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Abstract
We prove a motivic analogue of Steenbrink’s conjecture [25, Conjecture 2.2] on the
Hodge spectrum (proved by M. Saito in [21]). To achieve this, we construct and
compute motivic iterated vanishing cycles associated with two functions. We are also
led to introduce a more general version of the convolution operator appearing in the
motivic Thom-Sebastiani formula. Throughout the article we use the framework of
relative equivariant Grothendieck rings of varieties endowed with an algebraic torus
action.
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1. Introduction
Let us start by recalling the statement of Steenbrink’s conjecture [25, Conjecture 2.2].
Let f : X → A1 be a function on a smooth complex algebraic variety. Let x be a
closed point of f −1(0). Steenbrink introduced in [24] and [25] the spectrum Sp(f, x) of
f at x. It is a fractional Laurent polynomial

∑
α∈Q nαtα , nα in Z, which is constructed

using the action of the monodromy on the mixed Hodge structure on the cohomology
of the Milnor fiber at x. When f has an isolated singularity at x, all nα are in N, and
the exponents of f , counted with multiplicity nα , are exactly the rational numbers α

with nα not equal to zero.
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Let us assume now that the singular locus of f is a curve � having r local
components ��, 1 ≤ � ≤ r in a neighborhood of x. We denote by m� the multiplicity
of ��. Let g be a generic linear form vanishing at x (that is, a function g vanishing at
x whose differential at x is a generic linear form). For N large enough, the function
f +gN has an isolated singularity at x. In a neighborhood of the complement �◦

� to {x}
in ��, we may view f as a family of isolated hypersurface singularities parametrized by
�◦

� . The cohomology of the Milnor fiber of this hypersurface singularity is naturally
endowed with the action of two commuting monodromies; the monodromy of the
function and the monodromy of a generator of the local fundamental group of �◦

� . We
denote by α�,j the exponents of that isolated hypersurface singularity, and we denote
by β�,j the corresponding rational numbers in [0, 1) such that the complex numbers
exp(2πiβ�,j ) are the eigenvalues of the monodromy along �◦

� .

CONJECTURE 1.1 (Steenbrink [25, Conjecture 2.2])
For N � 0,

Sp(f + gN, x) − Sp(f, x) =
∑
�,j

tα�,j +(β�,j /m�N) 1 − t

1 − t1/m�N
. (1.1.1)

The conjecture of Steenbrink has been proved by M. Saito in [21], using his theory
of mixed Hodge modules (see [18], [20]). Later, A. Némethi and J. H. M. Steenbrink
[17] gave another proof, still relying on the theory of mixed Hodge modules. Also,
forgetting the integer part of the exponents of the spectrum, (1.1.1) has been proved
by D. Siersma [23] in terms of zeta functions of the monodromy. Notice that, taking
ordinary Euler characteristics, (1.1.1) specializes to a result of I. Iomdin [14], who
was the first to compare vanishing cohomologies of f and f + gN . The convention
we use here (see (6.6.2)) to define Sp(f, x) slightly differs from the original one and
corresponds to what is denoted by Sp′(f, x) in [21].

Recently, using motivic integration, Denef and Loeser introduced the motivic
Milnor fiber Sf,x (see [5], [8]). It is a virtual variety endowed with an action of the
group scheme µ̂ of roots of unity, and the Hodge spectrum Sp(f, x) can be retrieved
from Sf,x (see [8]). They also showed that an analogue of the Thom-Sebastiani
theorem holds for the motivic Milnor fiber. This result was first stated in a (completed)
Grothendieck ring (see [7]) of Chow motives and then extended to a Grothendieck
ring of virtual varieties endowed with a µ̂-action in [16] and [8] using a convolution
product ∗ introduced in [16]. It is also convenient to slightly modify the virtual varieties
Sf,x , which correspond to nearby cycles, into virtual varieties Sφ

f,x corresponding to
vanishing cycles.

It is then quite natural to ask for a motivic analogue of Steenbrink’s conjecture
in terms of motivic Milnor fibers. The present article is devoted to give a complete
answer to that question. Our main result, Theorem 5.7, expresses (in its local version,
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Corollary 5.16) for x a closed point, where f and g both vanish, and for N � 0
the difference Sφ

f,x −Sφ

f +gN ,x
as ��(SgN ,x(Sφ

f )), where SgN ,x(Sφ

f ) corresponds to
iterated motivic vanishing cycles and �� is a generalization of the convolution product
∗. In fact, in Theorem 5.7, we no longer assume any condition on the singular locus
of f ; also, g is no longer assumed to be a generic linear form and can be any function
vanishing at x. Formula (1.1.1) may be deduced from Theorem 5.7 by considering the
Hodge spectrum.

The plan of the article is the following. In Section 2 we introduce the basic
Grothendieck rings that we use. Then, in Section 3, we recall the definition of the
motivic Milnor fiber, and we extend it to the whole Grothendieck ring. Such an
extension has also been done by F. Bittner in [3], using the weak factorization theorem,
and in her work [2]; the construction we present here, based on motivic integration, is
quite different. We then extend the construction to the equivariant setting in order to
define iterated vanishing cycles in the motivic framework in Section 4. In Section 5
we first define our generalized convolution operator �� and explain its relation with
the convolution product ∗. This gives us the opportunity to prove the associativity
of the convolution product ∗, a fact already mentioned in [8]. Then comes the heart of
the article, that is, the proof of Theorem 5.7. We conclude the section by explaining
how one recovers the motivic Thom-Sebastiani theorem of [7], [16], and [8] from
Theorem 5.7. The final section, Section 6, is devoted to applications to the Hodge-
Steenbrink spectrum; in particular, we deduce Steenbrink’s conjecture, Conjecture 1.1,
from Theorem 5.7.

2. Grothendieck rings

2.1
By a variety over a field k, we mean a separated and reduced scheme of finite type
over k. If X is a scheme, we denote by |X| the corresponding reduced scheme. If an
algebraic group G acts on a variety X, we say the action is good if every G-orbit is
contained in an affine open subset of X. Let Y be a variety over k, and let p : A → Y

be an affine bundle for the Zariski topology. (The fibers of p are affine spaces, and the
transition morphisms between trivializing charts are affine.) In particular, the fibers of
p have the structure of affine spaces. Let G be a linear algebraic group. A good action
of G on A is said to be affine if it is a lifting of a good action on Y and its restriction
to all fibers is affine. Note that affine actions on an affine bundle extend to its relative
projective bundle compactification.

If G is finite and X and Y are two varieties with good G-action, we denote by
X×GY the quotient of the product X×Y by the equivalence relation (gx, y) ≡ (x, gy).
The action of G on, say, the first factor of X ×Y induces a good G-action on X ×G Y .

For n ≥ 1, we denote by µn the group scheme of nth roots of unity and by µ̂ the
projective limit lim←−µn of the projective system with transition morphisms µnd → µn
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given by x �→ xd . In this article all µ̂-actions, and more generally, all µ̂r -actions, are
assumed to factorize through a finite quotient.

2.2
Throughout the article k is a field of characteristic zero. For S, a variety over k, we
denote by K0(VarS) the Grothendieck ring of varieties over S (see [8]). Let us recall that
it is generated by classes of morphisms of varieties X → S and that it is also generated
by classes of such morphisms with X smooth over k, and it suffices to consider relations
for smooth varieties. We denote by L = LS the class of the trivial line bundle over S

and set MS for the localization K0(VarS)[L−1]. As in [9], let us consider Grothendieck
rings of varieties with µ̂-action. They are defined similarly, using the category Var µ̂

S

of varieties with good µ̂-action over S, but adding the additional relation

[Y × An
k , σ ] = [Y × An

k , σ
′] (2.2.1)

if σ and σ ′ are two liftings of the same µ̂-action on Y to an affine action on Y ×An
k . We

denote them by K0(Var µ̂

S ) and Mµ̂

S . One can more generally replace µ̂ by µ̂r in these
definitions and define K0(Var µ̂r

S ) and Mµ̂r

S . In [3] Bittner considers similar equivariant
rings but with an additional relation that is, a priori, coarser than the one we use here.

2.3
In the present article, instead of varieties with µ̂-action over S, we choose to work in
the equivalent setting of varieties with Gm-action with some additional structure.

Let Y be a variety with good Gr
m-action. We say that a morphism π : Y → Gr

m

is diagonally monomial of weight n in Nr
>0 if π(λx) = λnπ(x) for all λ in Gr

m and

x in Y . Fix n in Nr
>0. We denote by Var

Gr
m,n

S×Gr
m

the category of varieties Y → S × Gr
m

over S × Gr
m with good Gr

m-action such that, furthermore, the fibers of the projection
π1 : Y → S are Gr

m-invariant and the projection π2 : Y → Gr
m is diagonally monomial

of weight n. We define the Grothendieck group K0(Var
Gr

m,n
S×Gr

m
) as the free abelian group

on isomorphism classes of objects Y → S × Gr
m in Var

Gr
m,n

S×Gr
m
, modulo the relations

[Y → S × Gr
m] = [Y ′ → S × Gr

m] + [Y\Y ′ → S × Gr
m] (2.3.1)

for Y ′ closed Gr
m-invariant in Y and, for f : Y → S × Gr

m in Var
Gr

m,n
S×Gr

m
,

[Y × An
k → S × Gr

m, σ ] = [Y × An
k → S × Gr

m, σ ′] (2.3.2)

if σ and σ ′ are two liftings of the same Gr
m-action on Y to affine actions, the morphism

Y × An
k → S × Gr

m being the composition of f with the projection on the first factor.
Of course, in (2.3.2), instead of the trivial affine bundle, we could have considered
any affine bundle over Y .
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Fiber product over S × Gr
m with diagonal action induces a product in the category

Var
Gr

m,n
S×Gr

m
, which allows us to endow K0(VarGm,n

S×Gr
m
) with a natural ring structure. Note

that the unit 1S×Gr
m

for the product is the class of the identity morphism on S × Gr
m,

the Gr
m-action on S × Gr

m being the trivial one on S and the standard multiplicative

translation on Gr
m.There is a natural structure of K0(Vark)-module on K0(Var

Gr
m,n

S×Gr
m
).

We denote by LS×Gr
m

= L the element L · 1S×Gr
m

in this module, and we set MGr
m,n

S×Gr
m

=
K0(Var

Gr
m,n

S×Gr
m
)[L−1].

If f : S → S ′ is a morphism of varieties, composition with f leads to a push-
forward morphism f! : MGr

m,n
S×Gr

m
→ MGr

m,n
S ′×Gr

m
, while fiber product leads to a pullback

morphism f ∗ : MGr
m,n

S ′×Gr
m

→ MGr
m,n

S×Gr
m
. (These morphisms may already be defined at the

K0-level.)

2.4
For n in Nr

>0, we denote by µn the group µn1 × · · · × µnr
. We consider the functor

Gn : Var
Gr

m,n
S×Gr

m
−→ Varµn

S , (2.4.1)

assigning to p : Y → S × Gr
m the fiber at 1 of the morphism Y → Gr

m obtained by
composition with projection on the second factor. Note that this fiber carries a natural
µn-action by the monomiality assumption.

On the other side, if f : X → S is a variety over S with good µn-action, we
may consider the variety Fn(X) := X ×µn Gr

m and view it as a variety over S × Gr
m

by sending the class of (x, λ) to (f (x), λn). The standard Gr
m-action by multiplicative

translation on Gr
m induces a Gr

m-action on Fn(X). Note that the second projection is
diagonally monomial of weight n; hence, Fn is in fact a functor

Fn : Varµn
S −→ Var

Gr
m,n

S×Gr
m
. (2.4.2)

LEMMA 2.5
The functors Fn and Gn are mutually quasi-inverse, so that the categories Varµn

S and

Var
Gr

m,n
S×Gr

m
are equivalent.

Proof
It is quite clear that Gn(Fn(X)) is isomorphic to X for X in Varµn

S . For X in Var
Gr

m,n
S×Gr

m
,

set Y := Gn(X). We have a natural morphism Y × Gr
m → X, sending (y, λ) to

λy. Clearly, this morphism induces an isomorphism between Y ×µn Gr
m and X in

Var
Gr

m,n
S×Gr

m
. �
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We consider the partial order n ≺ m on Nr
>0 given by divisibility of each coordinate;

that is, n ≺ m if n = km for some k in Nr
>0. If n = km, we have a natural functor

θm
n : Var

Gr
m,m

S×Gr
m

−→ Var
Gr

m,n
S×Gr

m
, (2.5.1)

sending X → S × Gr
m to the same object but with the action λ �→ λx on X replaced

by λ �→ λkx. We define the category Var
Gr

m

S×Gr
m

as the colimit of the inductive system

of categories Var
Gr

m,n
S×Gr

m
. We define K0(Var

Gr
m

S×Gr
m
) and MGr

m

S×Gr
m

as in Section 2.3. Clearly,

K0(Var
Gr

m

S×Gr
m
) and MGr

m

S×Gr
m

are, respectively, the colimits of the rings K0(Var
Gr

m,n
S×Gr

m
) and

MGr
m,n

S×Gr
m
. Since the category Var µ̂r

S is the colimit of the categories Var µ̂n
S , we have the

following statement.

PROPOSITION 2.6
There is a unique pair of functors

G : Var
Gr

m

S×Gr
m

−→ Var µ̂r

S (2.6.1)

and

F : Var µ̂r

S −→ Var
Gr

m

S×Gr
m

(2.6.2)

which restrict to Gn and Fn for every n. They are mutually quasi-inverse. In particular,
G induces canonical isomorphisms

K0(Var
Gr

m

S×Gr
m
)  K0(Var µ̂r

S ) and MGr
m

S×Gr
m

 Mµ̂r

S (2.6.3)

compatible with the operations f! and f ∗.

2.7
Let Y be a variety with good Gr

m-action. We say that a morphism π : Y → Gr
m is mono-

mial if it is equivariant with respect to some transitive Gr
m-action on Gr

m (see Section 4.6
for monomial morphisms that are not diagonally monomial morphisms). More gener-
ally, consider a variety (p, π) : Y → S × Gr

m over S × Gr
m with good Gr

m-action such
that, furthermore, the fibers of p : Y → S are Gr

m-invariant and π : Y → Gr
m is mono-

mial. By elementary linear algebra, there exists a group morphism � : Gr
m → Gr

m such
that if we compose the original Gr

m-action on Y with �, the morphism π becomes diag-
onally monomial for that new action. Furthermore, the image of (p, π) : Y → S ×Gr

m

with the action twisted by � in Var
Gr

m

S×Gr
m
, and hence, also its class in K0(Var

Gr
m

S×Gr
m
) and

in MGr
m

S×Gr
m
, does not depend on �. We denote that class by [(p, π) : Y → S ×Gr

m]. In-
deed, the first statement amounts to saying that for every matrix A in Mr (Z)∩GLr (Q),
there exists B in Mr (Z) ∩ GLr (Q) such that BA is diagonal with coefficients in N>0,
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and the second statement follows from the observation that if B ′ is another such
matrix, there exist diagonal matrices C and C ′ with coefficients in N>0 such that
CB = C ′B ′.

More generally, if W is a constructible subset of Y which is stable by the Gr
m-

action, we call a morphism π : W → Gr
m piecewise monomial if there is a finite

partition of W into locally closed Gr
m-invariant subsets on which the restriction of π is

a monomial morphism. To such a W , endowed with a morphism (p, π) : W → S×Gr
m

such that the fibers of p : W → S are Gr
m-invariant and π : W → Gr

m is piecewise

monomial, we assign by additivity a class [(p, π) : W → S × Gr
m] in MGr

m

S×Gr
m
.

2.8. Rational series
Let A be one of the rings Z[L, L−1], Z[L, L−1, (1/(1 − L−i))i>0], MGr

m

S×Gr
m
. We denote

by A[[T ]]sr the A-submodule of A[[T ]] generated by 1 and by finite products of terms
pe,i(T ) = LeT i/(1 − LeT i) with e in Z and i in N>0. There is a unique A-linear
morphism

lim
T �→∞

: A[[T ]]sr −→ A (2.8.1)

such that

lim
T �→∞

(∏
i∈I

pei ,ji
(T )

)
= (−1)|I | (2.8.2)

for every family ((ei, ji))i∈I in Z × N>0 with I finite and maybe empty.

2.9
Let I be a finite set. We consider rational polyhedral convex cones in RI

>0. By this, we
mean a convex subset of RI

>0 defined by a finite number of integral linear inequalities
of type a ≥ 0 or b > 0 and stable by multiplication by R>0. Let  be such a cone in
RI

>0. We denote by ̄ its closure in RI
≥0.

Let � and ν be integral linear forms on ZI which are positive on ̄\{0}. Let us
consider the series

S,�,ν(T ) :=
∑

k∈∩NI
>0

T �(k)L−ν(k) (2.9.1)

in Z[L, L−1][[T ]].
In the special case when  is open in its linear span and ̄ is generated by vectors

(e1, . . . , em) which are part of a Z-basis of the Z-module ZI , the series S,�,ν lies
in Z[L, L−1][[T ]]sr and limT �→∞ S,�,ν(T ) is equal to (−1)dim(). By additivity with
respect to disjoint union of cones with the positivity assumption, one deduces that, in
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general, S,�,ν lies in Z[L, L−1][[T ]]sr and that limT �→∞ S,�,ν(T ) is equal to χ(),
the Euler characteristic with compact supports of .

In particular, we get the following lemma (cf. [13, Lemma 2.1.5] and [4,
pages 1006 – 1007]).

LEMMA 2.10
Let  be a rational polyhedral convex cone in RI

>0 defined by

∑
i∈K

aixi ≤
∑

i∈I\K
aixi (2.10.1)

with ai in N, ai > 0 for i in K , and K and I\K nonempty. If � and ν are integral
linear forms positive on ̄\{0}, then limT �→∞ S,�,ν(T ) = 0.

3. Motivic vanishing cycles

3.1. Arc spaces
As usual, we denote by Ln(X) the space of arcs of order n, also known as the nth
jet space on X. It is a k-scheme whose set of K-points, for K a field containing k,
is the set of morphisms ϕ : Spec K[t]/tn+1 → X. There are canonical morphisms
Ln+1(X) → Ln(X) which are Ad

k -bundles when X is smooth of pure dimension d.
The arc space L(X) is defined as the projective limit of this system. We denote by
πn : L(X) → Ln(X) the canonical morphism. There is a canonical Gm-action on
Ln(X) and on L(X) given by a · ϕ(t) = ϕ(at).

For an element ϕ in K[[t]] or in K[t]/tn+1, we denote by ordt (ϕ) the valuation
of ϕ and by ac(ϕ) its first nonzero coefficient with the convention ac(0) = 0.

3.2. Motivic zeta function and Motivic Milnor fiber
Let us start by recalling some basic constructions introduced by Denef and Loeser in
[5], [9], and [8].

Let X be a smooth variety over k of pure dimension d, and let g : X → A1
k be a

morphism. We set X0(g) for the zero locus of g and consider for n ≥ 1 the variety

Xn(g) := {
ϕ ∈ Ln(X)

∣∣ ordt g(ϕ) = n
}
. (3.2.1)

Note that Xn(g) is invariant by the Gm-action on Ln(X). Furthermore, g induces a
morphism gn : Xn(g) → Gm, assigning to a point ϕ in Ln(X) the coefficient ac(g(ϕ))
of tn in g(ϕ), which we also denote by ac(g)(ϕ). This morphism is diagonally monomial
of weight n with respect to the Gm-action on Xn(g) since gn(a · ϕ) = angn(ϕ), so we
can consider the class [Xn(g)] of Xn(g) in MGm

X0(g)×Gm
.
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We now consider the motivic zeta function

Zg(T ) :=
∑
n≥1

[Xn(g)] L−nd T n (3.2.2)

in MGm

X0(g)×Gm
[[T ]]. Note that Zg = 0 if g = 0 on X.

Denef and Loeser showed in [5] and [8] (see also [9]) that Zg(T ) is a rational
series by giving a formula for Zg(T ) in terms of a resolution of f .

3.3. Resolutions
Let us introduce some notation and terminology. Let X be a smooth variety of pure
dimension d, and let Z be a closed subset of X of codimension everywhere not less
than 1. By a log-resolution h : Y → X of (X, Z), we mean a proper morphism
h : Y → X with Y smooth such that the restriction of h : Y\h−1(Z) → X\Z is an
isomorphism and such that h−1(Z) is a divisor with normal crossings. We denote by
Ei , i in A, the set of irreducible components of the divisor h−1(Z). For I ⊂ A, we set

EI :=
⋂
i∈I

Ei (3.3.1)

and

E◦
I := EI\

⋃
j /∈I

Ej . (3.3.2)

We denote by νEi
the normal bundle of Ei in Y , by νJ

EI
the fiber product for J contained

in I of the restrictions to EI of the bundles νEi
, i in J , and by πJ

I : νJ
EI

→ EI the
canonical projections. For any of these vector bundles ν, we denote by ν the projective
bundle associated to the sum of ν with the trivial line bundle.

We denote by UEi
the complement of the zero section in νEi

and by UJ
I (resp.,

UJ
EI

) the fiber product for J contained in I of the restrictions of the spaces UEi
, i in J ,

to E◦
I (resp., EI ). We still denote by πJ

I the induced projection from UJ
I (resp., UJ

EI
)

onto E◦
I (resp., EI ).

When J = I , we simply write νEI
(resp., νEI

, πI , UI , UEI
) for νI

EI
(resp., νI

EI
,

πI
I , UI

I , UI
EI

).
If I is a sheaf of ideals defining a closed subscheme Z and h−1(I)OY is locally

principal, we define Ni(I), the multiplicity of I along Ei , by the equality of divisors

h−1(Z) =
∑
i∈A

Ni(I)Ei. (3.3.3)

If I is a sheaf of principal ideals generated by a function g, we write Ni(g) for Ni(I).
Similarly, we define integers νi by the equality of divisors

KY = h∗KX +
∑
i∈A

(νi − 1)Ei. (3.3.4)
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Let I1 and I2 be two sheaves of ideals on X whose associated reduced closed
subschemes Z1 and Z2 have codimension of at least one. Let h : Y → X be a
log-resolution of (X, Z1 ∪Z2) such that h∗(I1) and h∗(I2) are locally principal. Then
we set

γh(I1, I2) := sup
{i∈A|Ni (I2)>0}

Ni(I1)

Ni(I2)
. (3.3.5)

If x is a closed point of Z2, we set

γh,x(I1, I2) = sup
{i∈Ax |Ni (I2)>0}

Ni(I1)

Ni(I2)
(3.3.6)

with Ax the set of i in A such that |h−1(x)| ∩ Ei �= ∅. Finally, we define γ (I1, I2),
respectively, γx(I1, I2), as the infimum of all γh(I1, I2), respectively, γh,x(I1, I2),
for h, a log-resolution of (X, Z1∪Z2) such that h∗(I1) and h∗(I2) are locally principal.

3.4
Let g be a function on a smooth variety X of pure dimension d. Assume that X0(g) is
nowhere dense in X. Let F be a reduced divisor containing X0(g), and let h : Y → X

be a log-resolution of (X, F ). We fix I such that there exists i in I with Ni(g) > 0.
Let us explain how g induces a morphism gI : UI → Gm. Note that the function g ◦h

induces a function
⊗
i∈I

ν
⊗Ni (g)
Ei

|EI
−→ A1

k. (3.4.1)

We define gI : νEI
→ A1

k as the composition of this last function with the natural
morphism νEI

→ ⊗
i∈I ν

⊗Ni (g)
Ei

|EI
, sending (yi) to

⊗
y

⊗Ni (g)
i . We still denote by gI

the induced morphism from UI (resp., UEI
) to Gm (resp., A1

k).
We view UI as a variety over X0(g) × Gm via the morphism (h ◦ πI , gI ). The

group Gm has a natural action on each UEi
, so the diagonal action induces a Gm-action

on UI . Furthermore, the morphism gI is monomial, so UI → X0(g) × Gm has a class
in MGm

X0(g)×Gm
which we denote by [UI ].

3.5
The morphism gI may be described in terms of the following variant of the de-
formation to the normal cone to EI in Y (see [12]). We consider the affine space
AI

k = Spec k[ui]i∈I and the subsheaf

AI :=
∑
n∈NI

OY×AI
k

(
−

∑
i∈I

ni(Ei × AI
k)

)∏
i∈I

u
−ni

i (3.5.1)
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of OY×AI
k
[u−1

i ]i∈I . It is a sheaf of rings, and we set CYI := Spec AI . The natural
inclusion OY×AI

k
→ AI induces a morphism π : CYI → Y × AI

k ; hence, a morphism

p : CYI → AI
k . With the ring AI being a graded subring of the ring OY [ui, u

−1
i ]i∈I ,

we consider the corresponding GI
m-action σI on CYI , leaving sections of OY invariant

and acting by (λi, ui) �→ λ−1
i ui on ui . We may then identify equivariantly νEI

with
the fiber p−1(0). The image by the inclusion OY×AI

k
→ AI of the function g ◦ h

is divisible by
∏

i∈I u
Ni (g)
i in AI , so we may consider the quotient g̃I in AI . The

restriction of g̃I to the fiber p−1(0)  νEI
is nothing else than gI . As g may vanish

only on the divisors Ei , i in A, the function gI does not vanish on UI and induces a
monomial morphism gI : UI −→ Gm.

Let us note the following “transitivity” property. If we write I as a disjoint union
K �J , one notices that p−1(0×GJ

m) is equivariantly isomorphic to νEK
×GJ

m. Hence,
restricting p : CYI → AI

k to p−1(0 × AJ
k ), the function gI : UI �−→ Gm can be

obtained from gK by the same process as we obtained it from g, replacing Y by νEK
,

I by J , and g by gK : νEK
−→ A1

k .

3.6
We now assume that F = X0(g); that is, h : Y → X is a log-resolution of
(X, X0(g)). In this case, h induces a bijection between L(Y )\L

(|h−1(X0(g))|) and
L(X)\L(X0(g)). By using the change of variable formula in a way completely similar
to [5] and [8], one deduces the equality

Zg(T ) =
∑

∅�=I⊂A

[UI ]
∏
i∈I

1

T −Ni (g)Lνi − 1
(3.6.1)

in MGm

X0(g)×Gm
[[T ]].

In particular, with the notation of Section 2.8, the function Zg(T ) is rational and
belongs to MGm

X0(g)×Gm
[[T ]]sr; hence, we can consider limT �→∞ Zg(T ) in MGm

X0(g)×Gm
.

We set

Sg := − lim
T �→∞

Zg(T ), (3.6.2)

which by (3.6.1) may be expressed on a resolution h as

Sg = −
∑

∅�=I⊂A

(−1)|I |[UI ], (3.6.3)

in MGm

X0(g)×Gm
.

We also consider in this article the motivic vanishing cycles defined as

Sφ
g := (−1)d−1

(
Sg − [Gm × X0(g)]

)
(3.6.4)
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in MGm

X0(g)×Gm
. Here d denotes the dimension of X, and Gm × X0(g) is endowed with

the standard Gm-action on the first factor and with the trivial Gm-action on the second
factor.

3.7. A modified zeta function
We now explain how to extend Sg to the whole Grothendieck group MX in such
a way that Sg([X → X]) is equal to Sg . A similar result has been obtained by F.
Bittner in [3]. We present here a somewhat different approach that avoids the use of
the weak factorization theorem by constructing directly Sg([Y → X]) for generators
of MX of the form Y → X with Y smooth.

Let X be a smooth variety of pure dimension d, and let U be a dense open subset
in X. Consider again a function g : X → A1

k . We denote by F the closed subset X\U
and by IF the ideal of functions vanishing on F . We start by defining Sg([U → X]).

Fix γ ≥ 1 a positive integer. We consider the modified zeta function Z
γ

g,U (T ),
defined as follows. For n ≥ 1, we consider the constructible set

Xγ n
n (g, U ) := {

ϕ ∈ Lγ n(X)
∣∣ ordt g(ϕ) = n, ordtϕ

∗(IF ) ≤ γ n
}
. (3.7.1)

As in Section 3.2, we consider the morphism Xγ n
n (g, U ) → Gm induced by ϕ �→

ac(g(ϕ)). It is piecewise monomial, so we can consider the class [Xγ n
n (g, U )] in

MGm

X0(g)×Gm
by Section 2.7. We set

Z
γ

g,U (T ) :=
∑
n≥1

[Xγ n
n (g, U )] L−γ nd T n (3.7.2)

in MGm

X0(g)×Gm
[[T ]]. Note that for U = X, Zγ

g,U (T ) is equal to Zg(T ) for every γ since,
in this case, [Xγ n

n (g, U )]L−γ nd = [Xn(g)]L−nd . Note also that Z
γ

g,U (T ) = 0 if g is
identically zero on X.

If X0(g) is nowhere dense in X and h : Y → X is a log-resolution of (X, F ∪
X0(g)), we denote by C the set {i ∈ A | Ni(g) �= 0}.

PROPOSITION 3.8
Let U be a dense open subset in the smooth variety X of pure dimension d with
a function g : X → A1

k . There exists γ0 such that for every γ > γ0, the series
Z

γ

g,U (T ) lies in MGm

X0(g)×Gm
[[T ]]sr and limT �→∞ Z

γ

g,U (T ) is independent of γ > γ0. We
set Sg,U = − limT �→∞ Z

γ

g,U (T ). Furthermore, if X0(g) is nowhere dense in X and
h : Y → X is a log-resolution of (X, F ∪ X0(g)),

Sg,U = −
∑
I �=∅
I⊂C

(−1)|I | [UI ] = h!(Sg◦h,h−1(U )) (3.8.1)

in MGm

X0(g)×Gm
.
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Proof
We may assume that X0(g) is nowhere dense in X. Let h : Y → X be a log-resolution
of (X, F ∪ X0(g)). As in the proof of [9, Theorem 2.4], we deduce from the change
of variable formula, or more precisely from [6, Lemma 3.4], that

Z
γ

g,U (T ) =
∑

I∩C �=∅
[UI ] SI (T ) (3.8.2)

with

SI (T ) =
∑
ki≥1∑

i kiNi (IF )≤γ
∑

i kiNi (g)

∏
i∈I

(T Ni (g)L−νi )ki . (3.8.3)

Assume first that I ⊂ C. For γ ≥ supi∈I

(
Ni(IF )/(Ni(g))

)
, we have

∑
i kiNi(IF ) ≤

γ
∑

i kiNi(g) for all ki ≥ 1, i ∈ I . It follows that SI (T ) lies in MGm

X0(g)×Gm
[[T ]]sr and

limT �→∞ SI (T ) = (−1)|I |, as soon as γ ≥ supi∈I

(
Ni(IF )/(Ni(g))

)
.

Now assume that ∅ �= I\C = K . For γ ≥ supi∈I\K
(
Ni(IF )/(Ni(g))

)
, the sum

runs over the points with coordinates in N>0 of the cone I in RI
>0 defined by the

single inequality
∑
i∈K

aixi ≤
∑

i∈I\K
aixi (3.8.4)

with ai in N and ai > 0 for i in K . Note that both K and I\K are nonempty.
It follows from Lemma 2.10 that in this case, SI (T ) lies in MGm

X0(g)×Gm
[[T ]]sr and

limT �→∞ SI (T ) = 0. The statement we have to prove then holds if we set γ0 =
supi∈C

(
Ni(IF )/(Ni(g))

) = γh(IF , (g)). Note that since this holds for any h, we
could also take γ0 = γ (IF , (g)). �

THEOREM 3.9 (Extension to the Grothendieck group)
Let X be a variety with a function g : X → A1

k . There exists a unique Mk-linear
group morphism

Sg : MX −→ MGm

X0(g)×Gm
(3.9.1)

such that for every proper morphism p : Z → X with Z smooth and for every dense
open subset U in Z,

Sg([U → X]) = p!(Sg◦p,U ). (3.9.2)

Proof
Since K0(VarX) is generated by classes [U → X] with U smooth connected, and since
every such U → X may be embedded in a proper morphism Z → X with Z smooth
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and U dense in Z, uniqueness is clear. For existence, let us first note that if we define
Sg([U → X]) = Sg([U ]) by the right-hand side of (3.9.2), the result is independent
from the choice of the embedding in a proper morphism p : Z → X. Indeed, this
is clear if g ◦ p vanishes identically on U , so we may assume that (g ◦ p)−1(0) is of
codimension > 0. In this case, if we have another such morphism p′ : Z′ → X, there
exists a smooth variety W with proper morphisms h : W → Z and h′ : W → Z′

such that p ◦ h = p′ ◦ h′ and such that h and h′ are, respectively, log-resolutions of
(Z, (Z\U ) ∪ (g ◦ p)−1(0)) and (Z′, (Z′\U ) ∪ (g ◦ p′)−1(0)), so the statement follows
from (3.8.1).

Let us now prove the following additivity statement. If κ : U → X is a morphism
with U smooth and W is a smooth closed subset of U , then

Sg([U → X]) = Sg([W → X]) + Sg([U\W → X]). (3.9.3)

We may assume that U and W are connected and that U\W is dense in U . The
result being trivial if g ◦ κ vanishes identically, we may assume that this is not
the case. By Hironaka’s strong resolution of singularities, we may embed U in a
smooth variety Z with p : Z → X a proper morphism extending κ such that Z\U
is a normal crossings divisor and the closure W of W in Z is smooth. Again by
Hironaka’s strong resolution of singularities, there exists a log-resolution h : Z̃ → Z

of (Z, (Z\U ) ∪ (g ◦ p)−1(0)) such that the closure W̃ of h−1(W ) in Z̃ is smooth and
intersects the divisor D := h−1((Z\U )∪ (g ◦p)−1(0)) transversally. We denote by Ei ,
i in A, the irreducible components of the divisor D and use the notation of Section 3.3.
It follows from the definition and (3.8.1) that

Sg([U → X]) = −
∑
I �=∅
I⊂C

(−1)|I | [UI ] (3.9.4)

in MGm

X0(g)×Gm
. Note that if W is contained in (g ◦ p)−1(0), the previous discussion still

holds for U replaced by U\W , so we have Sg([U → X]) = Sg([(U\W ) → X]),
and (3.9.3) follows since Sg([W → X]) = 0 in this case.

Now we assume that W is not contained in (g◦p)−1(0). Note that the morphism h0 :
W̃ → W induced by h is a log-resolution of (W, (W\W )∪(g◦p)−1

|W (0)). Furthermore,

the irreducible components of the normal crossings divisor h−1
0 ((W\W )∪(g◦p)−1

|W (0))

are exactly those among the Ei ∩W̃ which are nonempty. Hence, denoting by UI |E◦
I ∩W̃

the restriction of the bundle UI to E◦
I ∩ W̃ , it follows from the definition and (3.8.1)

that

Sg([W → X]) = −
∑
I �=∅
I⊂C

(−1)|I | [UI |E◦
I ∩W̃ ] (3.9.5)
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in MGm

X0(g)×Gm
. Let us now consider the blowup h′ : Z′ → Z̃ of Z̃ along W̃ . The excep-

tional divisor W ′ of W̃ is smooth. Furthermore, h ◦ h′ : Z′ → Z is a log-resolution of(
Z, (Z\(U\W )) ∪ (g ◦ p)−1(0)

)
, and D′ := (h ◦ h′)−1

(
(Z\(U\W )) ∪ (g ◦ p)−1(0)

)
is a normal crossings divisor whose irreducible components are the strict transforms
E′

i of Ei in Z′, i in A together with W ′. We set A′ := A � {0} and E′
0 := W ′ in order

to use the notation of Section 3.3 in this setting, adding everywhere ′ as an exponent.
Again, it follows from the definition and (3.8.1) that

Sg

(
[(U\W ) → X]

) = −
∑
I �=∅
I⊂C′

(−1)|I | [U ′
I ] (3.9.6)

in MGm

X0(g)×Gm
, where C ′ = {i ∈ A′|Ni(g ◦ p ◦ h ◦ h′) �= 0}. The hypothesis made on

W ensures that C ′ = C. So it is enough to prove that for I nonempty and contained
in C,

[UI ] = [UI |E◦
I ∩W̃ ] + [U ′

I ] (3.9.7)

in MGm

X0(g)×Gm
, which follows from the fact that the restriction UI |E◦

I \(E◦
I ∩W̃ ) of the

bundle UI to E◦
I \(E◦

I ∩ W̃ ) and the bundle U ′
I have the same class in MGm

X0(g)×Gm
since

h′ is an isomorphism outside W ′. This concludes the proof of (3.9.3).
Let U → X again be in VarX with U smooth and connected. Let W be a smooth

proper variety over k. Note that

Sg([W × U → X]) = [W ] Sg([U → X]) (3.9.8)

in MGm

X0(g)×Gm
. Indeed, let us embed U → X in p : Z → X with Z smooth and

proper and U dense in Z. We may assume that g ◦ p is not identically zero. If
h : Y → Z is a log-resolution of (Z, (Z\U ) ∪ (g ◦ p)−1(0)), then W × U → X may
be embedded in W × Z → X and id × h : W × Y → W × Z is a log-resolution
of

(
W × Z, ((W × Z)\(W × U )) ∪ (W × g ◦ p)−1(0)

)
; hence, (3.9.8) follows from

(3.8.1) and (3.9.2). By the additivity statement that we already proved, relation (3.9.8)
in fact holds for every variety W over k, so our construction of Sg may be extended
uniquely by Mk-linearity to a Mk-linear group morphism MX → MGm

X0(g)×Gm
, which

finishes the proof. �

3.10. The equivariant setting
Let X be a variety with a function g : X → A1

k . By Theorem 3.9, there is a canonical
morphism

Sg : MX −→ MGm

X0(g)×Gm
. (3.10.1)
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We want to lift this morphism to a morphism still denoted by Sg ,

Sg : MGr
m

X×Gr
m

−→ MGr
m×Gm

X0(g)×Gr
m×Gm

, (3.10.2)

such that the diagram

MGr
m

X×Gr
m

��

Sg

�� MGr
m×Gm

X0(g)×Gr
m×Gm

��

MX

Sg

�� MGm

X0(g)×Gm

(3.10.3)

is commutative, the vertical arrows being given by forgetting the Gr
m-action and taking

the fiber over 1 in Gr
m.

Let us start with some basic facts that we use without further mention. We fix
the variety X, which we consider as endowed with the trivial Gr

m-action. Let Z be a
smooth variety of pure dimension d endowed with a good Gr

m-action and an equivariant
morphism p : Z → X. The induced action on the affine bundles Ln+1(Z) → Ln(Z)
is affine. In particular, by relation (2.3.2), [Ln+1(Z) → X] = Ld [Ln(Z) → X] in
MGr

m

X×Gr
m
. Similarly, if h : Y → Z is a proper birational Gr

m-equivariant morphism
with Y smooth with a good Gr

m-action, the fibrations occurring in [6, Lemma 3.4]
are (piecewise) affine bundles and the induced Gr

m-action is affine; hence, by relation

(2.3.2), one does not see the action on the fibers in the Grothendieck ring MGr
m

X×Gr
m
.

We now assume that X is endowed with a morphism g : X → A1
k and that

Z is endowed with a monomial morphism f = (f1, . . . , fr ) : Z → Gr
m such that

(p, f) : Z → X × Gr
m is proper. We consider an open dense subset U of Z, stable

under the Gr
m-action. Similarly, as in (3.7.1), we set

Xγ n
n (g ◦ p,U ) := {

ϕ ∈ Lγ n(Z)
∣∣ ordt (g ◦ p)(ϕ) = n, ordtϕ

∗(IF ) ≤ γ n
}

(3.10.4)

with F := Z\U . The Gr
m-action on Z induces a Gr

m-action on Xγ n
n (g ◦ p, U ) via its

induced action on the arc space. On the other side, the standard Gm-action on arcs

(λ · ϕ)(t) := ϕ(λt) (3.10.5)

induces a Gm-action on Xγ n
n (g ◦ p, U ). In this way, we get a (Gr

m × Gm)-action on
Xγ n

n (g ◦ p,U ). The morphism

(
f ◦ π0, ac(g ◦ p)

)
: Xγ n

n (g ◦ p,U ) → Gr
m × Gm (3.10.6)
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is piecewise monomial; hence, proceeding as in Section 2.7, we may assign to

Xγ n
n (g ◦ p, U ) −→ X0(g) × Gr

m × Gm (3.10.7)

a class [Xγ n
n (g ◦ p,U )] in MGr

m×Gm

X0(g)×Gr
m×Gm

.
Similarly, as in (3.7.2), we consider the corresponding series

Z
γ

g◦p,U (T ) :=
∑
n≥1

[Xγ n
n (g ◦ p,U )] L−γ nd T n (3.10.8)

in MGr
m×Gm

X0(g)×Gr
m×Gm

[[T ]].
Proceeding as in the proof of Proposition 3.8, one proves that there exists a γ0

such that for every γ > γ0, the series Z
γ

g◦p,U (T ) belongs to MGr
m×Gm

X0(g)×Gr
m×Gm

[[T ]]sr and
limT �→∞ Z

γ

g◦p,U (T ) is independent of γ > γ0. Indeed, we may assume that the zero
locus Z0(g ◦ p) of g ◦ p is nowhere dense in Z, and in this case, we now use a Gr

m-
equivariant log-resolution of (Z, (Z\U )∪Z0(g ◦p)). (For the existence of equivariant
resolutions, see [1], [10], [11], [28], [29].) We now define Sg◦p,U in MGr

m×Gm

X0(g)×Gr
m×Gm

as − limT �→∞ Z
γ

g◦p,U (T ) for γ > γ0.
Still assuming that Z0(g ◦ p) is nowhere dense in Z, let h : Y → Z be such a

Gr
m-equivariant log-resolution. We again use the notation introduced in Section 3.3.

By connectedness of Gr
m, the Gr

m-action on Z induces the trivial action on the set of
strata E◦

I for I subset of A. The Gr
m-action on Y induces an action on the normal

bundles to the divisors Ei for i in A, and hence, on UI for I subset of A. We also
consider the Gm-action on UI which is the diagonal action induced by the canonical
GI

m-action on UI . In this way, we get a (Gr
m×Gm)-action on UI . Furthermore, with the

notation of Section 3.4, the morphisms f and g induce morphisms fI : UI → Gr
m and

gI : UI → Gm. Note that the morphism (fI , gI ) : UI → Gr
m × Gm is monomial with

respect to the (Gr
m × Gm)-action since gI is invariant by the Gr

m-action and monomial
with respect to the Gm-action and the morphism fI : UI → Gr

m is induced from f via

the projection UI → Z. We can then consider the class [UI ] in MGr
m×Gm

X0(g)×Gr
m×Gm

of the
morphism

(p ◦ h ◦ πI , fI , gI ) : UI −→ X0(g) × Gr
m × Gm. (3.10.9)

Similarly, as in Proposition 3.8, we get that the equality

Sg◦p,U =
∑

I �=∅,I⊂C

(−1)|I |[UI ] (3.10.10)

holds in MGr
m×Gm

X0(g)×Gr
m×Gm

.
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Remark 3.11
When r = 0, what is denoted here by [Xγ n

n (g ◦ p, U )], Z
γ

g◦p,U (T ), and Sg◦p,U corre-
sponds to what was denoted by p!([Xγ n

n (g ◦ p, U )]), p!(Z
γ

g◦p,U (T )), and p!(Sg◦p,U )
in the nonequivariant setting. This slight conflict of notation probably does not lead
to confusion.

We can now state the following equivariant analogue of Theorem 3.9.

THEOREM 3.12
Let X be a variety with a function g : X → A1

k . We consider X endowed with the
trivial Gr

m-action. There exists a unique Mk-linear group morphism

Sg : MGr
m

X×Gr
m

−→ MGr
m×Gm

X0(g)×Gr
m×Gm

(3.12.1)

such that for every smooth variety Z with good Gr
m-action which is endowed with an

equivariant morphism p : Z → X and a monomial morphism f : Z → Gr
m such that

the morphism (p, f) : Z → X × Gr
m is proper, and for every open dense subset U of

Z which is stable under the Gr
m-action,

Sg([U → X × Gr
m]) = Sg◦p,U (3.12.2)

in MGr
m×Gm

X0(g)×Gr
m×Gm

.

Proof
Let us denote by K ′

0(Var
Gr

m

X×Gr
m
) the Grothendieck ring defined similarly as K0(Var

Gr
m

X×Gr
m
)

but without relation (2.3.2). Let U be a smooth variety over k with a good Gr
m-action

endowed with an equivariant morphism κ : U → X and with a monomial morphism
fU : U → Gr

m. Note that U may be embedded equivariantly as an open dense subset
of a smooth variety Z with good Gr

m-action, endowed with an equivariant morphism
p : Z → X extending κ and a monomial morphism f : Z → Gr

m extending fU , such
that (p, f) : Z → X × Gr

m is proper. Indeed, using the equivalence of categories of
Proposition 2.6 and Section 2.7, it is enough to know that every smooth variety U0

endowed with a good µ̂r -action and with an equivariant morphism κ0 : U0 → X with
X endowed with the trivial µ̂r -action may be embedded equivariantly as an open dense
subset in a smooth variety Z0 with good µ̂r -action, endowed with a proper equivariant
morphism Z0 → X extending κ0, which follows from [5, Appendix] and also from
Sumihiro’s equivariant completion result in [26]. Hence, we can proceed exactly as
in the proof of Theorem 3.9 in an equivariant way, getting existence and unicity of a
K0(Vark)-linear morphism

Sg : K ′
0(Var

Gr
m

X×Gr
m
) −→ MGr

m×Gm

X0(g)×Gr
m×Gm

(3.12.3)
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such that for every smooth variety Z with good Gr
m-action, endowed with an equiv-

ariant morphism p : Z → X and a monomial morphism f : Z → Gr
m such that

(p, f) : Z → X × Gr
m is proper, and for every open dense subset U of Z which is

stable under the Gr
m-action,

Sg([U → X × Gr
m]) = Sg◦p,U (3.12.4)

in MGr
m×Gm

X0(g)×Gr
m×Gm

.
Let us now prove the compatibility of the morphism Sg with the additional rela-

tion (2.3.2). Let U be a smooth variety over k endowed with a good Gr
m-action, with an

equivariant morphism κ : U → X, and with a monomial morphism fU : U → Gr
m. Let

q : B → U be an affine bundle everywhere of rank s with a good affine Gr
m-action over

the action on U . We claim that U may be embedded equivariantly as an open dense sub-
set in a smooth variety Z with good Gr

m-action, endowed with an equivariant morphism
p : Z → X extending κ and with a monomial morphism f : Z → Gr

m extending fU ,
such that (p, f) : Z → X×Gr

m is proper and such that, furthermore, the affine bundle B

with its affine Gr
m-action extends to an affine bundle B̃ → Z with an affine Gr

m-action
over the action on Z extending the previous one. Indeed, this follows, using again
the equivalence of categories of Proposition 2.6 and Section 2.7, from Lemma 3.14.
To prove that Sg([B → X×Gr

m]) does not depend on the affine Gr
m-action on B over

the action on U , it is enough to check that

Sg([B → X × Gr
m]) = Ls Sg([U → X × Gr

m]). (3.12.5)

We may assume that (g ◦ p)−1(0) is nowhere dense in Z. Let h : Y → Z be a Gr
m-

log-resolution of (Z, (Z\U ) ∪ (g ◦ p)−1(0)). We denote by Ei , i in A, the irreducible
components of h−1((Z\U ) ∪ (g ◦ p)−1(0)), and it follows from (3.10.10) that with the
notation of Sections 3.3 and 3.10,

Sg([U → X × Gr
m]) = −

∑
∅�=I⊂C

(−1)|I |[UI ] (3.12.6)

in MGr
m×Gm

X0(g)×Gr
m×Gm

. Let us consider the projective bundle λ : Z′ → Z on Z, which is

the relative projective completion of the bundle B̃. In particular, Z′ is endowed with
a (projective) Gr

m-action. We consider the pullback Y ′ → Y of the bundle Z′ along
the morphism h. We get a proper morphism h′ : Y ′ → Z′, which is an equivariant
log-resolution of (Z′, (Z′\B) ∪ (g ◦ p ◦ λ)−1(0)). The set of irreducible components
of h′−1((Z′\B) ∪ (g ◦ p ◦ λ)−1(0)) consists of the restriction E′

i of Y ′ to Ei for i

in A together with H∞, the divisor at infinity of the projective bundle Y ′. We set
A′ := A � {0} and E′

0 := H∞ in order to use the notation of Sections 3.3 and 3.10
in this setting, adding everywhere ′ as an exponent. In particular, for every nonempty
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subset I of C ′, we denote by U ′
I the corresponding variety with (Gr

m × Gm)-action
and with a monomial morphism (f′

I , g
′
I ) : U ′

I → Gr
m × Gm. Since g ◦ p ◦ λ is not

identically zero on H∞, we have C ′ = C. It follows again from (3.10.10) that

Sg([B → X × Gr
m]) = −

∑
∅�=I⊂C

(−1)|I |[U ′
I ] (3.12.7)

in MGr
m×Gm

X0(g)×Gr
m×Gm

. Now remark that the natural morphism pI : U ′
I → UI is an affine

bundle of rank s with an affine (Gr
m ×Gm)-action over the one on UI . Furthermore, the

monomial morphism U ′
I → Gr

m × Gm is the composition of the monomial morphism

UI → Gr
m × Gm with pI . One deduces that [U ′

I ] = Ls [UI ] in MGr
m×Gm

X0(g)×Gr
m×Gm

, and
(3.12.5) follows.

One then extends Sg by Mk-linearity to a Mk-linear group morphism

Sg : MGr
m

X×Gr
m

−→ MGr
m×Gm

X0(g)×Gr
m×Gm

(3.12.8)

similarly, as in the nonequivariant case. �

Remark 3.13
It follows from our constructions that the morphism Sµ̂r

g : Mµ̂r

X → Mµ̂r+1

X0(g) deduced
from (3.12.1) via the canonical isomorphism (2.6.3) is compatible with the one con-
structed by Bittner in [3] modulo the fact that our additional relation is finer than in
that article. Indeed, they are easily checked to coincide on classes of µ̂r -equivariant
morphisms Z → X with Z smooth and proper. Note also that diagram (3.10.3) is
indeed commutative by construction.

LEMMA 3.14
Let n be in Nr

>0. Let X be a k-variety with trivial µn-action, and let U be a smooth
variety with a good µn-action and an equivariant morphism κ : U → X. Consider an
affine bundle B → U with a good affine µn-action over the action on U . Then there
exists an equivariant embedding of U as a dense open set in a smooth variety Z with
good µn-action such that κ extends to a proper equivariant morphism p : Z → X

and the affine bundle B with its affine µn-action extends to an affine bundle B̃ on Z

with an affine µn-action over the action on Z extending the previous one.

Proof
Set G = µn, and embed U equivariantly in V with a good G-action with V → X

proper equivariant extending κ . The affine bundle B → U corresponds to an exact
sequence of vector bundles

0 −→ E −→ F −→ OU −→ 0 (3.14.1)
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on U such that the sheaf of local sections of the affine bundle is the preimage of 1
in F . The action of G on U gives a G-action on the exact sequence (3.14.1). (By a
G-action on an OU -module F , we mean an isomorphism a∗F → p∗F satisfying the
cocycle condition with a : G × U → U the action and p : G × U → U the pro-
jection on the second factor.) By blowing up the coherent ideal defining V \U with the
reduced structure, we reduce to the case where the inclusion j : U → V is affine. By
applying j∗ to the exact sequence (3.14.1) and pulling back along OV → j∗OU , we
extend (3.14.1) to an exact sequence of quasi-coherent sheaves with G-action on V :

0 −→ E′ −→ F ′ −→ OV −→ 0. (3.14.2)

Let us note that F ′ is the direct limit of its G-invariant coherent subsheaves. Indeed,
this follows from [15, Proposition 15.4] since (quasi-)coherent sheaves on the quotient
stack [V/G] correspond to (quasi-)coherent sheaves with G-action on V . It follows
that we may assume that the sheaves in (3.14.2) are coherent. By restricting to a
G-stable union of connected components of U , we may also assume that the vector
bundle E is of constant rank s on U . Let q : Z → V be obtained by taking an
equivariant resolution of the blowup of the sth Fitting ideal Fs of E′, which is also
the (s + 1)th Fitting ideal Fs+1 of F ′. Applying q∗ to (3.14.2) and modding out by
torsion, we get an exact sequence of coherent sheaves with G-action

0 −→ Ẽ −→ F̃ −→ OZ −→ 0 (3.14.3)

on Z. Let us note that Ẽ and F̃ are in fact locally free. Indeed, Z being normal, Ẽ

and F̃ are locally free outside a closed subvariety of codimension at least 2, but by
construction, the Fitting ideals Fs(Ẽ) and Fs+1(F̃ ) are invertible; hence, they should
be equal to OZ . The preimage of 1 in F̃ is the sheaf of local sections of an affine
bundle with G-action B̃ on Z, satisfying the required properties. �

Remark 3.15
The proof of Lemma 3.14 was explained to us by Ofer Gabber and works in fact
for any linear algebraic group G over k (see also [2, Lemma 7.4] for a similar, but
different, extension lemma).

3.16. Compatibility with Hodge realization
We suppose here that k = C. If X is a complex algebraic variety, we denote by
MHMX the category of mixed Hodge modules on X as defined in [20]. We denote
by K0(MHMX) the corresponding Grothendieck ring. By additivity, there is a unique
Mk-linear morphism

H : MX −→ K0(MHMX) (3.16.1)
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such that for any p : Z → X with Z smooth, H ([Z]) is the class of the full direct image
with compact supports Rp!(QZ) in K0(MHMX) with QZ the trivial Hodge module on
Z. Here we consider K0(MHMX) as an Mk-module via its K0(MHMSpec C)-module
structure and the Hodge realization map H : Mk → K0(MHMSpec C). Note that
H (L) = [QX(−1)]. If µn = µn1 × · · · × µnr

acts on Z, we may consider the auto-
morphisms T1, . . . , Tr on the cohomology objects Rip!(QZ) associated, respectively,
to the action of the element with j -component exp(2πi/nj ) and other components 1.
If we denote by MHMr−mon

X the category of mixed Hodge modules on X with r

commuting automorphism of finite order, we get in this way a morphism

H : Mµ̂r

X −→ K0(MHMr−mon
X ). (3.16.2)

(That the morphism H is compatible with the additional relation (2.2.1) follows
from the fact that for every affine bundle p : A → Y of rank s with an affine µn-
action above a µn-action action on Y , there is a canonical equivariant isomorphism
Rp!(QA)[2s](s)  QY .) If g : X → A1 is a function, there is a nearby cycle
functor ψg : MHMX → MHMmon

X0(g) (see [20], [21]), which induces a morphism
ψg : K0(MHMX) → K0(MHMmon

X0(g)). By functoriality, the construction extends to
morphisms ψg : K0(MHMr−mon

X ) → K0(MHMr+1−mon
X0(g) ).

PROPOSITION 3.17
For every r ≥ 0 with the notation from Remark 3.13, the diagram

Mµ̂r

X

H

��

Sµ̂r

g

�� Mµ̂r+1

X0(g)

H

��

K0(MHMr−mon
X )

ψg

�� K0(MHMr+1−mon
X0(g) )

(3.17.1)

is commutative.

Proof
It is enough to prove that H (Sµ̂r

g ([Z → X])) = ψg(H ([Z → X])) for p : Z →
X proper and Z smooth with µ̂r -action. We can further reduce to the case where
(g ◦p)−1(0) is a divisor with normal crossings which is stable by the µ̂r -action. In that
case, when r = 0, the statement is proved in [5, Theorem 4.2.1, Proposition 4.2.3] in
a somewhat different language, when X is a point, but the proof carries over with no
change to general X. Since the constructions in [5] may be performed in an equivariant
way in the case of a µ̂r -action, the proof extends directly to the case where r > 0. �
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4. Iterated vanishing cycles

4.1
Let X be a variety endowed with the trivial Gr

m-action and with a function g :
X → A1

k . Let U be a smooth k-variety of pure dimension d with good Gr
m-action

endowed with an equivariant morphism κ : U → X and with a monomial morphism
f = (f1, . . . , fr ) : U → Gr

m. Let U → Y be an equivariant embedding as a dense open
subset of a smooth variety Y with a good Gr

m-action and with a proper equivariant
morphism p : Y → X. We assume that (g ◦ κ)−1(0) is nowhere dense in U . Let
h : W → Y be a Gr

m-equivariant log-resolution of (Y, (Y\U ) ∪ (g ◦p)−1(0)). We now
explain how to compute Sg([U → X × Gr

m]) in terms of W . Note that the present
setup is different from the one in Theorem 3.12.

We denote by Ei , i in A, the irreducible components of h−1((Y\U )∪(g◦p)−1(0)).
We use again the notation from Sections 3.3 and 3.10, whenever possible. Let us
assume that I ∩ C �= ∅. We can still consider the spaces UI and the corresponding
monomial morphism gI : UI → Gm. We denote by h′ : U ′ → U the preimage of
U in W , and we set F := W\U ′. The morphism f : U → Gr

m extends to a rational
map f̃ : Y ��� (P1

k)r . Furthermore, for i in A, there exist integers Ni(fj ) in Z such

that locally on W , each component f̃ j ◦ h of f̃ ◦ h may be written as u
∏

i∈A x
Ni (fj )
i

with u a unit, xi a local equation of Ei . Similarly to what we did for gI , for every
j , 1 ≤ j ≤ r , we may define a rational map fj,I : νEI

��� P1
k , replacing Ni(g) by

Ni(fj ), and we still denote by fj,I the induced morphism from UI to Gm. Finally, we
get a morphism fI : UI → Gr

m which is monomial for the Gr
m-action by Lemma 4.2.

Similarly to what we observed in Section 3.10, this is enough to get that the morphism
(fI , gI ) : UI → Gr

m × Gm is monomial for the (Gr
m × Gm)-action. We then denote by

[UI ] the corresponding class in MGr
m×Gm

X0(g)×Gr
m×Gm

.

LEMMA 4.2
Let W be a smooth variety with a good Gr

m-action, and let U be a dense open stable by
the Gr

m-action. We assume that F := W\U is a divisor with normal crossings, and we
denote by Ei , i in A, its irreducible components. We consider a monomial morphism
f = (f1, . . . , fr ) : U → Gr

m, and we denote by f̃ : W ��� (P1
k)r its extension as a

rational map. For any nonempty subset I of A, the morphism fI : UI → Gr
m defined

similarly as in Section 4.1 is monomial for the Gr
m-action on UI .

Proof
Consider the deformation CWI to the normal cone to EI in W described in Section 3.5.
Hence, CWI := Spec AI with

AI :=
∑
n∈NI

OW×AI
k

(
−

∑
i∈I

ni(Ei × AI
k)

)∏
i∈I

u
−ni

i . (4.2.1)
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Letting Gr
m act trivially on each ui , the Gr

m-action on OW induces a Gr
m-action on AI

and on CWI . For i in A, we denote by Ji the ideal of AI generated by u−1
i OW (−Ei),

respectively, OW (−Ei) if i ∈ I , respectively, i /∈ I , and we set J := ∏
i∈A Ji .

We denote by CW ◦
I the complement in CWI of the closed subset defined by J.

The fiber CW ◦
I ∩ p−1(0) may be identified equivariantly with UI and CW ◦

I with
p−1(GI

m)  U × GI
m (letting Gr

m act trivially on GI
m).

On U × GI
m, we may consider the function (x, ui) �→ fj (x)

∏
i∈I u

−Ni (fj )
i . As

in Section 3.5, it extends to a morphism Fj : CW ◦
I → Gm whose restriction to UI

coincides with fj,I . Let us consider the morphism F = (F1, . . . , Fr ) : CW ◦
I → Gr

m.
Since f is monomial and Gr

m acts trivially on ui , the restriction of F to the dense open
set U × GI

m is monomial; hence, F is monomial, and so is its restriction to UI . �

4.3
Let γ and n be in N>0. We keep the notation from Section 4.1. In particular, F =
h−1(Y\U ). Let ϕ be in Lγ n(W ) with ordtϕ

∗(IF ) ≤ γ n and ordt g(ϕ) = n. Let D

denote the set consisting of all i in A such that ϕ(0) lies in Ei , and consider a local
equation xi = 0 of Ei at ϕ(0). By hypothesis, xi(ϕ) is nonzero in Lγ n(A1

k), so it
has a well-defined order ordt (xi(ϕ)) and an angular component ac(xi(ϕ)). Writing the
component f̃ j ◦ h of f̃ ◦ h as u

∏
i∈D x

Ni (fj )
i with u a unit at ϕ(0), we set

ordt (f̃ j ◦ h)(ϕ) :=
∑
i∈D

Ni(fj ) ordt

(
xi(ϕ)

)
(4.3.1)

and

ac(f̃ j ◦ h)(ϕ) := u
(
ϕ(0)

) ∏
i∈D

ac
(
xi(ϕ)

)Ni (fj )
. (4.3.2)

By abuse of notation, we write (̃f ◦ h)ϕ(0) ∈ Gr
m to mean ordt (f̃ j ◦ h)(ϕ) = 0 for

every 1 ≤ j ≤ r .
Now we consider the constructible set

Wγ n
n := {

ϕ ∈ Lγ n(W )
∣∣ ordt g(ϕ) = n, ordtϕ

∗(IF ) ≤ γ n, (̃f ◦ h)(ϕ(0)) ∈ Gr
m

}
.

(4.3.3)

Similarly to the set in (3.10.4), Wγ n
n is endowed with a (Gr

m × Gm)-action, and
furthermore, the morphism (ac(f̃ j ◦ h), ac(g)) : Wγ n

n → Gr
m × Gm is piecewise

monomial. We denote by [Wγ n
n ] the corresponding class in MGr

m×Gm

X0(g)×Gr
m×Gm

. Let us
consider the series

Wγ (T ) :=
∑
n≥1

[Wγ n
n ] L−γ nd T n (4.3.4)

in MGr
m×Gm

X0(g)×Gr
m×Gm

[[T ]].
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For I a nonempty subset of A, we consider the cone

�(I ) :=
{

x ∈ RI
>0

∣∣∣ ∀j ∈ {1, . . . , r},
∑
i∈I

xiNi(fj ) = 0
}
, (4.3.5)

and we denote by d(I ) its dimension. We also consider the cone

Mγ :=
{

x ∈ RI
>0

∣∣∣ ∑
i∈I

xiNi(IF ) ≤ γ
∑

i∈I∩C

xiNi(g)
}
. (4.3.6)

We denote by  the set of nonempty subsets I of A such that �(I ) is nonempty
and contained in Mγ for γ � 0.

PROPOSITION 4.4
Let X be a variety with trivial Gr

m-action and with a function g : X → A1
k . Let U

be a smooth k-variety of pure dimension d with good Gr
m-action, endowed with an

equivariant morphism κ : U → X, and with a monomial morphism f = (f1, . . . , fr ) :
U → Gr

m. Let U → Y be an equivariant embedding as a dense open subvariety of
a smooth variety Y with good Gr

m-action and with a proper equivariant morphism
p : Y → X. We assume that (g ◦ κ)−1(0) is nowhere dense in U . Let h : W → Y

be a Gr
m-equivariant log-resolution of (Y, (Y\U ) ∪ (g ◦ p)−1(0)). There exists γ0 such

that for every γ > γ0, the series Wγ (T ) lies in MGm

X0(g)×Gm
[[T ]]sr and limT �→∞ Wγ (T )

is independent of γ > γ0. Furthermore, if one sets W = − limT �→∞ Wγ (T ), the
following holds:

W = −
∑
I∈

(−1)d(I ) [UI ] (4.4.1)

in MGr
m×Gm

X0(g)×Gr
m×Gm

.

Proof
As in the proof of Proposition 3.8, we have

Wγ (T ) =
∑

I∩C �=∅
[UI ] SI (T ) (4.4.2)

with

SI (T ) =
∑

k∈�(I )∩Mγ ∩NI
>0

∏
i∈I

(T Ni (g)L−1)ki . (4.4.3)

The proof now goes on as the proof of Proposition 3.8 with NI
>0 replaced by �(I )∩NI

>0.
Indeed, note that the linear form

∑
i∈I∩C kiNi(g) is positive on Mγ \{0} and that Mγ

is empty if I ∩ C = ∅. Assume first that I lies in  and I ∩ C �= ∅. Then it
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follows from Section 2.9 that limT �→∞ SI (T ) = (−1)d(I ) for γ � 0. Assume now
that I ∩ C �= ∅ and I /∈ . In this case, necessarily, for γ > 0, the hyperplane∑

i∈I kiNi(IF ) = γ
∑

i∈I∩C kiNi(g) has a nonempty intersection with �(I ). It follows
that the Euler characteristic χ(�(I ) ∩ Mγ ) is equal to zero. �

PROPOSITION 4.5
Let X be a variety with trivial Gr

m-action and with a function g : X → A1
k . Let U

be a smooth k-variety of pure dimension d with good Gr
m-action, endowed with an

equivariant morphism κ : U → X, and with a monomial morphism f = (f1, . . . , fr ) :
U → Gr

m. Let U → Y be an equivariant embedding as a dense open subvariety of
a smooth variety Y with good Gr

m-action and with a proper equivariant morphism
p : Y → X. We assume that (g ◦ κ)−1(0) is nowhere dense in U . Let h : W → Y be
a Gr

m-equivariant log-resolution of (Y, (Y\U ) ∪ (g ◦ p)−1(0)). Then with the previous
notation, we have

Sg([U → X × Gr
m]) = −

∑
I∈

(−1)d(I ) [UI ] (4.5.1)

in MGr
m×Gm

X0(g)×Gr
m×Gm

.

Proof
We may reduce to the case where the morphism f : U → Gr

m extends to a morphism
f̃ : Y → (P1

k)r . Indeed, there exists an equivariant embedding U → Y ′ of U as
a dense open subvariety of a smooth variety Y ′ with a good Gr

m-action and with
a proper equivariant morphism p′ : Y ′ → X such that f extends to a morphism
f̃′ : Y ′ → (P1

k)r . We may, furthermore, assume that there is a Gr
m-equivariant proper

morphism Y ′ → Y which restricts to the identity on U . Let h′ : W ′ → Y ′ be a
Gr

m-equivariant log-resolution of (Y ′, (Y ′\U ) ∪ (g ◦ p′)−1(0)). We may also assume
that there is a Gr

m-equivariant proper morphism W ′ → W such that the diagram

W ′

��

h′
�� Y ′

��
W

h
�� Y

(4.5.2)

is commutative.
Consider W′ defined as W, but using W ′ instead of W . Since, temporarily, we

work on W ′ and not on W , we denote by Ei , i in A, the irreducible components of
h′−1((Y ′\U ) ∪ (g ◦ p′)−1(0)) and keep the previous notation, but for W ′ instead of W .
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We have

W′ = − lim
T �→∞

∑
I∩C �=0

[UI ]SI (T ), (4.5.3)

while computing Wγ (T ) on W ′ using the change of variable formula or, more precisely,
[6, Lemma 3.4], one gets

W = − lim
T �→∞

∑
I∩C �=0

[UI ]S̃I (T ) (4.5.4)

with

S̃I (T ) =
∑

k∈�(I )∩Mγ ∩NI
>0

∏
i∈I

(T Ni (g)L−mi )ki (4.5.5)

with mi ≥ 1. It follows that W′ = W, and by Proposition 4.4, we can assume that
Y = Y ′ and W = W ′.

Consider Z := (̃f ◦ h)−1(Gr
m) in W . Note that the image of the morphism Z →

W × Gr
m given by the inclusion on the first factor and by the restriction of f̃ ◦ h on

the second factor is the closure of the image of the inclusion U ′ → W × Gr
m with U ′

the preimage of U in W . It follows that the morphism (q, f̃ ◦ h|Z) : Z → X × Gr
m

given by composition with p ◦ h on the first factor is proper. Since Z is smooth and
the morphism Z → X × Gr

m is proper, it follows from (3.12.2) that

Sg([U → X × Gr
m]) = Sg◦q,U ′ (4.5.6)

in MGr
m×Gm

X0(g)×Gr
m×Gm

. Note also that since f : U → Gr
m extends to a morphism f̃ : Y →

(P1
k)r , for a subset I of A with I ∩ C �= ∅, �(I ) is nonempty if and only if E◦

I

is contained in (̃f ◦ h)−1(Gr
m). Furthermore, if these conditions hold, �(I ) = RI

>0.
It follows that  consists exactly of those nonempty subsets of C for which E◦

I is
contained in (̃f ◦ h)−1(Gr

m); hence, the right-hand side of (4.5.1) may be rewritten as

−
∑
∅�=I⊂C

E◦
I
⊂(̃f◦h)−1(Gr

m)

(−1)|I | [UI ], (4.5.7)

and the required equation (4.5.1) follows now from (4.5.6) and (3.10.10). �

4.6. Iterated vanishing cycles
Now we consider a smooth variety X of pure dimension d with two functions f :
X → A1

k and g : X → A1
k . The motivic Milnor fiber Sf lies in MGm

X0(f )×Gm
. We still

denote by g the function X0(f ) × Gm → A1
k obtained by composition of g with the
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projection X0(f ) × Gm → X. Hence, thanks to Section 3.10, we may consider the
image

Sg(Sf ) = Sg

(
Sf ([X → X])

)
(4.6.1)

of Sf = Sf ([X → X]) by the nearby cycles morphism

Sg : MGm

X0(f )×Gm
−→ MG2

m

(X0(f )∩X0(g))×G2
m
, (4.6.2)

which lies in MG2
m

(X0(f )∩X0(g))×G2
m
.

We now give an explicit description of Sg(Sf ) in terms of a log-resolution
h : Y → X of (X, X0(f )∪X0(g)). We denote by Ei , i in A, the irreducible components
of h−1(X0(f ) ∪ X0(g)), and we consider the sets

B = {
i
∣∣Ni(f ) > 0

}
and C = {

i
∣∣ Ni(g) > 0

}
. (4.6.3)

Recall (see Section 3.3) that we denoted by UJ
I for J ⊂ I the fiber product of the

restrictions of the Gm-bundles UEi
for i in J to E◦

I . Assume that J := I ∩ C and
K := I\C are both nonempty. We now consider the fiber product UK,J := UK

I ×E◦
I
UJ

I ,
which has the same underlying variety as UI . There is a natural G2

m-action on UK,J , the
first, respectively, second, Gm-action being the diagonal action on UK

I , respectively,
UJ

I , and the trivial one on the other factor. The morphism (fI , gI ) : UI = UK,J → G2
m

being monomial, the morphism (h ◦ πI , fI , gI ) : UI → (X0(f ) ∩ X0(g)) × G2
m has a

class in MG2
m

(X0(f )∩X0(g))×G2
m

which we denote by [UK,J ].

THEOREM 4.7
With the previous notation, we have

Sg(Sf ) =
∑

I∩C=J �=∅
I\C=K �=∅

(−1)|I | [UK,J ] (4.7.1)

in MG2
m

(X0(f )∩X0(g))×G2
m
.

Proof
Consider the inclusions i : X0(g) × Gm ↪→ X × Gm and j : (X\X0(g)) × Gm ↪→
X × Gm. Note that Sf − j!(S(f|X\X0(g))) is supported by X0(g) × Gm, that is, is of the
form i!(A). Since Y\Y0(g ◦ h) is a log-resolution of (X\X0(g), X0(f )\X0(g)), one
deduces from the proof of (3.6.3) that

Sf −
(
−

∑
K∩C=∅

K �=∅

(−1)|K| [UK → X0(f ) × Gm]
)

(4.7.2)
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is supported by X0(g) × Gm. Hence, since Sg is zero on objects of the form i!(A),
we deduce that

Sg(Sf ) = Sg

(
−

∑
K∩C=∅

K �=∅

(−1)|K| [UK → X0(f ) × Gm]
)
. (4.7.3)

To conclude, it is enough to check the following equality in MG2
m

(X0(f )∩X0(g))×G2
m

for
every nonempty subset K of A such that K ∩ C = ∅:

Sg

(
[UK → X0(f ) × Gm]

) = −
∑

∅�=J⊂C

(−1)|J |[UK,J ]. (4.7.4)

This follows from Proposition 4.5. Indeed, let us consider the projective bundle πK :
νEK

→ EK with the Gm-action extending the diagonal one on νEK
. Let us set A′ :=

A � {∞}. The complement of UK in νEK
is a divisor with normal crossings whose

irreducible components are
� the divisors E′

j := π−1
K (EK∪{j}) for j /∈ K such that EK∪{j} �= ∅;

� the divisor at infinity E′
∞ := νEK

\νEK
;

� the divisors E′
i for i in K defined as the closure of the fiber product, above EK ,

of the zero section of νEi
with the νE�

, � in K , � �= i.
Note that all these divisors are stable by the Gm-action. We use the notation of
Sections 3.3 and 3.10 with an exponent ′.

We now determine the set  of nonempty subsets J ′ of A′ such that �(J ′) is
nonempty and is contained in Mγ for γ � 0 with the notation of (4.3.5) and (4.3.6).

Note that for �(J ′) to be nonempty, it is necessary that if Ni(fK ) > 0 (resp.,
Ni(fK ) < 0) for some i in J ′, then for some i ′ in J ′, Ni ′(fK ) < 0 (resp., Ni ′(fK ) > 0).
This forces J ′ to be either of the form J � {∞} with J ∩ B �= ∅ or of the form J

with J ∩ B = ∅. In each case, the condition that �(J ′) is contained in Mγ for γ � 0
implies that J ⊂ C and, furthermore, that d(J ′) = |J |. We deduce that J � {∞}
belongs to  if and only if J ∩ B �= ∅ and J ⊂ C, and we deduce that J belongs to
 if and only if J ∩ B = ∅, J ⊂ C, and J �= ∅. It follows from Proposition 4.5 that

Sg

(
[UK → X0(f ) × Gm]

) = −
∑

∅�=J⊂C

J∩B=∅

(−1)|J | [U ′
J ] −

∑
J⊂C

J∩B �=∅

(−1)|J | [U ′
J�{∞}] (4.7.5)

in MGr
m×Gm

X0(g)×Gr
m×Gm

. To conclude, it is enough to note that if ∅ �= J ⊂ C and J ∩B = ∅,
then [U ′

J ] = [UK,J ], and that if J ⊂ C and J ∩ B �= ∅, we have [U ′
J�{∞}] = [UK,J ].

Let us prove the second equality. We consider the image P(UEK
) of UEK

in P(νEK
)

and note that the canonical morphism UEK
→ P(UEK

) is a Gm-bundle, namely,
the restriction to UEK

of the tautological line bundle on P(νEK
). We identify E′′

∞ :=
E′

∞\⋃
i∈K E′

i with P(UEK
). The restriction of the tautological line bundle to P(UEK

) is
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dual to the restriction to E′′
∞ of the normal bundle to E′

∞ in νEK
. We now have two

Gm-bundles on E′′
∞ = P(UEK

), namely, UEK
and the restriction, which we denote by

U ′′
∞, to E′′

∞ of the complement UE′∞ of the zero section in the normal bundle νE′∞ .
Let us denote by Ua

EK
the Gm-bundle UEK

endowed with the inverse Gm-action. The
antipody a : UEK

→ Ua
EK

, whose restriction to the fibers is given by t �→ t−1, is an
isomorphism of Gm-bundles with Gm-action. By the above description, U ′′

∞ may be
identified, as a Gm-bundle with Gm-action, with the Gm-bundle Ua

EK
.

Now consider the function fK on νEK
. It induces a rational map f̃ K on νEK

. Let
us check that under the above isomorphism, the restriction fK : UEK

→ A1
k composed

with the automorphism a corresponds to the morphism f ′
∞ : U ′′

∞ → A1
k obtained

from f̃ K by the construction of Section 4.1. Indeed, let U be an open subset of EK

above which the bundle νEK
is trivial, isomorphic to U × AK

k . Denote by wi for i in
K the coordinates on AK

k . Fix � in K . The restriction of UEK
to U may be identified,

equivariantly, with U × P(GK
m ) × Gm by (u, (wi)i∈K ) �→ (u, (xi = wi/w�)i∈K\{�}, t =

w�), where Gm acts trivially on the first two factors and by multiplicative translation
on the last one with (xi)i∈K\{�} the standard coordinates on P(GK

m )  GK\{�}
m . If the

restriction of fK to U × GK
m is given by v(u)

∏
i∈K w

Ni

i , it may be rewritten, under
the above identification, as v(u)

∏
i∈K\{�} x

Ni

i t
∑

i∈K Ni . Composing with the antipody a,

we get the function v(u)
∏

i∈K\{�} x
Ni

i t−
∑

i∈K Ni , which corresponds to the restriction
of the function f ′

∞ on the corresponding open subset.
If J is a subset of C such that EK�J �= ∅, it follows from the “transitivity” property

described in Section 3.5 that fK�J can be retrieved directly from fK : νEK
→ A1

k

and, similarly, that the rational map f ′
J�{∞} can be retrieved directly from the rational

map f ′
∞ (obtained from f̃ K by the construction of Section 4.1) on νE′∞ . It follows that

under the isomorphism between UK�J and U ′
J�{∞} induced by ϕ, fK�J corresponds to

f ′
J�{∞}.The same argument works for the functions induced by g on U ′

K�J and UJ�{∞}.
(Note that, in fact, Ni(g) = 0 for all i in K and N∞(g) = 0.)

The first equality, which is easier, is checked similarly using E′
J = π−1

K (EK∪J )
and the canonical isomorphism of bundles νE′

J
 (πK|E′

J
)∗(νEJ |EK∪J

) for J ⊂ C. �

5. Convolution and the main result

5.1. Convolution
Let us denote by a and b the coordinates on each factor of G2

m. Let X be a variety. We
denote by i : X × (a + b)−1(0) → X × G2

m the inclusion of the antidiagonal and by
j the inclusion of its complement. We consider the morphism

a + b : X × G2
m\(a + b)−1(0) −→ X × Gm, (5.1.1)
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which is the identity on the X-factor and is equal to a + b on the (G2
m\(a + b)−1(0))-

factor. We denote by pr1 and pr2 the projection of X × Gm × (a + b)−1(0) on X × Gm

and X × (a + b)−1(0), respectively.
If A is an object in MX×G2

m
, the object

�0
�(A) := −(a + b)!j

∗(A) + pr1!pr∗2i
∗(A) (5.1.2)

lives in MX×Gm
. We now explain how to lift �0

� to an Mk-linear group morphism

�� : MG2
m

X×G2
m

→ MGm

X×Gm
.

Let A be an object in Var
G2

m,(n,m)
X×G2

m
with class [A] in MG2

m,(n,m)
X×G2

m
. It is endowed with a

G2
m-action α for which the morphism to G2

m is diagonally monomial of weight (n, m).
We may consider the Gm-action α̃ on A given by α̃(λ)x = α(λm, λn)x. With some
obvious abuse of notation, (a + b)!j

∗([A]) is the class of a + b : A|a+b �=0 → X × Gm.
If we endow A|a+b �=0 with the Gm-action induced by α̃, the morphism (a + b) :
A|a+b �=0 → Gm is diagonally monomial of weight nm. The term pr1!pr∗2i

∗([A]) is
the class of A|a+b=0 × Gm → X × Gm, the morphism to Gm being the projection
on the Gm-factor. We endow A|a+b=0 × Gm with the Gm-action induced by α̃ on the
first factor and the action (λ, z) �→ λnmz on the second factor. Hence, we may set
�

n,m
� ([A]) = −[a+b : A|a+b �=0 → X×Gm]+[A|a+b=0 ×Gm → X×Gm] in MGm,nm

X×Gm

and extend this construction in a unique way to an Mk-linear group morphism

�
n,m
� : MG2

m,(n,m)
X×G2

m
−→ MGm,nm

X×Gm
. (5.1.3)

These morphisms being compatible with the morphisms induced by the transition
morphisms of (2.5.1), after passing to the colimit, we get an Mk-linear group morphism

�� : MG2
m

X×G2
m

−→ MGm

X×Gm
. (5.1.4)

Let us now explain the relation of �� with the convolution product as considered
in [7], [16], and [8]. There is a canonical morphism

MGm

X×Gm
× MGm

X×Gm
−→ MG2

m

X×G2
m

(5.1.5)

sending (A,B) to A � B, the fiber product over X of A and B; therefore, we may
define

∗ : MGm

X×Gm
× MGm

X×Gm
−→ MGm

X×Gm
(5.1.6)

by

A ∗ B = ��(A � B). (5.1.7)
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If S is in Varµn

X , respectively, in Varµn×µn

X , we denote by [S] the corresponding

class in MGm

X×Gm
, respectively, in MG2

m

X×G2
m
, via the isomorphism (2.6.3). Consider the

Fermat curves Fn
1 and Fn

0 defined, respectively, by xn + yn = 1 and xn + yn = 0 in
G2

m with their standard (µn × µn)-action. If A is a variety in Varµn×µn

X , we have

��([A]) = −[Fn
1 ×µn×µn A] + [Fn

0 ×µn×µn A], (5.1.8)

the µn-action on each term in the right-hand side of (5.1.8) being the diagonal one. In
particular, if A and B are two varieties in Varµn

X , the convolution product [A] ∗ [B] is
given by

[A] ∗ [B] = −[Fn
1 ×µn×µn (A ×X B)] + [Fn

0 ×µn×µn (A ×X B)]. (5.1.9)

The convolution product in [16] and [8] was defined when k contains all roots of unity.
Since as soon as k contains an nth root of −1, we have [Fn

0 ×µn×µn (A ×X B)] =
(L − 1)[(A ×X B)/µn], one gets that the convolution product in [16] and [8], when
defined, coincides with the one in (5.1.9).

PROPOSITION 5.2
The convolution product on MGm

X×Gm
is commutative and associative. The unit element

for the convolution product is 1, the class of the identity X × Gm → X × Gm with the
standard Gm-action on the Gm-factor.

Proof
With commutativity being clear, let us prove the statement concerning associativity
and unit element. For simplicity of notation, we assume that X is a point, and we
first ignore the Gm-actions; that is, we prove the corresponding statements for MGm

.
Consider a : A → Gm, b : B → Gm, c : C → Gm. By definition, the convolution
product A ∗ B (with some abuse of notation, we denote by the same symbol varieties
over Gm and their class in MGm

) is equal to

−[a + b : (A × B)|a+b �=0 → Gm] + [z : (A × B × Gm)|a+b=0 → Gm] (5.2.1)

with z the standard coordinate on Gm.
Associativity follows from the following claim. (A ∗ B) ∗ C is equal to

[a + b + c : (A × B × C)|a+b+c �=0 → Gm] − [z : (A× B × C × Gm)|a+b+c=0 → Gm],

(5.2.2)

Indeed, (A ∗ B) ∗ C may be written as a sum of four terms. The first one,

[a + b + c : (A × B × C)| a+b+c �=0
a+b �=0

→ Gm], (5.2.3)
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may be rewritten as

[a+b+c : (A×B ×C)|a+b+c �=0 → Gm] − [c : (A×B ×C)|a+b=0 → Gm]. (5.2.4)

The second one,

−[z : (A × B × C × Gm)| a+b+c=0
a+b �=0

→ Gm], (5.2.5)

may be rewritten as

−[z : (A × B × C × Gm)|a+b+c=0 → Gm]. (5.2.6)

The third one,

−[c + z : (A × B × C × Gm)| a+b=0
c+z �=0

→ Gm], (5.2.7)

may be rewritten as

−[u : (A × B × C × Gm)| a+b=0
u �=c

→ Gm] (5.2.8)

since the corresponding spaces are isomorphic via (α, β, γ, z) �→ (α, β, γ, u =
c(γ ) + z). Here u is a coordinate on some other copy of Gm. The fourth term,

[u : (A × B × C × Gm × Gm)| a+b=0
c+z=0

→ Gm], (5.2.9)

may be rewritten as

[u : (A × B × C × Gm)|a+b=0 → Gm]. (5.2.10)

One deduces (5.2.2) by summing up (5.2.4), (5.2.6), (5.2.8), and (5.2.10).
For the statement concerning the unit element, one writes A ∗ Gm as

−[a + z : (A × Gm)|a+z �=0 → Gm] + [u : (A × Gm × Gm)|a+z=0 → Gm]. (5.2.11)

Since the first term may be rewritten as

−[u : (A × Gm)|a �=u → Gm] (5.2.12)

and the second term as

[u : (A × Gm) → Gm], (5.2.13)

it follows that A ∗ Gm is equal to (the class of) A in MGm
. The proofs for general

X are just the same. As for Gm-actions, since by the very constructions they are
diagonally monomial of the same weight on each factor, all identifications we made
are compatible with the Gm-actions, and all statements still hold in MGm

X×Gm
. �
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Remark 5.3
Proposition 5.2, modulo the isomorphism (2.6.3), is already stated in [8, page 344].

5.4
In fact, associativity already holds at the ��-level. To formulate this, we need to
introduce some more notation.

Let us denote by a, b, and c the coordinates on each factor of G3
m. For a variety X,

we denote by i the inclusion X × (a + b + c)−1(0) ↪→ X × G3
m and by j the inclusion

of the complement. We consider the morphism

a + b + c : X × G3
m\(a + b + c)−1(0) −→ X × Gm, (5.4.1)

which is the identity on the X-factor and is equal to a + b + c on the (G3
m\(a + b +

c)−1(0))-factor. We denote by pr1 and pr2 the projection of X ×Gm × (a +b+ c)−1(0)
on X × Gm and X × (a + b + c)−1(0), respectively.

If A is an object in MG3
m

X×G3
m
, we consider the object

�0
�123

(A) := (a + b + c)!j
∗(A) − pr1!pr∗2i

∗(A) (5.4.2)

in MX×Gm
. Similarly, as in Section 5.1, we extend �0

�123
to an Mk-linear group

morphism ��123 : MG3
m

X×G3
m

→ MGm

X×Gm
. We denote by Aij the object A viewed as an

element in MG2
m

X×G2
m

by forgetting the projection and the action corresponding to the kth
Gm-factor with {i, j, k} = {1, 2, 3}. The object ��(Aij ) may now be endowed with a
second projection to Gm and a second Gm-action, namely, those corresponding to the

kth Gm-factor, so we get in fact an element in MG2
m

X×G2
m

that we denote by ��ij
(A).

PROPOSITION 5.5
Let A be an object in MG3

m

X×G3
m
. For every 1 ≤ i < j ≤ 3, we have

��123 (A) = ��

(
��ij

(A)
)
. (5.5.1)

Proof
The proof is the same as the one for associativity in Proposition 5.2. Indeed, one just
has to replace everywhere A × B × C by A in the proof and to remark that (5.2.2)
then becomes nothing else than ��123 (A). �

5.6
Let us consider again a smooth variety X of pure dimension d with two functions f

and g from X to A1
k . Let us denote by i1 and i2 the inclusion of (X0(f ) ∩X0(g)) × Gm

in X0(f ) × Gm and X0(f + gN ) × Gm, respectively.
We can now state the main result of this article.
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THEOREM 5.7
Let X be a smooth variety of pure dimension d, and let f and g be two functions from
X to A1

k . For every N > γ ((f ), (g)), the equality

i∗1 Sφ

f − i∗2 Sφ

f +gN = ��

(
SgN (Sφ

f )
)

(5.7.1)

holds in MGm

(X0(f )∩X0(g))×Gm
.

Proof
Let ϕ be in L(X). A basic observation is that when the inequality ordt f (ϕ) <

Nordt g(ϕ) holds, f (ϕ) and (f + gN )(ϕ) have the same order ordt and the same
angular coefficient ac. If A is a subset of Ln(X), we denote by A+, respectively, A0,
the intersection of A with the set of arcs in Ln(X) such that ordt f (ϕ) > Nordt g(ϕ),
respectively, ordt f (ϕ) = Nordt g(ϕ). In this way, one defines the series

Z+
f (T ) =

∑
n≥1

[X+
n (f )] L−ndT n (5.7.2)

and

Z0
f (T ) =

∑
n≥1

[X0
n(f )] L−ndT n (5.7.3)

in MGm

X0(f )×Gm
[[T ]] and, similarly, the series Z+

f +gN (T ) and Z0
f +gN (T ) in

MGm

X0(f +gN )×Gm
[[T ]]. It follows from the previous remark that

i∗1Zf (T )− i∗2Zf +gN (T )=i∗1
(
Z+

f (T )+Z0
f (T )

) − i∗2
(
Z+

f +gN (T )+Z0
f +gN (T )

)
, (5.7.4)

where we extend i∗1 and i∗2 to the series componentwise.
Let N be a positive integer. For any integer r , we denote by πN the morphism

X0(g) × Gr
m × Gm → X0(g) × Gr

m × Gm which is mapping (x, µ, λ) to (x, µ, λN ).
Then we have the following lemma.

LEMMA 5.8
Given a map g : X −→ A1

k and the induced nearby cycles morphism Sg from

MGr
m

X0(g)×Gr
m

to MGr
m×Gm

X0(g)×Gr
m×Gm

, then for any positive integer N , the following equality
holds:

SgN = πN! ◦ Sg. (5.8.1)

Proof
Let Z be a smooth variety with good Gr

m-action, endowed with an equivariant mor-
phism p : Z → X and a monomial morphism f : Z → Gr

m, such that the morphism
(p, f) : Z → X × Gr

m is proper, and let U = Z\F be an open dense subset of Z
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which is stable under the Gr
m-action. For a positive integer γ with the notation of

Section 3.10, let us consider the modified zeta function of gN on U ,

Z
γ

gN◦p,U
(T ) :=

∑
n≥1

[Xγ n
n (gN ◦ p,U )] L−γ ndT n, (5.8.2)

in MGr
m×Gm

X0(g)×Gr
m×Gm

[[T ]]. Since Xγ n
n (gN ◦ p, U ) is empty unless N divides n and

[XγmN

mN (gN ◦ p, U )] = πN!
(
[XγmN

m (g ◦ p,U )]
)
, (5.8.3)

we get that Z
γ

gN◦p,U
(T ) is equal to πN!(Z

γN

g◦p,U (T N )), the limit of which, as T goes
to infinity, is equal for γ big enough to πN!(Sg◦p,U ). The result follows from
Theorem 3.12. �

LEMMA 5.9
Assume that N > γ ((f ), (g)).

Then the series i∗2 (Z+
f +gN (T )) lies in MGm

(X0(f )∩X0(g))×Gm
[[T ]]sr, and

lim
T �→∞

i∗2
(
Z+

f +gN (T )
) = −SgN

(
[X0(f )]

)
. (5.9.1)

Proof
Note that X+

n (f + gN ) is nonempty only if n is a multiple of N and that

[X+
mN (f +gN )] = πN!

([{
ϕ ∈ LmN (X)

∣∣ ordt g(ϕ) = m, ordt f (ϕ) > Nm
}])

, (5.9.2)

the variety on the right-hand side being endowed with the morphism to Gm induced
by ac(g). Summing up, we may write by (3.7.2) and the proof of Lemma 5.8

Z+
f +gN (T ) = πN!

(
Zg(T N ) − ZN

g,X\X0(f )(T
N )

)
. (5.9.3)

By Proposition 3.8 and its proof, for N > γ ((f ), (g)), the series ZN
g,X\X0(f )(T )

lies in MGm

X0(g)×Gm
[[T ]]sr, and its limT �→∞ is equal to −Sg,X\X0(f ). The same holds

for ZN
g,X\X0(f )(T

N ), and the result follows since πN!(Sg − Sg,X\X0(f )) is equal to
SgN ([X0(f )]) by Lemma 5.8. �

5.10
We fix an integer N such that N > γ ((f ), (g)), and we fix a log-resolution h : Y → X

of (X, X0(f ) ∪ X0(g)) such that N > γh((f ), (g)). We keep the notation used in
Sections 3.3 and 4.6. In particular, NNi(g) > Ni(f ) for i ∈ C. Note that the stratum
E◦

I is contained in (g ◦ h)−1(0) if and only if J = I ∩ C is nonempty.
Fix a nonempty stratum E◦

I in Y .
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We consider the cones +
I and 0

I in RI
>0 defined, respectively, by

∑
i∈I

Ni(f )xi > N
∑
j∈J

Nj (g)xj (5.10.1)

and
∑
i∈I

Ni(f )xi = N
∑
j∈J

Nj (g)xj . (5.10.2)

Note that when K = I\C is empty, I = J and Ni(f ) < NNi(g) for all i, and hence
the cones +

I and 0
I are both empty.

As in (3.8.2), we have

i∗1
(
Z+

f (T ) + Z0
f (T )

) =
∑
I∩B �=∅
I∩C �=∅

[UI ] �I (T ) (5.10.3)

with

�I (T ) =
∑

k∈(+
I ∪0

I )∩NI
>0

L− ∑
i∈I νiki T

∑
i∈I Ni (f )ki . (5.10.4)

Since

lim
T �→∞

�I (T ) = χ(+
I ∪ 0

I ) = 0, (5.10.5)

we deduce that

lim
T �→∞

i∗1
(
Z+

f (T ) + Z0
f (T )

) = 0. (5.10.6)

5.11
We now want to compute the zeta function Z0

f +gN (T ). Fix k in 0
I ∩ NI

>0, and denote

by φ the finite morphism from A1
k to AI

k sending u to (uki ). We still denote by φ its
restriction as a group morphism from Gm to GI

m. Taking the pullback along φ of the
deformation to the normal cone to EI in Y , pI : CYI → AI

k , introduced in Section 3.5,
one gets a morphism p : CYk → A1

k having the following description. The scheme
CYk may be identified with Spec Ak, where

Ak :=
∑
n∈NI

OY×A1
k

(
−

∑
i∈I

ni(Ei × A1
k)

)
u− ∑

i∈I kini (5.11.1)

is a subsheaf of OY×A1
k
[u−1], and the natural inclusion OY×A1

k
→ Ak induces a

morphism π : CYk → Y × A1
k , from which p is derived. Via the same inclusion, the
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functions f ◦ h, gN ◦ h, and (f + gN ) ◦ h are divisible by u
∑

i∈I kiNi (f ) in Ak. We
denote the quotients by f̃k, g̃N

k , and F̃k, respectively.
We denote by Ẽi the pullback of the divisor Ei × A1

k by π ; by D the divisor
globally defined on CYk by u = 0; and by CEi the divisors Ẽi − kiD, i in I (resp.,
Ẽi , i not in I ). We denote by CY ◦

k the complement in CYk of the union of the CEi , i

in A, and by Y ◦ the complement in Y of the union of the Ei , i in A. We denote by FI

the function fI + gN
I : UI → A1

k .

LEMMA 5.12
The scheme CYk is smooth, the morphism π induces an isomorphism above A1

k\{0}, the
morphism p is a smooth morphism, and its fiber p−1(0) may be naturally identified with
the bundle νEI

. When restricted to CY ◦
k , the fiber of p above 0 is naturally identified

with UI , and π induces an isomorphism between CY ◦
k \p−1(0) and Y ◦ × A1

k\{0}. The
restriction of f̃ k (resp., g̃k, F̃k) to the fiber UI ⊂ p−1(0) is equal to fI (resp., gI , FI ).

Proof
Since CYk is covered by open subsets of the form Spec OU [yi, u]/(zi − uki yi) with
U an open subset on which the divisors Ei are defined by equations zi = 0, the
smoothness of CYk is clear. The remaining properties are checked directly. �

The GI
m-action σI on CYI induces via φ a Gm-action on CYk that we denote by σ ,

leaving sections of OY invariant and acting on u by σ (λ) : u �→ λ−1u. Note that in
coordinate charts such as in the proof of Lemma 5.12, σ leaves zi invariant, and σ (λ)
maps yi to λki yi . We now have two different Gm-actions on Ln(CY ◦

k ); the one induced
by the standard Gm-action on arc spaces, and the one induced by σ . We denote by σ̃

the action given by the composition of these two (commuting) actions.
For ϕ in Ln(Y ) with ϕ(0) in Ei , we set ordEi

ϕ := ordt zi(ϕ), where zi is any local
equation of Ei at ϕ(0).

Let us denote by L̃n(CY ◦
k ) the set of arcs ϕ in Ln(CY ◦

k ) such that p(ϕ(t)) = t .
(In particular, ϕ(0) is in UI .) For such an arc ϕ, composition with π sends ϕ to an arc
in Ln(Y × A1

k), which is the graph of an arc in Ln(Y ) not contained in the union of
the divisors Ei , i in I . Note that L̃n(CY ◦

k ) is stable by σ̃ .
We consider Xn,k, the set of arcs ϕ in Ln(Y ) such that ϕ(0) is in E◦

I and ordEi
ϕ =

ki for i ∈ I .

LEMMA 5.13
Assume that n ≥ ki for i in I . The morphism π̃ : L̃n(CY ◦

k ) → Xn,k induced by the

projection CY ◦
k → Y is an affine bundle with fiber A

∑
I ki

k . Furthermore, if L̃n(CY ◦
k ) is

endowed with the Gm-action induced by σ̃ and Xn,k with the standard Gm-action, π̃ is
Gm-equivariant, and the action of Gm on the affine bundle is affine. If n ≥ ∑

I kiNi(f ),
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the composed maps ac(f ◦ h)(π̃(ϕ)) and ac(g ◦ h)(π̃(ϕ)) are equal, respectively, to
fI (ϕ(0)) and gI (ϕ(0)), whereas

ac
(
(f + gN ) ◦ h

)(
π̃(ϕ)

) = ac
(
F̃k(ϕ)

)
. (5.13.1)

Furthermore, when FI (ϕ(0)) �= 0 (hence, (ordt (f + gN ) ◦ h)(π̃(ϕ)) = ∑
I kiNi(f )),

we have

ac
(
(f + gN ) ◦ h

)(
π̃(ϕ)

) = FI

(
ϕ(0)

)
. (5.13.2)

Proof
Every point in E◦

I is contained in an open subset U of Y such that the divisors Ei ,
i ∈ I , are defined by equations zi = 0 in U and such that there exists, furthermore,
d − |I | functions wj on U such that the family (zi, wj ) gives rise to an étale mor-
phism U → Ad

k . This morphism induces an isomorphism Ln(U )  U ×Ad
k

Ln(Ad
k )

(see [6, Lemma 4.2]). Adding further the coordinate u gives an isomorphism
Ln(U × A1

k)  (U × A1
k) ×Ad+1

k
Ln(Ad+1

k ). The family (yi, wj , u) with zi = yiu
ki

induces an étale morphism π−1(U × A1
k) → Ad+1

k , and hence, an isomorphism
Ln(π−1(U × A1

k))  (π−1(U × A1
k)) ×Ad+1

k
Ln(Ad+1

k ). Under these isomorphisms,
π̃ just corresponds to multiplicating each yi-component of an arc by tki . Note in
particular that in that description, the action of σ̃ (λ) on a component yi(t) is given by
yi(t) �→ λki yi(λt); hence, π̃ is Gm-equivariant. The rest of the statement follows also
directly from that description. �

We define Yn,k as the subset of Xn,k consisting of those arcs ϕ such that ordt ((f +
gN ) ◦ h)(ϕ) = n. The constructible set Yn,k is stable by the usual Gm-action on
Ln(Y ), and the morphism ac(f + gN ) defines a class [Yn,k] in MGm

(X0(f )∩X0(g))×Gm
. By

definition, Yn,k = ∅ if n <
∑

I kiNi(f ).
We then define Ỹn,k as the preimage of Yn,k by the fibration π̃ of Lemma 5.13.

It consists of arcs ϕ in L̃n(CY ◦
k ) such that ordt F̃k(ϕ) = n − ∑

I kiNi(f ). We denote
by [Ỹn,k] the class of Ỹn,k in MGm

(X0(f )×X0(g))×Gm
, the morphism Ỹn,k → Gm being

ac(F̃k) and the Gm-action being induced by σ̃ . We denote by [UI\(F−1
I (0))] the class

of UI\(F−1
I (0)) in MGm

(X0(f )×X0(g))×Gm
, the Gm-action being the natural diagonal action

of weight k on UI\(F−1
I (0)) and the morphism to Gm being the restriction of FI .

We also consider the class [Gm × F−1
I (0)] of Gm × F−1

I (0) in MGm

(X0(f )×X0(g))×Gm
, the

Gm-action on the second factor being the diagonal one and the morphism to Gm being
the first projection.

LEMMA 5.14
The following equalities hold in MGm

(X0(f )×X0(g))×Gm
:

(1) [Ỹn,k] = Lnd [UI\(F−1
I (0))] if n = ∑

I kiNi(f );
(2) [Ỹn,k] = Lnd−m [Gm × F−1

I (0)] if n − ∑
I kiNi(f ) = m > 0.
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Proof
If n = ∑

I kiNi(f ), Ỹn,k is the set of arcs ϕ(t) in Ln(CY ◦
k ) such that ϕ(0) lies in

UI\(F−1
I (0)) and u(ϕ(t)) = t , and (1) follows.

If n − ∑
I kiNi(f ) = m > 0, Ỹn,k is the set of arcs ϕ in Ln(CY ◦

k ) such that
ordt (F̃k)(ϕ) = m and u(ϕ(t)) = t . Now let us observe that the morphism (F̃k, u) :
CY ◦

k → A2
k is smooth on a neighborhood of UI in CY ◦

k since u is a smooth function on
CY ◦

k and the restriction of F̃k to the divisor u = 0, identified with UI , is FI = fI +gN
I ,

which is a smooth function on UI . The fact that FI = fI + gN
I is a smooth function

on UI is checked locally as follows. For i in I\C (recall that I\C is nonempty), and
with local coordinates as in the proof of Lemma 5.13,

yi

∂

∂yi

(fI + gN
I ) = yi

∂fI

∂yi

= Ni(f )fI (5.14.1)

does not vanish on UI . �

LEMMA 5.15
We have

i∗2 [X0
n(f + gN )] =

∑
I∩C=J �=∅
I\C=K �=∅

∑
k∈0

I ∩NI
>0

[Yn,k] L− ∑
i∈I (νi−1)ki . (5.15.1)

Proof
This is a standard application of the change of variable formula, or more precisely,
of [6, Lemma 3.4]. The proof is completely similar to the proof of [9, Theorem 2.4].
(Recall that 0

I is empty if K is empty.) �

It follows from Lemmas 5.15 and 5.13 that

i∗2Z0
f +gN (T ) =

∑
n>0

∑
I∩C=J �=∅
I\C=K �=∅

∑
k∈0

I ∩NI
>0

[Ỹn,k] L− ∑
i∈I νiki L−nd T n. (5.15.2)

Using Lemma 5.14, we deduce

i∗2Z0
f +gN (T ) =

∑
I∩C=J �=∅
I\C=K �=∅

([
UI\

(
F−1

I (0)
)]+[Gm×F−1

I (0)]
L−1T

1−L−1T

)
�I (T ) (5.15.3)

with

�I (T ) =
∑

k∈0
I ∩NI

>0

L− ∑
i∈I νiki T

∑
i∈I Ni (f )ki . (5.15.4)
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Since �I (T ) lies in Z[L, L−1][[T ]]sr and

lim
T �→∞

�I (T ) = χ(0
I ) = (−1)|I | −1, (5.15.5)

i∗2Z0
f +gN (T ) lies in MGm

(X0(f )∩X0(g))×Gm
[[T ]]sr. Using Theorem 4.7, we deduce from

(5.15.3) and (5.15.5) that

lim
T �→∞

i∗2Z0
f +gN (T ) = ��

(
SgN (Sf )

)
. (5.15.6)

We deduce from (5.7.4), (5.9.1), (5.15.6), and (5.10.6) that

i∗1 Sf − i∗2 Sf +gN = ��

(
SgN (Sf )

) − SgN

(
[X0(f )]

)
. (5.15.7)

By Proposition 5.2, SgN ([X0(f )]) = ��

(
SgN ([Gm × X0(f )])

)
. Since i∗1 Sφ

f −
i∗2 Sφ

f +gN = (−1)d−1(i∗1 Sf − i∗2 Sf +gN ), it follows from (5.15.7) that (5.7.1) holds
for N > γ ((f ), (g)), which finishes the proof of Theorem 5.7. �

If f is a function on the smooth variety X of pure dimension d and x is a closed
point of X0(f ), we write Sf,x for i∗x Sf and Sφ

f,x for i∗x Sφ

f , where ix stands for the

inclusion of x in X0(f ). Note that Sφ

f,x = (−1)d−1(Sf,x − [Gm × {x}]).
Theorem 5.7 has the following local corollary.

COROLLARY 5.16
Let X be a smooth variety of pure dimension d, and let f and g be two functions from
X to A1

k . Let x be a closed point of X0(f ) ∩ X0(g). For every N > γx((f ), (g)), the
equality

Sφ

f,x − Sφ

f +gN ,x
= ��

(
SgN ,x(Sφ

f )
)

(5.16.1)

holds in MGm

Gm
.

Proof
The only point to be checked is that γ ((f ), (g)) may be replaced by the local invariant
γx((f ), (g)), which is clear from the proof of Theorem 5.7. �

5.17
Let us now explain how to deduce from Theorem 5.7 the motivic Thom-Sebastiani
theorem of [7], [16], and [8].

Let X and Y be two varieties over k. For r and s in N, cartesian product gives rise
to an external product

� : MGr
m

X×Gr
m

× MGs
m

Y×Gs
m

−→ MGr+s
m

X×Y×Gr+s
m

. (5.17.1)

(This is not to be confused with the one in (5.1.5).)
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Let X1 and X2 be smooth varieties, and consider functions f1 : X1 → A1
k and

f2 : X2 → A1
k . We set X0 = f −1

1 (0) × f −1
2 (0), and for any Y ⊂ X1 × X2 containing

X0, we denote by i the inclusion of X0 × Gm in Y × Gm.

THEOREM 5.18
Let X1 and X2 be smooth varieties of pure dimension d1 and d2, and consider functions
f1 : X1 → A1

k and f2 : X2 → A1
k . Denote by f1 ⊕f2 the function on X1 ×X2 sending

(x1, x2) to f1(x1) + f2(x2). Then

i∗Sφ

f1⊕f2
= ��(Sφ

f1
� Sφ

f2
) (5.18.1)

in MGm

X0×Gm
.

Proof
We set X = X1 × X2, and we denote by f and g the functions on X induced by f1

and f2, respectively. In particular, f1 ⊕ f2 = f + g. If Y1 → X1 is a log-resolution of
(X1, f

−1
1 (0)) and Y2 → X2 is a log-resolution of (X2, f

−1
2 (0)), h : Y := Y1 ×Y2 → X

is a log-resolution of (X, f −1(0) ∪ g−1(0)). Using such a log-resolution, it is easily
checked that γ ((f ), (g)) = 0. By (5.15.7),

i∗Sf − i∗Sf +g = ��

(
Sg(Sf )

) − i∗Sg

(
[X0(f )]

)
. (5.18.2)

Using the log-resolution h, one checks that i∗Sf = Sf1 � [f −1
2 (0)], Sg(Sf ) =

Sf1 � Sf2 , and i∗Sg([X0(f )]) = [f −1
1 (0)] � Sf2 . Hence, (5.18.2) may be rewritten

as

��(Sf1 � Sf2 ) = Sf1 � [f −1
2 (0)] + [f −1

1 (0)] � Sf2 − i∗Sf1⊕f2 . (5.18.3)

Since Sf1 � [f −1
2 (0)] = ��(Sf1 � [f −1

2 (0) × Gm]) and [f −1
1 (0)] � Sf2 =

��([f −1
1 (0)×Gm]�Sf2 ) (see the proof of the statement concerning the unit element

in Proposition 5.2), (5.18.1) directly follows, by definition of Sφ . �

6. Spectrum and the Steenbrink conjecture

6.1
We now assume that k = C. We denote by HS the abelian category of Hodge
structures, and we denote by K0(HS) the corresponding Grothendieck ring (see, e.g.,
[8] for definitions). Note that any mixed Hodge structure has a canonical class in
K0(HS). Recall that there is a canonical morphism

χh : MC −→ K0(HS), (6.1.1)
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which assigns to the class of a variety X the element
∑

i(−1)i[Hi
c (X, Q)] in K0(HS),

where [Hi
c (X, Q)] stands for the class of the mixed Hodge structure on Hi

c (X, Q).
Let us denote by HSmon the abelian category of Hodge structures endowed with an
automorphism of finite order and by K0(HSmon) the corresponding Grothendieck ring.
Let us consider the ring morphism

χh : MGm

Gm
−→ K0(HSmon), (6.1.2)

deduced from (3.16.2) via (2.6.3) and composition with K0(MHMmon
Spec C) →

K0(HSmon). It is described as follows. If [X] is the class of f : X → Gm in
MGm

Gm
with X connected since f is monomial with respect to the Gm-action, f is

a locally trivial fibration for the complex topology. Furthermore, if the weight is, say,
n, x �→ exp(2πit/n)x is a geometric monodromy of finite order along the origin. It
follows that X1, the fiber of f at 1, is endowed with an automorphism of finite order
Tf , and we have

χh([f : X → Gm]) =
( ∑

i

(−1)i[Hi
c (X1, Q)], Tf

)
. (6.1.3)

There is a natural linear map called the Hodge spectrum,

hsp : K0(HSmon) −→ Z[Q], (6.1.4)

such that

hsp([H ]) :=
∑

α∈Q∩[0,1)

tα
( ∑

p,q∈Z

dim(Hp,q
α )tp

)
(6.1.5)

for any Hodge structure H with an automorphism of finite order, where H
p,q
α is the

eigenspace of Hp,q with respect to the eigenvalue exp(2πiα). We identify here Z[Q]
with

⋃
n≥1 Z[t1/n, t−1/n].

We consider the composite morphism

Sp := (hsp ◦ χh) : MGm

Gm
−→ Z[Q]. (6.1.6)

Note that Sp is a ring morphism for the convolution product ∗ on MGm

Gm
, by

Lemma 6.3.
Denoting by HS2−mon the abelian category of Hodge structures endowed with

two commuting automorphisms of finite order and by K0(HS2−mon) the corresponding
Grothendieck ring, one deduces from (3.16.2) via (2.6.3) a ring morphism

χh : MG2
m

G2
m

−→ K0(HS2−mon) (6.1.7)

having a description similar to (6.1.3).
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Also, we can define a Hodge spectrum on K0(HS2−mon) as follows. Denote by
π : [0, 1) ∩ Q → Q/Z the restriction of the projection Q → Q/Z, and denote by
s : Q/Z → [0, 1) ∩ Q its inverse. The bijection Q/Z × Z → Q sending (a, b) to
s(a) + b induces an isomorphism of abelian groups between Z[Q/Z × Z] and Z[Q].
We define the spectrum

hsp : K0(HS2−mon) −→ Z[(Q/Z)2 × Z] (6.1.8)

by

hsp([H ]) =
∑

α∈Q∩[0,1)

∑
β∈Q∩[0,1)

∑
p,q∈Z

(dim H
p,q

α,β )tπ (α)uπ (β)vp (6.1.9)

with H
p,q

α,β the eigenspace of Hp,q with respect to the eigenvalue exp(2πiα) for the
first automorphism and exp(2πiβ) for the the second automorphism. We denote by
Sp the morphism of abelian groups

Sp := (hsp ◦ χh) : MG2
m

G2
m

−→ Z[(Q/Z)2 × Z]. (6.1.10)

We denote by δ the morphism of abelian groups

Z[(Q/Z)2 × Z] −→ Z[Q] (6.1.11)

sending taubvc to t s(a)+s(b)+c.

Let A be an element of MG2
m

G2
m
. The relation between the spectrum of A and the

spectrum of ��(A) is given by the following proposition.

PROPOSITION 6.2
Let A be an element of MG2

m

G2
m
. We have

Sp
(
��(A)

) = δ
(
Sp(A)

)
. (6.2.1)

Proof
Let A be a smooth variety with a good G2

m-action and with a morphism to G2
m which

is diagonally monomial of weight (n, n), n in N>0. Let us denote by A1 the fiber of A

above (1, 1). By (5.1.8), and using the notation therein, we have

��([A]) = −[Fn
1 ×µn×µn A1] + [Fn

0 ×µn×µn A1]. (6.2.2)

The result follows from the following well-known computation of the cohomology of
Fermat varieties (see [22] and [16, Lemma 7.1]). �
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LEMMA 6.3
Let (α, β) be in (Q/Z)2. For every common denominator n of α and β, the Hodge type
of the eigenspaces Hi

c (Fn
1 , C)(α, β) and Hi

c (Fn
0 , C)(α, β) of µn × µn in Hi

c (Fn
1 , C)

and Hi
c (Fn

0 , C), respectively, with character (α, β) ∈ (n−1Z/Z)2 is independent of n

and is computed as follows.
(1) H 1

c (Fn
1 , C)(α, β) is of rank 1 for (α, β) �= (0, 0) and of rank 2 for (α, β) =

(0, 0). H 1
c (Fn

1 , C)(α, β) is of Hodge type (0, 1) if α �= 0 �= β, and 0 <

s(α) + s(β) < 1, (1, 0) if 1 < s(α) + s(β) < 2, and (0, 0) otherwise, that is,
if α = 0 or β = 0 or α + β = 0. H 2

c (Fn
1 )(0, 0) is of rank 1 and Hodge type

(1, 1). All other cohomology groups are zero.
(2) H 1

c (Fn
0 , C)(α,−α), respectively, H 2

c (Fn
0 , C)(α, −α), is of rank 1 and Hodge

type (0, 0), respectively, (1, 1), for any α in Q/Z, and all other cohomology
groups are zero.

We also need the following obvious statement.

LEMMA 6.4
For N ≥ 1, consider the morphism πN : G2

m → G2
m, given by (a, b) �→ (a, bN ). For

every A in MG2
m

G2
m
,

Sp
(
πN!(A)

) = 1 − u

1 − u1/N
Sp(A)(t, u1/N , v). (6.4.1)

6.5
Let X be a smooth complex algebraic variety of dimension d, and let f be a function
X → A1. Fix a closed point x of X at which f vanishes. Denote by Fx the Milnor fiber
of f at x. The cohomology groups Hi(Fx, Q) carry a natural mixed Hodge structure
(see [24], [27], [18], [20]), which is compatible with the semisimplification of the
monodromy operator Tf,x . Hence, we can define the Hodge characteristic χh(Fx) of
Fx in K0(HSmon). The following statement follows from [5] and [8]. (It is also a
consequence of Proposition 3.17.)

THEOREM 6.6
Assuming the previous notation, the following equality holds in K0(HSmon):

χh(Fx) = χh(Sf,x). (6.6.1)

In particular, if we define the Hodge spectrum of f at x as

Sp(f, x) := (−1)d−1hsp
(
χh(Fx) − 1

)
, (6.6.2)
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it follows from Theorem 6.6 that

Sp(f, x) = Sp(Sφ

f,x). (6.6.3)

Now if g : X → A1 is another function vanishing at x, we set, by analogy with
(6.6.3),

Sp(f, g, x) := Sp
(
Sg,x(Sφ

f )
)
. (6.6.4)

Let us denote by δN the morphism of abelian groups Z[(Q/Z)2 × Z] → Z[Q]
sending taubvc to t s(a)+s(b)/N+c.

PROPOSITION 6.7
For every positive integer N , the spectrum of ��(SgN ,x(Sφ

f )) is equal to

Sp
(
��(SgN ,x(Sφ

f ))
) = 1 − t

1 − t1/N
δN

(
Sp(f, g, x)

)
. (6.7.1)

Proof
The proof follows directly from Proposition 6.2 and Lemma 6.4. �

Hence, from Corollary 5.16, we deduce immediately the following statement.

THEOREM 6.8
Let X be a smooth variety of pure dimension d, and let f and g be two functions from
X to A1. Let x be a closed point of X0(f ) ∩ X0(g). Then, for N > γx((f ), (g)),

Sp(f, x) − Sp(f + gN, x) = 1 − t

1 − t1/N
δN

(
Sp(f, g, x)

)
. (6.8.1)

6.9. Application to Steenbrink’s conjecture
Let us now assume that the function g vanishes on all local components at x of the
singular locus of f but a finite number of locally irreducible curves ��, 1 ≤ � ≤ r .
We denote by e� the order of g on ��.

As in the introduction, along the complement �◦
� to {x} in ��, we may view f as

a family of isolated hypersurface singularities parametrized by �◦
� . We denote by α�,j

the exponents of that isolated hypersurface singularity, and we note that there are two
commuting monodromy actions on the cohomology of its Milnor fiber. The first one,
denoted by Tf , is induced transversally by the monodromy action of f ; the second
one, denoted by Tτ , is the monodromy around x in �◦

� . Since the semisimplifications
of Tf and Tτ can be diagonalized simultaneously, we may define rational numbers
β�,j in [0, 1), so that each exp(2πiβ�,j ) is the eigenvalue of the semisimplification of
Tτ on the eigenspace of the semisimplification of Tf associated with α�,j .
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We may now deduce from Theorem 5.7 the following statement, first proved by
M. Saito in [21] and later given another proof by A. Némethi and J. H. M. Steenbrink
in [17].

THEOREM 6.10
For N > γx((f ), (g)), we have

Sp(f + gN, x) − Sp(f, x) =
∑
�,j

tα�,j +(β�,j /e�N) 1 − t

1 − t1/e�N
. (6.10.1)

Proof
For every �, we set Sφ

f,� := i∗� (Sφ

f ) with i� the inclusion of �◦
� in X0(f ). Since

Sφ

f − ∑
� i�!(Sφ

f,�) has support in X0(g) × Gm,

SgN ,x(Sφ

f ) =
∑

�

SgN ,x

(
i�!(Sφ

f,�)
)
. (6.10.2)

Now consider the normalization n� : �̃� → ��. Let us choose a uniformizing parameter
τ� at the preimage x� of x in �̃�. We may write g ◦ n� = ητ

e�

� with η a local unit. We
have

SgN ,x

(
i�!(Sφ

f,�)
) = SgN | ��,x(Sφ

f,�) = S
ητ

e�N

� ,x�
(Sφ

f,�), (6.10.3)

where in the last term, we view Sφ

f,� as lying in MGm

�̃�×Gm
. By Proposition 3.17,

Sp
(
S

ητ
e�N

� ,x�
(Sφ

f,�)
) = Sp

(
S

τ
e�N

� ,x�
(Sφ

f,�)
)

(6.10.4)

and

Sp
(
Sτ�,x�

(Sφ

f,�)
) = −

∑
j

tπ (α�,j )uπ (β�,j )v[α�,j ], (6.10.5)

where [α] denotes the integer part of α. Indeed, note that if H is the mixed Hodge
module corresponding to a variation of mixed Hodge structure on a neighborhood of x�,
the fiber at x� of ψτ�

(H ) is nothing but the generic fiber of the variation endowed with
the monodromy around x�. The sign in (6.10.5) results from the fact that the numbers
α�,j occurring in its right-hand side are the exponents of an isolated hypersurface
singularity in an ambient space of dimension d − 1 and not d. The result follows now
from (6.10.2), (6.10.3), (6.10.4), and (6.10.5) by plugging together Corollary 5.16 and
Proposition 6.7. �
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