contributes only to theIIIn

component of the integral (A.14) throughEκ̂n,η,ξ (α), up to order

O
(
(nξ)−5/2 + nξ5 + ξ5/2 + n−1/2η4

+ n−1η1/2 + n−3/2η−5/2 + n−3/2ξ−1/2η−1

+ (nξ)−1η4 + n−1ξ−1/2η2 + (nη)−1ξ1/2 + n−1/2ξ1/2η2

+ n−3/2ξ−1η1/2 + n−1/2ξ2η−5/2 + (nξ)−3/2η2).
Explicit expansion of the contribution of̂κn,η,ξ (α) yields thatK̃n,η,ξ (y) differs
from Kn,ξ (y) by

(nη)−1C42,1(F )(y) + (nξ)−1η2C43,2(F )(y) + n−1/2η2C44,3(F )(y)

+ n−1C45,2(F )(y) + n−3/2ξ−1C46,1(F )(y)

up to the above order, uniformly inF ∈ F4(ε,D1,D2). Theorem 3 now follows by
puttingy = K−1

n,ξ (α) and taking the complement.�

PROOF OFTHEOREM 4. As in the proof of Theorem 2, when 0< �β < 1/7,
we haveF̂n,β /∈ F4(ε,D1,D2) with negligible probability. Application of the
bounds (A.2)–(A.4) and extending (A.5) to casesd = 2,3 establish that the
bootstrap quantileL̂−1

n,β,η,ξ (α) and the true quantile of̂Kn,η,ξ (n
1/2[(F−1

n (q) −
F−1(q))/ŝξ ]) differ in probability by the error term as specified in (3). Theorem 4
then follows by the delta method.�

PROOF OF THEOREM 5. Write �n,ζ (t) ≡ Gn,ζ (tσq/f (F−1(q))) and
�̂n,η,ζ (t) ≡ Ĝn,η,ζ (tσq/f̂n,η(F̂

−1
n,η(q))) for t ∈ R. Standard Edgeworth expansion

gives that

�n,ζ (t) = �(t) + {n−1/2E1,1(F ) + ζE2,0(F ) + n1/2ζ 2E3,1(F )}φ(t)

+ O(n−1 + n3/2ζ 4)
(A.20)

uniformly in F ∈ F2(ε,D1,D2) for any ε ∈ (0, q̄) and D1,D2 > 0, where
Ej,i(F ) denotes a smooth function of the density derivatives{f (F−1(q)), . . . ,
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f (i)(F−1(q))} for eachj = 1,2,3. On substitution ofF̂n,η for F in (A.20) and
using (A.2)–(A.5), we have

�̂−1
n,η,ζ (α) = �−1

n,ζ (α)

+ Op(n−1 + n3/2ζ 4 + η2ζ + n−1/2η−1/2ζ + n1/2η2ζ 2 + η−3/2ζ 2).

We obtain by the delta method that the coverage probability ofI κ
1,α equals

P
{
n1/2(F̃−1

n,ζ (q) − F−1(q)
) − �−1

n,ζ (α)� ≥ �−1
n,ζ (α)σq/f

(
F−1(q)

)}
+ O(n−1 + n3/2ζ 4 + η2ζ + n−1/2η−1/2ζ + n1/2η2ζ 2 + η−3/2ζ 2),

(A.21)

where� = σq[1/f̂n,η(F̂
−1
n,η(q))−1/f (F−1(q))]. ReplacingF̂n,η by F̃n,ζ in (A.2),

using (A.3), (A.5) and noting the bounds assumed onη, ζ , we have that the joint
cumulants of(n1/2(F̃−1

n,ζ (q) − F−1(q)),�) differ from those of(n1/2(F−1
n (q) −

F−1(q)),�) by at mostO(n−25/48). An expansion analogous to (A.21) holds
for the intervalI1,α with the definition of� unchanged. Comparison with (1)
then implies that the joint cumulants of(n1/2(F−1

n (q) − F−1(q)),�) contribute
a term of precise ordern−1/2 to the coverage error ofI1,α . It follows that
the Edgeworth expansions for the distributions ofn1/2(F̃−1

n,ζ (q) − F−1(q)) and

n1/2(F̃−1
n,ζ (q) − F−1(q)) − �−1

n,ζ (α)� also differ by an order ofn−1/2 precisely,
so that, by (A.21), the coverage probability ofI κ

1,α has the expansion stated in (4).
�

REFERENCES

BERAN, R. (1987). Prepivoting to reduce level error of confidence sets.Biometrika 74 457–468.
BERAN, R. and HALL , P. (1993). Interpolated nonparametric prediction intervals and confidence

intervals.J. Roy. Statist. Soc. Ser. B 55 643–652.
BHATTACHARYA , R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth

expansion.Ann. Statist. 6 434–451.
CHEN, S. X. and HALL , P. (1993). Smoothed empirical likelihood confidence intervals for quantiles.

Ann. Statist. 21 1166–1181.
DE ANGELIS, D., HALL , P. and YOUNG, G. A. (1993). A note on coverage error of bootstrap

confidence intervals for quantiles.Math. Proc. Cambridge Philos. Soc. 114 517–531.
FALK , M. and JANAS, D. (1992). Edgeworth expansions for Studentized and prepivoted sample

quantiles.Statist. Probab. Lett. 14 13–24.
HALL , P. (1986). On the bootstrap and confidence intervals.Ann. Statist. 14 1431–1452.
HALL , P. (1992).The Bootstrap and Edgeworth Expansion. Springer, New York.
HALL , P., DICICCIO, T. J. and ROMANO, J. P. (1989). On smoothing and the bootstrap.Ann. Statist.

17 692–704.
HALL , P. and MARTIN, M. A. (1988). On bootstrap resampling and iteration.Biometrika 75

661–671.
HALL , P. and MARTIN, M. A. (1989). A note on the accuracy of bootstrap percentile method

confidence intervals for a quantile.Statist. Probab. Lett. 8 197–200.
HALL , P. and MARTIN, M. A. (1991). On the error incurred using the bootstrap variance estimate

when constructing confidence intervals for quantiles.J. Multivariate Anal. 38 70–81.



462 Y. H. S. HO AND S. M. S. LEE

JANAS, D. (1993). A smoothed bootstrap estimator for a Studentized sample quantile.Ann. Inst.
Statist. Math. 45 317–329.

JONES, M. C. (1994). On kernel density derivative estimation.Comm. Statist. Theory Methods 23
2133–2139.

OWEN, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika 75 237–249.

POLANSKY, A. M. and SCHUCANY, W. R. (1997). Kernel smoothing to improve bootstrap
confidence intervals.J. Roy. Statist. Soc. Ser. B 59 821–838.

REISS, R.-D. (1989).Approximate Distributions of Order Statistics with Applications to Nonpara-
metric Statistics. Springer, New York.

SILVERMAN , B. W. (1986).Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London.

ZHOU, Y. (1997). A note on quantile estimator of the perturbed empirical distribution function.
Math. Appl. (Wuhan) 10(4) 8–13.

DEPARTMENT OFSTATISTICS AND

ACTUARIAL SCIENCE

THE UNIVERSITY OF HONG KONG

POKFULAM ROAD

HONG KONG

E-MAIL : hohs@graduate.hku.hk
smslee@hkusua.hku.hk


