ITERATES OF MEASURABLE TRANSFORMATIONS
AND MARKOV OPERATORS

BY
ARSHAG B. HAJIAN AND YUIJI ITO

1. Introduction. The existence of a finite, invariant, and equivalent measure
for a measurable transformation ¢ and for a Markov process P(x,B) has been
investigated in detail by many authors. In [ 1] and [4] the reader may find most of
the necessary and sufficient conditions for the problem. Some of these conditions
furnish useful information to other related problems and help in understanding
the nature of measurable transformations and Markov processes in general.

In this paper we discuss two new conditions on a measurable transformation
in terms of its iterates; we also consider their generalizations to Markov processes
and the operators induced by them.

The first condition, see (1) below, states that the infinite sum X2, f(¢™x)
diverges almost everywhere for every measurable function f(x) with f(x)>0
a.e., and for every sequence of integers {n,—] i=1,2,---}. This condition may be
regarded as a generalization of a known condition on a measurable transformation
used in proving general ergodic theorems; namely, the infinite sum X2, f(¢"x)
diverges almost everywhere for every measurable function f(x) with f(x) > 0 a.e.
For a one-to-one measurable transformation ¢ it is easy to see that this last
condition is equivalent to the nonexistence of a wandering set of positive measure.
In this paper we show (Theorem 1) that condition (1) is equivalent to the non-
existence of a weakly wandering set of positive measure.

The second condition we consider, see (4) below, states that for any decompo-
sition {4, | k =1,2,---} of the space X into mutually disjoint measurable sets,
for any sequence of integers {n;|i=1,2,---}, and for almost all xe X there
exists some k= k(x) such that ¢"x € A, forinfinitely many i. Weshow (Theorem 2)
that condition (4) is equivalenttocondition(1). Thenotion ofa weakly wandering
set was introduced in [ 1] and used in studying the problem of invariant measures.
It follows (corollary to Theorem 2) as a direct consequence of Theorem 1 of [1]
that conditions (1) and (4) are again equivalent conditions to the existence of a
finite, invariant, and equivalent measure for a given measurable and nonsingular
transformation. As a direct consequence of the above corollary it follows that a
measurable transformation satisfying conditions (1) or (4) is necessarily recurrent ;
this means that for every measurable set B of positive measure and for almost all
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x € Bthereexistinfinitely many nsuch that ¢"x € B. Sincerecurrent transformations
exist which do not admit a finite, invariant, and equivalent measure (namely,
ergodic measure-preserving transformations defined on an infinite measure
space), it is clear that the converse implication is not true in general.

In §3 we study transformations of the above type in more detail. Using the
notion of a weakly wandering sequence, we show (Theorem 3 and Corollary 2 of
Theorem 3) that conditions (1) and (4) are violated in a stronger way for ergodic
measure-preserving transformations defined on an infinite measure space.

In §4 we study the analogue of the above conditions for a Markov process and
for the operators induced by it. We note that the above conditions when applied
to a Markov process or to the operatorsinduced by it have to be modified somewhat
in order to be applicable, see conditions (12), (14), and (17). Furthermore, it
turns out (Theorems 4, 5, and 6) that the analogous conditions, when applied to
the respective operators, give somewhat different results than in the case of a
measurable transformation. It is also interesting to note that in §2 we require the
transformation ¢ to be one-to-one; the example given in the proof of Theorem 5
shows this significance.

2. Measurable transformations. We let (X, %) be a measurable space, where
X = {x} is an abstract set of points and # = {B} is a g-field of subsets of X with
X € 4. By a measure m defined on # we mean a non-negative, real-valued and
countably additive set function with the property that the measure of the whole
space X is o-finite. We say that a measurable set B is a null setif m(B) =0. Two
measures m and m’ defined on the same measurable space (X, %) are said to be
equivalent if they have the same null sets. Unless otherwise specified, we shall
consider a one-to-one transformation ¢ of X onto itself; we assume that the
transformation ¢ is measurable, i.e., a set B e # if and only if ¢ B e #, and that ¢
is nonsingular, i.e., m(B) = 0 if and only if m(¢B) =0 for every Be 4.

If for a measurable set W there exists a sequence of integres {n;|i=1,2, ---}
such that

"WNPW= fori#j,

we say that Wis a weakly wandering set under the sequence {n; | i=1,2,-};
incase n; =i fori=1,2,--- wesay that Wis a wandering set. By the characteristic
function yz(x) of a measurable set B we mean the real-valued function defined on X
as follows:

1 if xeB,
1s(x) = {0 if xeX—B.

THEOREM 1. Let ¢ be a measurable and nonsingular transformation defined
on a a-finite measure space (X,%,m). Then there does not exist any weakly
wandering set of positive measure if and only if
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for any sequence of integers {n; , i=1,2,---} and any measur-
able function f(x) with f(x)> 0 a.e. we have

) § f(@"x) =0 a.e.
i=1

Proof. Let W be a set of positive measure and weakly wandering under the
sequence {n;|i=1,2,---}. We define the real-valued measurable function f(x)
on X as follows:

2l if xedp™W for i =1,2,---,
fx) =

|L 1 ifx¢J oW
i=1

It follows then that for the above sequence {n;} we have

0 0

X f(p"x) = X %=1 for all xe W,

i=1 i=1
where m(W) > 0. Thus, if there exists a weakly wandering set of positive measure,
we have a contradiction to (1).

Conversely, suppose condition (1) is not satisfied. Then there exist a meas-

urable function f(x)>0 a.e., a sequence of integers {n;| i =1,2,---}, and a meas-
urable set A with m(A4) > 0 such that

2 § f(d"x) < oo for all xe A.
i=1

In case m(X) = oo but o-finite, we have X = U}’;l B; where B; " B; =g for
i#jand 0 <m(B) < o for i =1,2,-.-. We introduce the measure m’ defined
on # as follows:

« | m(ANB)
3 ! = — —— ¥ forallAe%.
3) m’'(4) El % “m(B) orallde
It follows that m’(X) =1 and m’ is equivalent to m.

Next, we Iet ¢ >0 be an arbitrary positive number. Since m’(X) < co and
f(x) > 0 a.e., itfollows that there exist a positive number §, > O and a measurable
set C; with m’(C,) < & such that f(x) = §, > 0 for all xe X — C,. Using (2) we
obtain

X tx-c, (™) £ 6L Y f(¢™x) < o forallx € 4,
t=1 1 i=1
where xy_c,(x) is the characteristic function of the set X — C,. This means that

for all x e A there exists a positive integer k = k(x) such that ¢™xeC, for
all i = k=k(x). We let
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A(k)={xeA|k(x) =k} for k=1,2,--.

It follows then that for some positive number 5 > 0 with 0 <y < a =m’'(A),
there exists an index k, such that A; = A(k,) = A and m'(4 — A4,) <n/2. Since
¢"xeC, for all xe A, and all i = k,;, we conclude that

lim inf m'(¢"4;) £ m'(Cy) < e.

Next, for each p =2,3,.-- we perform inductively the same construction as
above with ¢/p replacing . Thus, foreach p = 2,3, --- we obtain a positive number
0, > 0 and a measurable set C, with m’(C,) < ¢/p such that f(x) = 6, > 0 for all
x€ X — C,. Consequently, we construct the set 4, contained in the previously
constructed set 4,_, with the property that

m,(Ap-l - Ap) < ’1/2p
and

liminfm’ (¢"4) = m'(C,) < ¢/ p.

Now let A’ =(");=, 4,. It follows that

lim inf m'(¢"d’) < liminfm’(¢"A’) < liminf m'($™4,)

n— o i~ i~
sm'(C,)<e¢/p—>0 as p—oo.

Furthermore,

m'(d’) = m'(tél Ap) =m’ (A — ,,CJl (Ap- ¢ _Ap))

= m'(4) - n/2?=a-n>0.
1

p=
Thus, we obtain a measurable set A’ with m’(4’) > 0 and lim inf,_, ,m’(¢"A’) = 0.
Using Lemma 4 of [ 1] we can construct a weakly wandering set of positive measure
(m’). Since m and m’ are equivalent, this completes the proof of the theorem.

Let us call a collection {4, |i=1,2,---} of measurable sets a decomposition
of the space X if the following two conditions are satisfied:

i AnA; =g if i#),

ii. U2y 4i=X.

THEOREM 2. Let ¢ be a measurable and nonsingular transformation defined
on a a-finite measure space (X, %, m). Then there does not exist a weakly wan-
dering set of positive measure if and only if
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for any sequence of integers {n;| i =1,2,---}, for any decom-

4 position {4, | k =1,2,---} of the space X, and for almost all
x € X there exists some k = k(x) such that ¢"'x € A, for in-
finitely many i.

Proof. Let W be a set of positive measure and weakly wandering under the
sequence {n;|i=1,2,---}. Let us put

A4 =X - ¢o"w
i=1
and
A, =" 'W for k=2,3,---.

It follows then that {4, | k =1,2,---} is a decomposition of the space X and,
furthermore, for the above sequence {n;}, forevery k =1,2,---,and forallxe W
we have ¢"'x e A4, for at most one i =i(k). Since m(W) > 0 this is a contra-
diction to (4).

Conversely, suppose condition (4) is not satisfied. Then there exist a sequence
of integers {n,., i=1,2,---}, a decomposition {4, l k=1,2,---} of the space X,
and a measurable set A with m(4) > 0 such that for all points x € 4 and for every
k=1,2,---, we have ¢"'x € 4, for at most finitely many i. Let m(4) =a > 0.
Then, for any ¢ with 0 <& < a, and for each k =1,2,..-, we can find a subset
B, of A with m(B,)<¢/2*, and some positive integer M, such that ¢™x € 4, for
at most M, times for all xe A — B;. Let

A'=4- B
k=1
Then

o0

m(A')Zm(A)— X m(B) Za-¢e>0.

k=1
We now define the real-valued function f(x) on X as follows:

16 = T 5 2

k=1
where y ,(x) is the characteristic function of the set 4, for k =1,2,-.-. It follows
that f(x) is a measurable function defined on X with f(x) > 0 a.e.; furthermore,
for the above sequence {n;|i=1,2,--},

Y f(¢"x)< oo for all xe A’
i=1

Since m(A4’) > 0 this contradicts (1). By making use of Theorem 1 we complete
the proof.
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We say that a measure p defined on (X, %) is invariant under the measurable
transformation ¢ if u(B) = u(¢B) = u(¢ ' B) for every measurable set B.

COROLLARY. Both condition (1)and condition(4)on a measurable and non-
singular transformation ¢ defined on a o-finite measure space (X,%,m) are
necessary and sufficient conditions for the existence of a finite, invariant, and
equivalent measure pu.

Proof. Follows from Theorem 1 and Theorem 2 above and Theorem 1 of [1]
where it was shown that for a given measurable and nonsingular transformation ¢
defined on a measure space (X, #, m) there exists a finite, invariant, and equivalent
measure p if and only if there does not exist any weakly wandering set of positive
measure,

3. Ergodic measure-preserving transformations defined on an infinite measure
space. Inthissection we consider an infinite but s-finite measure space (X, %, m).
For example, the real line with the usual Lebesgue measurable subsets and the
Lebesgue measure m defined on it with the measure of the whole space infinite.
A measurable transformation ¢ defined on (X,%,m) is said to be ergodic if
¢B = B implies m(B) = 0 or m(X — B) = 0 for any measurable set B. The trans-
formation ¢ is said to be measure-preserving if the measure m is invariant under
¢. A sequence of integers {n,.] i=1,2,---} is said to be a weakly wandering
sequence for the transformation ¢ if there exists a measurable set W of positive
measure which is weakly wandering under the sequence {n;|i=1,2,--}.

It is easy to see that an ergodic measure-preserving transformation ¢ defined
on an infinite measure space (X, %, m) does not admit any finite invariant measure
u equivalentto m,see[1]. Inthissection westudy therelationship of suchatrans-
formation to condition (1) and condition (4) in more detail. It was shown in [1]
(see Theorem 2 of [1] and also Theorem 1 of [2]) that every ergodic measure-
preserving transformation ¢ defined on an infinite measure space (X,%,m)
possesses weakly wandering sets of positive measure. Making use of this fact,
we prove the following:

THEOREM 3. Let ¢ be an ergodic measure-preserving transformation defined
on an infinite measure space (X,#,m), and let{n;|i=1,2,---} beaweakly
wandering sequence. Then for any integrable function f(x) defined on X

s

[f(@"x)| < o ae.

i=1

Proof. Iet W be a set of positive measure and weakly wandering under the
sequence {nil i=1,2,---}, and let f(x) be an integrable function. It follows
then that
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r=

o> [lrlanw 2 [ o 176)]dn

(%) w
=X |, |re)]|dm).
i=1 Jo W

In each summand of the last member of the above inequality we perform a change
of variable of integration, and since the measure m is invariant under the trans-
formation ¢ it follows that

(6) f‘; W |FE)] dm(x) = > f | £(¢™x) | dm(x).
i=1 P4 i=1 JW
By the Monotone Convergence ‘Theorem, the last member of equation (6) is
equal to
@) X [f(¢™x)|dm(x).

W i=1

Combining (5), (6), and (7) we conclude that

Ms

® [f(¢"x)| < oo for almost all xe W.

)
-

Since ¢ is ergodic and Wis a set of positive measure, it follows that

0
© m(X - U ¢"W) ~0.
It is easy to see that if W is a weakly wandering set under the sequence
{n;|i=1,2,---}, then for any integer n =0, + 1, +2,--- the set "W is again
weakly wandering under the same sequence {n;|i=1,2,---}. Next, for every
integern =0, + 1, + 2, --- we repeat the above argument with theset ¢" W replac-
ing the set W and conclude that

10) Y f(¢"x) < o for almost all x e ¢"W.
i=1

Combining (9) and (10) we conclude the proof of the theorem.

COROLLARY 1. Let ¢ be an ergodic measure-preserving transformation defined
on an infinite measure space (X,%,m) and let {n,| i=1,2,---} be a weakly
wandering sequence. Then for any measurable set A with m(4) < c and for
almost all xe X we have ¢"x € A for at most finitely many i.

Proof. We note that the characteristic function y,(x) of the set A is an inte-
grable function. The rest of the proof is an immediate consequence of Theorem 3.
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COROLLARY 2. Let ¢ be an ergodic measure-preserving transformation defined
on an infinite measure space (X,#,m) and let {nil i=1,2,---} be a weakly
wandering sequence. Let {4, |k =1,2,---} be a decomposition of the space X
with m(A,) < o for k =1,2,---. Then for every k =1,2,.-- and for almost all
xeX we have ¢™x € A, for at most finitely many i.

Proof. That there are such decompositions follows from the definition of
o-finiteness of the measure space (X,#,m). The proof then is an immediate
consequence of Corollary 1.

4. Markov processes. Since we can always replace the measure m by a measure
whichistotally finiteand is equivalent to m, see (3), we shallassume that m(x) < oo.

Letusdenote by P(x, B) the transition probability of a temporally homogeneous,
discrete time Markov process given in (X, %). By this we mean that P(x,B)
satisfies the following conditions:

(i) P(x,B)is a real-valued function defined for every pair (x, B) where x e X
and Be%, and 0 L P(x,B)< 1.

(ii) For every fixed x, P(x, B) is a measure defined on (X, %) with P(x,X) = 1.

(iii) For every fixed Be #, P(x,B) is a measurable function.

We define the nth transition probability of the process recurrently by:

P'(x,B) = P(x,B)
and

P"(x,B) = fP""l(y,B)P(x,dy) for n = 2,3,
X

Then it is clear that for each positive integer n = 1,2,-.-, the nth transition
probability satisfies the same conditions (i), (ii) and (iii) above. The nth transition
probability P'(x,B) represents the probability that a ‘‘path’’ of the process
starting from the point x will go into the set Bin n steps. In this note we shall have
no occasion to deal with the probability model (‘‘paths’’ of the process), but shall
treat everything in terms of transition probabilities. Therefore, in the sequel, we
shall abuse the terminology and say a Markov process to mean its transition
probability P(x, B). Let us call the process P(x, B) nonsingular with respect to the
measure m if m(B) = 0 implies that P(x, B) = 0 a.e. (m). It is easy to verify that if
P(x, B)is nonsingular, then so is P*(x, B) for each n = 1,2, ---. In what follows we
shall always assume the nonsingularity of the process P(x, B) with respect to the
given measure m.

Suppose ¢ is a (not necessarily one-to-one) measurable and nonsingular trans-
formation defined on (X, %, m). For such a transformation ¢ to be measurable we
mean ¢~ 'Bis measurable for every measurable set B, and to be nonsingular we
mean m(¢~'B) =0 for every measurable set B with m(B) = 0. Now given such a
transformation ¢, it can be regarded as a special type of Markov process whose
transition probability is given by the formula:
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(11 P(x,B) = Xo- 1(3)(") = xp($x),
where y4-1p(x) and yg(x) denote the characteristic functions of the sets
6~ '(B) and B, respectively.

We say that a measure g defined on the measurable space (X, %) is invariant
for the process P(x,B) if for every Be #

u(B) = f P(x, B)du(x).

If P(x, B) is generated by a point transformation ¢ as indicated by (11), then u
is an invariant measure for the process P(x,B) if and only if ¢ is a measure-
preserving transformation with respect to the measure yu; i.e., u(¢—1B) = u(B)
for every measurable set B.

Let us denote by L!(m) the Banach space of all real-valued, measurable, and
integrable functions on X, and by L®(m) the Banach space of all real-valued,
measurable, and essentially bounded functions on X. Norms in these spaces are
defined as usual. Two functions in L!(m) or L®(m) which differ only on a set of
measure zero will be identified.

A nonsingular Markov process P(x,B) gives rise to a linear operator T of
L'(m) into itself and a linear operator U of L®(m) into itself by the following
formulae:

I

T:f>Tf % fo(x)P(x, : )dm(x)] ,

f () P(x,dy),
X

]

U:g->Ug

where d/dm denotes the Radon-Nikodym derivative with respect to the measure
m. It is easy to check that both T and U are positive operators, that
” T”1 =1, ” U ”co =1 and that T and U are adjoint operators of each other;
i.e., for every pair of functions f, g with fe L'(m), ge L(m),

f FUg)dm(x) = f T ()g(x)dm(x).
X X

It was shown by E. Hopf[ 3] that with respect to the operator T one can always
decompose the space X into two disjoint parts; the conservative part C and the
dissipative part D, which are characterized by the following properties: for every
strictly positive function fe L(m),

[

Y T(x) = for almost all xe C

n=0

and for every function h e L'(m),

X T"h(x) ‘ < o for almost all xeD.
n=0
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It is not difficult to show that if the Markov process P(x, B) possesses a finite
invariant measure y equivalent to m, then the dissipative part D must be a set of
measure zero. However, the condition X = C is not sufficient for the existence of
a finite, invariant, and equivalent measure u for the process P(x, B). In fact, we
can state the following:

THEOREM 4. If there exists a finite, invariant, and equivalent measure for
the process P(x,B), then

for any measurable function f(x) with f(x) > 0 a.e., and for

12
(12) any sequence of positive integers {n;| i = 1,2,---},
o0
2 TVf(x)= wa.e.
i=1

Conversely, if there exists a function f(x) in L'(m) with f(x) > 0 a.e. and which
has the property that

0

Y T(x)= o0 ae.

i=1
for any sequence of positive integers {n; l i=1,2,---}, then there exists a finite,
invariant, and equivalent measure for the process P(x,B).

Proof. In order to prove the first part of the theorem, let us suppose that
there exist a measurable function f(x) with f(x) > 0 a.e., an infinite sequence of
positive integers {n;|i=1,2,---}, and a set A € & with m(4) > 0 such that

s

(13) T"f(x) < oo for all xe A.

i=1

We may suppose that f(x) belongs to L*(m). We define a new measure u on (X, %)
by:

wB) = f f(x)dm(x) for all Be #.
B
It is clear that p is totally finite and is equivalent to m. From (13) it follows that

lim T"f(x) =0 for all xe 4.

i—>w

By Egorov’s theorem, we can find a measurable subset A’ of A and some constant
M > 0 such that m(4’) > 0 and for all xe A’

| T (x)| <M for all i =1,2,--.

Using the Dominated Convergence Theorem, it follows that

lim | T"(x)dm(x)=0.
i JA4’

Consequently,
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lim | UMy (x)f(x)dm(x) = lim | P"(x,A’)du(x) =0.
x x

i—=o0 i=>w©

This implies that
lim inf j- P'(x,A")du(x) =0,
X

where u(A’) > 0 by the equivalence of u and m. By Theorem 3 of [4], P(x,B)
cannot have a finite invariant measure which is equivalent to u (hence to m).
This proves the first part of the theorem.

To prove the second part of the theorem, let f(x) be the function satisfying the
properties stated in the hypothesis. Let us denote again

u(B) = f Fdm(),

and consider the Banach space L'(u). Itis obvious that a measurable function h(x)
belongs to L!(p)if and only if h(x)f (x) belongs to L'(m). We define a linear opera-
tor S of L'(u) into itself by

S:h—>Sh= 7‘;— [fx h(x)P(x, - )du(x)].

Itis clear that S and U are adjoint operators of each other, whereby U isregarded
as a linear operator on L* () (which is actually identical with L®(m)).
It is easy to verify that the operators T'and S are related by the equation:

T*(hf) =fS*h for each k =1,2,-.-.

Clearly, the function 1(x) which takes constant value one a.e. (m) (hence a.e. (1))
belongs to L'(u); thus, by taking h to be 1, we get

fS*1=T% for each k=1,2,-..
Therefore, our hypothesis implies that, for any sequence of positive integers

{n,-l i= 1,2,"'},

f(x) ﬁ S§"1(x) = 0 a.e. (m) (hence a.e. (i)).

i=1

Since f(x) belongs to L'(m), it follows that 0 < f(x) < o a.e. (m) (hence a.e. (4)).
Consequently, for any sequence of positive integers {n; | i=1,2,--},

s

S"1(x) = o0 a.e. (u).

i=1

Now suppose that for some measurable set E and some sequence of positive
integers {n;|j=1,2,---}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



382 A. B. HAJIAN AND YUIJI ITO [May
z f P"(x, E)dpu(x) < 0.
ji=1 X
Then, since

2 [ Pusmiue) = £ [ s = [ £ samauc,
ji=1JX =1 JE E j=1
we must have u(E) = 0. Therefore, by Theorem 4 of [4] there exists a finite
measure v which is equivalentto y (hence to m) and is invariant for P(x, B). This
completes the proof of the theorem.

COROLLARY. Suppose there exists one function f(x) in L'(m) with f(x) > 0
a.e. and which has the property that, for any sequence of positive integers
{n;|i=1,2,---},

198

i
-

T"f(x) =0 a.e.

13

Then for any measurable function g(x) with g(x) > 0 a.e. and for any sequence
of positive integers {n;|i=1,2,---}, we have

s

T"g(x) = 0 a.e.
i

]
-

Proof. Follows directly from Theorem 4.
We note that it is possible to construct a Markov process P(x,B) for which
X =C but

Ms

T"f(x) < o a.e.

]
-

i
for some measurable function f(x) with f(x) > O a.e. and some sequence of positive
integers {n;| i =1,2,---}.

The assertions in Theorem 4 were stated in terms of the operator 7. It is
interesting to know whether similar assertions stated in terms of the adjoint
operator U would be valid. It turns out that an analogue of the first assertion of
Theorem 4 is valid with respect to the operator U, while the second assertion is
not. Namely,

THEOREM 5. If there exists a finite, invariant, and equivalent measure v
for the Markov process P(x,B), then

for any measurable function f(x) with f(x) > 0 a.e., and for
any sequence of positive integers {nil i=1,2,---}, we have

(14 Y Unf(x) = o ace.
i=1
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However, there exists a Markov process P(x,B) for which condition (14) is
satisfied and yet there does not exist a finite, invariant, and equivalent measure.

Proof. In order to prove the first part of the theorem, let us define an operator
R on L'(v) into itself by

R:h—>Rh = -j—v[ th(x)P(x, . )dv(x)].

Then clearly, R and U are adjoint operators of each other, whereby we regard U
as an operator on L*(v) into itself. Now let us suppose that condition (14)
is not satisfied. Then, there exist a measurable function f(x) with f(x) >0 a.e.,
a sequence of positive integers {n,-] i=1,2,---}, and a measurable set 4 with
m(A) > Osuch that

M3

1]
-

15) U"(x) < o forallxe A.

14

We may assume without loss of generality that f(x) belongsto L*(v).From (15) it
follows that

lim U™f(x) =0 for all xe A4.

i

Since | U™f(x) | < v-ess.sup | f(x) | for all i, and since v is a finite measure, we
conclude that

lim | U™f(x)dv(x) =0,

i—»o0 A
which implies that
lim SR (x)dv(x) = 0.
X

Thus, we can find a subsequence {n;} of the sequence {n;} such that
R (x)—0 a.e. as j— .
The invariance of the measure v implies that
R*1=1 ae. for each k=1,2,-,
so that, by the positivity of R,
RY%(x)Z1 ae. for each k=1,2,.- .

Thus, the sequence {R™y,(x)} tends to O a.e. boundedly as j— 0o, and this
implies that

lim | RYy(x)dv(x) =0.
b 4

ad
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But for each j=1,2,...,

f RY(x)dv(x) = J- UM1(x)dv(x) = v(A)
X 4

so that we must have v(4) = 0. Since v is equivalent to m, we have a contradiction.

In order to show the second part of the theorem, let us take the measure space
(X,#,m), where X is the unit interval [0,1] with the o-field Z of Lebesgue
measurable subsets of X and the ordinary Lebesgue measure m defined on it with
m(X) = 1. We consider on this measure space a point transformation ¢ defined
as follows:

2x if x €[0,1/2),
(16) b(x) = {

x if xe[1/2,1].

It is clear that ¢ is a many-to-one, measurable, and nonsingular transformation.
We consider now a Markov process P(x, B) generated by this transformation ¢,
where P(x,B) is given by (11). Then, the linear operator U associated with this
process is given by:

U fos UfG6) = fxf(y)P(x,dy) —f(¢%).

It is clear from the definition of the transformation ¢ that this Markov process
satisfies the condition (14). On the other hand, it is also easy to see that any invar-
iant measure u for the process P(x, B) must have the property that 4[0,1/2) = 0.
Therefore, this process does not have any finite, invariant, and equivalent measure.
This completes the proof of the theorem.

In the next theorem we consider the analogue of condition (4) for a Markov
process.

THEOREM 6. There exists a finite, invariant, and equivalent measure u for
the Markov process P(x,B) if and only if

for any decomposition {4, |k =1,2,---} of the space X,

for any measurable set B with m(B) > 0, and for any sequence
of positiveintegers {n,-l i=1,2,---},thereexistssomek
(depending on the set B and the sequence {n;}) such that

)

i P"(x,B)dm(x) = 0.
i=1 Ja

Proof. To prove the sufficiency, let us take a decomposition of the space X
which consists of X alone. Condition (17) states that for any measurable set B with
m(B) > 0 and for any sequence of positive integers {n,| i =1,2,---},

) f P"(x, B)dm(x) = 0.
i=1 X
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Therefore, for any measurable set B with m(B) >0,

liminf — E P"(x B)dm(x) > 0.
n—+w B k=0
By Theorem 3 of [4], there exists a finite, invariant, and equivalent measureju
for the Markov process P(x, B).

To prove the necessity, let us suppose that the Markov process P(x, B) has a
finite, invariant, and equivalent measure p and that there exist some decompo-
sition {4, | k =1,2,---} of the space X, a measurable set B with m(B) > 0, and a
sequence of positive integers {n,-l i=1,2,---} such that

x> P"(x,B)dm(x) < 0 for all k=1,2,-,

i=1 Ax
Let us put
M, = max {1, 2 P"‘(x,B)dm(x)} for k=1,2,--,
i=1 Ay
and define
E 1
fx) = = 2"_Mk Xa(%) -

Then f(x) is a measurable function on X with f(x) >0 a.e., and f(x) belongs to
L®(m) (and, therefore, to L'(m)). It is easy to show that for each j =1,2,.-.

. & 1
J = —_—
Tf(x) k§1 szk zjAk(x)'
Now,

§ T"f(x)dm(x) = i E: 1
i=1 JB

i=1 JB k=1 2tM; T"%a(x)dm(x)

ao oo

= P 1 k A 2"M fT"xA,‘(x)dm(x)

@

k).“.l TR M“ . f P"(x, B)dm(x)

1.

liA

By the Monotone Convergence Theorem it follows that

Y T C)dmex) = 2 f T (e)dm(),
Bi=1 i=1 B

from which it follows that
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R0

Y T"%(x)< oo for almost all xeB.

i=1
Thus we have a contradiction to the first part of Theorem 4, and this completes
the proof.

Suppose in condition (17) of Theorem 6 we interchange the role of 4, and B,
i.e., suppose we consider the following condition: For any decomposition
{4, | k =1,2,.-} of the space X, for any measurable set B with m(B) > 0, and for
any sequence of positive integers {n, ] i=1,2,---}, there exists an index k (depen-
ding on the set B and the sequence {n;}) such that

ﬁ P'(x,A)dm(x) = 0.
i=1 JB

Then, the necessity of this condition for the existence of a finite, invariant, and
equivalent measure for the process P(x,B) can be proved in exactly the same
manner as the necessity part of Theorem 6. However, this condition is not suf-
ficient, as the same example mentioned in the proof of Theorem 5 satisfies this
condition.
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