
ITERATES OF MEASURABLE TRANSFORMATIONS
AND MARKOV OPERATORS
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1. Introduction. The existence of a finite, invariant, and equivalent measure
for a measurable transformation tf> and for a Markov process Pix,B) has been
investigated in detail by many authors. In [1] and [4] the reader may find most of
the necessary and sufficient conditions for the problem. Some of these conditions
furnish useful information to other related problems and help in understanding
the nature of measurable transformations and Markov processes in general.

In this paper we discuss two new conditions on a measurable transformation
in terms of its iterates; we also consider their generalizations to Markov processes
and the operators induced by them.

The first condition, see (1) below, states that the infinite sum Z¡=i /(<£"'x)
diverges almost everywhere for every measurable function fix) with fix) > 0
a.e., and for every sequence of integers {n¡\ i = 1,2,--.}. This condition may be
regarded as a generalization of a known condition on a measurable transformation
used in proving general ergodictheorems; namely, the infinite sum Z„" i ficffx)
diverges almost everywhere for every measurable function/(x) with/(x) > 0 a.e.
For a one-to-one measurable transformation cj> it is easy to see that this last
condition is equivalent to the nonexistence of a wandering set of positive measure.
In this paper we show (Theorem 1) that condition (1) is equivalent to the non-
existence of a weakly wandering set of positive measure.

The second condition we consider, see (4) below, states that for any decompo-
sition {Ak | k = 1,2, •••} of the space X into mutually disjoint measurable sets,
for any sequence of integers {n( | i = 1,2, •••}, and for almost all x eX there
exists some k= fc(x)such that cj}n'xeAk for infinitely many/. We show (Theorem 2)
that condition (4) is equivalenttocondition(l).Thenotionofa weakly wandering
set was introduced in [1] and used in studying the problem of invariant measures.
It follows (corollary to Theorem 2) as a direct consequence of Theorem 1 of [1]
that conditions (1) and (4) are again equivalent conditions to the existence of a
finite, invariant, and equivalent measure for a given measurable and nonsingular
transformation. As a direct consequence of the above corollary it follows that a
measurable transformation satisfying conditions (1) or (4) is necessarily recurrent ;
this means that for every measurable set B of positive measure and for almost all
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xeBthereexistinfinitely many zi such that c6"xeB. Since recurrent transformations
exist which do not admit a finite, invariant, and equivalent measure (namely,
ergodic measure-preserving transformations defined on an infinite measure
space), it is clear that the converse implication is not true in general.

In §3 we study transformations of the above type in more detail. Using the
notion of a weakly wandering sequence, we show (Theorem 3 and Corollary 2 of
Theorem 3) that conditions (1) and (4) are violated in a stronger way for ergodic
measure-preserving transformations defined on an infinite measure space.

In §4 we study the analogue of the above conditions for a Markov process and
for the operators induced by it. We note that the above conditions when applied
to a Markov process or to the operators induced by it have to be modified somewhat
in order to be applicable, see conditions (12), (14), and (17). Furthermore, it
turns out (Theorems 4, 5, and 6) that the analogous conditions, when applied to
the respective operators, give somewhat different results than in the case of a
measurable transformation. It is also interesting to note that in §2 we require the
transformation <j> to be one-to-one; the example given in the proof of Theorem 5
shows this significance.

2. Measurable transformations. We let (X,38) be a measurable space, where
X = {x} is an abstract set of points and OS = {B} is a rj-field of subsets of X with
X e 38. By a measure m defined on 38 we mean a non-negative, real-valued and
countably additive set function with the property that the measure of the whole
space X is cr-finite. We say that a measurable set B is a null set if m(B) = 0. Two
measures m and m' defined on the same measurable space (X,3ê) are said to be
equivalent if they have the same null sets. Unless otherwise specified, we shall
consider a one-to-one transformation <p of X onto itself; we assume that the
transformation c/> is measurable, i.e., a set Be 33 if and only if c6B e 33, and that <¡>
is nonsingular, i.e., m(B) = 0 if and only if m(tj>B) = 0 for every Be 33.

If for a measurable set IF there exists a sequence of integres {n¡ | i = 1,2, •••}
such that

£>"'IFnc6"W = 0    for/#;,

we say that IF is a weakly wandering set under the sequence {n¡ | i = 1,2, •••};
in case n¡ = /' for i = 1,2, • • • we say that FFis a wandering set. By the characteristic
function xB(x) of a measurable set B we mean the real-valued function defined on X
as follows:

XbW - |0     tixex-B.

Theorem 1. Let <j> be a measurable and nonsingular transformation defined
on a a-finite measure space (X,33,m). Then there does not exist any weakly
wandering set of positive measure if and only if

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]      MEASURABLE TRANSFORMATIONS AND MARKOV OPERATORS       373

for any sequence of integers {n¡ | i = 1,2, ••• } and any measur-
able function f(x) with f(x)> 0 a.e. we have

(1) f  f(c¡>n'x) = oo a.e.
¡=i

Proof. Let W be a set of positive measure and weakly wandering under the
sequence {n¡\i = 1,2,•■•}. We define the real-valued measurable function/(x)
on X as follows:

—     if x e cpniW for i = 1,2,-,

fix) =  •
00

1      if x t (J   <p"'lF
¡=i

It follows then that for the above sequence {nj we have
00 CO |

I  f(cbnix) -£   — = 1 for all x e IF,
¡ = i ;=i   2'

where w(UO > 0. Thus, if there exists a weakly wandering set of positive measure,
we  have  a  contradiction  to  (1).

Conversely, suppose condition (1) is not satisfied. Then there exist a meas-
urable function/(x)>Oa.e.,a sequence of integers {n¡\ i = 1,2, ---}, and a meas-
urable set A with m(A) > 0 such that

CO

(2) £  f(cbn'x)< oo     for all xeA.
¡ = i

In case m(X) = oo but cr-finite, we have X = (J"=1 B¡ where B¡ O Bj =0 for
i #7 and 0 < m(B¡) < oo for i = 1,2, •■•. We introduce the measure m' defined
on 3S as follows:

,-,-. ,, .^       \?     1    mL4 0B¡)     .      „   .    _(3) m'M) = 2   -^r— ,„x for all Ae3S.
¡ = 1   2'     m(B¡)

It follows that w'(^) = 1 and m' is equivalent to m.
Next, we let s > 0 be an arbitrary positive number. Since m'(X) < co and

f(x) > 0 a.e., it follows that there exist a positive number <5, > Oand a measurable
set Cy with m'(Cy) < s such that/(x) = öt > 0 for all x e X - Cy. Using (2) we
obtain

CO 1 00

I **-<:.(«?"*) ̂ j-  I  W'x) < oo   for all x e A,
¡=1 öl    i=l

where Xx-c,(x) »s the characteristic function of the set X — Cy. This means that
for all xeA there exists a positive integer k = k(x) such that ^"'xeCy for
all ¿!fc=fc(x). We let
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A(k) = {x e A I fc(x) = k}   for k = 1,2,- .

It follows then that for some positive number n > 0 with 0 < n < a = m'iA),
there exists an index kx such that Ax = Aikx) c A and m'(A — Ax) < n/2. Since
4>"'xeCx for all xeAx and all i^kx, we conclude that

liminf m'((¡)'"Ax) ^ m'(Cx) = e.
i-* 00

Next, for each p =2,3, ••• we perform inductively the same construction as
above with e/p replacing e. Thus, for each p = 2,3, ■ • • we obtain a positive number
¿>p > 0 and a measurable set Cp with m\Cp) ¿ e/p such that/(x) ^ ôp > 0 for all
x 6 X - Cp. Consequently, we construct the set Ap contained in the previously
constructed set Ap_x with the property that

m,(A,-i-Aj<n/2'
and

lim infm' i<j>n'Af) = m'iCp) =~ e/p.

Now let A' =f)P°=xAp. It follows that

liminf m'(<P"A') ̂  liminfm'(<p%4')=: liminf m'(<P%)
n-^oo i-*oo ¡-+0O

^ m'iCp) _: s/p -»0     as p-> oo.

Furthermore,

ro'(A')   = m'( Q ¿,) = m' {a - IJ GVi - AP))

CO

=• m'(4) - I   t}/2p = a-r]>0.
p=i

Thus, we obtain a measurable set A' with m'(^4') > 0 and lim inf„^œm'(</>"^') = 0.
Using Lemma 4 of [1] we can construct a weakly wandering set of positive measure
im'). Since m and m' are equivalent, this completes the proof of the theorem.

Let us call a collection {A¡ | /' = 1,2,— } of measurable sets a decomposition
of the space X if the following two conditions are satisfied:

i.   Alr\Aj = 0 if l*j,
ü. ur=i 4-*.
Theorem 2. Let ¡p be a measurable and nonsingular transformation defined

on a a-finite measure space iX,33,m). Then there does not exist a weakly wan-
dering set of positive measure if and only if
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for any sequence of integers {nt\i = 1,2,■■■}, for any decom-
(4) position {Ak\k = 1,2, •••} of the space X, and for almost all

xeX there exists some k = k(x) such that cj)n'xeAk for in-
finitely many i.

Proof. Let Wbe a set of positive measure and weakly wandering under the
sequence  {n( | i = 1,2, ■•• }.  Let us put

CO

Ax =X - (J qY'W
i=l

and

Ak=cb"k-iW    for fc«2,3, —.

It follows then that {Ak \ k = 1,2, •••} is a decomposition of the space X and,
furthermore, for the above sequence {n,}, for every k = 1,2, •••, and for all x e W
we have cfi'"xeAk for at most one i = i(k). Since m(W) > 0 this is a contra-
diction to (4).

Conversely, suppose condition (4) is not satisfied. Then there exist a sequence
of integers {n¡ | i = 1,2, •••}, a decomposition {Ak | k = 1,2, •••} of the space X,
and a measurable set A with m(A) > 0 such that for all points xeA and for every
k = 1,2, •••, we have cbn,xeAk for at most finitely many i. Let m(A) = a > 0.
Then, for any e with 0 < e < a, and for each k = 1,2, •••, we can find a subset
Bk of A with m(Bk)<e/2k, and some positive integer Mk such that <¡>nix e Ak for
at most Mk times for all xeA — Bk. Let

CO

A' = A-\jBk.
k=l

Then
00

m(A') = m(A) - £ m(Bt) = a - e > 0.
*=i

We now define the real-valued function fix) on X as follows :

/w - J. 2¿; ^w'
where xAlfx) is the characteristic function of the set Ak for fc = 1,2, •••. It follows
that/(x) is a measurable function defined on X with/(x) > 0 a.e.; furthermore,
for the above sequence {n¡ | i = 1,2, ■••},

CO

Z fi<j)"x)< oo   for all xeA'.
i=l

Since miA') > 0 this contradicts (1). By making use of Theorem 1 we complete
the proof.
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We say that a measure p defined on iX,33) is invariant under the measurable
transformation <p if p(B) = p(<pB) = p(c6_1B) for every measurable set B.

Corollary. BoíA condition (1) and condition (4) on a measurable and non-
singular transformation ci> defined on a a-finite measure space iX,33,m) are
necessary and sufficient conditions for the existence of a finite, invariant, and
equivalent measure p.

Proof. Follows from Theorem 1 and Theorem 2 above and Theorem 1 of [1]
where it was shown that for a given measurable and nonsingular transformation <j>
defined on a measure space (AT, 33, m) there exists a finite, invariant, and equivalent
measure p if and only if there does not exist any weakly wandering set of positive
measure.

3. Ergodic measure-preserving transformations defined on an infinite measure
space. In this section we consider an infinite but <r-finite measure space iX, 33, m).
For example, the real line with the usual Lebesgue measurable subsets and the
Lebesgue measure m defined on it with the measure of the whole space infinite.
A measurable transformation <p defined on iX,33, m) is said to be ergodic if
<f>B = B implies miß) = 0 or m(Z — B) = 0 for any measurable set B. The trans-
formation c6 is said to be measure-preserving if the measure m is invariant under
4>. A sequence of integers {n¡ \ i = 1,2, •••} is said to be a weakly wandering
sequence for the transformation <p if there exists a measurable set IF of positive
measure which is weakly wandering under the sequence {n¡ | i = 1,2, •■•}.

It is easy to see that an ergodic measure-preserving transformation <f> defined
on an infinite measure space iX, 33, m) does not admit any finite invariant measure
p equivalent torn, see [1]. In this section we study the relationship of such a trans-
formation to condition (1) and condition (4) in more detail. It was shown in [1]
(see Theorem 2 of [1] and also Theorem 1 of [2]) that every ergodic measure-
preserving transformation <p defined on an infinite measure space iX,33,m)
possesses weakly wandering sets of positive measure. Making use of this fact,
we prove the following :

Theorem 3. Let c6 be an ergodic measure-preserving transformation defined
on an infinite measure space iX,3$,m), and let {n¡ | i = 1,2, ••• } beaweakly
wandering sequence. Then for any integrable function fix) defined on X

00

I   |/(<pB,x)| <  co    a.e.
¡ = i

Proof. Let IF be a set of positive measure and weakly wandering under the
sequence {/i¡ |/ = 1,2, •••}, and let/(x) be an integrable function. It follows
then that
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oo >

(5)

í|/(x)|dm(x)=   f |/(x)|dm(x)
Jx JU'=i*  w

Z    f ,    |/(x)|dm(x).
i=l   J<¡>    W

In each summand of the last member of the above inequality we perform a change
of variable of integration, and since the measure m is invariant under the trans-
formation cb it follows that

CO /» CO /•

(6) Z |/(x)|dm(x)=   Z \fi4>nix)\dmix).
¡=i  Jfr'w ¡=i Jw

By the Monotone Convergence Theorem, the last member of equation (6) is
equal to

(7) f   Z   \f(4>n'x)\dm(x).
Jw    i = l

Combining (5), (6), and (7) we conclude that
00

(8) Z   \fi4>nix) I < oo   for almost all xeW.
i=l

Since <p is ergodic and IF is a set of positive measure, it follows that

(9) mix-   \J     cbnw) = 0.
\ n— — co J

It is easy to see that if IF is a weakly wandering set under the sequence
{n,-| i = 1,2, •••}, then for any integer n =0, + 1, ± 2,--- the set cb"W is again
weakly wandering under the same sequence {n¡\ i = 1,2,•••}. Next, for every
integer n = 0, + 1, + 2, ••• we repeat the above argument with the set c¡f W replac-
ing the set W and conclude that

oo

(10) Z /(<pn,x) < oo   for almost all x s flF.
i=l

Combining (9) and (10) we conclude the proof of the theorem.

Corollary 1. Letcf> be an ergodic measure-preserving transformation defined
on an infinite measure space iX,3S,m) and let {n¡ | i = 1,2, •••} be a weakly
wandering sequence. Then for any measurable set A with m(A) < oo and for
almost all xeX we have c\>"xeA for at most finitely many i.

Proof.   We note that the characteristic function Xa(x) of the set A is an inte-
grable function. The rest of the proof is an immediate consequence of Theorem 3.
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Corollary 2. Let <j> be an ergodic measure-preserving transformation defined
on an infinite measure space iX,33,m) and let {n¡ | / =1,2, — } be a weakly
wandering sequence. Let {Ak | k = 1,2, •••} be a decomposition of the space X
with miAk) < oo for k = 1,2, — . Then for every k = 1,2, — and for almost all
xeX we have qyn'xeAkfor at most finitely many i.

Proof. That there are such decompositions follows from the definition of
er-finiteness of the measure space iX,33,m). The proof then is an immediate
consequence of Corollary 1.

4. Markov processes. Since we can always replace the measure m by a measure
which is totally finite and is equivalent to m, see (3), we shall assume that mix) < oo.

Let us denote by P(x, B) the transition probability of a temporally homogeneous,
discrete time Markov process given in iX,33). By this we mean that Pix,B)
satisfies   the   following  conditions:

(i) P(x,B) is a real-valued function defined for every pair (x,B) where xeX
and Be33, and 0^P(x,B)gl.

(ii)   For every fixed x, P(x, B) is a measure defined on iX, 38) with P(x, X) = 1.
(iii) For every fixed Be33, P(x,B) is a measurable function.
We  define the nth transition probability of the process recurrently by:

P\x,B) = Pix,B)
and

P"(x,B) =   \ Pn~\y,B)Pix,dy)   for n = 2,3,— .

Then it is clear that for each positive integer n »1,2, — , the nth transition
probability satisfies the same conditions (i), (ii) and (iii) above. The nth transition
probability P"(x,B) represents the probability that a "path" of the process
starting from the point x will go into the set B in n steps. In this note we shall have
no occasion to deal with the probability model ("paths" of the process), but shall
treat everything in terms of transition probabilities. Therefore, in the sequel, we
shall abuse the terminology and say a Markov process to mean its transition
probability Pix,B). Let us call the process P(x,B) nonsingular with respect to the
measure m if m(ß) = 0 implies that P(x, B) = 0 a.e. (m). It is easy to verify that if
P(x,B) is nonsingular, then soisP"(x,B)foreach n = 1,2, •••. In what follows we
shall always assume the nonsingularity of the process P(x,B) with respect to the
given measure m.

Suppose c6 is a (not necessarily one-to-one) measurable and nonsingular trans-
formation defined on iX,33, m). For such a transformation c6 to be measurable we
mean qy~1B is measurable for every measurable set B, and to be nonsingular we
mean m(c6~ 1B) = 0 for every measurable set B with m(B) = 0. Now given such a
transformation c6, it can be regarded as a special type of Markov process whose
transition probability is given by the formula :
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(11) P(x,B) = u- 1(B)ix) = Xb(4>x),

where x<i>-hb)(x) and Xb(x) denote the characteristic functions of the sets
cb~1(B) and B, respectively.

We say that a measure p defined on the measurable space (X,S8) is invariant
for the process P(x, B) if for every BeSS'Ip(B) =   J    P(x,B)dp(x).

If P(x,B) is generated by a point transformation cj> as indicated by (11), then p
is an invariant measure for the process P(x,B) if and only if 0 is a measure-
preserving transformation with respect to the measure p; i.e., p(</>_1B) = p(B)
for every measurable set B.

Let us denote by Ü(m) the Banach space of all real-valued, measurable, and
integrable functions on X, and by L^fa) the Banach space of all real-valued,
measurable, and essentially bounded functions on X. Norms in these spaces are
defined as usual. Two functions in L1(m) or L°°(to) which differ only on a set of
measure zero will be identified.

A nonsingular Markov process P(x,B) gives rise to a linear operator T of
Ll(m) into itself and a linear operator U of Lx(m) into itself by the following
formulae :

T:f-yTf  = A [jfx)P(x, • )dm(x)j ,

U:g->Ug=    \g(y)P(x,dy),

where d/dm denotes the Radon-Nikodym derivative with respect to the measure
m. It is easy to check that both T and U are positive operators, that
|| T\\y = 1, I U ||^ = 1 and that Tand U are adjoint operators of each other;
i.e., for every pair of functions/, g with/eL^m), geU°(m),

f f(x)Ug(x)dm(x)  = f  Tf(x)g(x)dm(x).
Jx Jx

It was shown by E. Hopf [3] that with respect to the operator Tone can always
decompose the space X into two disjoint parts; the conservative part C and the
dissipative part D, which are characterized by the following properties : for every
strictly positive function feL*(m),

CO

Z   T"f(x) = oo for almost all x e C
n = 0

and for every function A e Ll(m),
00

Z   T"A(x)    < oo for almost all xeD.
B = 0
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It is not difficult to show that if the Markov process P(x, B) possesses a finite
invariant measure p equivalent to m, then the dissipative part D must be a set of
measure zero. However, the condition X = C is not sufficient for the existence of
a finite, invariant, and equivalent measure p for the process Pix,B). In fact, we
can state the following:

Theorem 4. If there exists a finite, invariant, and equivalent measure for
the process P(x,B), then

. for any measurable function fix) with fix) > 0 a.e., and for
any sequence ofpositive integers {n¡\ i = 1,2, •••},

GO

I T"/(x)= oo a.e.
¡=i

Conversely, if there exists a function fix) inL^im) with fix) > 0 a.e. and which
has the property that

00

ZZ   T"f(x) = oo a.e.
i = l

for any sequence of positive integers {n¡\ i = 1,2, — }, then íAere exists a finite,
invariant, and equivalent measure for the process P(x,B).

Proof. In order to prove the first part of the theorem, let us suppose that
there exist a measurable function/(x) with/(x) > 0 a.e., an infinite sequence of
positive integers {n¡ | /' = 1,2, •••}, and a set A e33 with m(A) > 0 such that

CO

(13) 2 T"/(x) < oo for all xeA.
¡=i

We may suppose that/(x) belongs to L'(m). We define a new measure p on iX,33)
by:

p(B)  =      f(x)dm(x) for all Be33.

It is clear that p is totally finite and is equivalent to m. From (13) it follows that

lim T"/(x)=0   for all xeA.
Í-.00

By Egorov's theorem, we can find a measurable subset A' of A and some constant
M > 0 such that m(A') > 0 and for all xeA'

|T"/(x)( = M   for all i = 1,2,-.

Using the Dominated Convergence Theorem, it follows that

lim f  T"/(x)dm(x)=0.
i-»ot> Ja'

Consequently,
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lim   \ U"'xAx)f(x)dmix) =  lim   \ Pnt(x,A')dp(x) = 0.
i-»oo    Jx i-»oo   Jx

This implies that

liminf \ P\x,A')dp(x)=0,
n-»oo     J X

where p(A') > 0 by the equivalence of p and m. By Theorem 3 of [4], P(x,B)
cannot have a finite invariant measure which is equivalent to p (hence to m).
This proves the first part of the theorem.

To prove the second part of the theorem, let/(x) be the function satisfying the
properties stated in the hypothesis. Let us denote again

KB) =    f  /(x)dm(x),

and consider the Banach space L1(p). Itis obvious that a measurable function A(x)
belongs toL1(p)if and only if h(x)f(x) belongs to Lx(m). We define a linear opera-
tor S of Ll(p) into itself by

S: A->SA= -j- Í f A(x)P(x, • )dp(x)l.

It is clear that S and U are adjoint operators of each other, whereby U is regarded
as a linear operator on L°°(p) (which is actually identical with L°°(m)).

It is easy to verify that the operators Tand S are related by the equation :

Tk(hf) =fSkh for each fe = l,2,-».

Clearly, the function l(x) which takes constant value one a.e. (m) (hence a.e. (p))
belongs to Ü(p); thus, by taking A to be 1, we get

fSkl = Tkf   for each k = 1,2, »•».

Therefore, our hypothesis implies that, for any sequence of positive integers
foil-1,2,»..},

CO

f(x) Z   S"l(x) = oo   a.e. (m) (hence a.e. (p)).
¡=i

Since/(x) belongs to L^m), it follows that 0 </(x) < oo a.e. (m) (hence a.e. (p)).
Consequently, for any sequence of positive integers {n¡ | i = 1,2,...},

Z   S"'l(x) = oo a.e. (p).
i=i

Now suppose that for some measurable set E and some sequence of positive
integers {n,-1 j = 1,2, •■• }
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00 /•

Z P"\x,E)dpix) < oo.
j=l     Jx

Then, since

I   f Pnjix,E)dpix) =   Z   [ S"Jl(x)dp(x) =  (   I   S"Jl(x)dp(x),
j = i J x ; = i Je Je j = i

we must have p(E) = 0. Therefore, by Theorem 4 of [4] there exists a finite
measure v which is equivalent top (hence to m) and is invariant forP(x,B). This
completes the proof of the theorem.

Corollary. Suppose there exists one function fix) in Llim) with fix) > 0
a.e. and which has the property that, for any sequence of positive integers
{n¡\ i = 1,2, — },

CO

I    T"'fix) = oo a.e.
i=l

Then for any measurable function gix) with gix) > 0 a.e. and for any sequence
of positive integers {n¡ | / = 1,2, — }, we have

GO

S   T"'gix) = co a.e.
¡=i

Proof.    Follows directly from Theorem 4.
We note that it is possible to construct a Markov process P(x,B) for which

X = C but
CO

I   T"/(x) <  oo   a.e.
¡=i

for some measurable function/(x) with/(x) > 0 a.e. and some sequence of positive
integers {n¡ | i = 1,2, •••}.

The assertions in Theorem 4 were stated in terms of the operator T. It is
interesting to know whether similar assertions stated in terms of the adjoint
operator U would be valid. It turns out that an analogue of the first assertion of
Theorem 4 is valid with respect to the operator U, while the second assertion is
not. Namely,

Theorem 5. // fAere exists a finite, invariant, and equivalent measure v
for the Markov process Pix,B), then

for any measurable function fix) withfix)> 0 a.e., and for
any sequence of positive integers {n, | i = 1,2, •••}, we have

(14) S C7"'/(x) = co a.e.
i=i
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However, there exists a Markov process P(x,B) for which condition (14) is
satisfied and yet there does not exist a finite, invariant, and equivalent measure.

Proof.   In order to prove the first part of the theorem, let us define an operator
R on Ü(v) into itself by

R : h - Rh = -jU f A(x)P(x, • )dv(x) 1.

Then clearly, R and U are adjoint operators of each other, whereby we regard U
as an operator on L°°(v) into itself. Now let us suppose that condition (14)
is not satisfied. Then, there exist a measurable function/(x) with/(x) > 0 a.e.,
a sequence of positive integers {n¡ | i = 1,2, •••}, and a measurable set A with
m(A) > Osuch that

CO

(15) Z V'fix) < oo   forallxe^.
¡=i

We may assume without loss of generality that/(x) belongsto L°°(v).From (15) it
follows that

lim V'fix) = 0 for all xeA.
i-»oo

Since J V'fix) | _ v-ess. sup |/(x) | for all i, and since v is a finite measure, we
conclude that

lim   f   tJ7(x)dv(x)=0,
i-»oo Ja

which implies that

lim   f /(x)R"'^(x)dv(x)=0.
¡-»oo    Jx

Thus, we can find a subsequence {n,} of the sequence {n¡} such that

R"jXa(x) -+ 0 a-e- as ;' -► oo.

The invariance of the measure v implies that

Rkl = 1 a.e. for each k = 1,2, — ,

so that, by the positivity of R,

RkXAix)i% 1 a.e. for each fc = l,2,— .

Thus, the sequence {R"jXa(x)} tends to 0 a.e. boundedly as _/-> oo, and this
implies that

lim   f RnjxAix)dvix) = 0.
./■-»co   Jx
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But for each 7 = 1,2, —,

j RnjXAix)dvix)   = jV'l(x)dv(x) = viA)

so that we must have viA) = 0. Since v is equivalent to m, we have a contradiction.
In order to show the second part of the theorem, let us take the measure space

iX,33, m), where X is the unit interval [0,1] with the o-field 38 of Lebesgue
measurable subsets of Z and the ordinary Lebesgue measure m defined on it with
miX) = 1. We consider on this measure space a point transformation qb defined
as follows:

r2x   if x 6 [0,1/2),
(16) c¿(x) - \

[x     if xe [1/2,1].

It is clear that c6 is a many-to-one, measurable, and nonsingular transformation.
We consider now a Markov process Pix,B) generated by this transformation </>,
where Pix,B) is given by (11). Then, the linear operator U associated with this
process is given by:

U:f-* Ufix) = f fiy)Pix,dy) =/(<px).

It is clear from the definition of the transformation c6 that this Markov process
satisfies the condition (14). On the other hand, it is also easy to see that any invar-
iant measure p for the process P(x,B) must have the property that p[0,1/2) = 0.
Therefore, this process does not have any finite, invariant, and equivalent measure.
This completes the proof of the theorem.

In the next theorem we consider the analogue of condition (4) for a Markov
process.

Theorem 6.   There exists a finite, invariant, and equivalent measure pfor
the Markov process P(x,B) if and only if

for any decomposition {Ak | k = 1,2, •••} of the space X,
for any measurable set B with miB) > 0, and for any sequence
of positive integers {n¡\ i = 1,2, ■•■}, there exists some k
idepending on the set B and the sequence {n¡}) such that

CO /»

Z Pni(x,B)dm(x) = oo.
¡=1     jAk

Proof. To prove the sufficiency, let us take a decomposition of the space X
which consists of X alone. Condition (17) states that for any measurable set B with
m(B)>0 and for any sequence of positive integers {n¡\ i = 1,2, — },

CO /•

Z      f1=1    Ji
P"'(x,B)dzn(x) = oo.

x
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Therefore, for any measurable set B with miB) > 0,

liminf — Z     f P4(x,B)dm(x)>0.
n-»oo n    * = 0     JX

By Theorem 3 of [4], there exists a finite, invariant, and equivalent measure* p
for the Markov process Pix,B).

To prove the necessity, let us suppose that the Markov process Pix,B) has a
finite, invariant, and equivalent measure p and that there exist some decompo-
sition {Ak | k = 1,2, •■■} of the space X, a measurable set B with miB) > 0, and a
sequence of positive integers {n¡ | i = 1,2, •••} such that

OO /•

Z P"'(x,B)dm(x)< oo   for all k = 1,2,-.
i=l     JAu

Let us put

M4 = max(l,   Z     I    Pn,(x,B)dm(x)j   for k = 1,2,-,

and define

m = I, *kXAk(x) ■
Then/(x) is a measurable function on X with/(x) > 0 a.e., and fix) belongs to
Lxim) (and, therefore, to Llim)). It is easy to show that for each ;' = 1,2, —

Now,

TJfM = â *k r^w-

Z    f T"'fix)dmix) =   Z    f   Z    ^-¡-T-"xAj<x)dmix)
¿ = i Jb ¡=i Jb k=i   ¿ Mk

00 CO j /»

" I. ^k I, L P"ix-B)dmix)
'A*

<    1.

By the Monotone Convergence Theorem it follows that

Í Z   T"'fix)dmix) = Z     f r/(x)dm(x),
Jbi=i ¡=i    Jb

from which it follows that
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Z   T"'fix) < co   for almost all xeB.
i=l

Thus we have a contradiction to the first part of Theorem 4, and this completes
the proof.

Suppose in condition (17) of Theorem 6 we interchange the role of Ak and B,
i.e., suppose we consider the following condition: For any decomposition
{Ak\ k = l,2,---} of the space X, for any measurable set B with m(B) > 0, and for
any sequence of positive integers {/?,-1 i = 1,2, •••}, there exists an index ^(depen-
ding on the set B and the sequence {nt}) such that

oo       p

Z       P"'ix,Ak)dmix) = co.
> = i Jb

Then, the necessity of this condition for the existence of a finite, invariant, and
equivalent measure for the process Pix,B) can be proved in exactly the same
manner as the necessity part of Theorem 6. However, this condition is not suf-
ficient, as the same example mentioned in the proof of Theorem 5 satisfies this
condition.
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