
187

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.3

ITERATED TABU SEARCH: AN IMPROVEMENT TO STANDARD TABU
SEARCHv

Alfonsas Misevicius, Antanas Lenkevicius, Dalius Rubliauskas
Department of Multimedia Engineering, Kaunas University of Technology

Studentu St. 50, LT−51368 Kaunas, Lithuania

Abstract. The goal of this paper is to discuss the tabu search (TS) meta-heuristic and its enhancement for
combinatorial optimization problems. Firstly, the issues related to the principles and specific features of the standard
TS are concerned. Further, a promising extension to the classical tabu search scheme is introduced. The most important
component of this extension is a special kind of diversification mechanism. We give the paradigm of this new
improved TS strategy, which is called an iterated tabu search (ITS). ITS was applied to the difficult combinatorial
optimization problems, the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). The
results of the experiments with the TSP and QAP show the high efficiency of the ITS strategy. The outstanding
performance of ITS is also demonstrated by the fact that the new record-breaking solutions were found for the hard
QAP instances − tai80a and tai100a.

Keywords: combinatorial optimization, heuristics, meta-heuristics, tabu search, iterated tabu search, quadratic
assignment problem, traveling salesman problem.

v This work is supported by Lithuanian State Science and Studies Foundation through grant number T-06276.

Introduction

Complex optimization problems arising from both
practice and theory pose a real challenge. These prob-
lems and their solution techniques attract the attention
of the researchers around the world over several past
decades. Many optimization problems belong to the
class NP-hard and cannot be solved to optimality
within polynomially bounded computation time. One
of the ways to overcome such difficulties is to use the
heuristic (local search) algorithms, i.e. the intelligent
procedures (based upon human's intuition or nature
inspired) [1,21,26] that seek for near-optimal solutions
at reasonable computational time − but can not gua-
rantee that a problem will be solved in terms of
obtaining the exact solution. The heuristic approaches
have an essential advantage over exact algorithms: the
heuristics usually find high quality solutions much
more faster than the exact algorithms; this is espe-
cially true by solving the large-scale problems.

Dozens of the improved heuristic algorithms ap-
pear every year. Nevertheless, the design of more
elaborated, inventive and efficient variants of the
existing methods − like simulated annealing, tabu
search, genetic algorithms − as well as the creation of
innovative optimization paradigms is still a matter of
experience [12]. In this paper, the issues related,
namely, to the new strategies for solving the difficult

combinatorial (discrete) optimization (CO) problems
are discussed. The focus is on the modern intelligent
optimization technique, the well-known tabu search
(TS) method. The concept of the tabu search was
introduced by Hansen and Jaumard [14] and Glover
[10,11]. Since that time, TS has been proven to be
among the most powerful tools for solving various
combinatorial optimization problems (for example,
graph partitioning [28], quadratic assignment problem
[32], scheduling [34], vehicle routing problem [35]).
Still, the design of even more effective TS modifica-
tions for the specific problems is the research direction
for many scientists. One of the possible extensions
over the standard tabu search paradigm is a so-called
iterated tabu search (ITS) we propose in this work.
The approach we are going to discuss is not a pure
heuristic. It is rather a universalized principle than the
algorithm designed for a single problem's special
benefit. We tried the preliminary variant of the ITS
method on the well-known CO problems, the traveling
salesman problem (TSP) and the quadratic assignment
problem (QAP). However − after adding the corres-
ponding modifications − ITS may be easily applied to
other related problems.

The remaining part of this paper is organized as
follows. The basic definitions of CO problems are
introduced below. In Section 2, the descent local

A. Misevicius, A. Lenkevicius, D. Rubliauskas

188

search technique − as a basis for other developments −
is briefly described. Then, the standard tabu search is
outlined. The extension of the standard TS − an ite-
rated tabu search − is discussed in Section 4. The basic
characteristics and the template of ITS are given. In
Section 5, we present the experimental results for the
TSP and QAP, which demonstrate quite promising
efficiency of the ITS technique. Finally, Section 6
completes the paper with conclusions.

1. Preliminaries

Before starting the next section, we introduce
some very basic definitions related to combinatorial
optimization. A combinatorial optimization problem P
can be defined by a pair (S, f), where S = {s1, s2, ...} is
a finite (or possibly countable infinite) set of feasible
solutions (a "solution space") and f: S → R1 is a real-
valued objective (cost) function. Without loss of
generality, we assume that f seeks a global minimum.
For the sake of more clarity, let us consider the case
where the solutions are permutations of the integers
from 1 to n, that is S = {s | s = (s(1), s(2), ..., s(n)),
s(i) ∈ {1, 2, ..., n}, i = 1, 2, ..., n, s(i) ≠ s(j), i, j = 1, 2,
..., n, i ≠ j}; where s is the permutation, s(i) denotes
the i-th element (item) of the permutation, and n is the
problem size.

Thus, to solve the CO problem one has to search
for a solution sopt ∈ S such that

 ==∈

∈

∇∇)(minarg|optopt sfssSs
Ss

. (1)

The solution sopt is called a globally optimal solu-
tion (global optimum) of (S, f) and Sopt ⊆ S denotes the
set of global optima. It is very important for the
heuristic algorithms that some appropriate neighbour-
hood structure of the solutions is defined. A neigh-
bourhood function Ν: S → 2S assigns for each s ∈ S a
set Ν(s) ⊆ S − the set of neighbouring solutions
(neighbours) of s (or simply the neighbourhood of s).
As long as we operate upon permutation based
solutions, we can define the neighbourhood function
Νλ of order λ (1 < λ ≤ n) in the following way:

}),(, | {)(λρλ ≤′∈′′= ssSsss? , where s is a solution

from S and ρ(s, s′) is a "distance" between the
solutions s and s′. An example of defining the
"distance" is counting the elements that are assigned
to different positions of the solutions, i.e.

)}()(|{),(isisiss ′≠=′ρ (see also Sections 5.1 and

5.2). Each solution s′ ∈ Ν(s) can be reached from s by
an operation called a move, and s is said to move to s′
when such an operation is performed (often, the move
follows the objective function evaluation which is
called a trial). Formally, the move appears as a
transformation (perturbation) operator φ: S → S such
that φ(s) ∈ Ν(s), ∀s ∈ S.

2. Descent local search

The very early origins of the tabu search method
go to the well-known technique − the descent local
search (DLS) (also known as hill climbing) [25]. DLS
starts from an initial (maybe, randomly generated)
solution s°. Further, the search process is continued by
performing the perturbations of solutions, i.e. making
moves from solutions to solutions. A move is applied
to the current solution s in order to get a new solution
s′ from the neighbourhood of the current solution,
Ν(s). The moves are controlled, i.e. decisions about to
move to the neighbouring solutions, or not, are taken
depending on the qualities of solutions (the objective
function values f). If the decision is "positive", then
the current solution is replaced by the neighbouring
one, which will be used as a "starting point" for the
subsequent trials; otherwise, the search is continued
with the current solution. In classical DLS algorithms,
the decision is "positive" if only the new solution is
definitely better than the current one (i.e. the
difference in the objective function values is negative
(∆f = f(s′) − f(s) < 0, where s′ ∈ Ν(s))). The whole
process is continued until the current solution s is
locally optimal, that is, no better solution exists in the
neighbourhood of the current solution (i.e. f(s′) ≥ f(s),
∀s′ ∈ Ν(s)). The descent local search paradigm (in
PASCAL language like notation) is presented in
Figure 1.

function DescentLocalSearch(s°);
 // input: s° − the initial solution; output: s − the locally optimal solution //
 s ← s°;
 while s not locally optimal do begin // main cycle //
 choose the solution s′ from the neighbourhood of s, Ν(s),
 in such a way that f(s′) − f(s) < 0;
 s ← s′ // replace the current solution s by the new one s′ (make a move to the new solution) //
 end; // while //
 return s
end.

Figure 1. Paradigm of descent local search

Iterated Tabu Search: an Improvement to Standard Tabu Search

189

Given neighbourhood Νλ, the solution obtained by
DLS may be treated as an optimal solution with
respect to this neighbourhood, i.e. λ-opt(imal) solution
− hence, the names of the corresponding procedures:
2-opt, 3-opt, and so on.

3. Standard tabu search

The tabu search framework [10,11] originates from
the local search policy described above. However, the
TS goes beyond this paradigm. In contrast to DLS,
which is limited to finding one locally optimal solu-
tion only, TS enables to escape local optima. TS-based
algorithms continue the search even if a locally
optimal solution is encountered. Shortly speaking, TS
is a process of chains of moves from one local opti-
mum to another. The best local optimum found during

this process is regarded as a result of TS. Thus, TS is
an extended descent local search. Consequently, it
explores much more larger part of the solution space
when comparing with DLS. Hence, TS provides more
room for discovering high quality solutions than the
traditional DLS.

The key idea of TS is allowing climbing moves
when no improving neighbouring solution exists, i.e. a
move is allowed even if a new solution s′ from the
neighbourhood of the current solution s is worse than
the current one. Naturally, the return to the locally
optimal solutions previously visited is to be forbidden
in order to avoid cycling. TS is based on the methodo-
logy of prohibitions: some moves are "frozen"
(become "tabu") from time to time.

function TabuSearch(s°);
 // input: s° − the initial solution; output: s∗ − the best solution found; parameter: h − the tabu list size //
 s ← s°; s∗ ← s°;
 initialize the tabu list T;
 repeat // continue the main cycle of TS //
 given neighbourhood function Ν, tabu list T, and aspiration
 criterion, find the best possible solution s′ ∈ Ν²(s) ⊆ Ν(s),
 where Ν²(s) consists of the solutions that (or their "attributes")
 are not in the tabu list T or satisfy the aspiration criterion;
 s ← s′; // replace the current solution by the new one //
 if f(s) < f(s∗) then s∗ ← s; // save the best so far solution //
 insert the solution s (or its "attribute") into the tabu list T;
 if sizeof(T) > h then remove the "oldest" member of T
 until termination criterion is satisfied;
 return s∗
end.

Figure 2. Paradigm of standard tabu search

More formally, the TS algorithm starts from an ini-
tial solution s° in S. The process is then continued in
an iterative way − moving from a solution s to a
neighbouring one s′. At each step of the procedure, a
subset Ν²(s) ⊆ Ν(s) of the neighbouring solutions of
the current solution is considered, and the move to the
solution s′ ∈ Ν²(s) that improves most the objective
function value f is chosen. Naturally, s′ must not ne-
cessary be better than s: if there are no improving
moves, the algorithm chooses the one that least deg-
rades (increases) the objective function (a move is
performed to the neighbour s′ even if f(s′) > f(s)). In
order to eliminate an immediate returning to the solu-
tion just visited, the reverse move must be forbidden.
This is done by storing the corresponding solution
(move) (or its "attribute") in a memory (called a tabu
list (T)). The tabu list keeps information on the last
h = | T | moves which have been done during the
search process. Thus, a move from s to s′ is considered
as tabu if s′ (or its "attribute") is contained in T. This

way of proceeding hinders the algorithm from going
back to a solution reached within the last h steps.
However, the straightforward prohibition may some-
times lessen the efficiency of the algorithm. Moreover,
it might be worth returning after a while to a solution
visited previously to search in another promising
direction. Consequently, an aspiration criterion is
introduced to permit the tabu status to be dropped
under certain circumstances. Usually, a move from s
to s′ (no matter its status) is permitted if f(s′) < f(s∗),
where s∗ is the best solution found so far. The resulting
decision rule can thus be described as follows: replace
the current solution s by the new solution s′ if

f(s′) < f(s∗) or ()(minarg
)(

sfs
ss

′′=′
∈′′ ?

 and s′

 (or "attribute" of s′) is not tabu). (2)

The search process is stopped as soon as a
termination criterion is satisfied (for example, a fixed
a priori number of iterations (trials) has been
performed). The pseudo-code for the standard (simple)

A. Misevicius, A. Lenkevicius, D. Rubliauskas

190

tabu search paradigm is presented in Figure 2. More
details on the fundamentals and principles of TS can
be found in [8,13,15].

4. Iterated tabu search

TS is a powerful optimization tool. However, it
typically faces, in its canonical form, less or more
difficulties. They are as follows: a huge number of
local optima over the solution space, presence of
cycles (i.e. repeating sequences) of the search
configurations (states), and the phenomenon of so-
called "deterministic chaos" (or chaotic attractors).
The last one can be characterized by the situation in
which "getting stuck" in local optima and cycles are
absent but the search trajectory is still confined in
some "narrow region" of the solution space [2] (see
Figure 3). So, the search trajectory will visit only a
limited part of the solution space: if this portion does
not contain the global minimum, it will never be found
− a stagnation of the search is said to take place.
Figure 4 depicts an example of such a situation.

Figure 3. Hypothetical view of the search trajectories

In order to try to overcome the difficulties men-
tioned, an essential extension of the standard TS −
iterated tabu search1 − can be proposed. It should be
noted that several attempts to enhance the straight-
forward TS have been already made. One of the most
famous enhancements is the reactive tabu search [2].
Nevertheless, we think of ITS as a, probably, more
aggressive attempt. First of all, this is due to the new
important features we discuss in this section.

The standard TS goes beyond the descent local
search − similarly, ITS seeks to go beyond the stan-
dard TS. The central idea of ITS is the concept of
intensification and diversification (I&D). The early
origins of this concept go back to 1986 [3]. Since that
time, various modifications of the basic idea have
been proposed, among them: iterated Lin-Kernighan
algorithm [16], combined local search (chained local
optimization) [20], "ruin and recreate" principle [30],
iterated local search [18].

Generally speaking, the I&D framework is dis-
tinguishing for three main factors (components):

1 The term "iterated tabu search" is firstly mentioned

in the paper by Smyth, Hoos, and Stützle [31].

intensification, diversification, and candidate accep-
tance (selection) (see Figure 5).

The goal of intensification is the search for a better
(locally optimal) solution in "surroundings", i.e.
neighbourhood of the current solution. (Mathematical-
ly, intensification can be described as a special opera-
tor ψ: S → S such that f(s) ≤ f(ψ(s)), where s (s ∈ S) is
the solution to be "intensified".) In the other words,
one tries to improve the current solution as best as one
can. If this improvement is performed by means of the
classical tabu search, one just gets the ITS method.
Intensification is always applied to the solution just
reconstructed (i.e. the output of diversification),
except the first iteration only at which intensification
is applied to the initial solution (see Figure 5). It was
revealed by experimentation that there is no need in
the expensive runs of the tabu search based improve-
ment procedure. Firstly, the short tabu search itera-
tions allow saving considerable amount of CPU time.
On the other hand, this limited tabu search in com-
bination with the robust diversification operators is
capable of seeking near-optimal solutions − better than
those obtained by the long runs of the pure tabu
search.

Diversification − it may be interpreted as a special
sort of reconstruction (perturbation) of the solutions −
is responsible for escaping from the current local
optimum and moving towards new regions in the
solution space. (Diversification can formally be
defined by an operator ζ: S → S such that ζ(s) ∈ S and
s ≠ ζ(s), where s (s ∈ S) is the solution which under-
goes the diversification process.). It is important that a
proper level of diversification is kept up: if reconstruc-
tion is too strong, the resulting algorithm might be
quite similar to a crude random (blind) multistart; if
reconstruction is too weak, the process would periodi-
cally return to the solutions to which reconstruction
has been applied.

Many different perturbation variants may be
proposed. For example, for the solutions based on per-
mutations, one can use the random pairwise inter-
changes which are the sequences of moves

µµ
φφφ

2124321
,...,, rrrrrr −

. (
1+iirrφ is a special case of the

transformation operator (see Section 1), which inter-
changes the rith and ri+1th elements in the current
solution.) In this case, it is sufficient to simply
generate the pairs of uniform random numbers
(ri, ri+1), such that 1 ≤ ri, ri+1 ≤ n, ri ≠ ri+1, i = 1, 2, ..., µ
(n is the problem size). The larger the length of the
sequence (i.e. the reconstruction level) µ, the stronger
the diversification effect, and vice versa. We achieve
more robustness of the diversification process by
letting the parameter µ vary in some interval, say
[µmin, µmax] ⊆ [2, n]. The following strategy of
changing the values of µ might be proposed. At the
beginning, µ is equal to µmin; further, µ is increased
gradually, step by step, until some limit is reached;
once the maximum level µmax has been reached (or,

Iterated Tabu Search: an Improvement to Standard Tabu Search

191

possibly, a better local optimum has been found), the
current value of µ is immediately dropped to µmin, and
so on. In addition, if the best so far solution remains
unchanged for a quite long time, then the value of µmax

may be increased, too (µmax should be reset to the
initial value as soon as a new local optimum has been
found).

Figure 4. Illustration of the stagnation situation:

a) the detailed "history" is presented, i.e. points corresponding to the current objective function values are depicted;
b) only the best so far (record-breaking) values of the objective function are shown

Figure 5. Generalized framework of I&D

Figure 6. Towards the graphical interpretation of the I&D process

Regarding the selection of candidates for diversifi-
cation, two main alternatives exist: a) exploitation and
b) exploration. Exploitation is achieved by choosing
only the currently best local optimum − the best so far
(BSF) solution − as a candidate for reconstruction. In
the case of exploration, a variety of policies may be
used. In fact, each locally optimized solution (not

necessary the best local optimum) can be considered
as a potential candidate for diversification. Even gene-
ration of a new solution from scratch is possible as an
extreme case. A so-called "where you are" (WYA)
strategy is worth mentioning: in this case, every new
local optimum (no matter its quality) is accepted for
the reconstruction process. However, more

time (search iterations)

so
lu

ti
o

n
 q

u
al

it
y

(a)
time (search iterations)

b
es

t
so

 f
ar

 s
o

lu
ti

o
n

 q
u

al
it

y

(b)

candidate acceptance

diversification

intensification start

end

saving the best so far
solution

starting solution

intensification

diversification
exploitation

exploration
local optimum

best so far solution

A. Misevicius, A. Lenkevicius, D. Rubliauskas

192

sophisticated strategies are available, for example,
selection from a memory of locally optimal solutions,
like in the population based (genetic) algorithms.
(Exploitation/exploration could be formalized by
introducing an operator ξ: 2S → S. If exploitation is
used, then the following equation must hold: ξ(⋅) = s•,
where s• (s• ∈ S) is the BSF solution.)

A graphical illustration of the I&D process is
shown in Figure 6.

The typical flow of the iterated tabu search process
is as follows. ITS is initiated by the improvement of
an initial solution by means of the traditional TS. As a
result, the first optimized solution, say s•, is achieved.
Further, a given solution undergoes perturbation, and a
new solution, say s~, is obtained. The goal of such a
perturbation is not to destroy the current solution

absolutely − on the contrary, it is highly desirable that
the resulting solution inherits some characteristics of
the previous local optimum, since parts of this opti-
mum may be close to the ones of the globally optimal
solution. The reconstructed solution s~ serves as an
input for the subsequent tabu search procedure, which
starts immediately after the perturbation process is
finished. The TS procedure returns the new optimized
solution s•, which (or some other local optimum), in
turn, is reconstructed, and so on. A new better solution
(s∗) found during this iterative process is saved in a
memory (as a potential resulting solution of ITS). This
type of proceeding continues until a stopping condi-
tion is met, for example, a fixed number of iterations
have been executed. The template of the ITS algo-
rithm is shown in Figure 7.

function IteratedTabuSearch(s°);
 // input: s° − the initial solution; output: s∗ − the best solution found //
 s• ← TabuSearch(s°); // improve the initial solution s° by TS, get the resulting solution s• //
 s ← s•; s∗ ← s•;
 repeat // continue the cycle of the iterated tabu search //
 s ← CandidateAcceptance(s•,s, ...); // select a solution for reconstruction //
 s~ ← Reconstruction(s); // ruin the selected solution, obtain a new solution s~ //
 s• ← TabuSearch(s~); // improve the solution s~ by TS, get the resulting solution s• //
 if f(s•) < f(s∗) then s∗ ← s• // save the best so far solution (as a possible result of ITS) //
 until termination criterion is satisfied;
 return s∗
end.

Figure 7. Paradigm of iterated tabu search

5. Computational experiments

In order to evaluate the efficiency of the proposed
iterated tabu search technique, some experiments have
been carried out on the hard combinatorial optimiza-
tion problems, the traveling salesman problem and the
quadratic assignment problem.

5. 1. Experiments with the traveling salesman
problem

The traveling salesman problem can be formulated
as follows. Given the matrix D = (dij)n×n and the set Π
of permutations of the integers from 1 to n, find a
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that
minimizes

)1(),(

1

1
)1(),()(πππππ n

n

i
ii ddz += ∑

−

=
+ . (3)

The interpretation of n, D and π is as follows: n is
the number of cities; D is the matrix of distances
between all pairs of these cities; j = π(i) denotes city j
to visit at step i. Usually, permutations are called
tours, and the pairs (π(1), π(2)), ..., (π(i), π(i+1)), ...,
(π(n), π(1)) are called edges. So, solving the TSP
means searching for the shortest closed tour in which

every city is visited exactly once. It has been proved
that the TSP is NP-hard [7] and cannot be solved to
optimality within polynomially bounded computation
time.

The TSP is a representative example of CO prob-
lem (S, f), where S ≡ Π and f corresponds to z.
Regarding the neighbourhood function for the TSP-
solutions, there are some specific things. The TSP-
heuristics operate rather upon pairs of elements
(j1 = π(i), j2 = π(i+1)) (i.e. edges) than single elements
(j = π(i)). Taking this fact into account, the distance
between two permutations (tours) is defined as the
number of pairs of elements (edges) that are contained
in the first permutation (tour) but not in the second
one [4]. Thus, the distance between permutations π
and π ′ may be declared as ρ(π,π ′) = Ω , where Ω is
the set that consists of all possible pairs
(π(i), π((i mod n)+1)) (i ∈ {1, 2, ..., n}) such that ∃ j:

=′′
<≤+′′

=+
njj

njjj
nii

 ,))1(),((
1 ,))1(),((

))1) mod ((),((
ππ
ππ

ππ

or

=′′
≤<−′′

=+
1 ,))(),((

1 ,))1(),((
))1) mod ((),((

jnj
njjj

nii
ππ
ππ

ππ .

Iterated Tabu Search: an Improvement to Standard Tabu Search

193

We can then easily define the neighbourhood function
Νλ of order λ (1 < λ ≤ n):

}),(, | {)(λππρπππΝ λ ≤′Π∈′′= , where π is from
Π. In the case of λ = 2, a move from the current
permutation π to the neighbouring one)(2 πΝπ ∈′
may be described by using a perturbation operator
φ(π, i, j): Π→××Π ?? , which gives for each
permutation the permutation that is obtained by
removing the two edges at the ith and jth position and
inserting two different edges. That is, the pairs
(π(i), π(i+1)) and (π(j), π((j mod n)+1)) are deleted,
and the pairs (π(i), π(j)) and (π(i+1), π((j mod n)+1))
are added. More specifically, φ(π, i, j) gives π ′ such
that π′(i) = π(i), π′(i+1) = π(j), π′(j) = π(i+1),
π′((j mod n)+1) = π((j mod n)+1), where
1 ≤ i, j≤n ∧ 1 < j−i < n−1; in addition, if j−i−2 ≥ 1,
then π′(i+k+1) = π(j−k) for every k ∈ {1, ..., j−i−2}.

Having the neighbourhood and solution perturba-
tions defined, we implemented the ITS algorithm for

the TSP based on the paradigm in Figure 7. For the
comparison, the following algorithms were used:
1) the multi-start 2-opt (M-2-OPT) algorithm; 2) the
4-opt (4-OPT) algorithm; 3) the simulated annealing
(SA) algorithm; 4) the standard tabu search (STS)
algorithm. The test data are from the well-known
library of the TSP instances TSPLIB [27]. The perfor-
mance measures of the algorithms are: a) the average
deviation of solutions from a provably optimal
solution − δ (%][)(100 optopt zzz −=δ , where z is
the average objective function value (tour length) over
10 runs (i.e. single applications of the algorithm to a
given instance) and zopt is the objective function value
of the optimal solution (values zopt are taken from
[27])); b) the number of solutions that are within 1%
optimality (δ ≤1) (over 10 runs) − C1%; c) the
number of the optimal solutions found − Copt. The
results of the comparison are presented in Table 1.

Table 1. Comparison of the algorithms (Part I). The best results obtained are printed in bold face. CPU times
 per run are given in seconds. (900 MHz PENTIUM computer was used in the experiments)

Instance n zopt
δ , C1%/Copt, CPU time

 M-2-OPT 4-OPT SA STS ITS
a280 280 2579 6.73, 0/ 0, 19 — 0.03 10/ 9, 78 2.04, 3/ 0, 140 0 25
att48 48 10628 0.75, 6/ 0, 0.1 1.59, 3/ 0, 1.0 0 6.0 0.85, 7/ 1, 0.8 0 0.1
bayg29 29 1610 0.26, 10/ 4, 0.1 1.44, 4/ 1, 0.1 0 5.0 0 0.2 0 0.0
bays29 29 2020 0.03, 10/ 9, 0.1 0.97, 6/ 0, 0.1 0 5.0 0 0.2 0 0.0
berlin52 52 7542 0.63, 7/ 6, 0.2 2.88, 1/ 0, 1.5 0 7.0 0.48, 8/ 8, 1.1 0 0.1
bier127 127 118282 2.43, 0/ 0, 1.4 1.97, 1/ 0, 170 0.66, 5/ 5, 18 2.51, 2/ 0, 12 0 1.5
brazil58 58 25395 0.00, 10/ 7, 0.1 0.94, 7/ 5, 2.9 0 8.0 0 1.4 0 0.2
brg180 180 1950 8.82, 0/ 0, 3.9 0.10, 10/ 8, 700 16.30, 0/ 0, 36 0 23 0 0.5
burma14 14 3323 0 0.0 0.57, 9/ 5, 0.0 0 0.5 0 0.1 0 0.0
ch130 130 6110 2.64, 0/ 0, 1.6 2.39, 1/ 0, 190 0.27, 9/ 5, 19 2.56, 0/ 0, 14 0 2.9
ch150 150 6528 4.12, 0/ 0, 2.4 2.51, 1/ 0, 400 0.33, 10/ 1, 24 1.06 6/ 1, 21 0 3.5
d198 198 15780 2.22, 0/ 0, 6.0 1.28, 4/ 0, 1800 0.10, 10/ 2, 40 0.37, 9/ 0, 42 0 40
dantzig42 42 699 0.16, 9/ 8, 0.1 0.36, 10/ 5, 0.5 0 6.0 0.07, 10/ 9, 0.6 0 0.0
eil51 51 426 2.28, 0/ 0, 0.2 1.83, 2/ 0, 1.6 0.02, 10/ 9, 7.0 0.09, 10/ 6, 0.9 0 0.5
eil76 76 538 3.90, 0/ 0, 0.3 2.36, 1/ 1, 17 0 10 0 2.7 0 0.4
eil101 101 629 4.69, 0/ 0, 0.8 2.99, 0/ 0, 48 0 14 0.18, 9/ 6, 5.9 0 1.2
fri26 26 937 0 0.1 0.38, 8/ 0, 0.0 0 5.2 0 0.2 0 0.0
gil262 262 2378 5.13, 0/ 0, 17 — 0.24, 10/ 0, 75 2.94, 1/ 0, 145 0.00,10/9, 360
gr17 17 2085 0 0.0 0.17, 10/ 4, 0.0 0 2.0 0.04, 10/ 8, 0.0 0 0.0
gr21 21 2707 0 0.1 1.77, 5/ 5, 0.1 0 3.2 0 0.1 0 0.0
gr24 24 1272 0 0.1 1.82, 6/ 4, 0.1 0 4.9 0 0.2 0 0.0
gr48 48 5046 0.38, 10/ 0, 0.2 1.00, 7/ 0, 6.0 0 6.4 0.20, 10/ 5, 0.8 0 0.1
gr96 96 55209 2.05, 0/ 0, 0.7 1.62, 5/ 0, 42 0.20, 10/ 0, 14 1.99, 3/ 0, 6.1 0 1.2
gr120 120 6942 3.38, 2/ 0, 1.2 3.16, 0/ 0, 120 0.35, 10/ 0, 18 0.42, 9/ 0,10.6 0 6.9
gr137 137 69853 2.73, 0/ 0, 2.0 2.27, 2/ 0, 270 0.15 10/ 2, 22 1.17, 4/ 0, 16 0 2.4
gr202 202 40160 4.13, 0/ 0, 6.0 2.99, 0/ 0, 1900 0.24, 10/ 2, 40 2.23, 1/ 0, 50 0 160
gr229 229 134602 4.10, 10/ 0, 9.0 — 0.61, 9/ 0, 47 2.50, 1/ 0, 78 0 190
hk48 48 11461 1.27, 3/ 0, 0.1 0.93, 6/ 3, 1.0 0.46, 10/ 0, 4.8 0.28, 9/ 5, 0.8 0 0.2

It is obvious from the results that the iterated tabu

search clearly outperforms the standard tabu search
with respect to the performance measures used (first
of all, the average deviation). In general, ITS produces
definitely higher quality results than all the remaining
algorithms tested, including the simulated annealing

algorithm, which, unexpectedly, seems even to be
better than the simple tabu search. The outstanding
performance of ITS can also be confirmed by some
indirect comparisons with other known algorithms.
For example, in Knox's paper [17], a version of the
standard tabu search based algorithm was proposed.

A. Misevicius, A. Lenkevicius, D. Rubliauskas

194

The author reports few results for small TSP instances
(n≤75). The solutions are very close to optimal,
however the CPU times are quite large (for example,
more than 600 seconds are needed for the instance
with 50 cities). In [16], there was introduced an
improved variant of the famous Lin-Kernighan
heuristic. This algorithm was able to produce solutions
that are within about 0.8% optimality on instances of
size n≤100. The other efficient implementation of Lin-
Kernighan algorithm [19] yielded solutions that were
from 0.24% to 3.04% of optimal solutions on

instances of size 48 to 226. In a more recent work [9],
the tabu search like algorithm (called a complete local
search) could only find solutions that are from 1.13%
to 8.62% far from optimal solutions for instances of
size 52 to 200 (the CPU time reported is from 9.9 to
2206 seconds).

The efficiency of ITS can be improved even more
by increasing the number of iterations (but at the cost
of longer computation time) or tuning the values of
other control parameters.

Table 1. Comparison of the algorithms (Part II). The best results obtained are printed in bold face. CPU times
 per run are given in seconds. (900 MHz PENTIUM computer was used in the experiments)

Instance n zopt
δ , C1%/Copt, CPU time

 M-2-OPT 4-OPT SA STS ITS
kroa100 100 21282 1.13, 5/ 0, 0.8 0.56, 8/ 0, 48 0.13, 10/ 5, 13 2.62, 5/ 0, 6.7 0 0.7
kroa150 150 26524 3.64, 0/ 0, 2.4 2.02, 1/ 0, 360 0.06, 10/ 1, 24 2.94, 1/ 0, 22 0 14
kroa200 200 29368 4.18, 0/ 0, 6.0 2.85, 1/ 0, 1800 0.41, 10/ 0, 39 3.68, 0/ 0, 53 0 11
krob100 100 22141 2.03, 1/ 0, 0.7 2.25, 3/ 0, 48 0.09, 10/ 7, 14 1.91, 2/ 0, 6.6 0 0.9
krob150 150 26130 2.88, 0/ 0, 2.5 1.99, 0/ 0, 360 0.19, 10/ 0, 25 3.33, 0/ 0, 21 0 8.5
krob200 200 29437 4.71, 0/ 0, 6.0 2.47, 0/ 0, 1900 0.18, 9/ 0, 39 5.00, 0/ 0, 54 0 86
kroc100 100 20749 1.81, 1/ 0, 0.8 1.78, 4/ 1, 48 0.03, 10/ 8, 13 2.22, 2/ 0, 6.8 0 0.8
krod100 100 21294 2.37, 1/ 0, 0.8 1.88, 2/ 0, 48 0.07, 10/ 7, 13 2.53, 2/ 0, 6.6 0 0.9
kroe100 100 22068 2.05, 0/ 0, 0.8 1.43, 4/ 0, 48 0.31, 10/ 0, 13 1.01, 8/ 0, 6.7 0 1.1
lin105 105 14379 1.23, 3/ 0, 0.8 1.97, 4/ 0, 60 0.12, 19/ 7, 15 3.13, 0/ 0, 7.7 0 0.8
lin318 318 42029 4.60, 0/ 0, 45 — 0.83, 7/ 0, 120 3.95, 0/ 0, 280 0.28, 10/ 3, 180
pr76 76 108159 0.91, 8/ 0, 0.4 1.69, 3/ 0, 12 0 10 0.39, 9/ 0, 2.9 0 0.3
pr107 107 44303 0.90, 6/ 0, 0.9 1.14, 5/ 0, 72 0 14 1.17, 9/ 1, 7.3 0 0.8
pr124 124 59030 0.49, 9/ 1, 1.5 1.09, 4/ 1, 160 0.06, 10/ 3, 18 1.25, 4/ 1, 12 0 0.6
pr136 136 96772 2.87, 0/ 0, 1.8 2.58, 1/ 0, 250 0.43, 9/ 0, 21 0.95, 5/ 0, 15 0 11
pr144 144 58537 0.15, 10/ 0, 2.4 0.16, 9/ 5, 340 0.15, 9/ 6, 23 2.75, 2/ 0, 18 0 1.2
pr152 152 73682 0.84, 6/ 0, 2.8 0.77, 7/ 0, 380 0.22, 10/ 1, 25 1.82, 2/ 0, 22 0 10
pr226 226 80369 1.23, 0/ 0, 9.5 — 0.37, 10/ 0, 47 2.22, 6/ 0, 66 0 20
pr264 264 49135 4.89, 0/ 0, 16 — 0.05, 10/ 8, 66 1.92, 3/ 1, 125 0 18
pr299 299 48191 5.04, 0/ 0, 30 — 0.15, 10/ 1, 90 4.22, 0/ 0, 200 0 320
rat99 99 1211 4.48, 0/ 0, 0.6 2.95, 1/ 0, 48 0 13 0.26, 10/ 2, 6.3 0 0.8
rat195 195 2323 7.47, 0/ 0, 5.0 3.44, 0/ 0, 1700 0.20, 10/ 0, 37 0.30, 10/ 0, 40 0 150
rd100 100 7910 3.03, 0/ 0, 0.7 3.26, 2/ 0, 49 0.15, 10/ 7,13.5 1.75, 2/ 1, 6.6 0 0.8
si175 175 21407 0.45, 10/ 0, 3.7 0.21, 10/ 0, 900 0.04, 10/ 1, 31 0.27, 10/ 0, 28 0 11
st70 70 675 0.76, 8/ 0, 0.2 1.84, 2/ 0, 70 0.02, 10/ 9, 9.0 1.04, 5/ 1, 2.2 0 0.3
swiss42 42 1273 0 0.1 1.33, 5/ 2, 0.5 0 5.8 1.07, 7/ 7, 0.6 0 0.1
ts225 225 126643 1.67, 2/ 0, 9.0 — 0.02, 10/ 7, 50 1.65 4/ 3, 62 0 4.3
tsp225 225 3916 5.17, 0/ 0, 9.3 — 1.05, 2/ 0, 49 2.00, 1/ 0, 67 0 15
u159 159 42080 3.14, 0/ 0, 3.0 2.55, 1/ 0, 370 0.68, 10/ 1, 26 3.26, 2/ 0, 25 0 1.4
ulysses16 16 6859 0 0.0 0 0.0 0 3.4 0 0.1 0 0.0
ulysses22 22 7013 0 0.1 0.11, 9/ 9, 0.1 0 5.4 0 0.1 0 0.0

5.2. Experiments with the quadratic assignment

problem

The quadratic assignment problem is formulated as
follows. Given two matrices C = (cij)n×n and
D = (dkl)n×n and the set Π of permutations of the
integers from 1 to n, find a permutation π = (π(1),
π(2), ..., π(n)) ∈ Π that minimizes

∑∑
= =

=
n

i

n

j
jiijdcz

1 1
)()()(πππ . (4)

The QAP is also NP-hard [29]. Problems of size
n > 36, are not, to this date, practically solvable to
optimality.

The QAP is a typical CO problem, where solutions
are permutations, and the objective function is
described according to the formula (4). As a
neighbourhood structure, the 2-exchange
neighbourhood function is widely used:
Ν2(π) = { π ′ | π ′ ∈ Π, ρ(π , π ′) ≤ 2 }, where π ∈ Π,
and ρ(π , π ′) is the distance between permutations π

and π ′: ∑
=

′−=′
n

i

ii
1

|)()(|sgn),(ππππρ (see also

Iterated Tabu Search: an Improvement to Standard Tabu Search

195

Section 1). Exactly, the neighbourhood Ν2 was applied
in our ITS algorithm for the QAP. A move from π to
π ′ ∈ Ν2(π) can easily be defined by the operator φij
(i, j = 1, 2, ..., n) which simply swaps the i-th and j-th
elements in the given permutation, i.e. π ′(i) = π (j),
π ′(j) = π (i), 1 ≤ i, j ≤ n ∧ j−i ≥ 1, where π is the
current permutation, and π ′ − the neighbouring per-
mutation.

We compared our ITS algorithm with other four
efficient algorithms for the QAP: 1) simulated annea-
ling (SA) algorithm [22]; 2) genetic algorithm (GA)
[6]; 3) robust tabu search (RoTS) algorithm [32], and
4) reactive tabu search (ReTS) algorithm [2]. We
tested the above algorithms on a set of instances taken
from the QAP instances library QAPLIB [5]. The
performance measures are similar to those for the
TSP: a) the average deviation from the best known
solution − δ (%][)(100 zzz ((−=δ , where z is the
average objective function value over 10 runs and z(
is the best known value (BKV) of the objective
function; b) the number of solutions that are within
1% optimality (over 10 runs) − C1%; c) the number of

the best known solutions found − Cbks. The results of
the comparison are shown in Tables 2 and 3 (in
Table 2, the results for the randomly generated ins-
tances are given, whereas in Table 3, we present the
results for the real-life like instances − instances of
this type are generated in such a way that the entries of
the data matrices resemble a distribution from real
world problems).

It may be viewed that the quality of results
depends on the type of instances. For the randomly
generated instances, the results are inferior to those for
the real-life like instances. This is an indication that
the random instances are much more difficult to solve
and still remain a real challenge for the researchers.
Regarding the real-life like instances, they are
relatively easy for many heuristics, the ITS algorithm,
too. For these instances, ITS produces very strong
results. For example, the average CPU time needed to
find the pseudo-optimal solution in every run out of
10 for the instance tai80b is equal to about 350
seconds on 900 MHz computer.

Table 2. Results of comparison of the algorithms for the random QAP instances.
 The best results obtained are printed in bold face. CPU times per run are given in seconds.
 (900 MHz PENTIUM computer was used in the experiments)

Instance n BKV
δ , C1%/Cbks

 SA GA RoTS ReTS ITS
CPU time

tai20a 20 703482 a 0.90 6/ 0 0.26 10/ 3 0.29 10/ 1 0.15 10/ 6 0.06 10/ 8 0.6
tai25a 25 1167256 a 0.76 8/ 0 0.39 10/ 1 0.25 10/ 4 0.13 10/ 7 0 2.4
tai30a 30 1818146 a 0.74 8/ 0 0.24 10/ 4 0.16 10/ 6 0.20 10/ 4 0 6.6
tai35a 35 2422002 a 0.75 8/ 1 0.48 10/ 2 0.36 10/ 1 0.24 10/ 1 0 17
tai40a 40 3139370 a 0.78 8/ 0 0.78 9/ 0 0.52 10/ 0 0.32 10/ 0 0.21 10/ 1 45
tai50a 50 4941410 a 0.73 9/ 0 0.88 7/ 0 0.78 9/ 0 0.49 10/ 0 0.32 10/ 2 180
tai60a 60 7205962 b 0.85 8/ 0 0.86 7/ 0 0.84 7/ 0 0.52 10/ 0 0.33 10/ 1 580
tai80a 80 13546960 b 0.57 10/ 0 0.53 10/ 0 0.67 10/ 0 0.16 10/ 0 0.14 10/ 0 1500
tai100a 100 21087588 c 0.56 10/ 0 0.59 10/ 0 0.81 10/ 0 0.28 10/ 0 0.26 10/ 0 3600

a comes from [5]; b comes from [23]; c comes from [24].

Table 3. Results of comparison of the algorithms for the real-life like QAP instances.
 The best results obtained are printed in bold face. CPU times per run are given in seconds.
 (900 MHz PENTIUM computer was used in the experiments)

Instance n BKV
δ , C1%/Cbks

 SA GA RoTS ReTS ITS
CPU time

tai20b 20 122455319 a 0.14 10/ 7 0.05 10/ 9 0.04 10/ 9 0.19 10/ 6 0 0.3
tai25b 25 344355646 a 0.58 9/ 6 0.01 10/ 9 0.00 10/ 9 0.48 8/ 1 0 0.9
tai30b 30 637117113 a 1.61 3/ 2 0.00 10/ 9 0.07 10/ 4 0.60 8/ 0 0 2.8
tai35b 35 283315445 a 0.63 8/ 6 0.02 10/ 9 0.03 10/ 8 0.25 10/ 2 0 5.6
tai40b 40 637250948 a 1.41 3/ 2 0 0 0.20 9/ 3 0 14
tai50b 50 458821517 a 0.33 10/ 0 0.10 10/ 8 0.06 10/ 2 0.19 10/ 0 0 56
tai60b 60 608215054 a 0.15 10/ 1 0.01 10/ 8 0.31 8/ 3 0.13 10/ 1 0 130
tai80b 80 818415043 a 0.57 7/ 0 0.21 10/ 5 0.49 10/ 0 0.15 10/ 0 0 350
tai100b 100 1185996137 a 0.17 10/ 0 0.09 10/ 5 0.03 10/ 0 0.08 10/ 0 0.00 10/ 9 1400
tai150b 150 498896643 b 0.20 10/ 0 0.42 10/ 0 0.26 10/ 0 0.36 10/ 0 0.10 10/ 1 3600

a comes from [5]; b comes from [33].

A. Misevicius, A. Lenkevicius, D. Rubliauskas

196

The results of ITS may be improved even more by
accurate tuning of the control parameters. Of course,
we can obtain higher quality solutions by increasing
the total number of iterations. After the additional
long-lasting experimentation, ITS was successful in
discovering new record-breaking solutions for two

largest available random instances from QAPLIB. It
took approximately 10 and 20 hours on 900 MHz
computer to find the new best known solutions for the
instances tai80a and tai100a, respectively. The results
are summarized in Table 4.

Table 4. New results for the large random QAP instances

Instance # of runs
of best known

solutions
found

New best known objective function
values

tai80a 10 1 13526696
tai100a 10 3 21075558, 21072418, 21071558

6. Conclusions

One meta-heuristic that has been widely applied to
many combinatorial optimization problems is tabu
search. In this paper, an innovative enhancement of
this method is proposed. We call this approach an
iterated tabu search. The novelty of ITS is the incor-
poration of the special kind of solution reconstruction
into the classical tabu search paradigm. ITS can be
seen as a "reconstruct and improve" principle based
optimization policy. It is distinguished, in principle,
for two main components: diversification and intensi-
fication. During the first step, an existing solution is
reconstructed in a proper way. In the second step, the
local improvement based on the traditional tabu search
procedure is applied to the solution just "ruined";
hopefully, the new improved solution is better than the
solutions obtained in the previous iterations. By
repeating these phases many times, one tries to seek
for near-optimal solutions. That is the heart of ITS.

On a basis of the proposed framework, two va-
riants of ITS were designed, which were applied to the
NP-hard combinatorial optimization problems, the
traveling salesman problem and the quadratic assign-
ment problem. The results obtained from the experi-
ments demonstrate high performance of the proposed
strategy. ITS appears to be superior to pure TS algo-
rithms, as well as other heuristic algorithms. The
power of ITS is also corroborated by the fact that the
new record-breaking (best know) solutions were found
for very hard QAP instances − tai80a and tai100a. This
indicates that ITS seems to be one of the extremely
efficient heuristics for the random QAP instances.

As the results obtained for the TSP and QAP show
very promising efficiency of ITS, it may be worthy
applying the versions of the ITS method to other well-
known combinatorial optimization problems.

Regarding further possible extensions of ITS,
some directions may be proposed:

• maintaining "the history" of the locally optimal
solutions (as the potential candidates for
diversification (reconstruction));

• using the reactive tabu search (instead of the
straightforward tabu search) as a possibly more
efficient intensification algorithm;

• implementing other, more elaborated diversifi-
cation (reconstruction) procedures;

• incorporating the ITS based procedure into
other meta-heuristics, for example, genetic algorithms
(as a robust local improvement heuristic).

Acknowledgements

The authors are grateful to Prof. E. Taillard for
providing a code of the robust tabu search algorithm
for the QAP. We also would like to thank Prof.
C. Fleurent for the paper that helped coding the
genetic algorithm for the QAP.

References

 [1] E.H.L. Aarts, J.K. Lenstra (eds.). Local Search in
Combinatorial Optimization. Wiley, Chichester, 1997.

 [2] R. Battiti, G. Tecchiolli. The reactive tabu search.
ORSA Journal on Computing, 1994, Vol.6, 126−140.

 [3] E.B. Baum. Towards practical "neural" computation
for combinatorial optimization problems. In J.S.
Denker (ed.) Neural networks for computing, Ameri-
can Institute of Physics, New York, 1986, 53–58.

 [4] K. Boese. Cost versus distance in the traveling sales-
man problem. Tech. Report CSD-950018, UCLA CS
Dept., USA, 1995.

 [5] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of
Global Optimization, 1997, Vol.10, 391−403. [See
also http://www.seas.upenn.edu/qaplib/.]

 [6] C. Fleurent, J.A. Ferland. Genetic hybrids for the
quadratic assignment problem. In P.M. Pardalos, H.
Wolkowicz (eds.), Quadratic Assignment and Related
Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.16, AMS,
Providence, 1994, 173−188.

 [7] M.R. Garey, D.S. Johnson. Computers and Intract-
ability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

 [8] M. Gendreau. An introduction to tabu search. In
F.Glover, G.Kochenberger (eds.), Handbook of
Metaheuristics, Kluwer, Norwell, 2002, 37–54.

 [9] D. Ghosh, G. Sierksma. Complete local search with
memory. Journal of Heuristics, 2002, Vol.8, 571−584.

Iterated Tabu Search: an Improvement to Standard Tabu Search

197

[10] F. Glover. Tabu search: part I. ORSA Journal on
Computing, 1989, Vol.1, 190–206.

[11] F. Glover. Tabu search: part II. ORSA Journal on
Computing, 1990, Vol.2, 4–32.

[12] F. Glover, G. Kochenberger (eds.). Handbook of
Metaheuristics, Kluwer, Norwell, 2002.

[13] F. Glover, M. Laguna. Tabu Search. Kluwer, Dord-
recht, 1997.

[14] P. Hansen, B. Jaumard. Algorithms for the maxi-
mum satisfiability problem. RUTCOR Research
Report 43–87, Rutgers University, USA, 1987.

[15] A. Hertz, E. Taillard, D. de Werra. Tabu search. In
E.H.L.Aarts, J.K.Lenstra (eds.), Local Search in
Combinatorial Optimization, Wiley, Chichester, 1997,
121–136.

[16] D.S. Johnson. Local optimization and the traveling
salesman problem. In Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and
Programming. Lecture Notes in Computer Science,
Vol.443, Springer, Berlin, 1990, 446–461.

[17] J. Knox. Tabu search performance on the symmetric
traveling salesman problem. Computers & Operations
Research, 1994, Vol.21, 867−876.

[18] H.R. Lourenco, O. Martin, T. Stützle. Iterated local
search. In F.Glover, G.Kochenberger (eds.), Hand-
book of Metaheuristics, Kluwer, Norwell, 2002,
321−353.

[19] K. Mak, A. Morton. A modified Lin-Kernighan
traveling salesman heuristic. ORSA Journal on
Computing, 1992, Vol.13, 127−132.

[20] O. Martin, S.W. Otto. Combining simulated anneal-
ing with local search heuristics. Annals of Operations
Research, 1996, Vol.63, 57–75.

[21] Z. Michalewicz, D.B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin-Heidelberg, 2000.

[22] A. Misevicius. A modified simulated annealing algo-
rithm for the quadratic assignment problem.
Informatica, 2003, Vol.14, 497–514.

[23] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95–111.

[24] A. Misevicius, J. Blonskis. Experiments with tabu
search for random quadratic assignment problems.
Information Technology and Control, 2005, Vol.34,
No.3, 237−244.

[25] C.H. Papadimitriou, K. Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice-
Hall, Englwood Cliffs, 1982.

[26] V.J. Rayward-Smith, I.H. Osman, C.R. Reeves,
G.D. Smith (eds.). Modern Heuristic Search Methods.
Wiley, Chichester, 1996.

[27] G. Reinelt. TSPLIB − A traveling salesman problem
library. ORSA Journal on Computing, 1991, Vol.3-4,
376−385. [See also http://www.iwr.uni-
heidelberg.de/groups/comopt/software/T
SPLIB95/.]

[28] E. Rolland, H. Pirkul, F. Glover. Tabu search for
graph partitioning. Annals of Operations Research,
1996, Vol.63, 209−232.

[29] S. Sahni, T. Gonzalez. P-complete approximation
problems. Journal of ACM, 1976, Vol.23, 555−565.

[30] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt,
G. Dueck. Record breaking optimization results using
the ruin and recreate principle. Journal of Computatio-
nal Physics, 2000, Vol.159, 139–171.

[31] K. Smyth, H.H. Hoos, T. Stützle. Iterated robust tabu
search for MAX-SAT. In Y.Xiang, B.Chaib-draa
(eds.), Advances in Artificial Intelligence: Proceedings
of the 16th Conference of the Canadian Society for
Computational Studies of Intelligence. Lecture Notes
in Artificial Intelligence, Vol.2671, Springer, Berlin,
2003, 129–144.

[32] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443−455.

[33] E. Taillard, L.M. Gambardella. Adaptive memories
for the quadratic assignment problem. Tech. Report
IDSIA-87-97, Lugano, Switzerland, 1997.

[34] P. Thomas, S. Salhi. A tabu search heuristic for the
resource constrained project scheduling problem.
Journal of Heuristics, 1998, Vol.4, 123−139.

[35] N.A. Wassan, I.H. Osman. Tabu search variants for
the mix fleet vehicle routing problem. Journal of the
Operational Research Society, 2002, Vol.53, 768–782.

Received June 2006.

